CASE FILE

10AN ONLY

: COPY
z .
- NATIONAL ADVISORY COMMITTEE
2 ~ FOR AERONAUTICS

TECHNICAL NOTE 2272

LATERAL ELASTIC ]:NS'I‘ABILITY OF HAT-SECTION
STRINGERS UNDER COMPRESSIVE LOAD
By Stanley Goodman

Natiénal Bureau of Standards

Washington
January 1951




1
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LATERAL ELASTIC INSTABILITY OF HAT-SECTION
STRINGERS UNDER COMPRESSIVE LOAD

By Stanley Goodman
SUMMARY

A strain-energy method is presented for computing the compressive
load for lateral elastic instability of hat-section stringers of simple
cross section whose side walls and tops are flat and of constant thick-
ness. Buckling stresses for such stringers having five different shapes
and a range of lengths were computed by this method. The results con-
firm an opinion which is already widely held, namely, that lateral insta-
bility is an unlikely cause of failure for hat-section stringers.

INTRODUCTION

Hat-section stringers are widely used to reinforce the stressed
skin in semimonocoque aircraft structures. They have an advantage over
open-section stringers in being much more resistant to lateral insta-
bility (instability in which the top of the strlnger moves laterally with
respect to the base)

Hat-section stringers with thin walls are subject to local insta-
bility in which the side walls or tops buckle like plates. Such buckling
. will usually not prevent the stringer from taking additional load much as
a sheet-stringer pancl takes additional load after sheet buckles appear.

The failure of the stringer in long panels will be due to Euler
column instability. As the length of the stringer is reduced the initial
-instability may consist of a lateral motion of -the top of the stringer.-
‘Such instability is likely to be followed immediately by Euler column
instability because lateral instability will usually result in a marked
decrease in the ability of the top of the stringer to carry additional
load and this in turn should markedly lower the effectlve EI which
determines Euler column instability. -

Hat-section stringers having the ‘side walls relatively close together
tend to approach the cross-sectional shape of open-section stringers. For
this reason, it was suspected that in monocoque construction having such
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hat-section stringers, lateral instability might be the cause of failure.
Indications that such was the case for most of the panels of a set tested
in compression in a.previous investigation were found on inspecting the
panels after failure. (See fig. 1.) These panels show evidence of
lateral displacement of the tops of the stringers as well as of Euler
column instability and local instability of the flanges.

To obtain information regarding the range of dimensions for which
lateral instability would be likely for hat-section stringers, it was
considered desirable to develop an approximate analysis of this type of
buckling for a few stringers with simple cross-sectional shapes. Such
an analysis is given in this report for symmetrically shaped hat~-section
stringers whose tops and side walls are flat. Numerical results are
given for five different shapes of stringer cross section.

This investigation was conducted at the National. Bureau of Standards
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
a1, 8pseeesdg arbitrary constants in stringer deflection equations
' . ' Et 3
Dg flexural rigidity of stringer side walls _
| | | 12(1 - 12/
. o Et3
D¢ flexural rigidity of stringer top %
12(1 - w3
E Young's modulus
I moment of inertia
G shear modulus S R
\2(1 + p)
B Poisson's ratioj taken as 0.3
h height of stringer side wall (see fig. 2(a)) .

l length of'stringer
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My . bending moment at root of stringer side wall (see )
‘ fig. 2(b))

-Mo " '~ bending moment at top of stringer side wall (see
fig. 2(b))

tg thickness of stringer side wall

tt ~ thickness of stringer top

w width of stringer top (see fig. 2(a))

A cross~sectional area of stringer

x \ coordinate along length of stringer (see fig. 2(a))

y ' ‘lateral displacement of stringer top (see fig. 2(c))

6 . interior angle between stringer side wall and
structure to which stringer is attached (see
fig. 2(a))

gs ) coordinate along width of stringer 81de wall
(see fig. 2(a))

£ coordinate along width of stringer top (see fig: 2(a))

o axial stress on stringer end

ccr. critical axial stress

: critical stress for primary lateral .elastic instabiliﬂy
cr,min .

