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SUMMARY

' The method of relating the solution of a flow field to the
solution of a simpler or known boundary-value problem is extended,
subject to edge corrections for finite plan forms, to the most
general type of prescribed boundary conditions on a wing in the
linearized potential field at subsonic and supersonic speeds. .It ,
is shown that, subject to edge corrections, the flow field due to an
arbitrary prescribed velocity on the wing can be expressed in terms
of the flow field due to a uniform prescribed velocity on the wing.’
The general procedure for determining the edge corrections is indi-
cated. Specific correspondence formulas are derived for rectangular
wings at subsonic and supersonic speeds for cases that do not require
the solution of an integral equation. Several.examples are given for
the rectangular wing at supersonic speeds. .

INTRODUCTION

One of the well-known methods for solving boundary-value
problems is the expression-of the solution in terms of the solution
for a simpler or known boundary-value problem. The utilization of
this method in the classical linearized wing theory has thus far
been limited to the case in which two or more prescribed veloecity
distributions on a wing are related by a constant and the relation
is extended to the entire flow field. '

In the analysis prepared at the NACA Lewis l&boratory and pre-
sented herein, the method of relating the solution of a flow field .
to the solution of a simpler or known boundary-value problem is
extended, subject to edge corrections for finite plan forms, to the
most general type of prescribed boundary conditions on a wing in the
linearized potential field. A generalized rule for correspondence
flows is developed that applies to lifting and’ nonllfting wings at
subsonic and supérsonic speeds with special consideration required
for the edges of finite plan forms. The term "correspondence flows", .
or "correspondence formulas", is used herein to refer to the relation

~
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between the disturbance parameters of one flow field to those of
another flow field. The general procedure for determining the
required edge corrections is indicated. Specific correspondence
formulas are derived for rectangular wings at subsonic and super-
sonic speeds for cases that do not require the solution of an
integral equation. Several examples of correspondence flows are
given for the rectangular wing at\supersonic speeds.

SYMBOLS
The following symbols. are used in this report:

A arbitrary constant

a constant used to describe prescribed velocity q on wing
' (See equation (3a) and subsequent discussion.)

B = VM2-1

c wing ‘chord
h ‘wing semispan
I value of variable of integration for which potential

function and its derivatives vanish

refers to I 1limit of integration for flow initiating

I
ST

from wing trailing edge
K  constant in equation (2) (K = 1/2n at subsonic speeds;

: K= l/n at supersonic speeds .
M free-stream Mach number
n,k 0,1,2,+->; constants used to describe prescribed
" velocity on wing (See equation (3a) and subsequent

discussion.) : _
p,q’ angular velocities about x- and y-axes, respectively
q disturbance velocity used to replace. u or w

2

r = A(x-£) 2-B2[(y-n)2 + 7]
U, VW disturbance velocities of fluid in flow field along

X-, y-, and z-axes, respectively
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v

X,¥,52

Aqn,k’ A n,k -

£,1

Q

Subscripts:

Xy¥,2

wake

free-stream velocity

rectangular coordinates with origin ét leading edge of
center section (See fig. 1.)

y—coordinate measured from leading edge of tip section
angle of attack

increment in gq or ¢ caused by wing cut-offs
n,k n,k g

along edges that form wing boundary

‘auxiliary variables of integration used to replace x -

and Yy, respectively

region of integration (See discussion following
equations (2) and (4).)

disturbance parameter in flow field used toAreplace ¢,
T u, v, or w

disturbanceevelocity potential on upper surface of
airfoil - . _ , \

function representing solution of linearized partial
differential equation for velocity potential

0,1,2,*x; désignate flow field due to given prescribed
velocity on wing (See equation (3a) and subsequent
discussion.)

any side edge,-right side edge, and left side edge,
respectively )

wing trailing’edge
upper and lower surfaces of airfoil, respectiiely

indicate partial differentiation with respect to
subscript variable

contribution of wake
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GENERAT, ANALYSIS
Basic Theory

The analysis considers the derivation of correspondence formulas
for nonlifting and lifting wings of arbitrary plan form at subsonic
and supersonic speeds. The correspondence formulas derived in the
analysis are based on the usual conditions for thin wings in the
linearized potential field. A valid solution is therefore required
to meet the following conditions: '

1. The streamlines of the flow must be tangent to the alrf01l
surface (z—O)

2. (a) For wings w1th symmetrical profiles at zero 1ift,
w(x,y,O) = 0, except on wing.

(b) For lifting wings, u(x,y,0) = 0, except on wing, and
"v(x,y,0) = 0, except on wing and in wake.

