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Ainethod. Introduced by 4ink is extend.ed to prove that the lift-
curve slope of thin wings in either subsonic or supersonic flow is the 
same when the direction of flight of the wing is reversed. It is also 
shown that the wing reversal does not change the thicmess drag, 
damping-In-roll parameter C , or the damping-in-pitch parameter Cm 

p	 q 

INTRODUCTION 

The present paper makes use of and extends . a paper by Munk (refer-
ence 1) in which simple dynam.ic concepts are used to prove that the 
lift-curve slope and thiclaiesa drag of supersonic airfoils with super-
sonic edges are the same when the airfoil is flown in a reversed direc-
tion. This extension of Munk's work provides a proof that the thicicness 
drag, lift-curve slope, damping in roll, and the demping-in-pitch 
parameter C	 remain the same when any airfoil or system of airfoils 

is reversed, in both subsonic and supersonic flow. The theorem applies 
to cases in which the trailing-edge velocities are finite; no restric-
tions are placed on plan form. 

The reversibility theorem for drag was first obtained by different 
methods by Von Krmn (reference 2). Hayes has treated the lifting case 
for a restricted series of wing types at supersonic speeds. (See 
references 3 and 1k.) B:armon (reference 5) has extensively treated the 
stability derivatives for a restricted group of plan forms at supersonic 
speeds.

PROOF 

Under the assumptions of the linearized potential-flow theory, it 
becomes possible to obtain a great simplification of subsonic and. 
supersonic lifting-surface problems. The use of the linear equations
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of motion aflowa the boundary conditions on a lifting surface to be 
satisfied on a plane near the wing surface and permits the use of the 
superposition principle. Consider a set of Cartesian coordinates x,y,z 
in which the x-e.xie is taken in the flight direction and the z-axis, in 
the vertical direction. The boundary conditions become a stipulation 
of the vertical-velocity distribution over the, projection of the wing 
surface on the xy-plane. As a result of this simplification, the effects 
of camber, twist, angle of attack, and. thicimess may be treated 
separately. 

For the complete comprehension of the analysis to follow, it is 
necessary to understaM the manner in which drag ultimately appears in 
the flow field. Two distinct forms of drag may be found: one associ-
ated with a trailing vortex- system, the other with the production of 
waves. In the case of a vortex wake, the drag shows up in the wake a 
great distance downstream in the fox'n of a pressure defect which, when 
integrated over a plane normal to the flight path, yields the drag. 
This result is identical with that of incompressible flow. The drag 
produced by wave formation shows up in the field as a combined momentum 
and pressure defect; of course, the thin-airfoil theory predicts a wave 
drag only at supersonic speeds. In all cases, the total resistance may 
be obtained by integrating the momentum transport across the sides of a 
box enclosing the wing. It is often convenient to place the sides of 
the box at infinity and. allow the top and bottom to approach the plane 
of the wing. This process yields for the drag 	 - 

D=PJfdYdx.	 (1) 

where p is the stream density, 0 is the disturbance potential, and 
the integration taken over both upper and lower sides extendsto 
infinity. Note that the drag is independent of the main stream 
direction but depends only on the disturbance potential 0 . In the 
usual problems, singularities occur on the wing leading edges and. care 
must be taken with the integration if the quantities in the integrand 
of equation (i) are evaluated on the y-plane. Neglect of the 
singular behavior leads to the omission of the leading-edge suôtion 
forces. For additional information on the fundamentals of the linear 
theory, see references 2 and. 6. 

Thicktiess_drag.- Consider a symmetrical airfoil at zero angle of 

attack. The potential of the flow may be expressed as

•	 (2)
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where V is the stream velocity and. 01 is the disturbance potential 

which satisfies the boundary condition

=	 (3) 

In addition, the potential must satisfy the usual conditions for 
physical flows such as the vanishing of the perturbation velocities 
at infinity for subsonic flow and. undisturbed flow ahead. of the 
foremost Mach waves in supersonic flow. Assume the main flow 
direction to be reversed.. The new potential would result: 

	

2O2	
(1.) 

where 02 satisfies the condition

= _Q	 (5) Vz) dx 
z=O 

By superimposing the solutions	 and 02 a new potential is formed.: 

	

3l02	 .	 .	 (6) 

Such a step is quite permissible Inasmuch as the differential equacion 
governing the flows is independent of the sii of the stream velocity. 

The vertical velocity (--J	 becomes zero and. thus a boundary condi-
\OZ/z0 

tion for a plate of zero thicmess is satisfied.. Inasmuch as there are 
no infinite Induced. velocities at the edges of the symmetrical wings 
and. therefore no edge forces, the flat plate can produce no changes in. 
stream momentum; hence, the momentum or pressure defects a great 
distance d.owastreani in the flow must be equal to those upstream. Any 
momentum or pressure defects at Infinity upstreia arise from the 
reversed. airfoil potential, and the momentum or pressure defects a 
great distance doinstreani arise only from the original airfoil 
potential. Since the drag of each airfoil is equal to the momentum 
or pressure defects in Its wake, the drag of the two airfoils must
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necessarily be equal. It is well Imown that the drag of synunetrical 
bodies in subsonic potential flow is zero; hence, the reversibility of 
drag Is. most pertinent to supersonic flows. The preceding proof and 
discussion follows essentially that of Mank (reference 1). 