of an infinitely long stringer -

T V shear stress
ANALYSIS

. A conventional strain-energy method, similar to the method applied
to plates on pages 325 to 327 of reference 1 and employing two arbitrary
constants in the deflection equations, is used to compute the buckling
load for five stringers over a range of lengths. A similar method
employing five arbitrary constants in the deflection equations is derived
in the appendix, and used to compute buckling loads for various lengths
of one of the five stringers. The stringer configuration and displace-
" ments (with .the corresponding symbols) are shown in figure 2.
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Let the lateral displacement of the top y (see fig. 2(c)) be

¥y = aj sin %% ' | (1)

Let the right and left side walls have axial displacements at the top
(see fig. 2(d)) Ur and U, respectively:

Up = -ap cos %?‘ , (2)
. o onx '
. U, = ap cos T : (3)

In the top, line 1-1 (fig. 2(c)) rotates clockwise:

AT e (1)

Line 2-2 rotates clockwise (fig. 2(c)):

U, -0 2a : ‘
l r_ 2 cos X L (5)
w o l

w

The shear strain in the top 74 1is the difference between these two
rotations if axial fibers of the top are assumed to remain parallel
during the deformation and lines, such as 2-2, to remain straight.

fa;n  2a)\’ ' '
1 2 nx
={— - —=Jcos = : 6) -
7t ( l vv) l . : .( )

The shear strains in the right and left side walls Yy and Y, -respec-
tively, are similarly

. U ap nx
7 S e e T e—— CO0S — 7
r h h l - (7)
U a .
l 2 nx ‘
= e = e—m 008 —— ) 8
nEE TR ) ~ (8)
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‘The changes in axial stress at the right and left corners ‘Ao, and Aoy,
respectlvely, durlng buckling are: :

ou a2n

- r _ X
Adr—E-a?-—ETslnT . (9)
ou a,n e
oy = E —%'= -E -2~ sin 1X (10)

ox l l :

‘The change in axial stress due to. buckling at the clamped edge of
the side walls will be taken as zero. Axial stresses will be assumed
" to vary linearly from edge to edge of the top and each side wall. The
change in axial stress Aoy in the top due to buckling is (from equa~-
tions (9) and (10)) '

2EE, na .
Aoy = —E 2 gin BX

wl l (11)
The axial strain energy in the top due to buckling V; is then
by 2E§ na, )2
V4 = sin dx dg
1" 2E 1 b
2 . . . .
Ena,wt
s 27t ' (12)
121 . .
The change in axial streés Aoz due to buckling for the two side walls
is (from equations.(9) and (10))
E¢ na

dog = —=-F sin 2X (3

~
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The strain energy Vp of the two side walls due to buckling is

Eg na 2
Vo =2 2 sin %%) dx dég
2, 2 . .
En“a,“t_h
2
i o - (1h)
61

The strain energ& due to buckling stored in shear may be computed
as follows: For the top, the shear stress T¢ due to buckling is

(from equation (6))

a;n  2a
1 %) X
Ty = Gyy = G\— - —Jcos — 15
t 7+, < 7 " 2 (15)
The shear strain energy V3 in the top is then
w‘tt ¢ ajmn 2a2 T 2
V3 = —" — - —&Jcos ZE| ax (16)
2G l w l ' .
or, taking the shear modulus G as E/2.6,
Ewlt, fa,n  2a,\2
U3 - t(l - 2) (am)
’ 10.4 w
Slmllarly shear strain energy for the two 51des V), is (from equa—
tions (7) and (8))
Et_la,® -
v, = —872 ‘ (18)

5.2h
For the lateral displacement of the side walls, the following con-
tinuity equations must be satisfied: The displacement v at the top.
of the right side wall (see fig. 2(b)) is, for small displacements,

. .o X 1
vE Glsnll)shle ’ ﬂ9)

»
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The vertical displacement is

. NX 1
ay sin —= 20
( 1 l )tan °] ( )

The change in the angle of the top vy (fig. 2(b)) is then

. X 2. .
= (a7 sin — } —————— : (21
v 1 l ) w tan 6 (21)