3. (a) In subsonic flow, ¢ and all its derivatives vanish at
infinity. . :

(b) In supersonic flow, ¢ vanishes at the foremost Mach wave
and all its derivatives vanish ahead of this Mach wave. :

4. The potentlal @ must satisfy the partlal dlfferentlal
equation

2 -
(1-M)9yy + Pyy + @pp = O 6N

A solution for the disturbance-flow parameters in the linearized
theory can be developed by integrations of source and doublet singu-
larities in the plane of the wing (z=0). The basic equatlon is (See,
for example, references 1 and 2. )

¢

cxx,y,z)--—ff[( | a") @ -0 & (Y atan @

where the function §) is a solution of equation (1), the region of inte-
gration T includes the entire =0 plane that can influence the point
X,¥,2, and

= A(x-£)2-82 [(y-n)? : 22]
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In subsonic flow, the factor K is equal to l/Zu; in supersonic flow,
K is equal to l/n and only the finite part of the integral must be
used. If the preceding boundary conditions 3 are specified, the func-
tion {2 can represent either the velocity potential or any of its
derivatives or integrals. If the derivative or integral of ¢ becomes
infinite, the substitution of this function for {2 in equation (2)
depends on the condition that the isolation of the singularity yields

a finite integrand in the limit.

Outline of Method

As is well-known in the linearized theory, if two prescribed
velocity distributions on a wing are related by a constant, the
relation can be extended to the entire flow field. Thus, if Q ;

and qqp  represent two differently prescribed velocity distributions
. on a wing such that

q; = Aq, (on w1pg) °
where A 1is a constant, then

ql(k;y,Z) = Aqo(x,y,Z)A

- Similarly, the factor of proportioﬁality A Dbetween q and ag

also applies to the other disturbance parameters in the entire flow
field; that is, '

91 (x,y,2) = Mo (x,y,2)

and. similariy, for the corresponding derivatives of Pq and,<po.

In an analogous manner, it is subsequently demonstrated that,
for an infinite wing (the term "infinite wing" is used herein to
refer to a wing on which all edges are sufficiently distant so that
the edge effects can be ignored), if ‘any of the derivatives of a
prescribed velocity distribution (for example, (q,),) are related

on the wing by a constant to another prescribed velocity distri-
bution .1 ©OTr to any of its derivatives, then the given relation

. can be extended to all corresponding disturbance parameters in the
entire flow field. Furthermore, it is shown that the relation
between the disturbance parameter for two different flows or
correspondence formulas for wings of finite plan form can be derived
by superposing appropriate -edge corrections to the formulas obtained
for the infinite plan form. '
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The correspondence formulas in the subsequent development are
obtained by integrations of functions representing the disturbance
velocity potential or its derivatives between definite limits. 1In
many cases, the lower limit is the value for which the potential
function vanishes. (See conditions 3(a) and 3(b) given in the sec-
tion Basic Theory.)' This type of lower limit is represented through-
out the derivation by I. 1In subsonic flows, the perturbation veloci-
ties vanish at the limit I.  In certain types of supersonic flow,
however, a finite Jjump occurs in the perturbation velocities at the
I 1limit (that is, across the foremost Mach wave), which can be
evaluatid by simple shock~wave theory. (See, for example, refer-
ence 3.

Generalized Form of Arbitrary Prescribed Velocity on Wing

The most important problems in wing theory are concerned with
those flows in which either the angle of attack or the loading is
prescribed on the wing and it is required to find solutions for the
disturbance parameters in the flow field. The prescribed conditions
therefore involve, in general, a specification of w or u velocity
distribution on the wing. This type of problem may, in principle, be
solved by use of correspondence flows in which the flow field due to
arbitrarily prescribed w or u distributions is determined in terms
of the flow field due to uniformly prescribed w or u distributions.
Thus, in general, a prescribed w or u distribution on the wing can .
be expressed as a continuous function of x and y in the following
form: :

n,k=ow a x . ‘
q= qo Z _n.:.k__.y_k - (On Wlng) (38')

n, =0 n! ki

where gq represents either w or u. In equation (3a), qy and ay ¥
are constants. The term 'qo represents a uniform prescribed velocity
distribution on the wing; whereas the remaining terms represent
prescribed variable chordwise or spanwise velocity distributions.
Throughout the subsequent discussion, the subscript 0, when used with
the general disturbance parameter ¢(x,y,z), refers to the flow field
due to a uniform velocity on the wing. Similarly, the subscripts - n,k
for @(x,y,z), where mn,k = 0,1,2,°*®, refer to the flow field result-
ing from a value of gq on the wing given by
_ %p,x%0% Y :
Up,k = —=—— . (3b)

n! k!

14
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For flows in which k=0, the subscript k is omitted for brevity.

The flow field due to an arbitrary prescribed velocity on the
wing may be obtained by superposing the flow fields due to an
appropriate number of terms of the series in equation (Sb). In the
subsequent development, it is therefore sufficient to consider only
the general term qn i &s given by equation (3b).

