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TEANSONIC FLOW PAST A WKDGE H(OFILE WITh IIETACBKD BOW WAVE - 


GENERAL ANALYTICAL METhOD AND FINAL CAlCUlATED RESULTS


By Walter G. Vincenti and Cleo B. Wagoner 

SUMMARY 

Calculations have been\ made of the aerodynamic characteristics at 
zero atLgle of attack of a thin, doubly symmetricaf, d.ouble-ied.ge  profile 
for the range of supersonic flight speeds in which the bow wave is 
detached. The mixed flow over the front half of the profile is deter-
mined, by a relaxation solution of the traneonic small-disturbance equa-
tion (the Tricomi equation) in the hodograph plane. The purely super-
sonic flaw over the rear half is found by means of the method. of charac-
teristics. No special assumptions are involved in the analysis beyond 
those Implicit in the originalifferential equation. Calculations for 
four values of the transonic similarity parameter were found sufficient 
to bridge the gap between the previous results of Guderley and Yoshihara 
at a Mach number of 1 and. the results which are readily obtained when the 
bow wave is attached and the flaw is completely supersonic. 

The results of the study provide the following information as a 
function of the transonic similarity parameter: (1) shape and location 
of bow wave and sonic line, (2) chord'wise distribution of Mach number 
and pressure, and (3) integrated pressure drag of front wedge, rear 
wedge, and complete profile. The important features of these results are 
noted and discussed. The drag results are also used to illustrate the 
quantitative indeterminacy which is encountered when the transonic small - 
disturbance theory is used to obtain results for airfoils of finite 
thickness at Mach numbers a finite distance from 1.	 - 

The present report contains a nonmathematical outline of the theo-
retical problem and. a discussion of the final results. The details of 
the computations will be covered in a later paper.. 

I1TROITJCTION 

At supersonic flight speeds, the flow field about a wedge of, 
infinite span is characterized at zero angle of attack by a syntrIcal, 
two-dimensional shock wave. This wave, which forms either on or In 
front of the apex of the wedge, is called the bow wave in recognition 
of its analo"to the surface vave which forms at the bow of a moving
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ship. As is well known, the shape of the bow wave and the nature of the 
flow about the wedge vary depending upon the apex angle of the wedge and 
the Mach number of the free stream. Consider, for simplicity, the case 
of a wedge of fixed angle. It will be assumed that the wedge is per-
fectly sharp and. that the effects of viscosity are negligible. It will 
also be assumed. that the wedge is of finite length in the streamwise 
direction. Under these circumstances, three essentially different 
regimes of flow are possible, depending upon the Mach number of the free 
stream:

1. Attached bow wave with purely supersonic flow. - Above a cer-
tain free-stream Mach number, the value of which depends upon the 
magnitude of the wedge angle, the bow wave is attached th the apex 
of the wedge, and tjie local flow at all points downstream of the wave 
is supersonic. Under these conditions, the velocity at the surface 
of the wedge is uniform, and the bow wave is straight out to its 
point of intersection with the first Mach wave from the downstream 
end of the wedge. This regime of purely supersonic flow was first 
studied by Prandtl and Meyer as long ago as 1908 (reference 1) and is 
now to be found analyzed in any standard text on gas dynamics. 

2. Attached bow wave with mixed subsonic and supersonic flow. - 
As the free-stream Mach number Is reduced in the purely supersonic 
regime, .a condition is eventually reached at which the local velocity 
downstream of the straight portion of the bow wave is exactly sonic. 
With further reduction in Mach number, the flow In the vicinity of 
the wedge becomes subsonic, and the entire fundamental nature of the 
flow field is altered. For a small range of free-stream Mach number, 
the bow wave remains attached. to the apex but the velocity along the 
surface of the wedge is now nonuniform. The wave itself, though still 
inclined toward the rear at all points, is now curved starting from 
its beginning at the apex. The rather complex sequence of events in 
this particular regime of mixed subsonic and supersonic flow has been 
clarified by Guderley (reference 2), but no specific calculations 
have been made. Since the regime prevails over only a narrow range Cf 
Mach number, the lack of quantitative information is not of serious 
consequence. 