A reasonable approximation to the lateral deflection shape will be
obtained by assuming phat in the top and side walls the moment varies
linearly with Et and ES, respectively, and that the bottom of ‘the

side wall has clamped Support. This gives

.
dn M, +
Dg — = Iy - gs—l——.M? o (22)
deg h o
Integrating,
2 3
. 3 g
S'ls l 2 6h 1 2 ) \

where né is the Tateral deflection of the side due to bending. At
the top €5 is equal to h, and the lateral deflection of the side Ns
is equal to the deflection v of equation (19):

(al > Z)sine DS(MB 6) (21)

For the top, assuming a linearbvériaﬁion of bending moment and zero
moment at the midwidth, '
2. |

D, d nt L 2M2§t

d§t2 w

(25)
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Integrating,

M€, 3

Dymg= - + £y (Constant) | (26)

where my is the deflection of the top due to bending (see fig. 2(b)).

The constant is determined from the condition that the deflection
of the top due to bending is equal to zero at the corner. Evaluating

.the constant and substituting in equation (26) give:

Ay

Mo §t3 .+ M2W§t

D = - 27
gl 3w 12 (27)
Differentiating, ,
2 - _
4y _ '_M_2€t___w_> | (28)
déy, Dy \w 12 o

The top at the corner rotates counterclockwise through an angle (from

. equations (21) and (28)), and

dny - nx\ _ Mow o
v (_t> ) (al Sy ™ TG ~ 8Dy, (29)

W
2

where V¥ 1is the change in angle of the top. The‘side at the corner

rotates counterclockwise through an angle —dns/dg - which may be .
obtained by differentiating equation (23) and settlng § equal to h.
This gives :

dng . h | '
= - — (M -1, 0
(d& > 2Ds< 1 2) ' (30)
Es=h '
Equatlng the rotations of equatlons (29) and (30),

V -2a
h 1 . TX
M - Mo (- + = . sin = 1
1(2Ds) 2(6Dt 2Ds) .w tan 6 l (31)
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- Solving equations (2L) and (31) simultaneously for "M and Mp gives

2 cos O 3 LNX
——-——-—-w + E-H 3DS al ‘Sln T '
My = + > - (32)

w4 _h_ h sin 6
3Dt 2Ds
and -
2 cos ® cvc:s o+ 2—35_ 2a; sin ’—IZE -

M2 = . (33)

W h sin O

—_—— e ——

3Dy 2Dg

Expressions may now be obtained for the lateral bending enefgy and
for the energy supplied by the load. From pages 305 to 307 of refer-
ence 1 the lateral bending energy V for a plate is

2 21 \2 2 2.\
v=2 an an> 2uana—3+2(l-u)(anx) (3L4)
2 -~ \ax2/ at2 ax? 3t d |

RS

where D 1is the flexural rigidity, R is the area of the plate, m is
the lateral deflection of the midplane of the plate due to bending, and
¢ 1is the coordinate along the width of the plate. An expression for
the lateral bending energy Vg of the two side walls due to buckling

may be obtained by substituting the expressions for M7 and My
(equations (32) and (33)) in equation (23), dlfferentlatlng Mg with
respect to &5 and x, substituting the results in equation (3l), and
integrating. This gives
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2 ? ( 2,5 6,1 27)
v Dg|2-0.1k3%0° - L kKm0 + L k,2n
5° L3 1 6 12t *tay K2

Z(2K12h ~ 6K1Kph® + 6K22h3) -

2
EZ“—@ Ky %3 - 2KqKont + 1.21{22}15) +

Ly , _ . ‘
(——Z“—)"—(éi K123 - 3K Kbl + 1.8K22h5)] (35)
‘ " where
‘ 2 cos O + _3_
Ky = 1 w 2n , 3Dg
1= + -
2Dg sin 6| w_ 4 _h_ né
3Dy 2Dg
| 2 cos 6, 3 D .
K, = 1 3 2 2hy , s .
6hDg sin 6 W, h h?
| | 3Dy 2Dg

Similarly an expression for the lateral bending energy Vg of the top
due to buckling may be obtained by substltutlng the expression for Mp
(equation (33)) in equation (27), differentiating My with respect
to g and x, substituting the results in equatlon (34), and inte-

gratlng This glves
w7) +

5 _
O.?SZ_Khzw3 —-%(—O.ZB’KBKL‘WB + % Khzws) +

I Py S R W3 L 5. 1
A - — K
6 al Pt (h8 27 = oo B3RVt 955

(L-Z_H)_ﬂ_(o 5K3 w - O, 25K3Khw' * T Kb2w5):, (36)
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where -

2 cos 8, 3

Koo " W 2h
3 6Dy sin 6\ W , _h
-~ [2.cos 8 , 3
_ 1 w 2h
K), = - : -
1.5wDy sin 6\ W_ , 1
3Dy 2Dg

The strain energy stored during buckling of the stringer will be
the sum of the six strain energies derived above.

