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TECHNICAL NOTE 2290 

A METhOD FOR CALCULATING STRESSES IN 

TORSION-BOX COVERS WITh CUTOUTS 

By Richard Rosecrans 

SUMMARY 

A theory is presented for calculating stresses in the covers of 
'torsion boxes containing large cutouts. Half the symmetrical uncut por-
tion of the cover is represented by three stringers that carry all direct 
str'sses and the intermediate cover material which is assumed to carry 
only shear stress. Differential equations of equilibrium are derived 
and solved to obtain stresses along each stringer. Illustrative examples 
are solved and the results are compared with experimental values. For 
one of these examples the results are also compared with a more detailed 
solution made by a numerical method of analysis. The agreement between 
theory and experiment is satisfactory in all cases except those with very 
large cutouts and flexible bulkheads. 

INTROJCTI0N 

An approximate method was developed in reference 1 for the analysis 
of stresses in torsion boxes containing large cutouts. This method con-
sists in first idealizing the structure by concentrating all the direct-
stress-carrying material of the box into main flange members and assuming 
all the shear to be carried by the webs and. cover sheets. Expressions 
are then written for shear and direct stress in each of the members in 
terms of an unknown distribution of torque between the shear webs and. 
cover sheets in the cutout bay. Finally, the principle of least work is 
used to find the actual distribution of torque and thus to determine the 
shear and direct stresses. The analysis is adequate for the design of 
all components of such structures except the cover containing the cutout. 

The present paper extends the theory of reference 1 to permit a more 
detailed calculation of the stresses in the covers of such boxes. The 
method is based upon an idealization of the cover similar to that just 
d.escribed.except that the full-width portion adjacent to the cutout is. 
made to contain three stringers on each side of the longitudinal center 
line instead of only one as in reference 1. Differential equations of 
equilibrium are derived and solved to obtain stresses along each stringer.
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Numerical results for an illustrative example are compared with experi-
mental data and. also with the results of a solution made by a numerical 
procedure (reference 2). 

-	 SIMBOLS 

a	 length of gross section at one end of box, inches 

b	 half-width of box, center to center of webs, inches 
(b1 + 2b2) 

width of net section, inches 

width of each of the two interior panels in gross section 
of idealized structure, inches 

c	 depth of box, center to center of cover sheets, inches 

d	 half-length of net section 

k	 fraction of total torque carried by shear webs in cutout 
bay 

t	 thickness of cover sheet, inches 

thickness of top cover sheet in net section, inches 

tb	 thickness of top or bottom cover sheet In gross section, 
g	 inches 

tb	 thickness of lover cover sheet in net section, inches 
n 

tB	 thickness of torque-transfer bulkhead, Inches 

tCg	 thickness of shear web in gross sectIon, inches 

tc	 thickness of shear web in net section, Inches 

Ul, U2, u3	 displacements in the x-direction at any point along 
strIngers 1, 2, and 3, respectIvely, inches 

displacement of any cross section in y-dlrection, inches 

x, y	 coordinate axes
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distance from neutral axis of net section to stringers 1 
2	 •	 and 2, respectively, inches	 -. 

A1 , A2, A3 	 areas of stringers 1, 2, and 3, respectively, of idealized 
cover, square inches 

Aj, A5 . . .A7 	 areas of flanges in simplified box, square inches (see 
fig. 7for location of each area) 

C1 , C 2 .. . C 6 	 constants of integration 

D	 differential operator 

E	 Young's modulus, pounds per square inch 

G	 shear modulus, pounds per square inch 

I	 moment of inertia of net section, inches 

K, K'	 dimensionless constants leading to the solution for the 
parameter k 

T	 torque, inch-pounds 

ij	 factors in assumed solutions of differential equations 
(1 designates the stringer and j designates the 
characteristic value in the solution of the differential 
equations of equilibrium) 

characteristic values in the solution of the differential 
equations of equilibrium 

Ol a,	 direct stress in gross'section in stringers 1, 2, and 3,
respectively, pounds per square inch 

2	 direct stress in net section in stringers 1 and 2, respec-
tively, pounds per square inch 

T 1 , T2 , T 3	 shear stress in gross section in panels 1, 2, and 3, 
respectively, pounds per square inch 