Lift-curve slope.- Inasmuch as the lift-curve slope of a wing Is 
Independent of camber and. twist, it Is sufficient to treat a flat-plate 
airfoil at an angle of attack, a. Unlike the symmetrical-drag case, 
however, a certain indeterminacy exists in the potential whenever subsonic 
trailing edges are present. Subsonic edges occur when the component 
of stream velocity normal to the edge is subsonic. In order to remove 
this Indeterminacy it Is necessary to specify the circulation. The 
use of the Kutta comiltion is an appropriate means for this process 
because, in effect, an additional boundary condition Is imposed. This 
requirement, that the velocities at the trailing edge be finite, is 
indeed a' physical condition arising from the fact that the boundary 
layer, always present at trailing edges, would separate from the edge 
rather than accommodate the high adverse accelerations around the edge. 
It is exactly the Kutta condition which leads to unique solutions and. 
which is necessary to prove the reversibility theorem. 

The potential of the flat-plate airfoil may now be written: 

= Vi + 01
	 (1) 

where Ø is the disturbance potential satisfying the conditions that 
the trailing-edge velocities are finite and. the boundary condition 

l0l ----=-a	 (8) 
Vz 

The drag of the wing can be written: 

D1 =L1a-F1	 .	 (9) 

where P is the component parallel to the surface of the resultant 
force, usually known in.linear theory as the leading-edge suction force, 
end L Is the lift force. 

As in the drag case, the reversed-stream velocity produces the 
potential.

- -Vx +	 (10)
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where 02 satisfies the Kutta condition and. the boundary condition 

Vz
	 (ii) 

The drag Is now

D2 = I2O
	

(12) 

	

The superposition of the potential 02 on	 results In the flow over

a flat plate of zero angle of attack. 

The drag of the combined airfoils Is now 

	

D3 = F2 - F1
	

(13) 

provided the superposition has not changed the leading—edge suction 
forces F1 and F2 . These suction forces have been shown (references 7 
to 9) to be dependent on the asymptotic distribution of vortièity as 
the edge Is approached; suction forces are obtained only when the 
vortex strength approaches Infinity at the edge, this' condition corre-
spending 'to infinite upwash velocity around the edge. Inasmuch as the 
superposition of a solution having finite—edge velocities does not alter 
the asymptotic strength of the singularities at the edge, it follows 
that the edge forces will be unchanged by the superposition. 

When a momentum balance in the stream is formed, the upstream 
momentum and. pressure defects in the combined—airfoil case differ from 
the downstream momentum and pressure defects by the difference in the 
suction forces D3. The upstream momentum andpressure defects are, 
however, equal to 1)2, whereas those downstream are equal to D. 
Therefore,

D1 - D2 = F2 - F1	 (14) 

or from equations (9) and (12)

L1ctIa	 (15) 

The lifts I and. 12 areequa1 and, therefore, the lift—curve slopes 

are equal. Obviously, the lift—curve slopes of cambered and. twisted
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wings are also unchanged when the airfoil is reversed. It is important 
to note that the drags are not equal unless the suction forces are 
zero or cancel. 

•	 In reference ii. , the conclusion is reached. that the lift theorem 
cannot be a general oils; however, it appears that this conclusion was 
deduced from an equation of insufficient generality. Inrleed, the 
analysis of the present paper shows the lift theorem to apply to all 
plan forms so long as the Kutta condition is applied to subsonic 
trailing edges. 

Damping in roll.— The proof for the reversibility of damping in 

roll proceeds in the earns manner as that for the lift. The rolling 
moment of the thin wing may be expressed as follows: 

L1' =

	

tp1y dS	 - (16) 

where p is the pressure difference between the upper and lower 
surface and S is the wing area. 

The drag of the linearly twisted wing used to represent the rolling 
flat plate is:

	

D 
=f 

Lp1a dS - F1
	

(17) 

The drag may be expressed. as a function of the rolling moment inanuch 

as o =	 where p is the angular velocity in roll. For the twisted 

wing:

-	 D1=L1' —F1	 (i8) 

The drag of the reversed airfoil is then 

D2 =L2 t —F2	 (19)
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Superposing the disturbance potential of the reversed airfoil again 
cancels the wing slopes, and. the resulting momentum change at the 
combined, airfoils becomes:

	

D3=F2—F1	 (20) 

Establishing the conservation of momentum. in the flow, as was done for 
the lifting case, gives the result:

= 
v	 v 

Therefore, the rolling moment for the reversed airfoil is the same as 
that of the unreversed airfoil. It follows then that the rolling-
mient derivative	 for any wing is unchanged by reversal. 

Steady pitching moment.— The pitching moment of a wing undergoing 
a steady pitching velocity q about the point x may be written 

N=f(x_xo)tPds	 (22) 

where x0 Is the reference point about which moments are taken. The 
drag of the cambered-wing surface representing the steady pitching 
motion Is

D=fiadS_F	 (23) 

and. the local angle of attack for such a wing is 

	

X-X0	
(21) 

(21) 

flence, the drag may be expressed. from equations (22) to (214. ) as follows: 

D= 2 M—F	 (25)
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Performing the superposition of reversed potential and. original 
potentials yields an airfoil of zero angle of attack; the momentum 
balance, as for the steady rolling case, cancels the suction forces 
to leave:

M =M9	 (26) 
V 1 V-- 

The pitching moments of the two airfoils are the same and, therefore, 
the damping-in--pitch parameter Cm is. unchpnged. by a reversal of the 

wing.

DISCUSSION 

Inasmuch as the analysis presented is unrestricted as to plan form, 
it follows that any system of airfoils will obey the reversibility 
theorem; this does not allow for the reversal of the individual airfoils, 
but only for the reversal of the complete system. Indeed, the same 
result holds for groups of airfoils in different horizontal planes, 
provided. the boundary conditions for each wing are satisfied in the 
plane of the wing. It should be noticed that the pitching-moment 
coefficients, lift coefficients due to pitching, and the constants 
arising from camber such	 CLI,=o are not generally the same when 
the wing is reversed. 

Langley Aeronaut icàl Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., June 26, 1914.9
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