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SUMMARY 

An analytical method. is presented for obtaining the turbulent 
temperature recovery factors for a t^ierumfly insulated surface in 
supersonic flow. The method is an extension of Squire t s analysis 
for incompressible flow. The boundary-layer velocity profile is 
represented by the power law and a similarity is postulated for the 
sq.uared-veloclty and static-temperature-difference profiles. 

The analysis indicated that the recovery factor decreased with 
increasing Mach number • For the range of Prandtl numbers considered 
(0.65 to 0.75), the. recovery factors at a stream Mach number of 10 
were, on the average, about 5 percent lower than the limiting values 
at zero Mach number. The Reynolds number effect on recovery factor 
was of secondary importance. An approximation formula that represents 
the computations to wIthin 1 percent is included for engineering 
calculations.

INTRODUCTION 

• Determination of the temperature attained at the surface of a 
thermally insulated plate in laminar boundary-layer flow in the 
absence of radiation (a particular case of the plate-thermometer 
problem) has been the subject of several analytic 1nvestitions. 
The surface temperature Taw may be presented iii terms of the stream 
static temperature t1, the temperature recovery factor r, and. the 
local stream Mach number parameter m2 as 

Taw t1(i + rm2 )	 (1) 

(AU symbols used in this report are defined in appendix A.) For 
very low speed flows, Poh1hc.usen (reference 1, pp. 627-631) found 
that r was a function only of the laminar Prandtl number Pr and 
could be approximated as r = prl/2. References 2 and 3 indicate
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that the Polilhausen . approximation is also .applicable to supersonic 
laminar boundary-layer flow.

0 

Existing analyses of the plate-thermometer problem for turbu-

lent bound.ary-].ayer flow (see, for eiample, reference 4) are limited 
to the case of constant fluid. properties. The results of refer-
ences 5 and 6 indicate that, for the low-speed flows considered, the 
turbule9t recovery factor y be represented by the approxition 

r = Pr 3 . The analysis conducted at the N&CA Lewis laboratory and. 
presented herein essentially extends the method of reference 6 to 
supersonic two-dimensional turbulent boun3.ary-layer flow. 

ANALYSIS

Development 

The principle of conservation of energy requires the total-
energy increment transported throu&a any section nornal to a thernally 
insulated surface along which a two-dimensional boundary-layer flow 
exists to be constant;. that is, 

Pucp(T-Tj. ) d.y = constant	 (2) 

where the specific heat Cp is taken as a constant. Inasmuch as no 
energy transport occurs at the leading edge of the plate, the con-
stant appearing in equation (1) must be identically zero. Squire a 
basic equation (reference 6) for obtaining the temperature recovery 
factor is then given in the present notation as 

I: ;1 c(T_T1 ) dy = 0	 (3) 

The treatment of reference 6 is confined to the case of low-speed. 
flow by assuming that P P. The method presented. herein does not 
contain this limitation. 

For fluids with Prandtl number less than 1, the therna]. boundary-
layer thickness	 exceeds the dynamic boundary-layer thickness .
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For a Prandtl number of 1, in which case	 = 8, the following static-



temperature profile (from equation (7) of reference 7) is obtained: 

_i^m2ri 
-	 L	 () J;1^m2[12Y] 

which indicates a similarity of the squared-velocity and static-
temperature-difference profiles. Squire (reference 6) makes the 
assumption that such similarity also exists for fluids with Prandtl 
number differing from 1. The assumption appears plausible when the 
Prandtl number is relatively constant through the boun.dary layer 
and. does not differ too 'eatly from 1. 

In the analysis, the turbulent Prandtl number () Cp . is 

assumed to be constaflt along any boundary-layer section and equal 
in value to the laminar Prandtl number Mcp/k at the surface. These 
assumptions are 'consistent with the conclusions of references 8 to 10, 
namely, that the turbulent Prandtl number has a constant value of 
about 0.7 regardless of the laminar value. Although these assumptions 
restrict the analysis to a consideration of fluids having a laminar 
Prandtl number near 0.7, the restriction is not a serious one inasmuch 
as the Prand.tl numbers of most gases are in this range. 