3. Detached bow wave. - At a free-stream Mach number slightly 
below that which gives sonic flow behind the bow wave, a limiting 
condition is reached below which an attached wave is no longer pos-
sible. At lower Mach numbers, therefore, the wave detaches from the 
apex and stands in the stream forward of the wedge. In this regime 
of flow, which prevails down to a Mach number of unity, the subsonic 
flow over the surface of the wedge has a stagnation point at the apex. 
The element of the curved bow wave directly ahead of the apex is now 
normal to the direction of the free stream. This regime of mixed flow 
may occupy a considerable interval of Mach number in the currently
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important range of transonic flight speeds. Because of difficulties 
inherent in the mathematics of the problem, however, quantitative 
theoretical results free of special assumptions are generally lacking. 

Perhaps the first calculations of the flow about a finite wedge with 
a detached bow wave were made by Maccoil and Cod.d in. England. between 1938 
and 1911.2 (reference 3) and were reported by Maccoil at the 6th 
International Congress of Applied. Mechanics in Paris in 1911.6 (reference 
4). In this initial work, the computations were carried out in the plane 
of physical coordinates - or, more precisely, in a plane of distorted 
physical coordinates. For reasons which will appear later, a direct solu-
tion was not possible with this approach, so that recourse was had to a 
method of successive approximations. The successive approximations were 
obtained by nullErical integration o± the partial differential equations 
of fluid motion in the subsonic portion of the flow field. By this means' 
Maccoli and Codd were able to obtain results for the mixed flow about 
bodies of various shape. The calculations for the wedge with a detached 
wave were confined, however, to the single case of a free-stream Mach 
number of 1.5 and a total wedge angle of 400. 

An alternative method of analysis, which eliminates the need for 
successive approximations, has been described independently by Frankl 
(1945) in Russia and by Gud.erley (1947) in this country (references 5 
and. 2, respectively). In. this approach, the problem of the wedge with a 
detached wave is formulated as a boundary-value problem with the velocity 
components as the independent variables. Using this hodograph method, 
Frankl was able to prove that the solution of the detached-wave problem 
is unique. (This had been tacitly assumed by Maccoil and Codd..) 
Guderley, following a similar approach, showed how the hodograph problem 
canbe simplified by restriction to small disturbances about the sonic 
velocity. These developments have been subsequently reviewed in non-
mathematical form by Busemrn, (reference 6). More recently (1949), 
Guderley and Yoshihara, using the small-disturbance theory, have obtain. 
a quantitative solution for the finite wedge at a free-stream Mach number 
of unity (reference fl. In this special limiting case, the bow wave 
disappears at infinity upstream, which facilitates the mathematical anal-
ysis. The corresponding boundary-value problem in the hodograph plane 
was solved analytically by Guderley and. Yoshihara with the aid of Fourier 
analysis and a harmonic analyzer. For free-stream Mach numbers greater 
than unity, a comparable analytical solution of the boundary-value prob-
lem is not yet available. Such a solution would appear, indeed, to pre-
sent serious mathematical difficulties, even in the relatively simple 
small-disturbance theory.1 

The references cited in the foregoing discussion approach the solution 
of the finite-wedge problem through wholly theoretical analysis of the 
details of the flow phenomena in the complete flow field. Papers which 
deal with other problems involving detached shock waves or with other 
approaches applicable to the finite-wedge problem are listed for the 
convenience of the interested reader in a bibliography at the end of 
the report.
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The work to be described in the present report is a logical exten-
sion and application of the hodograph method of Guderley and Franki. To 
circumvent the lack of an analytical solution at Mach numbers greater 
than 1, it was proposed in the present study to solve the boundary-value 
problem by means of nuiirical techniques. In the application of nuiri-
cal methods, the present work has much in common with the investigations 
of Maccoil and Codd. The use of the hodograph approach, however, elizni-
nates the need for successive approximations and brings about other 
improvements in ease and rigor. Furthermore, through use of the; simi-
larity principles inherent in the small-disturbance theory, general 
results applicable to any thin wedge can be obtained on the basis of a 
relatively small number of specific calculations. In the present work, 
these results are used, in particular, to study the pressure distribution 
and drag of a complete, doubly symmetrical double-wedge profile in the 
range of flight Mach numbers from unity upwards. 