The energy supplied by the load is the integral over the end cross
section of the product of the axial stress and displacement. The part
of the axial displacement corresponding to equations (2) and (3) will
integrate to zero over the whole cross section. There is an additional
axial displacement & due to lateral 31ne—wave dlsplacement From '
page 28 of reference 1

- n2d2

“5 - 24 (37)
where d 1is the lateral displacement at x = 1/2.
For the side walls, from equations (23), (32), and (33),
d = al(Kj_gsz - K2§SB) . ' (38)

where Ky and K, are defined in connection with equation (35).

The energy Vg expended by the total compressive load on the two

side walls is then _
’ a- 212 -
2 | oty (Klgs - Kot 3) deg
o -k o

oa,2nt, '
1 S(O.lKlth - % K1 Koh® + Tlﬂ K22h7) (39)

V7
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For the top, the maximum horizontal displacement is ay (equation 1):
and the maximum vertical displacement for small displacements is given
by equations (21), (27), and (33). From these d2 may be obtained as:

where

| cs, 2 Y |
d2.‘= 312 1 + K3§t - thtB’ *. w tan 6 (1)

t

2 cos 8 + 3

K, = —¥ w___%h
3 6py sine| w_, b
3Dy 2Dg

, 2 cos 6 3

————— P —

K = 1 w 2h
L 1.5wDy sin 8\ _w_, _h
3Dy 2Dg

and the energy Vg expended by the external compressive load on the top

is then

\

Vg

5 ot
2 T 2
d

W Ll “

2

a-2nt S

17 1 1 |
CTEV+1_2KBZW3-L—O.{(3KIJWS+E§. Khzw?"' -
1 /1., o 1 W )
—=f= KWl - = KWl + — )| 1
tan 9(3 3" 20 L 3 tan 6 ] (1)

At the buckling 1oad, the energy put iﬁ equals the strain energy

stored.

Equating the strain energy stored (equations (12), (1L), (17),

(18), (35), and (36)) to the energy put in (equations (39) and (41)) and
solving for the critical axial stress o, as a function of a2/a1 give
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teEnlw g
10.’-1& al
Ocr = 1
2 (V7 * V8)

a1 Oer

4 T \2
nt, E\/a t, E a
( tXﬁ)+&%vlf;§%+_%Vh+t xg>
2.6 ay a, a, -a, 2.6w a;

The value of apfay for which ogp is a minimum is

.ao 2. .

2.1 S—H CW3)
2 1 v 1 v 1 v b Elw i

—— l + —_— 2 + —_— +

a2 a2 2 b 28

‘Substituting the expression for ap/aj of equation (L3) in-equation (L42)

© gives '

2 a
_ t1Encw
Ocr = 1 L : + 12V5+L2V6—
(7 *+ Vg)| 1L m a1
alocr. .
il (L)
L
N A N A o i
A W 1 ay? 2 a2 b 2.6@/J
2 2 2
where
Vq axial strain energy due to buckling in the top (equation (12))
Vé axial strain energy due to buckling in the two side walls

(equation (1L))

V3 shear strain energy due to buckling in the top (equation (17))
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\n shear strain energy.due to buckling in the two side walls
(equation (18)) :

Vg bending strain energy due to buckling in the two:side walls
(equation (35)) ‘

Vg bending strain energy due to buckling in the top (equation (36))

Vo energy expended by external compressive load on the two side
walls (equation (39))

Vg energy expended by external compressive load on the top
: (equation (41)) ‘

The quantities a;, aj, and 0, on the right-hand side of equa-

tion (Ll4). will cancel out of the equation when the expressions for the
strain energy are substituted, leaving an expression for Ocp 1in terms

of E, i, and the stringer dimemsions. A critical-strain ratio cér/E
may be obtained by dividing through equation (L4) by E.