N

Basic Formula

In order to simplify the subsequent derivation, the analysis is
made specifically for wings with symmetrical profiles at zero 1lift
and for lifting profiles of infinitesimal thickness. The results, ,
however, also apply to wings of arbitrary profiles by means of super-
position principles. N -

- The boundary-value problems considered in the analysis.are con-
veniently classified into two types. The first class is designated
type A and refers to the specification of w on the wing at zero
1ift or of u on the lifting wing. The second class is the inverse
problem, which is designated type B and refers to the specification
of u on the wing at zero 1ift or of ‘w on the lifting wing.

If w or u 1is prescribed on the wing, equation (2) for Q = q
may be written as : )

| é(x,y,z)‘="K‘v/‘r:/‘q g_z (i) at an (@

T,

In type A boundary-value problems, T. represents only the region
included by one surface of the wing plen form; whereas in type B
problems, T includes the entire region of disturbance over one sur-
face of the 2z=0 plane. o : '

In equation (4), any of the disturbance parameters or their
derivatives with respect to eithér x or y may be substituted for
q 1in conjunction with the appropriate region 7 and subject to the
procedure previously indicated for equation (2). '

Correspondence Formulas for Infinite Wing

Flows related through x differentiation. - In equation (5b),
let n 2 1; then differentiation with respect to x .ylelds:

. a
o (ay k)x = X an-1,x . (on wing) . 5a)
) . J
8n-1,k .
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where q represents either w or u and the wing may be either at
zero 1ift or lifting. The form expressed by equation (5a) is herein-
after referred to as "a relation through x differentiation". ‘

When q in equation (4) is replaced first by An-1,k and then
by -(qn,k)x’ there results for the infinite wing

8n,k

R qn_l,k(X:Y:Z) ‘ (5b)
et

(0, )5 (002) =

Inasmuch as Pn-1 and Pn vaniéh at T, integration of equation (Sb)

to obtain @ and differentiation of @  to obtain the perturbation
velocities yield

(9,1 )x(x7,2) = g:_nﬁ @1k (xy,2) (5¢)
) =4 .
or, at the point Xx,y,z,
e [ | ’
k
¢n,k = — ¢n—l,k at : (54d)
8n-1,k ‘
2 I .

where @ represents any of the disturbance parameters @, U, V, or w.

Equation (Sd) has the following significance:

- If an infinite wing at either subsonic or supersonic speed is
given in which the wing profile is either symmetrical and at zero lift
or infinitesimally thick and lifting and with either w or u pre-
scribed on the wing according to equation (3b), then each of the
parameters @, u, v, or w for the n,k flow is related to the
corresponding parameter for the n-1l,k flow according to equation (Sd).
Furthermore, by integration of equation (5d) for & = u, there results
at the point x,y,z

’ a,
- _n,k
lln)k - an 1 k ¢n"‘l,k (58)
-1, .

Flows related through y differentiation. - In equation.(3b)
let k. 2 1; then differentiation with respect to y yields v
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an,k ' : . .

(qn,k)y = 2= qn,k-l‘ (on wing) (Ga)
8n,k-1 . :

The form expressed by equation (6a) is hereinafter referred to as "a

relation through y differentiation". .

When q 1in equation (4) is replaced first by qn k-1 and then by
(qn k)y’ there results for the infinite wing :

an k-
(ay, 1)y (0, 2) = 22

9, k_l(X:Y; z) (6v)
&, k-1 ,

~and by the same reasoning that was prev1ously indicated for the flow
(qn k)x’ there results

. 8k ,
@?n,k)y(x,y,z) = ;t Qn k_l(x:Y:Z) (6c)
N, K- .

or, at the point Xx,y,z,
d - "nk dan . 6d
n,k by f n,k-1 41 o ‘( )

-

where, as before, ® represents any of the dlsturbance parameters ¢, u,
v, or w. The two lower limits I and O 1in equation (6d) refer to
the conditions that k is even or odd, respectively. If k is odd,
¢n,k vanishes in the y=0 plane and I in equation (Gd) may be

replaced by 0. By integration of equation (6d) for &= v, there
results at. the point x,¥y,z

8n,k
&n,k-1

vn)k - 'an,k-l . (69)

Flows related through arbitrary differentiation. - In the
preceding cases, the differentiation for q on the wing was performed
with respect to either x or y. Other extensions leading to results
corresponding to equations (5) and (6) may be obtained by a similar
procedure through any number of successive differentiations with
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respect to either x alone, y alone, or both x and y. In this
manner, the flow field due to an arbitrary prescribed velocity on the
wing may be expressed in terms of the flow field due to a uniform
velocity on the wing. ‘

METHOD OF EDGE CORRECTIONS
General Procedure

The previous section treated infinite wings, wherein the pre-
scribed relations on the wing given by equations (5a) and (6a) are
valid over the entire plan form. In a finite wing of arbitrary plan
form, however, the wing boundary may alter these prescribed relations
on the edges in order to conform with conditions (2) given in the
section Basic Theory. Consequently, the application of equations (5)
and (8) to finite plan forms requires the superposition of expressions
that correct for the edges. )