While the present theoretical investigation was in progress, inf or-
mation was received that a parallel experimental study of the flow over 
a finite wedge had. been undertaken by Hans W. Liepmann and Arthur E. 
Bryson, Jr., at the California Institute of Technology. Although the two 
investigations were planned quite independently, the direct relationship 
of their subject matter makes it desirable that they be reported in 
related fashion. It has been decided, therefore, to present the detailed 
results of both studies in a series of three coordinated papers to be 
published by the NACA under a conon general title. The present report, 
which is the first of this series, contains a largely nonmathematical 
outline of the theoretical problem and a discussion of the final calcu-
lated results. The lengthy details of the computations will be dealt 
with in a second report by the present authors. The third report, to be 
written by Bryson, will contain a description of the experimental inves-
tigation carried out at the California Institute of Technology and a 
comparison of the theoretical and experimental.results. Certain of the 
results which will appear in these reports have been given in preliminary 
form by Liepmann and. Bryson in reference 8. 

NOTATION


Primary Symbols 

a	 critical velocity (i.e., velocity at which the velocity of flow 
and the velocity of sound are equal) 

c	 airfoil chord 

Cd	 drag coefficient 

Cd	 generalized drag coefficient 

(See equation (ii).)
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Cp	 - pressure coefficient 

	

Cp	 generalized pressure coefficient 
(See equation (8).) 

f(x/c) function defining shape of profile 

	

M	 Mach number 

	

p	 static pressure 

	

q	 dynamic pressure ( p M2) 

t/c	 airfoil thicimess ratio 

	

u	 horizontal component of velocity 

	

v	 vertical component of velocity 

x,y	 Cartesian coordinates 

	

Y	 ordinate function 
•	 (See equation (2).) 

	

7	 ratio of specific heats (1. 14. for air) 

	

6	 stream inclination 

speed function 
•	 (See equations ( Ii. ) and (20).) 

transonic similarity parater 
(See equations (1) arid (21).) 

Subscripts 

	

o	 conditions in free stream 

	

*	 conditions at sonic point on airfoil 

	

f	 front portion of airfoil 

	

r	 rear portion of airfoil 

14o=l value at free—stream Mach number of 1 

value at

5
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GEIRAL THEORETICAL METHOD 

Description of Flow Field 

It is convenient to begin by examining the nature of the flow field 
which exists around a doubly symmetrical, double-wedge profile when the 
bow wave is detached. The complete double-wedge profile is 'considered 
here since the determination of the characteristics of this profile is 
the final object of the present work. The description and results rela-
tive to the flow over the forward half of this profile, however, are 
applicable, within zninor'liinitations, to the flow over any finite wedge-
which terminates in a sharp convex corner. It will be assuid in all 
that follows that the fluid surrounding the profile is a perfect gas and 
that the effects , of viscosity and thermal conductivity are negligible. 

Under these idealized conditions, the flow about a nonlifting 
double-wedge profile with a detached bow wave is qualitatively as shown 
in the accompanying sketch. (Since the flow is symmetrical about the 
chord line, only the upper half of the field is shown.) As indicated, 
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the subsonic flow which exists behind the detached wave is confined to a 
limited region bound.ed by the wave, the sonic line, and the forward half 
of the profile. The fluid which enters this region is decelerated dis-
continuously from supersonic to subsonic velocity in passing through the 
detached shock wave. Downstream of the shock wave, the fluid is acceler-
ated continuously, first to the speed of sound at the sonic line and then 
to supersonic speed beyond this line. As previously mentioned, the 
detached bow wave begins normal to the free stream at the axis of sym-
metry (point A) and curves progressively downstream. Far from the air-
foil, the slope of the wave tends asymptotically to the slope of a free-
stream Mach line. Since the detached wave is curved, the flow behind 
the wave is, of course, nonuniform. The sonic line, which forms the 
downstream boundary of the subsonic region, begins at the ridge of the 
profile (point B) and. extend.s to some point E on the shock wave. Since 
the flow in the subsonic region is nonuniform, the sonic line is curved. 
As can be demonstrated, however, it must leave the ridge normal to the 
forward surface of the profile. 