Tn	 shear stress in net section, pounds per square inch 

METHOD OF ANALYSIS 

The problem considered is the analysis of the cover of a torsion box 
of rectangular cross section with .a centrally located cutout as indicated
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in figure 1. As a first step in the analysis, the cover containing the 
cutout is separated from the rest of the box as a ttfree body." In place 
of the portion of the box that has been removed, forces must be added to 
the cover that are equal to those exerted by the box on the cover when 
the two parts were fastened together. These forces may be calculated by 
the method of analysis given in reference 1. Such a procedure leaves a 
stringer-stiffened panel, subjected to forces as indicated in figure 2, 
to be analyzed. Along the sides of the panel are forces representing the 
loading transferred to the corner angle by the shear webs. The lateral 
forces along the ends come from the end bulkheads, and the additional 
lateral forces at the ju.nction of the full-width and cutout sections of 
the cover are introduced by the torque transfer bulkheads that bound the 
cutout bay. If the panel is assumed to be doubly symmetrical, only one 
quarter of it, as indicated, by the shaded area in figure 2, need be con-
sidered. As before, the portion of the cover that is cut away must 'be 
replaced by the forces it exerts. The rest of the cover is an L-shaped, 
stringer-stiffened panel subjected to forces as showi in figure 3. 

To simplify the analysis further, the panel i assumed to be repre-
sented with sufficient accuracy by the idealized structure of figure Ii., 
which consists of three stringers assumed to carry all the tensile and 
compressive stress and three panels of cover sheet assumed to carry all 
the shear. This simplification follows a line of reasoning similar to 
that used in reference 3. The three stringers are located as follows: 
Stringer 1 is placed along the line of intersection of the shear web and 
cover sheet. Stringer 2 is placed along the edge of the cutout. Stringer 3 
is placed midway between stringer 2 and the longitudinal center line of the 
cover. Between the stringers is a flat sheet of the same thickness as the 
cover sheet of the actual box but which differs from it by the assumption 
that it can carry only shearing stress. All the direct-stress-carrying 
material in the cover is concentrated in the three stringers. Distribu-
tion of this material to the different stringers is assumed to be as 
follows: All the corner angle is included in stringer 1. All' the coaming 
stringer (the stringer bordering the cutout) is included in stringer 2. 
The rest of the material, including cover sheet and stiffeners, which lies 
between the locations of stringers 1 and 2 is divided equally between them. 
All the rest of the cover is included in stringer 3. 

The analysis of the idealized structure may be subdividedfurther 
by cutting the frame along the dashed line in figure 3. The narrower 
portion that borders the cutout is referred to as the net section, and 
the full-width portlbn is called the gross section. The gross section 
and the external forces acting on it are shown in figure 5 and similar 
information for the net section is given In figure 6. 

The factor k is taken from reference 1. The various dimensions 
entering into its calculation are shown in figure 7 and the method for 
computing it is given in appendix A.
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Stresses in the net section may be calculated with sufficient 
accuracy by the ordinary theory of cantilever beams. Thus the stress 
in the edge stringer is equal to 

al	 Tf1(l - k) -	 (1) 

and the stress in the coaming stringer is given by 

T2 
a2	 —(i - Ic) x	 (2)
n 2c1 

The shear stress is constant throughout the net section and ie equal to 

Tn=

	

	 T. (1k)	 (3)
2b1ct 

Stringer stresses in the gross section may be computed from the 
equations

3	 -Xx =	 C3ie i - C3 3 3	 (1 = 1, 2, 3) (It) 
j =1 

where

Cj = 2b1c	
- k(l	 + (k - l)2j 

2 b(3)X2 

t3lj=ç1_- 2 

-	
- l() 2] E 

b2)X. 