The edge corrections involve the cancellation in the plane of
the wing of magnitudes of u or w, as determined from equations (Sd),
(5e), (6d), (6e), and conditions (2), without disturbing the prescribed
g on the wing. If the prescribed flow on the wing is related through
x differentiation (equation (5a)), corrections may be required only
for the leading and trailing edges; whereas if the prescribed flow on
the wing is related through ¥y _differentiation,(equation\(Ga)), cor=-
rections may be required only for the side edges. A general procedure
for canceling q off the wing is the utilization of equation (4) in
conjunction with the addition of a fictitious wing placed in the 2z=0
plane. This procedure offers no complications in type A boundary-value
problems, but may involve the solution of an integral equation in type B
boundary-value problems. In specific problems, however, other methods
for canceling q off the wing may be found more convenient.

Type A Boundary-Value Problem

If w 1is prescribed on the wing of zero 1lift or if -u is pre-
scribed on the lifting wing, the edge corrections can be determined by
use of equation (4). The procedure is to substitute for q in the
integrand of equation (4) the required change in this parameter
evaluated across the edge. In this operation, only those edges that
alter the given prescribed relation on the wing, expressed in deriva-
tive form, require consideration. (See the appendix for illustration.)

Flows related through x differentiatioh. -'if the prescribed
flow on the wing is related through x differentiation, an edge
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correction is required oOnly for the trailing edge in order to satisfy
the boundary conditions-in the wake of the wing. The trailing-edge
correction is required to cancel in the wing wake a magnitude of w
in the zero-1lift condition and a magnitude of° u in the 1lifting con-
dition. The fact that, in this type of flow, only a trailing-edge
correction is required is significant at supersonic speeds in that
the infinite-wing relations apply to finite plan forms at all points
outside of the Mach waves from the trailing edge. The infinite-wing
relations also apply at subsonic and supersonic speeds if the wing
chord extends backward to infinity, even though the span is finite.

Flows related through y differentiation. - If the prescribed
flow on the wing is related through y differentiation, corrections
are required only for those edges that are inclined to the y-axis;
that is, side edges. The side-edge corrections are required to cancel
outboard of the side edges a magnitude of w in the zero-1lift con-

"dition and a magnitude of u in the 1lifting condition. The fact
that, in this type of flow relation, only side-edge corrections are
required is significant at supersonic speeds in that the infinite-wing
relations apply at all points outside of the Mach waves from the side
edges. The infinite-wing relations also apply at subsonic and super-
sonic speeds if the side edges are at infinity, even though the chord
is finite (rectangular wing of 1nf1n1te span).

Type B Boundary-Value Problem

In general, the method for determining the edge corrections for
the inverse problem in which u 1is prescribed on the wing of zero
1ift or w 1is prescribed on the lifting wing is more complicated
than for the type A problem. In solving the inverse.problem,
difficulty arises because the specification of u only on the
zero-1ift wing leaves u undetermined in the remainder of the
plane of the wing. Similarly, the specification of w only on
the lifting wing leaves w undetermined in the remainder of the
pléne of the wing. In the type B problem, the distribution func-
tion for the singularities is therefore incompletely specified in
the integrand of equation (2) _In some cases, this problem may be
solved without requiring the solution of an integral equation.

Flows related through x differentiation. - If the prescribed
flow on the wing is related through x differentiation, corrections
are required only for the subsonic leading edge and for the trailing
edge at all speeds. The subsonic-leading-edge correction is requlred
to cancel a magnitude of g on the wing. The trailing-edge correc-
tion is required to cancel in the wing wake a magnitude of w in
the zero-1lift condition and a magnitude of u in the lifting condition

\3
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'without disturbing the prescribed values of q on the wing. If the

leading edge is supersonic, an edge correction for this type of flow
relation is required only for the trailing edge and the infinite-wing
relations apply to the finite plan form at all points outside of the
Mach cones from the trailing edge. If the trailing edge is supersonic,
the required cancellation of w or u in the wing wake is accom-
plished without requiring the solution of an integral equation by
placing a fictitious wing in the wake and then applying equation (4).

Flows related through -y differentiation. - If the presceribed
flow on the wing is related through y differentiation, the required
edge corrections can be determined without solving an integral equation
if the side edges are supersonic. For this type of flow relation, the
infinite-wing relations apply to the same cases previously indicated
for type A problems for,6 the corresponding prescribed flow relation.