The static-temperature-difference profile for	 S is assumed
to be related to the profile for t = S by a constant scaling factor 

= /s and the recovery factor r. For conipatability with equa-
tions (1) end (4), the static-temperature profile for fluids with 
Prand.tl nunther different from 1 is then written as 

= 1 + mm2 
[l g2 ()]	

ru2 
-	 -	 = 1 

+ 2cti [i2 (k)]	 (5) 

This temperature relation, postulated by Squire (reference 6), will 
'be used in the analysis. The following expresssion is thereby obtained 
for the quantity c(T-T1): 

c(T-T1) 
=	 [g2()] - [lg2(y)	

(6)
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When the perfect gas law and. equations (5) and (6) are used, equa-
tion (3) takes the form 

r. 
r'[ig2 ()] -1g2(y)J g(y) dy 

= 
H
H	 J°	 L	 \11 

The assumption is now nude that the velocity profile can be repre-
sented by the paver law

1/N

(8) 

1/N 
The quantity q (*) is defined and 

g(y) =p for 'Oy8 

g(y) =1 for	 y^ 

or 

= :11	 for	 y,> 

and equation (7) can be written as 

2/N r-1)+ ( 2tN r) A] P - 

r	 qNl dq - (2/N) +	

l - 

= 0 
m J l)1/N A-q2	 N + 1	 N 

where A - 1+rm

(0 0
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As is shown in appendix B, the scaling factor T Is related to 
the recovery factor r by 

r = T2Prt T2Pr 

This relation was also obtained for incompressible flow in refer-
ence 6. The effect of a variable scaling factor on the recovery 
factor was also considered. By use of the conditions of reference 6 
(p = p1 	 , <.), computations were made for the scaling fac-
tor S given by	 - 

(L-l)/L ()1/L	
f3i S	 T 

-	 i/i.1-	
y S	 0< <r 

For variable scaling factors, equation (10) takes the form 

•	 r = S2 ( 1 )Pr	 i0a) 

When it Is assumed that L = r and 13 = 0,2, the recovery factor 
obtained is 98.6 percent of the value obtained for constant scaling 
factor S = r. In view of the relative insensitivity of the computed 
recovery factor to relatively large changes in scaling factor for 
values of N that are appropriate to turbulent boundary-layer velocity 
profiles, use of a constant scaling factor was considered adequate. 

When the substitutions	 • 

p = A'	 1l/2N z Ah/2B'I' z 

and

1/2 
•	 q-A	 z

5 

(lo)
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are ude and equation (10) is used, equation (9) takes the form 

- 1/2N 

(AB1/N - i^tn2) (A1/2B1/2N) j	 B	 ____ - 

1/2 

	

3-I	 ZN_ldz 

•	 I. 
•	 J1/2 -1/2N 

-	 A	 B 

A (2 /' B(/N rA	 B 
1/2 

rA" 
N+l	 -	 N(N+1)	 N	 F = 0	 (ii) 

The temperature recovery factor r as a function of ch number para-
meter m, velocity-profile parameter N, and laminar Prandtl number Pr 
is obtained from equation (ii). The effect of chordwise pressure 
gradient on recovery factor enters only to the extent that the velo-
city profile Is dependent .upon the gradient. 

Methods of Solution 

An explicit solution of equation (ii) for the recovery factor r 
is obviously Impossible inasmuch as r appears in both the quan-
tities A and B. The following procedure was employed: A method was 
devised for obtaining a first approxIntioâ to the recovery factor. 
Values obtained by this method were then improved by use of the Newton-
Raphson iteration method (reference 11). Details of the procedure 
follow: 

First approxIrrtion method. - For Prandtl numbers near 1, it Is 
expedient to 'write the recovery factor as 

	

r = Pr = [l_(i_Pr)J	 (l-u)°	 (12) 

and to approxInte the quantity ' (i-g)° as l-aH. The Integrals 
appearing In equation (ii) iy be denoted by I = I(m,N,H). This
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functional relation ny be expanded in a Taylorts series, consistent. 
with the assumption that the Prandtl number is near 1, as 

I(m,N,E) = I(m,N,O) + u [I( )NB]	 + • • • • 

these substitutions in equation (ii) yields 

1 - (N+l)	
(13) 

1 - N + (N+l)QF1_ 

L-1-m 

where	 -

/].+rn2'\ - 1/2 

/	 2 (N+l)/2	 n2 )	
L 

___	 I	 zNdz 

k.. m)	 I	 l-z2 

Uo 

For application of equation (12), punch-card equipment was used to 

I	 z1'dz evaluate the definite integral I	 2 for integer values of N 
I	 1-z 

Jo 
- from 4 through U. 