2j

(5)

(6) 
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where

2 

	

øi = ±	 - b2() Xj 21 + 

A2 - ()]2[	

-	 + 

	

A	 -	 - 

3L 

(use whichever sign is necessary to make 2j positive) 

Gt 

= 1A3bb1b2 
1A2bb1 + A1A3b(b1 + b ^ A 3b22 ± 

El2A22b2bl2.^ AA 32b2 (b1 +	 + A22A32b2 -	

(7) 

A1A 3bb2(A1bb1 + 2b1b2 - A3b22hI 

X = 0 

(A.-j is associated with the positive root). The coordinate x is measured 
from the junction of the net and, gross section toward the tip. Shear 
stresses are computed from the equations 

A2 2	 (8) T2=T1-4---_ 

T 3 =	 + 

Details of the derivation of the equations are given in appendix B.
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NT.Th4XRIC&L EXAMPLE 

• In order to demonstrate the computational procedure, the method is 
applied to the torsion box designated as case 1 in reference 1. After 
Isolating the cover from the rest of the box and idealizing it in the 
manner outlined previously, the following data are obtained: 

A1 = 1.936 square inches	 A = 0.575 square inches

A3 = 1 .306 square inches 

b = 25.70 inches	 b1 = 11.12 inches

b2 = 7.29 inches 

a = 36.75 inches c = 10 inches 

d = 2.5 inches •	 t = 0.063 inches 

I = 36.75 inches 1 T = 99,750 pound-inches 

= 2.30 inches 2 = 8.82 inches 

The shear and Young's moduli are taken as

G = li.,000,000 pounds per square inch 

E 10,600,000 pounds per square inch 

The value of k, obtained from reference 1, Is 

k =0.5146 

Stresses in the net sctIon are then computed from equations (1), 
(2), and (3) as

= 87x 

= 5143x 

Tn = 3,230 



NACA TN 2290 

The first step in computing the direct stresses in the gross section 
is to solve equations (.7) for X-i, X2, and	 The results are 

= 0.1088	 X2 O.O561.	 = 0 

Equations (6) are solved. for 	 and yield the following values: 

ll = _O.l121. 2l = l.11I.13 3l = -0.11.165 

l2 = -0 .23i.0 22 = 0.511.l2 32 = 0.4514 

l3 = 0.6702 23 = 0. 3802 = 0.1901 

Values of the constants C1 ,	 C 2 , and	 C 3 are calculated from equation (5) 

as follows:

C1 = -5963	 C2 = -3260	 C3 = -293 

Substitution of the values for	 and the integration constants into 

equation (14. ) yields 

a1 = 67Oe_0088X + 763e_0056 - 196 + 5.3x 

a2 = _6805e1088x_ 176-0.05614.x - 111 + 3.Ox 

a3 = 2 83e 0088X - 230e0056 - 56 + 1.5x 

Shear stresses are computed frOm equations (8) and the results are 

T1 = 1610 - 221e O 088X - 1322e_0056 

T2 = 1637 + i.5i7e_0.1088x - le_0056 

= l69 - 108e 0088X + 227e0056 
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Figures 8 and 9 show the shear and. stringer stresses, respectively, 
computed from these equations. Similar calculations have been made for 
the other cases listed in reference 1, and the results are showa in fig-
ures 10 to 15. For convenience of reference, the necessary data for 
each case are given in table 1. Cases 1, 2, and 3 differ only in the 
width of the cutout. Case 3 has practically a full-width cutout. Case 14. 
has been omittedhere, since it differs from case 3 only by the removal 
of intermediate bulkheads, which does not affect the computed values. 
Case 5 has a slightly longer cutout than case 3, but of the same width. 
Principally, however, it differs from case 3 in that the torque-transfer 
bulkheads are made very much more rigid. 

RESULTS AND DISCUSSION 

The preceding analysis is based upon an idealization of the structure, 
which permits the calculation of direct stresses along only three longi-