CORRESPONDENCE FORMULAS FOR RECTANGULAR WINGS

Type A Boundary-Value Problem -
In the following analysis, let g in equation (Sb) represent
either a prescribed w for the wing of zero lift or a prescribed u
for the lifting wing.
Flows related through x differentiation. - For flows related
through x differentiation, consider a rectangular wing on which
the prescribed velocity is given by equation (3b); then the relation

' 8,k
(qn,k)x =z ; N -1,% (on wing) (72)

-4

identically applies on the leading and side edges. Across the trailing

" edge, however, condition 2(a) or 2(b), presented in the section Basic

Theory, requires a decrease in qn K’
., J

(B, g = - f,lokl.]y () .

where ¢ 1is the chord. Consequently, the evaluation of (qn k)X(x,y,z)

. , .

from equation (4) ((q, ,), is substituted for q) requires a correction
. . s i

only for the trailing edge.' The details of the evaluation of the
trailing-edge correction are given in the appendix. The result at a
point x,y,z is ‘
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a9 0,1 %, ) (A6)
TR ‘

where (A®; ,)q refers to the effect of the wing cut-off at the
s .
trailing edge; that is, the effect of the change in Q' along the
2

trailing edge. (See the appendix.) In the z=0 plane, in the zero-
1ift case for ®=w and in .the lifting case for ®=u, the quantity
(A@o k)T- is zero everywhere except in the wake, where the value is

2

-4 k* The application of equation (AG) may be extended to plan forms
)

other than the rectangular in the sense that it représents the
trailing-edge correction for any plan form with a straight trailing
edge.

The correspondence relation expressed by equation (A6) repre-
sents the edge corrections for finite rectangular wings on which the
prescribed velocity is related through x differentiation. The
complete correspondence relations for this flow and plan form are
obtained by adding equation (A6) to equation (5d) or (5e). Because
recfangular wings for this condition require a correction only for
the trailing edge, it follows that the correspondence relations (5d)
and (Se) are, without further correction, applicable to the following
cases:

(a) Subsonic flow for an arbitrary span length and a chord
extending backward to infinity

(b) Supersonic flow for any rectangular plan form at all points
outside of the trailing-edge ‘Mach cone '

Flows relaﬁed through 'y differentiation. - For flows related -
through y differentiation, let equation (3b) be differentiated
with respect to y; then the relation

an,k

(qn:k)y = a_ .

dy,x-1  (on wing) : (8a)
n)k-l T . ’

applies identically on the leading and trailing edges. Across each
side edge, however, condition 2(a) or -2(b), presented in the section
Basic Theory, requires a change in qn,k
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an,kqo(ih)kxn : : (49)
n! ki .

Ay = -

where h 1is the semispan and the plus and minus signs preceding h
refer to the right and left side edges, respectively. The evaluation
of (qn,k)y from equation (4) ((qn,k)y is substituted for q) there-
fore requires a correction cnly for the side edges. The details of
the evaluation of the side-edge correction are given in the appendix.
The result at a point x,y,z is o

Ny, = "1,k [hk(A¢n)RS-+ (-n)¥ (Aon)LsJ _ (A15)

n,k g k!
n

where (A®,)gg and (Ad,)ps refer to the effect of the wing cut-off
along the side edges; that is, the effect of the change in g, along the

side edges. In the 2z=0 plane, in the zero-1lift case for ®=v and
in the lifting case for ®=u, the quantities (A® )pg and (AP))rg
are zero everywhere except outboard of the side edges, where the value
is =-gp. The application of equation (A15) may be extended to plan
forms other than the rectangular in the sense that equation (A15)
represents the side-edge correction for any plan form with side edges
in the streamwise direction.

The correspondence relation expressed by equation (Al5) repre-
sents the edge corrections for finite rectangular wings on which the
prescribed q 1is related through ¥ differentiation. The complete
correspondence relations for this condition are obtained by adding
equation (A15) to equation (6d) or (6e). . Because rectangular wings
for this condition require an edge correction only for the side edges,
it follows that the correspondence equations (6d) and (6e) are appli-
cable, without further corrections, to the following cases: ' ‘

(a) Subsonic flow for an infinite span and an arbitrary chord
length

(b) Supersonic flow for any rectangular plan form at all points
outside of the Mach aft cones from the side edges
Type B Boundary-Value Problem

In the following analysis, let q -in equation (Sb) representv
either a prescribed u for the wing of zero lift or a prescribed w
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for the lifting wing. The subsequent treatment for the rectangular
wing considers the type B problem in cases where the solution of an
integral equation is not required. :

Flows related through x differentiation..- If the flow is
related on the wing through x differentiation, corrections for
both the leading and trailing edges are required at subsonic speeds.
At supersonic speeds, however, only a trailing-edge correction is
required. Thus, equations (5d) and (5e) apply to the rectangular
wing at supersonic speeds for all points outside of the Mach waves
from the trailing edge.

In the Ackeret region of the wing, where u 1is proportional
to w, the type B problem is transformed into a type A problem so
that the trailing-edge correction expressed by equation (AG) is also
- applicable to points in the flow field influenced only by the Ackeret
region. For points in the flow field within the Mach cone from the
trailing edge and influenced only by the Ackeret region, the correction
expressed by equation (A6) is added to equation (54) or (5e).