SHAPE OF STRINGERS ANALYZED

Stringers of five cross-sectional shapes were analyzed. They
include three with side walls and tops of equal thickness and two with
the top thickness 2,2l times the side wall thickness. Four had side
walls perpendicular to the structure to which they were attached, and
one had an interior angle of 6l;.2° between the side wall and structure.
Shapes of the stringers drawn to scale of equal area are presented in
figure 3, and the dimensions of the stringers are given in columns (2)
to (5) of table 1. Sections 1 and 2 approximate stringers currently
used, while sections 3, L, and 5 are variations of section 1 chosen to
show the effect of changes in height and wall thickness.

PRIMARY BUCKLING STRENGTH OF STRINGERS

The critical-strain ratio qcr/E plotted against the length
ratio Z/JK for the five stringer shapes énalyzed is presented in fig-

ure Lj. The ratio Z/VK was chosen as abscissa since it has a fixed
value for all geometrically similar specimens and also a fixed value for
all geometrically different specimens of a given length having the same
cross-sectional area. Comparison of ordinates for a given abscissa will
therefore show the effect of changing the distribution of material in



~  NACA TN 2272 - 15

the flange. The buckling-stress ratios in figure || decrease with
.increasing stringer length, go through a minimum S%r, min/E at a flange

length less than that usually encountered in aircraft structures, and
then increase for greater stringer lengths. A relatlvely long stringer
with simply supported loaded ends will buckle into half sine waves, the
number of which may be determined by following the procedure for plates
described on page 330 of reference 1. It is apparent from the curves
in figure L that, using this procedure, .the buckling-stress ratio for

a long stringer (l > 2SJK) will be close to °cr,min/E' Values
of oy min/E are listed in column (6) of table 1. They range from
. -y .

0.0141 to 0.0Lhly, indicating that, for aircraft materials, buckling would
occur in the plastic range. Since the buckling-strain ratios obtained
appeared to be high, a similar method of-analysis using five arbitrary .,
constants in the deflection equations and assuming hinged support for the
side walls at the root was derived. This method is presented in the
appendix. Buckling-strain ratios were computed for section 1 by this
method, and are plotted against the length ratio in figure L. The value
of o,y mln/E (column (7), table 1) obtained by the second method was

3L percent lower than that obtained by the first method. This indicates
the need for using the solution involving five arbitrary constants where
greater accuracy is desired.

STRINGER DEFLECTION SHAPES

Expressions for the relative transverse deflection shape of the
stringers may be obtained from the method of analysis using two arbi-
trary constants by assuming a value of unity for a; and substituting
values of the bending moments from equations (32) and (33) in the
"deflection equations (23) and (27). The lateral deflection shapes of
the right sides of stringer sections.1l and 2 so obtained are presented
in figure 5. Relative displacements of the stringer elements corre-

. sponding to equation (19) and equations (A2) and (A3) in the appendix
may be obtained from the method of analysis using five arbitrary con-
stants (presented in the appendix) by assuming a value of unity for aq,

arbitrarily selecting four of equations (A35), substituting the buckling-
strain ratio for ocr/E, and solving the resulting equations simultane-
ously for a,, az, 2, and ag- The relative deflections may then be

obtained by substituting the values of the constants in equations (Al),
‘(A2), and (A3). The relative lateral transverse deflections of the
stringer side wall and top, assuming hinged: support at the stringer root
may be obtained by assumlng a value for aq, obtaining the values of Ml
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by substituting the value of\bal. in equation (A25), substituting these
values in equations (A21) and (A23), and solving these equations for Ns
and mt. The lateral deflection shape of the right side of stringer

"section 1 is presented in figure 6.