• tudinal lines. Between stringers, the variation of direct stress is 
assumed to be linear. The cover is divided into three panels, and the 
shear is assumed to be constant in each panel at any cross section. In 
addition, the forces which are assumed to be acting on the cover also 
are calculated by an approximate method based upon an idealized structure. 
These considerations make it clear that only approximate results may be 
expected and that the stress distribution can be indicated in only a very 
general way. Upon such a basis, the correlation between computed and 
measured stresses may be considered good. The theory of reference 1 is 
capable of predicting only a constant shear stress throughout the gross 
section of the cover, whereas the experimental results indicate that the 
true distribution deviates greatly from a uniform stress, especially in 
the vicinity of the cutout. The method outlined in the present paper 
permits the shear stresses to be divided over three regions in each half 
of the cover, represented by the three panels between the stringers, and, 
in addition, the stresses may be varied from one cross section to another. 
The true state of stress can therefore 'be approximated much more closely. 
In a similar way, the additional stringers make possible a more detailed 
distribution of the direct stress. The theory appears to indicate peak 
shear values a little below those actually existing, as would be expected, 
since the constant shear represents average stress over the panel. 
Stringer stresses seem to be fairly reliable in the case of cutouts of 
moderate width or those that are bounded by very rigid bulkheads, but 
for cutouts of almost full width combined with flexible bulkheads, some 
sizable discrepancies occur. For instance, cases 1, •2, and 3 all have 
quite flexible bulkheads. Case 1 represents the smallest cutout for 
which calculations were made, arid the experimental data follow the corn-
puted curves quite closely, as indicated by figure 9. Case 2 represents 
a somewhat wider cutout, and the stringer stresses begin to show some 
deviation near the cutout as shown at station 27.5 in figure 11. Case 3
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represents almost a full-width cutout, still with a flexible bulkhead, 
and the stringer stresses show a marked discrepancy near the cutout as 
at station 21.5 in figure 13. Case 5 shows practically the same cutout 
as case 3 but with a greatly strengthened torque-transfer bulkhead. 
Computed and measured stringer stresses agree much more closely as	 - 
indicated by figure 15. Case 3 is somewhat extreme and for such structures 
it may be necessary to develop a more comprehensive theory which takes 
account of additional factors such as distortion in the chordwise direction. 

Case 1 was computed by a numerical method discussed in appendix C. 
Results are showi by the dashed lines in figures 8 and 9. The method 
is somewhat more accurate than the one already described but was judged 
not to offer sufficient advantages to justify the added labor that it 
requires. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., October 27, 1950



K =!J?-
2 tb 

K = _____ 

3 bltb 

8bd 
Ki ••	 atb 

g

K 1 '=	 - 

= K2 

K3 ' = K3 

K = 4cd 

at Cg
K5' = <l + )K5

NACA TN 2290
	

11

APFENDIX A 

COMPUTATION OF k 

The external forces that are shown in figures 3 and 5 have been 
derived from reference 1 and are written as functions of k. The 
factor k represents the fraction of the total torque carried by the 
shear webs in the cutout bay. No derivation of k will be given here, 
but for convenience, the equations necessary for computing It are as 
follows:

1 

where

K1' = 0 
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2 
K6 =

dtB\ a 

K	 4G b2d2
2 Ab1 

K8=_(l+^-' 
3EA5\ b3J 

- 16G 2 
3E A6

K,-' =	 K 0	 2 

K7 ' = Kr1,

b 
K8 =	 K 

b + 2b1 

K9 ' =K9 

K _32Gad	 K'-1K 
10 -	 . A	 10 -	 10 

Subscripts for the various .A terms are as indicated in figure 7. 
Locations of the s-tringers having areas A to A 7 inclusive also 
are shown in the same figure. The amount of area to include in the 
idealized stringers is a matter of judnent to some extent. For the 
structures considered here, the choice is made relatively easy because 
of the large corner angles. Areas A5 to A'1 inclusive may be taken 

as only the corner angle, and all other areas neglected. In other cases, 
however, consideration must be given to the contributions of the shear 
webs, cover sheets, and stringers. The area of the coazning stringer and 
a suitable addition for the influence of the rest of the cover óf the 
net section is included in Aj1.
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APPENDIX B

DERIVATION OF STRESS EQUATIONS FOR GROSS SECTION 

Figure 5 shows the idealized gross section and the external loading 
system to which it is subjected. Expressions for the loads are taken 
from reference 1, except for the two loads applied to stringers 1 and 2 
which are transmitted by the stringers of the net section. These loads 
are derived from static considerations of the net section. With the 
notation

displacement of any point on stringer 1 in the x-dlrection 

displacement of any point on stringer 2 in the x-direction 

u3 displacement of any point on stringer 3 in the x-directlon 

v displacement of any cross section in the y-direction 

and the positive shear defined as that which distorts an element of area 
so that the length of the first-quadrant diagonal is increased, the 
following relationships may be written:

du1. 