Iteration method.- With anapproxinte solution ra of equa-
tion (ii) obtained from the method Just described, an improved value 
is given by the Newton-Raphson method as 

F(ra) 
rb = ra - dP(ra)	 (14) 

The quantity F is defined by equation (ii) and the partial d.eri-
vative is obtained as
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= A	 [A+N(l-A)] [1/N (i+m2)]j	
B	

+ 

-N/2 r	 1/2 A	 2(N+1) + B 
2N(N+l) L	 [A+N(i-A)2] - [A+N(1A)] B(21 (15) 

Procedure. - First. approxitiona for r using equations (12) 
and. (13) were obtained for Prandtl numbers of 0.65, 0.70, and 0.75 
at local stream ch numbers of 3, 6, and 10 with values' of the pro-
file parameter N of 5, 7, 9, and 11. Two iterations, obtained by 
use of equation (14), were used' for each case to give results correct 
to four decin1 places. 

Limiting solutions. - The limiting solutions of equation'(ll) 
are of interest. For the limiting ,case of infinite ch number, the 
recovery factor r is obtained, as 

BV2N (Bl/N _l ) .1'	 d.z - ________ J	 l-z2 
0_ i	 '	 (16) 
__ 1 
N(N+1)	 ,.	 '	 '	 ' 

Computations indicate that r is practically independent of the 

profile parameter N and can be represented within 1 percent by 
the relation

	

= 0.670 Pr + 0.322	 ' (ri)

for Prandtl numbers in the range from 0.65 to 1. 

For the limiting case of zero 4ach number, expansion of the 
integranda in equation (ii) permits writing the equation as
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- 1/2 3/2	 1/N (N-l)/N 
-r0	 2Pr	 r0	 Pr	 r0	 2 

NtN+1) +	 N(N+2)	 + (N+2)(N+3)	 (N+l)(N+3) = 
0 

Approximating PrG (1_11)G as i-ca + G(1)2 anei solvingfor r0 

by the Newton-Baphson method gives the result 

N+l
	

(18) 
3N + 1 

= Pr

The expression for r0 is identical with Squires result (refer-

ence 6) for incompressible flow of a fluid with Prandtl number 
greater than 1. The limiting values of recovery factor obtainedby 

N+1 

the first approximation method are r0 = pr3N + and r 	 Pr. 

The approximation method thus overestimates the effect of Mach 
number on recovery factor. 

RULTS M DISCUSSION 

The computed recovery factors are given to three decimal places 
in table 'I. It may be noted here that the first approximations. 
obtained by use of equations (12) and (13) were found to be within 
1.4 percent of the, values tabulated. The maximum error occurred at 
a local stream Mach number of 10 for a Prandtl number of 0.65 and a 
profile parameter N of 5. The following expression 

-	
0	 N+1+O.528M12
	

(19) 
rPr 3N-i-'l+M12 

represents the tabulations to within 1 percent and may prove of 'con-
venience in engineering calculations. With the recovery factor 
known, the stagnation temperature profile for constant scaling factor 
may be obtained from equation (6) as
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T	 in2 
=1+	 Lr[i () 

l/ (y)2/N]	

() 

2/Nfl

(20) 

, § : Y. A 1_=l+__ T	 ^2 L L	

()2/N]J 

A typical profile is shown in figure 1. The discontinuities in slope 
at y/5 = 1 and y/5 = r and the Incorrect value of the slope at 
the wall result from use of a power-law profile th.roughout the boun-
dary layer.

Effect of Mach Number 

Table I indicates that the turbulent temperature recovery factor 
decreases with an increase in local stream Mach number. For the range 
of Prandtl numbers and velocity profile parameters considered, the 
decrease Is about 5 percent for a change in Mach number from 0 to 10. 
A typical variation of turbulent recovery factor with Mach number is 
shown in figure 2. The corresponding laminar recovery factor obtained 
by the method of reference 2 is also shown. The invariance of laminar 
recovery factor with change In Mach number apparently results from use 
of the assumption t "t. The results of reference 12 Indicate that 
use of the assumption i t° 8 leads to a decrease of laminar recovery 
factor with Increase in stream Mach number. For a Prandtl number of 
0.70, the recovery factor at a nominal Mach number of 5.4 is 0.815 as 
compared with the value 0.837 for Incompressible flow. 