~CONCLUDING REMARKS

The hlgh values of computed elastlc strain for lateral instability
for the five stringer séctions investigated substantiate the widely held
opinion that closed-section stringers of reasonable proportions fail in
ways other than lateral instability of the top. Even in the case of the

- narrowest sectlon, Ocr mln,E is 0.0141, a value well into the plastic -

range for aluminum alloys

National Bureau of Standards _
Washington, D. C., August. 11, 1949
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APPENDIX

’

STRAIN-ENERGY METHOD FOR‘COMPUTING BUCKLINd—STRAIN
RATIO USING FIVE ARBITRARY CONSTANTS IN

DEFLECTION EQUATIONS

Let the lateral deflection of the top be
¥y = aj sin 3%' (A1)
Let the axial deflection of the top be

uy = —Eaz 2—;1- € - 3§t(v-vh—2‘-.'§t2)] cos -“Tx o © (A2)

An expression for the axial deflection of the right side wall which ,
coincides at the corner with the axial deflections given by equation (A2)

is -
urv = —.Eéisl + ahﬁs(g—hs - 1) 55 (g— - )]cos _nTx - (A3)

Let the axial deflection of the left side wall be

'

ug = -up | (AL)

It is further assumed that axial fibers in the top remaln parallel to
each other. A similar assumption applies to the 31de walls,

The shear strain in the top vy 1s then

- ouy . n 2h S we A X |
= = no_ <h we _ 2 X
g (iR oma s w)
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Shear strain in the right side wall ¥, is

oup,  Ovy (2§é ) (3§52 ' ) nx
=+ —— = -jas + gyl —-1) + a - 2t _Jlcos = (A6)
T e, ax 27\ T \'n S )

Where v, 1s the deflection of the right side wall in the gs—direction
and equals zero.

Shear strain in the left side wall ¥, is

The change in éxialfstrgss_fAbt in thextop due to buckling'is'<

AO’t =

, 2h ¢ i

- nE .onx| |
[;(l - u?) éln Z] . ‘

The change in axial stress. Ao, in the right side wall due tov
buckling is :

- where €y i3 the axial strain.

E - Oup
2 ox

Acr. =
. 1-4

'[a2§5’+ ah§s("h§ - 1)-..+ '-a;.gs‘(—hi-- 1)] [.(_“E—z) sin 1;‘— (A9)
L o\ TS 2 TN ,

The axial strain energy Vl in the top due to bucklihg is (from equa-
tion (A8)) *
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t4n%E ’ ’ l
Vl = ————t-—(-]; h2wa22 - 3% hwha2a3 + 0.0011905W7832) (AlO)

ui(1 - p2)2V

The axial strain energy Vo in the two sides due to buckling is (from
equation (A9)) - '

)
tsTE f1 3 2 103 1 .h .1 .3 2
Vo= ——=—_I{=h -=h -—=n + = h°
* 2 - u2)2(3 2 Te TR R g A T
e hhaua5 + ——g h5a5 ) (A11)

The change in transverse stress Ao§£ in the top is

ey = Whoy . C o (A12)

Aoe, =

&, _ u2

The strain energy Vi in the top due to transverse compressive
stress is (from equation (Al2))

(meer)®
Vla = T =W Vl (Al3)
volume
Similarly the strain energy V,, in the two side walls due to
transverse compressive stress is '
-2 » |

Shear strain energy due to buckling is given by

<2 ‘ 1e ‘
volum.e.—z-E (115)
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Shear strain energy Vé in the top due to buckling is (from equa-
tions (A5) and (Al5)) :

tE  [nPw 2 Lh21 2 b 2
V3 = 8(1 " p,)( al - )-U'lha_}az + - L agt t TO- 33 (Alé)

‘The shear strain energy Vh in the two side walls due to buckllng
is (from equations (46) and (A15))

tsEl .2 1 2 1 2 2 3, 2 )
e u)(ha2 T3t g haes g e (w17)
The displacement v (fig. 2(b)) at the top of the right side wall
is , .
onxy 1 o )
v = (al sin —f)sin.e _ (A18)

Thé change in thé angle of the'top ¥ .is
w tan @

¥ = (al sin E%)———g—;— - (A19)

‘A reasonable approximation of the lateral deflection shape may be
obtained by assuming that the moment ‘varies linearly with €y and €q

in the top and side walls, respectlvely Assuming hinged support at the
root of the side wall, M} = O. Then, for the side wall

2 . :

dn £y -

Dg —= = -, 2 . (420)
de 2 h | o

where mng 1s the lateral deflection of the side wall due to bending.