dx	 E 

dx	 E 

du3 - 

dx	 E

(Bi) 

T1 = G(" - 2 + 
b1	 dx 

T2 = G(u2 '3 + 

/413	 dv"\ 
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and., therefore,

=	
-a2 

dx	 \ bE	 2J 

-2= G(2 a3 + 

\1DE	 2 

Summing forces in the x-direction along each stringer in turn yields 

A _!+_LE(2k_l)l_Tt=O 
11.bcL	 a	 •j	 i

or (B3a) 

A,-__+t(i-l-T&=0 
da 

dx 

or / (B3b) 

A
d2a,	 fdT dT2\ 

dx2	 \dx dx/ 

A3__..+t(r2_73)=0 

or (B3c) 

2a:	 fdT dT'\ 
A

d.x2
+t(----)=0 

dx/'

(B2) 
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In order to obtain an expression for dv/dx, use is made of the fact 
that the sum of the internal shear forces must equal the external load, 
or

L1 + (2k -	 = t(T1b1 + T2b2 + T3b2)	 (Bli.) a 

Substituting the shear forces given in equations (Bi) into equation (BIt-) 
and simplifying yields 

-	 T 

dx	 V lGtbcL a	 J 
or	

(B5) 

d2v	 a1	 - 

Upon substitution of the equation for d2v/dx2 into equations (B2) and 
then (B2) into (B3), the following differential equations are obtained: 

d2a1 
A1E 2
	
Gt_!)ai+a =o 

dx -	 b	 b12 

A2E d
2a2 Gt 

+ - a1 - Gt 
dX2	 b1	

+	 a2 ^	 a3 = 0 

AEda3+aa -a =0
dx2	 b2 2 b2 

3

(B6)



A1ED2 - Gt(J- - 
\\b1 b) 

Gt

Gt 

AD2 - Gt	 + -

ai 

Gt	
a2 = 0 (B7) 
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Introducing the notation 	 =	 and collecting terms allows 

the differential equations (B6) to be writtenin matrix form as 

0	 AED2_! 
-	 b2	 b	 3 

To solve the differential equations, assume solutions of the form 

Xx	 Xx	 Xx 
= C31e	 a2 C 2e	 a3 = CJ33e 

where C = Constant of integration. Then 

D2a1 = C1X2e 

D2a2 = C2X2e 

D2a3	 2Xx	 - 

and equations (B7) become 

A1EX2 - Gt(J__!. 
\i b,J

A2EX2 -	 + 
\?i b2 

0

0	 IIl 
Gt	 H 

H2 

A3EX2 - 2Gt 
I 

2

=0 (B8)
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from which, by setting the determinant .of the coefficients equal to zero, 
three values of 	 are found 

2	 Gt = __________ 
1A3bb1b2 {121 + A

1A3b(b1 + b + A 3b22 ± 

E1
2A212 + Al2A3 2(b + b2) 2 + A22A32 -

	 (B9) 

1/2 
A1A2A3bb2(Aibbi + 2b1b2 - A3b22I j 

2
=0 

(x1 is associated with the plus root). There is a separate set of values 
of J3 corresponding to each different value of X2. These values of 3 
are denoted by nil' i2' and i3' the secpnd subscript corresponding 

to the subscript of the . 	 with which it is associated. The values of 

the various	 may be determined in relation to each other from two of 

the equations (B8). Thus	 .	 - 

	

-	 2j 

	

1j_	 .	 . 
b	 EA	 2 

b	 Gt i

(Blo)

	

-	 2j 
3j - _______________ 

EA 
2-b

2Gt

(j = 1, 2, 3)
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The following expressions for o may now be written: 

a1 = C111elX + C212e2x + C 313 + C31 x + C511e? lx + C612eX2X 

-X,x	 -X-x	 X1x	 X x a2 = C1 3 21e - + C2 3 22e	 + C31323 + Cjj23x + C5t321e 	 + C 613 22e	 (Bu) 

-Xx	 -Xx	 Xx	 Xx 
a3 = C131e 1 + C232e 2 +	 + C333x + C531e 1 + C632e 

This result constitutes the formal solution of the differential equations. 