Effect' of Reynolds number 

It is well known (reference 1, p. 340) that use of the power law 
(equation (8)) to represent the turbulent boundary -layer velocity pro-
file requires that the parameter N increase with Reynolds number. 
Equation (4b) of reference 7 presents the following approximate guide 
for such variation:

N	 2.6 R ' 1/14
	

(21) 8,w
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The analysis herein, as do low-speed flow analyses, thus requires the 
recovery factor to increase with increasing Reynolds number for a 
given Mach number. This increase is greater at high Mach numbers. 
In general, however, the effect of Reynolds number upon recovery 
factor is, according to the analysis, a secondary one. From the 
relative insensitivity of the results to changes in profile para-
meter N, the effect of moderate chordwise pressure gradients upon 
the recovery factor should also prove of secondary importance. 

Comparison With Experiment 

Experimental turbulent recovery factors obtained at a Mach 
number of 2.4 are presented in reference 13 for steady flow over a 
flat plate with natural transition in a tunnel having test-section 

1	 1 
dimensions of 5 by 5 inches. As the Reynolds number based on die-

tance from the plate leading edge and. on free-stream kinematic vis-

cosity was increased from 2 x 10 6 to 6.7 x 106, the turbulent recovery 
factors decreased from 0.897 to 0.884. The trend with Reynolds 
number is thus in the opposite direction to that predicted by the 
various analyses. 

In reference 13, the Prandtl number at the plate surface was 
taken as 0.72 and the profile parameter N as 5. Using equation (19) 
as an interpolation formula and substituting these values of Prandtl 
number and profile parameter yields, at a Mach number of 2.4, a 
recovery factor of 0.872, which is from 1.4 to 2.8 percent lower 
than the extremes of the experimental values. The profile-parameter 
value N = 5 chosen in reference 13 appears somewhat low for the 
range of Reynolds numbers used. A value of N = 7 obtaird from equa-
tion (21) by averaging with respect to plate-surface and stream Rey-
nôlds number yields a recovery factor of 0.877 for Pr E 0.72 and 
M = 2.4. This value of recovery factor is from 0.8 to 2.2 percent 
lower than the extreme values measured. The theoretical value of 
laminar recovery factor given in reference 2 for Pr = 0.72 is 0.845 
as compared with the experimental value of 0.881 given in reference 13. 
More extensive tests, particularly at very high Mach numbers, are 
required for a decisive check of the assumptions involved in the 
analysis.



12	 NACA TN 2296 

SUMMARY OF RESU1ffS 

The present work essentiafly extends the low-speed analysis of 
Squi.re to the case of two-dimensional supersonic flow along a ther-
nUy insulated surface. The analysis nkes use of the following 
simplified model of turbulent boundary-layer flow: 

The turbulent Prarid.tl number was assumed to be constant along 
any boundary-layerS section and equal In value to the laminar Prand.tl 
number at the surface. The boundary-layer velocity profile was 
approxInted by a power law. The presence of the laminar sublayer 
was not considered except for evaluation of the surface Práuitl 
number and the similarity of the squared-velocity and the static-
temperature-difference profiles postulated by Squire was assumed. 

Under these conditions, the temperature recovery factor in tur-
bulent flow was shown to decrease with Increasing Ich number. For 
the range of Prandtl numbers considered (0.65 to 0.75), the recovery 
factor at a ch number of 10 was about 5 percent lower than the 
limiting value at a MAch number of 0. As in low-speed analyses, the 
recovery factor was shown to Increase with an increase in Reynolds 
number. The Reynolds number effect upon recovery factor was, in 
general, of secondary importance. The approximation for recovery 

N+l+ 0.528 Mi2 

3N+1+M12 
factor r Pr	 (where Pr is the laminar Prand.tl 
number, N is the profile parameter, and M1 is the local stream 

MAch number) was found to represent the computed results to within 
1 percent. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics,

Cleveland, Ohio, October 27, 1950
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APPENDIX A 

Symbols 

The following symbols are used in this report: 

1+rm2 
A!

rm 

B	 Pr 

c,	 specific heat at constant pressure 

c	 specific heat at constant volume 

F	 defined by equation (ii) 