The trailing-edge correction at supersonic speeds for points
influenced by the side edge can be determined by superposing a
fictitious wing in the wake such that

. a _ _
k
—= Q’n_l,k(xJY)o) ] (93)

Aun’k(x,y,O) = -

)

By utilizing equation (4), with q replaced by Au_ ., there results
f J

~

M (x,7,2) = K “n,k | @ O (1) a¢ a
n, k7Y oo n-1,k 37\ 3 y
n"l"k Lo

wake

i

\

a .
: k .
-5 (g -1,k)wake (x,¥,2) (9v)

8n-1,k

where CA¢n is the contribution of the wake to the velocity

-l,k)wake
potential in the n-1l,k flow and A“n,k is the entire edge correction
for un K*

Integration of equation (9b) to obtain AQ, , and differ-
J 2
entiation to obtain the perturbation velocities yield
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: x
: &n,k .
A@n,k(x?y,z) = g“i‘; J/‘ ca¢n-l,k)wake at (9c)
n-.,
I A
T

where the limit Ip ‘indicates that the flow is initiated from the
trailing edge and (Agn-l,k)wake refers to the contribution of the

wake to @, u, v, or w. Equations (9b) and (9c), when applied to
points within the trailing-edge Mach cone that are influenced only

by the Ackeret region, represent additional forms of the trailing-edge

correction other than that given previously for this region.

A summary of the correspondence formulas for the rectangular
wing is presented in table I. .

EXAMPLES OF USE OF CORRESPONDENCE FLOWS

A few examples of the use of correspondence flows for the type B
problem are given for the 1lifting rectangular wing at supersonic
speeds. Let q,, assume the following prescribed velocities on

J

the wing:

Wy = aqWX ' .(lOa)
V0,1 = aO,lWOy (10b)
) Wl,l = al’lwoxy ‘ (lOc)

~ The disturbance velocity u for the flows represented by equa-
tions (10) are obtained in terms of the solutions. for the wing at a
constant angle of attack for which W = -Va.. The lettered regions

in the subsequent discussion refer to figure 1.

N

Example A: Wy = a,WX (on wing)

The flow expressed by equation (10a) represents a wing pitching
steadily at an.angular velocity aq' = -8y Wo.
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Region A. - In-region A between the side-edge Mach cones and
outside of the trailing-edge Mach waves, the potential function for.
a uniform angle of attack o is ‘ ’

Poloysz) = - 2 (xB2) (11a)
Then, fr6m equation (se) (n=1,k = 0, ay=1),
w) (x,y,2) = aivo(x,y,Z)
L) . am)
Region B. - In region B between tﬁe side-edge Méch cones and N

within the trailing-edge Mach waves, the potential function for a
uniform angle of attack a is given by
' w.C

Polx,¥,2) = - < | " (12a)

In this region, equations (5e) and (A6) are applicable and

!

ul(x,y,z) = a;%, +'alc(Auo)T , : | (12b)

- o | ¥o
where, by use of equations (1la) and (12a), CAuO)T = . Therefore,

. q' ql

ul(x,y,z) = _52_- _§2 =0 (12¢)
Region C. - In region C within the Mach cone from one side edge

and outside of the trailing-edge Mach waves, the potential function

9o in the 2z=0 plane is given by (reference 4, table I)

’ W o 2y_B .
- 0 [X - a : X :
9o(x,y,0) = - - {% cos l( e+ l) + 2 -ya(?é + Eé} ) (13a)




18 ' ' ' : NACA TN 2303

“where y, refers to en.origin at the leading edge of the tip section;

that is,

\

Y, = y-h (on right half-wing)

In this region, equation (Se) is applicable in accordance with
correspondence rules for flows related through x differentiation
at supersonic speeds. Therefore,

2190(x,¥,0)

a'|x -1f 2YaB X
- l:B cos (x + l) + 2 -ya(ya + -ﬁ)} . (13b)

(Equation (13b) agrees with the result obtained in table I of refer-
ence 4 when the pitching axis in reference 4 is referred to the lead-

ing edge.)

ul(x)YJo)

Il

‘Region D. - In region D w1th1n the Mach cone from one side edge
and also within the trailing-edge Mach waves, equation (9v) is appli-
cable. For points in the 2z=0 'plane, a doublet singularity has no
effect except in the immediate vieinity of its position; therefore,

AMI(X:Y:O) = - 3190(X:Y:0) _ (14a)
and
ul(x,y,O) = afvo(X:Y;o) - aj?O(X:Y)O) =0 - (14v)
‘Example B: W (on wing)

0,1 - 20,1%0"

The flow expressed by equatlon (lOb) represents a wing rolling

: steadlly at an angular velocity p = ao 1Yo

Region A. - In region A between the side-edge Mach cones and
outside of the trailing-edge Mach waves, the disturbance ve1001ty U,
for a uniform angle of attack a is .