The integration constants C 1, C2 . . . C6 are as yet arbitrary 

and are used to make the stresses satisfy the boundary conditions. The 
boundary condition at each end of each stringer is substituted into the 
stress equations (Bil) and the resulting six equations are solved simul-
taneously for C 1, C2 . . . C6. The integration constants can be 
evaluated much more easily, however, by taking advantage of an orthogo-
nality relation which may be shown to exist among the values of f3j3. 

Before proceeding with this step, it may be noted that, if the box 
is infinitely long, C5 and C6 must vanish in order to obtain finite 
stress at the tip. Calculations for a number of boxes of practical pro-. 
portions indicate that only a negligible error is introducted by dis-
regarding these two terms. Thus, for practical purposes, the stress 
equations (Bil) may be reduced to	 - 

a1 = C111e_Xlx + C212e_X2X + C313 + C 13x	 (Bl2a) 

-Xx	 -Xx 
a2 = C1t321e 1 + C 2f3 22e 2 + C323 + Cjj3 23x	 (B12b) 

X 
a3 = C131e	 + C232e 2 + C333 + C 33x	 (Bl2c)
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At x = 0, the boundary conditions are. 

Td (lkk?i 
a1 = 2A1b1c\	 bJ 

a = Td (k-i) 
2 2A2b1c 

a3 = 0 

Substitution of these values into equations (B12) gives 

+	 + 313 = Td	 - k11 +	 (B13a) 
2A1b1cL	 b,/J 

+ c22 + 323 = Td (k i)	 (Bl3b) 
2b1C 

CJ3 31 +	 + C 313 33 = 0	 (Bl3c) 

It may be shown by manipulation of equations (B8) that 

+ A22122 + A33132 = 0 1 
A11213 + A22223 + A33233 = 0	 () 

A11113 + A22123 + A33133 = .0 J 
For instance, if equations (B8) for X= X 1 are multiplied by l2' 

equations (B8) for 	 =	 are multiplied by	 the corresponding
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equations of each set are subtracted from .each other, and finallythe 
resulting three equations are added, then the first of equations (Bl14-) 
is obtained. A similar procedure yields the remaining two equations. 

Also, lj and	 I33	 have been expressed as functionsV of 
•(equations (BlO)) which is as yet unrestricted. Some sinrplification may 
be obtained by choosing 132j	 so that

+ A2222 + A3332 = 1	 (Bl5) 

in a manner analogous to normalization. 

Now, let equation (B13a) be multiplied by A1j311, equation (B13b) by 
A221, and equation (B13c) by A3 331 and let the results be added. If 
the orthoganality relations (Bl ).. ) and equation (Bl5) are taken into 
account, it is found that 

	

C1 = 2b1c	
- k(l	 ll + (k - l )2l}	 (Bl6) 

In a sLmilar manner, it may be determined that 

Td 

	

2b1c	 - k(l +. ]l2 + (k - l )22}	 (Bl7) 

and

= 2bc	
- kl +
	 + (k - l)23 V	 (B18) 

At x = a the boundary conditions are 	 = a2 = a3 = 0. With 
these values substituted into equatiais. (Bl2), equation (B12a) multiplied 
by A113, equation (B12b) by A21323, and equation (B12c) by A3333, 
addition f the equations yields

C 
Ci=_ .-	 (Bi9) 



NACA-TN 2290	 21 

Introduction of the values for C 1, C2, C3, and Cj4 into equations (B12) 

defines final solutions for the stress in each of the three stringers at 
any point x distant from the y-axis. 

Shearing stresses in each of the three panels may be obtained 
direàtly from equations (B3) as 

T r d	 I A1da 

bctL a	 j tdx

(B2o) = T1 +

A3 da 
T = T + - - 

t dx
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APPENDIX C 

DISCUSSION OF NUMERICAL PROCEDURE 

The idealized cover used in the preceding method could be made more 
nearly like the structure from which it was derived by increasing the 
number of stringers. It is clear that such a procedure would greatly 
increase the labor necessary to obtain a solution, especially since the 
equation for X would be of some higher degree. If additional stringers 
must be included in the analysis, it probably is simpler to use a numerical 
procedure such as the one given in reference 2. - In this method, the 
external forces acting on the cover are computed in the same manner as 
before, but the idealization of the structure takes a different form. 
The cover is divided into a number of rectangular units or panels as 
indicated in figure 16. Each of these panels is assumed to be bounded 
on the sides parallel to the longitudinal center line of the box by 
stringers of finite extensional stiffness. The panels also are assumed 
to be bounded on the ends by infinitely rigid members which maintain the 
cross section but offer no resistance to motion outside of that plane. 
Between the edge members, it is assumed that a sheet of the same thick-. 
ness as the cover exists and that it carries only shearing stress. 