G	 generalized exponent 

g(y) velocity-ratio function, u/u1 

ifE	 1-Pr 

k	 thernl conductivity for laminar flow 

L	 limit of integration 

M	 M.ch number 

in2	 ch number parameter, ZjI M12 

N	 velocity-profile parameter, u/u1
	 1/N 

Pr	 Prandtl number for laminar flow, -k--

Prt	 Prandtl number for turbulent flow, 

-	 f\l/N
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Reynolds number based on distance from leading edge of plate 
and stream or wall value of kinentic viscosity 

Taw_ti 
r	 temperature recovery factor, Ti-ti 

S	 scaling factor 

T	 stagnation temperature 

t	 static temperature 

u,v	 velocity components paraflel and normal to surface, respectively 

x,y	 cartesian coordinates parallel and normal to surface, 
respectively 

z	 variable of integration 

recovery-factor exponent, R = Pra 

eddy conduct1v1t 

7	 ratio of specific heats, Cp/c 

•	 theri1 boundary-layer thickness 

6	 dynamic, boundary-layer thickness 

eddy viscosity 

scaling factor, /6 

laminar coefficient of viscosity 

P	 density 

Subscripts: 

1	 local stream 

at surface of adiabatic or thermally insulated plate

4•) 

CD 
0
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0	 at limiting case M1 = 0 

at limiting case	 =



16	 NACA TN 2296 

APPENDIX B 

Relation Between Scaling Factor 1) and Recovery Factor r 

The following equation for the conservation of energy is assumed 
to hold. for steady two-dimensional compressible turbulent boundary-
layer flow: 

puc - + Pvc	 = u	 + (+) () 
2 +	 [ k+) ]
	

(Bl) 

Adding to this equation the corresponding euation of motion multi-
plied through by the velocity u yie],d.s, after some nnipulation, 

Pu[cp +)j +Pv[cp+)j 

=	 (M+() r	
(u2)] + L.- -	 r 

[cP - +	 - [( +dc	 j	 (B2) 
In deriving equation (B2), the assuthption has been made that the tur-

bulent Prandtl nizmber Prt 	 Cp is constant. At the plate 

surface where u = v = 0, equation (B2) can be written as 

.[(+) (cTdT1 )1
= (lPrt) L

2\11 [(+€ )	 () i JJy=o = 0

= 0, then or, noting that	 [c - cpTl] y=0

21 
()[	 (cTcT1 )l	 = ( l -Prt)	 (R+) [(3s) J	 (B3) y=o	 y0 
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The following relation ry be obtained from equatIon (6): 

[ (cTcTl)]	
= (

ii) L j) j 
The desird relation between T and r is obtained from equa-
tions (B3) and (B4) as

r = r1 2 Prt =	 Pr	 (10) 

in view of the assumption rerding the equality of the turbulent 
and. laminar Prandtl numbers at the surface (y=0). 
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TABLE I - VARIATION OF TURBULENT TEMPERATURE RECOVERY 
FACTOR WITH PRANI1L NUMBER Pr, VEI.00ITY-



PROFILE PARAMER N, AND STREAM.
MACH NUMBER M1

Prand.tl 
number

Velocity- 
profile

Mach number, M1 

0 3
_____ 

6
______ 

10 Pr parameter, N 

0.65 5 0.851 0.834 0.813 0.796 
7 .855 .840 .821 .803 
9 .857 .844 .826 .808 

11 .859 .847 .830 .813 

0.70 0.875 0.860 0.842 0.826 
7 .878 .865 .848 .833 
9 .880 .869 .853. .838 

.882 .872 .856 .841 

0.75 5 0.898 0.885 0.870 0.856 
7 .901 .890 .875 .862 
9 .902 .893 .879 .866 

________ 11 .904 .895 .882 .869

19 
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a 
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.8	 .9	 1.0	 1.1
Stagnation temperature retlo, T/T1 

Figure 1. - Stagnation temperature profile for turbulent flow at a stream Mach number of 3 for 
Prandtl number of 0.70 and boundary-layer velocity profile parameter N = 7.
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Stream Mach number, M1 

Figure 2. - Variation of temperature recovery factor with stream 
Mach number in two-dimensional flow of fluid with Prandtl number 
of 0.7. For turbulent flow, boundary-layer profile parameter 
N = 7. 
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