W
uo(xJY)Z) = - —O
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In this region, equation (6d) is applicable (k=1, ag=l, ¢=u) and

¥y
uO,l(x"y’z) = ao’l ‘/Oﬂ Yg dn
= By ‘ : - (15
z (15)
Region B. - In region B between the side-edge Mach cones and

within the trailing-edge Mach waves, the disturbance velocity
ug(x,y,2z) = 0. In this region, equation (6d) is still applicable

and

. y .
ug,1 (oi2) =8y Yo 1
i . 0 . ,
- ' | =0 ' | " (16)
‘Example C: V1S al’lwoxy (OI‘l wing)
Region A. - If Wl,l‘. in equation (lOc) is differentiated with
respect to x, then in region A between the side-edge Mach cones and

outside of the trailing-edge Mach waves, equation (5e) is applicable
(n=1, k=1) and : ’ ‘

81,1
ul l(x,y, Z) = _’Cpo l(x)y) Z)
7 ag,1

where Qg 1 is obtained from equation (6d) (@=¢, a0=l) as
. v ,
q)O,l(X’y’Z_) = aO,l f ?o dn
. 0

where @ ' is given by equation (1la). Then
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y
: an 1V,
CPo,]_(X:Y:Z) = - _Q;%_Q (x-Bz) / dn
. 0

8y 1YY
- OZ% 0 (X-BZ)

Therefore

' ‘ 8, WY
ul)l(x,y,z) = - _1,_}13_0 (X"BZV) ‘ (17)

Region B. - In region’ B between the side-edge Mach cones and '
within the trailing-edge Mach waves, equations (5e) and (A6) are
applicable and .

ul’l(x,y,z) = alcp.ol,l(x,y,z) + alc(AuO,l)AT . (18a) .

where - cpo 1 is obtained from equation (Gd) ((Dz(p). Thus
2 ' -

: . Y
¢0,1(X:Y:Z) = 3-0,1/ Po dn
s o

where, from equation (12a),

WOC
CPo(X:Y)Z) = - —B_
Then :
. a_ .w.cy .
cPo,i(X:Y:Z) = - —Q’—l];—L (18b)

From equations (15) and (16), (AuO l)T in equation (18a) has the
: )

value -py/B. By substituting for ?0.1 and for (Auo l)T’ there
. results . ' ? : =

a. _.wcey a. .w.cy
) 1 (0y,2) = - 2.1 0, L.l O

B B.

-0 : , (18¢)
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CONCLUDING REMARKS

The method of relating the solution of a flow field to the
sdlution of a simpler or known boundary-value problem has been
extended, subject to edge corrections for finite plan forms, to the
most general type of prescribed boundary ‘conditions on a wing in the
Jinearized potential field. By means -of this procedure and within
these limitations, the flow field due to an arbitrary prescribed
velocity distribution on the wing can be expressed in terms of the
flow field due to a uniform prescribed velocity on the wing.

_ A geﬁeralized correspondence rule has been demonstrated for
wings in. linearized potential flow for subsonic and supersonic speeds.
This rule states:

. 1. If any of the derivatives of a prescribed velocity distri-

bution is rel%ted on the wing by a constant to another prescribed
distribution of the velocity or to any of its derivatives, the given
relation is valid, subject to edge corrections, throughout the entire
flow field for any corréesponding disturbance parameter of the two flow
fields. '

2. If the prescribed flow on the wing is related through differ-
entiation in the stream direction (with respect to x), corrections
may be recquired only for the leading and trailing edges;. whereas if
the prescribed flow on the wing is related through differentiation
in the lateral direction (with respect to y), corrections may be
required only for the side edges. '

Lewis Flight Propulsiqn Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, November 3, 1950.

-
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APPENDIX

DERIVATION OF EDGE CORRECTIONS FOR
FINITE RECTANGULAR WINGS

The derivation for the edge corrections is applicable to finite
rectangular wings at subsonic and supersonic speeds for symmetrical
profiles at zero 1lift on which w 1is prescribed and for lifting
profiles of infinitesimal thickness on which u is prescribed.

Flows Related Through x Differentiation

Consider the flow

a_ . q xnyk _ ) :
4 x = -—n-?—i%o—k'— (on wing) - (3b)

n=1,2, “*w; k=0, 1, 2, *+-o

.~

Then the reiation

8n,k
8n-1,k

(qn,k)x =

Y1k (on.wing) - (5a)

applies identically on the leading and side edges. Across the trailing '
.edge, however, condition 2(a) or 2(b), presented in the section Basic
Theory, requires a decrease in qh’k,

a. . q.chyk ] o
n.k20" 7 2 (7o)

(Bag, e = - =

where c¢ 1is the chord.

| The change in is assumed to occur across a strip Of
| _ ,k b

width AE on the trailing edge. This change contributes an increment
in (qn k)X(x,y,z), which is the entire edge correction and, according
2 . . v

to equation (4) with the appropriate substitutions for q, is
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May, )¢ (%5752) =;Kf (A;qui)i g;(%) A dn (A1)

where the integral is evaluated along the trailing edge and (Aqn k)T
is given by equation (7b).