If equilibrium of the elements of the structure is to be satisfied, 
a definite relationship must exist between the displacement of any given 
panel and the displacements of all the panels that form its borders. 
This relationship depends upon the elastic properties of each of the 
panels involved. Details of these relationships and their derivation 
are given in reference 2. When such relationships (hereinafter referred 
to as iteration equations) have been established for all the panels, an 
assumed set of displacements is introduced. The only restriction upon 
these displacements is that they must satisfy the statics of the problem, 
but, of course, the work involved is reduced if the assumed values are 
as close as possible to the actual displacements. A usual assumption is 
that the values will conform to the standard rules of strength of materials. 
If all the assumed displacements were exactly correct, all the iteration 
equations would be satisfied. If the assumed displacements are not exact, 
new values for the displacements are obtained which more nearly satisfy 
the iteration equations. The process may be repeated until sufficiently 
accurate displacements are obtained. 

When the iteration has been completed, the results are in the form 
of displacements of each corner of each panel into which the cover was 
divided. With this information, it is a simple matter to calculate shear 
or normal stresses along any desired section. The detail with which the 
stress distribution can be obtained depends upon the number of panels 
which are included in the idealized cover.
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The same problem that was used as an illustrative example of the 
three-stringer method has been solved by the numerical procedure. The 
mariner in which it was subdivided into panels is illustrated in figure 16. 
Shear and normal stresses are indicated by the dashed lines in figureë 8 
and 9.
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TABLE 1.- BASIC DATA 

• Case 

Item _ 1 1 1 
2 1 3 ____________ 

_________________________ _________ (a) 

a,	 inches	 ...... 36.75

_________ 

35.5

_________ 

35.5

____ 

31i..0 
25.70 25.70 25.70 25.70 

inches	 ...... 11.12 6.62. 2.12 2.12 
b,	 inches	 .........

7.29 9.5.i- 11.79 11.79 
10 10 10 10 c, inches ........

2.5 2L5	 . 211.5 26.0 
0.063 0.063 0.063 .0.063 

inches	 ........

2.297 1.039 0.191 0.191 
8.823 5.581 1.929 1.929 

A1, square inches .	 . 1.936	 . 1.727 .	 1.517 1.517 

ci, inches ........
t,	 inches ........

inches	 .......

A2, square inches .	 . 0.575 0.3)4-5 0.135 0.135 

inches	 .......

A3, squar	 inches .	 . 1.306 
36.75

1.7)4-6 
10.03

2.166 
1.01

2.166 
1.01 I,	 inches	 ........

T, pound-inches .	 .	 . 99,750 92,700 71,300 6)4-,i20 
k	 .............0.5)4-6 0.625 0.869 0.969

aCase 5 has much more rigid torque-transfer bulkheads than the other 
cases.	 .	 .	 .	 . 

•	 . 
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• Figure 3. - Quarter section • of torsion- box 
cover indicating external forces.
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Figure 4.- Quarter of 
idealized torsion - box cover. 
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Figure 5.- External loading system and coordinate 
axes for gross section .of idealized .tructure.
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Figure 6.- External loading system 
and coordinate axes for net section.
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Figure 7:- Exloded view df simplified box.
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Figure 8. - Shear stress in top ôover. Odse I.
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Figure 9.- Stringer stress in top cover. Case I.
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Figure 10.- Shear stress in top cover. Case 2.
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Figure II.- Stringer stress in top cover. Case 2.
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Figure 12.- Shear stress in top cover. Case 3.
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Figure 13.- Stringer stress in top cover. Case 3.
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Figure 14.- Shear stress in top cover. Case 5.
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Figure 15.- Stringer stress in top cover. Case 5.
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Figure 16.- Idealized cover for numerical method.
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