Integrating equation (A20) and obtaining the values of the constants

~ of integration from the conditions that s =0 at &g =0, and Ng =

(displacement at the top of the side wall; see equatlon (A18)) at Ly
give
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e3  ht ) D_t
, = _ S _ S . l.X_ S°S ' :
PsTs MZ(éh 6 /)" al(s*n Z)h sin 6 o (2l
For the top
.
d“n 2t .
Dt~_—£ = -M, 2t (A22)
2 w
dgt

where m¢ 1is the lateral deflection of the top'due to bending.

Integrating equation (A22) and evaluating the constants of inte-
gration from the condition that the deflection of the top due to bending
'is zero at &4 = 0 and &y = w/2 give

Mp&y  Mpwhy

pw 2 (A23)

Dgng = -

The moment My may be obtaihgd by equating the counterclockwise
rotations of the top and side wall at the corner

. - (a ' dr " '
v (ﬁ) i (l) | e
. s =5 s/t g=n

Substituting the expressions for , -(dnt/dgt)itdéb and

(dns/dgs)g .y, Obtained from equations (419), (A23), and (A21) in equa-
Tisg™ o : : ‘
tion (A2L) and solving for M, give

(a sin nx)( 2 + » 1
1 1/\Wtan 6 h sin 8/ .
Mo = ' . (A25)
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The enefgy V of a plate due to lateral bending is (from refer-
ence l, pp. 305-307)

2 * 2
D a%) . o, 3% 3% (2 ) ,
== op &2 21 4 201 - ) A26)
Zﬂ a§2 ax2 ox? a2 afox (

where R 1is the area of the.plate and m is the deflection of the mid-
plane of the plate due to bending. ’ -

Substituting the values of the derivatives of mg with respect
to &g and x obtained from equation (A21) in equation (A26) and
integrating give for the lateral bending strain energy Vg of the side
walls due to buckling

n | ‘
Vg = a;°Dg [gz3<3 K %h3 - 0.LK Kph + 3 K22h7) + 61Ky%h3 +

1 -
2‘”‘ (K1K2h3 - 0.6K,°h 5) -(———Zﬁ(xlzh - 2KyKoh + 1.8Ky%h 5)]

(427)

where

A + 1
Ka = - 1 . h wtan 6 h sin 6 -
} hsine  6Dg i

6Dt 3Ds

. 2 4 1
1l wtan 8 h sin ©

6hDg w h

L ¢ 22

6Dt 3Dg

K2=

Similarly an expression for the lateral bending strain energy Vg

in the top due to buckllng may be obtained from.equatlons (a23), (A25),
and (A26)
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"2 Dt ﬂh(l
2L

_ 1 203 . L 1.2 2431 -
Vg = a9 - ;- K32w3 55 K3Khw5_ + 596 KLL w7)\+ l.SKh w31l

)
2um (—O.25K3Khw3 + 8'35 Kh2w5) *

l
N2 o |
(1 -W)nf o 3,9 .25 .
(k5% - 0.5K3K w3 + K P A (A28)
where
2,1 R
Koy = W [ W tan 8  h sin §
3 1o w_ . h
6D,  3Dg
. P (A29)
_ I 4 2 '+ -1 ’ 1.
_ 1 [wtan 6 hsin ©
K), =
. 3wDy LA 1
: 6Dt“ 3Dg )

" The strain energy of the stringer due to buckling is the sum of the -
straln energies Vi to Vg derived above.

_ The energy supplied by the load is the integral over the end cross.
section of the product of the axial stress and axial displacement. The
part of the axial displacements corresponding to equations (A2), (43),
and (AL) will integrate to zero over the ends, since the dlsplacement of
the top is antisymmetric about the center line, and displacements of the
right and left side walls are equal and opposite. The end displacement
due to lateral sine-wave displacement & is (reference i, p. 28)

- n2g2
L1

(A30)

where d is the lateral displacement at x = 1/2.

The energy V7 for the two side walls may be obtained by substi-
tuting an expression for d of the side walls (obtainable from
equations (A21) and (A25)) in equation (A30), and integrating the
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product of the axial stress and end displacement over the s1de—wa11 ends.
This glves

f —d2t deg =

whére K; and Kp are defined in connection with equation (A27).