In a similar manner,

AMay Iy T(XQY;Z) =K - 90,e 2 A dn (a2)
. 0, : AE az T.

T

where Eﬁ(qo k)](r refers to the contribution of the trailing edge to
(20,0 24 |

a.
0 kqoy .
= —_—
(Aqo s o (AS)

When the integrals of equations (Al) and (A2) are compared, it is seen
that )

gy, ) (x5752) = —-I-l-l—k—[A(qo k)] (x,y,2) (ae)
A %0,k _

Integration of equation (A4) yields, at the point x,y,z,

B x - Tmak o (Aqo k) ' | (A5)
0,k

Inasmuch as @ k and @ must vanish at the lower limit (See

0,k
boundary condition (3 given in section Basic Theory. ), integration of
equation (AS) to obtain ¢ and differentiation of @ to obtain the

- perturbation velocities yield, at the point x,y,z, '

a_,ct ’ :
_ _n,k
J
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The term (A@O k)T refers to the effect of the wing cut-off at
2 .
the trailing edge; that is, the effect of the change in Y.k along
s A

the trailing edge. This term can, in general, be determined by use
of equation (AZ), In specific cases, however, it may be simpler to
use various other modifications of equation (2). Thus, in the zero-
1ift case, equation (2) for = u and u, = w}’{ yields

g % AL an | (a7)

: ) (Aw
(AuO;k)T(x:Y:Z) = -‘K‘/II‘ ,_T_g’k

where CAWO k)T is given by equation (A3) and
. J . .

. . ‘ a !
(g, Joloys2) = - K 0ED [0 Bay (18)
. ' M ’ T

Flows Related Through y Differentiation

Consider the flow

- nk
a QXY
O, = 0 (on wing) (3v)

k= 1,2,**m; n=0,1,2,""®

Then the relation

an,kv

a'fl,k—l

(qn,k)y = U, k-1 (on Wéng) - (6a)

applies identicélly along the leading and trailing edges.' Across a
sidz2 edge, however, condition 2(a) or 2(b), presented in the section’
Basic Theory, require a change in .k .
J .
k.n
+
a, 1 9o(¥h)"x

n! k!

(A9)

£y e = -
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where h 1is the-semispan and the plus and minus sign preceding h
refers to the right and left side edges, respectively.

This change in q )k is assumed to occur along a strip of

width An on each 51de edge and contributes an increment in
(qn k) (x,¥,2z), which is the entire edge correction and, according

to equatlon (4) with the appropriate substitutions for gq, is

A(Qn,k)y(X:Yez) =K Jf Cﬁqn k)RS é—( ) An dE -
RS .
Alap,k)1s |
K \/; s T 5(r) an dz (a10)

where the 1ntegral is evaluated along each side edge and CAqn k) for
each side edge is given by equation (A9)

.

In a similar manner,

[A(Qn)-g s(}c,y,Z) =-K .'-4‘8 A—«—!’g?f—s %Z-G) An dIE -

where [é(qn)y s refers to the contribution of the side edges to

(qn)y and whére, for each side edge,

i |
R (a12)

When the integrals of equatlons (A10) and (All) are compared, it is
seen that

A(qn',k)y(x,y,z) = :n—f{l;{hk[g(qn)};\ﬁs + (-n)% A(qn);JLS (a13)
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Integration of equation (Al3) yields, at the point x,y,z,

0, = (o) + (2 (Aqn)Ls] ()

Inasmuch as an Kk and @n must vanish at the lower limit,
: J

integration of equation (Al4) to obtain ¢ and differentiation of ¢
to obtain the perturbation velocities yield, at the point x,y,z,:

_ %n,k [,k k, |
My = ';:1? [h (80,)gg + (-n) (A% ); o (a15)
The terms (&A@ )pg and (AP )yg refer to the effect of the wing
cut off along the side edges; that is, the effect of the change in ehy

along the side edges. These terms can, in general, be determined by
use of equation (All) In specific cases, however, it may be simpler
to use various other modifications of equation (2). Thus, in the

zero-1ift case, equation (2) for {0 = v and v, = W, Yyields

) ’ | AW ¥ ’
(av, ) pg(xs7,2) = - Kf (—-A—nn)is%m at

RS

(where CAW )RS is glven by equation (AlZ)) and similarly for

(av,);ge Thus,

| ’ a_q n .
(AV RS(X:.Y,Z) =-K n.'O f 'S_— ag (A16a)
RS - . '

1
1
-

: (Avn)LS(X;YJ Z) = » 1 T di ' (A'L6b).
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NACA-Langley - 3-13-51 -975

Yacty?
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7

Coordinate system shown 1s used

Figure 1. - Regions considered in examples for rectangular wing at supersonic speeds.,
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in entire analysis; origin at leading edge of center section.
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