- |
(% K1%h3 - 0.LK Kph® + % K22h7)

(431)

Values of d2 for the stringer top may be obtained from equations (Al)
(horizontal component) and (A23), (A25), and (Al18) (vertical component)

2
28 '
% = ap? + [al<K3§t - tht3+ ———t——> o (a32)

w tan @
where K3 and K), are defined by equations (A29).

The energy Vg for the top may be obtained from equations (A30).

and (A32) by integrating the product of the axial stress and the dis-
placement over the end cross section of the top. This gives
W

2 nzo tt

Vg dt o1

w
2

[ﬁ + ih K3 w3 -0, O25K3Khw5 + Eﬂg Kh w7 +

1 N . w a;°n ttcx- .
tan 6(3 K3 - 0.025Kh ' 3 tan eil_ hi (433)

where oy 1is the stress in the x-direction.

The work of the éexternal forces in prodﬁcing buckling is the sum

~of the energy for the side walls ¥y ,and for the top V8.

The critical buckling load may be obtained by the ‘method outllned
on pages 325 to 327 of reference 1 as follows:

o

The work of the external forces is Ipo or

Io = Work of external forces/o
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The strain energy of the stringer I; is the sum of the previously
derived strain energies V3 .to Vg. The critical stress is given by

Ipoer = In
or / .
o I /E )
1
=L - A © (A3L)
E I,

Values of the constants must be such as to give the lowest possible
value of buckling stress. This condition will be satisfied. 1f the con-
' stants satisfy the set of- simultaneous equations

' =
a1 [E ,Or
aal E - aal
I./E o aI ' ,
l/ s 2 g > , (435)
day E dap :
0 . . . . . J

Solutions of equations (A35) may be obtained only if the determinant
of the equations is equal to zero. The critical-strain ratio Ocr/E may

be obtalned by substituting the expressions oktained for Il/E and I,

~1n equatlon (A35), setting the determinant of the resulting equations
‘equal to zero, and solving for the lowest value of oyp/E. The critical-

strain ratio appears in only one term of the determinant. This term may -
be relegated to the last row, last column of the determinant. The deter-
minant may be solved with a minimum of effort by the Crout method
(reference 2). The solution, which contains the -critical buckling-strain
ratio, may then be set equal to zero and solved for the value of the
critical-strain ratio.
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TABLE I
DIMENSIONS AND CRITICAL-STRAIN RATIOS OF
STRINGERS ANALYZED
(1) (2) (3) (L) (5) (6) (7)
Stringer g3 X i (&9 ocrémin ccrE,;min

b bs s e | @ (2)
1 18.25. | 7.2%0 | 1 90 0.ollL 0.029)
2 21.26 7.276 2.24h 6.2 .0307 N
3 37.00 | 7.250 | 1 90 oWl | —meeee
L 21.26 | 7.276 | 2.2L4 | 90 .028) N
5 14.80 2.900 | 1 90 .6252 ——

IMethod employing two arbitrary constants in deflection equations;
side walls assumed clamped at root.

2Method employing five arbitrary constants in deflection equations;.
side walls assumed hinged at root.

AT
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Right side
tq wall

(N>

My

(a) Stringer. (b) Lateral displacements of
top and right side wall
during buckling.

X
!
s
| | '
| 1 !
- oo\ -
: ! '
Nl —x
. - 1 :
. A ' ~NACA
(c) Stringer top durihg N (d) Axial displacements of
. buckling. right side wall during
‘ buckling.

Figure 2.- Stringer cohfiguration and displacements.
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| . ——Midline of right side
' of buckled stringer

i’

o s . ——— - ——— —— - - = —-—

=== Midline prior to-buckling

- e Sm— ———
v

-Stringer 1

Stringer 2

Figure 5.- Lateral deflection shé.pes of right sides of stringers 1 and 2
(two-parameter strain-energy method; side walls clamped at root).
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o - - -

C—— —— — — — —

—— Midline of right side
of buckled stringer

Midline prior to
buekling

Figure 6.~ Deflection shape of right side of stringer 1 (five -parameter
strain-energy method; side wall hinged at root).
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