Directly to the rear of the sonic line at the ridge, a supersonic 
expansion fan originates. This expansion fan tends, in the immediate 
vicinity of the ridge, toward a simple Prandtl-4'yer flow, in which the 
sonic line and the elementary Mach waves would be straight lines ema-
nating radially from the corner. Since the sonic line in the present 
flow is curved, Jiowever, the Mach waves of the expansion fan must be 
cimrved as well, the curvature being in the forward direction. By virtue 
of this forward curvature, certain of the expansion waves meet the sonic 
line, while others meet the outer portion of he bow wave. One particu-
lar expansion wave BDE meets hoth the sonic line and the bow wave at 
their common point E. This particular wave may be termed the "separatiig - 
wave," since it separates the expansion waves into two classes: those 
which reach the sonic line and those which'd.o not. It is apparent that. 
any small disturbance introduced, into the expansion fan forward of the 
separating wave BDE will travel along a Mach wave to a point on the sonic 
line. From thereit will spread throughout the subsonic region, thereby 
influencing the shape of the sonic line and, hence, of the expansion fan 
itself. The entire subsonic region and the limited portion BDECB of the 
adjacent supersonic region are thus interdependent and. must be regarded 
for analytical purposes as a single, bounded transonic zone. A small 
disturbance originating In the purely supersonic region to the rear of 
the separating wave BDE cannot reach.the sonic line and. can have no 
effect upon the flow in the afore-mentioned transonic zone. 

The supersonic flow over the rear of the airfoil is directly influ-
enced by conditions in the transonic part of the field. Analysis indi-
cates that the elementary expansion waves which reach the sonic line do 
not terminate there but are reflected as elementary compression waves. 
These waves are again reflected as compression waves at the solid sur-
face of the airfoil. After this last reflection, the elementary corn-
pression waves coalesce to form an oblique shock wave which begins at
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the ridge. On thin sections this shock wave is very weak and may be 
regarded, for all practical purposes, as a distributed compression. 
Rearward of the oblique wave from the ridge, the flaw continues with 
supersonic velocity to the trailing edge, where there Is a second oblique 
shock wave of the type familiar from purely supersonic airfoil problems. 

Method of Analysis 

To handle the present problem analytically, the flow must first be 
determined In the transonic zone bounded by the bow wave, the airfoil 
profile, and the separating Mach wave. As in all transonic problems, 
such determination Involves the solution of a partial differential equa-
tion of mixed type, that Is, one which is elliptic In the subsonic region 
and hyperbolic In the adjoining supersonic region. The solution of an 
equation of this type Is troublesome at best. In the present problem, 
however, additional difficulties arise. First of all, the differential 
equation, beside being of the mixed type, is also nonlinear. Second, 
the location of two of the boundaries of the transonic zone - the bow 
wave and the separating Mach wave - is not known a priori but must be 
determined as part of the solution. Third, the flow in the transonic 
zone, having passed through the curved bow wave, is necessarily 
rotational. 

The foregoing difficulties seriously complicate any attempt to solve 
the problem in the physical plane, even when numerical techniques are 
employed. The nonlinearity of the differential equation, though it does 
not preclude a solution by numerical methods, does greatly increase the 
amount of numerical work over that which Is ordinarily encountered with 
a linear equation. The lack of knowledge concerning the location of the 
boundaries of the transonic zone canbe overcome by resorting to a method 
of successive approximations, as In the work of Maccoll and. Codd (refer-
ences 3 and. Ii). Such a procedure, however, entails considerably more 
labor than would be required if the boundaries were known at the outset 
The difficulties due to the fluid rotation can be disposed or simply by 

2
Maccoil arid Codd simplify both the fundamental problem and the calcula-
tive procedure by taking the sonic line, Instead of the separating 
Mach wave, as the downstream limit of the region of calculation. This 
eliminates the need for considering the mathematical singularity which 
exists behind the sonic lIne at the ridge, but requires in return that 
some condition be specified along the sonic line itself. This require-
ment is met by assuming that the streamlines and the sonic line are 
mutually perpendicular and that the sonic line may be represented by a 
suitable parabola. The error introduced by these special assumptions 
is not known, but would probably be considerable for thin wedges at 
low supersonic speeds.
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assuming that the rotation is negligible. The inaccuracies introduced 
by this assuirrption are undoubtedly small, except for thick wedges moving 
at relatively high Mach numbers. Even with the rotation eliminated from 
the equations, however, the basic nonlinearity still remains. 

In addition to the theoretical difficulties just discussed, there 
exists also a practical complication which is important from the cOmputa-
tion.al point of view. This complication arises from the fact that any 
rigorous solution of the problem must be a function of three independent 
variables: the free-stream Mach number M0 , the thickness ratio t/c, 
and the ratio of specific heats y. Thus, if a rigorous theory is used, 
a considerable number of cases must be calculated to obtain an adequate 
cross section of numerical results. 

As in the work of Guderley and Frankl (references 2 and 5), the 
first step in the solution of the problem is to transform the flow from 
the physical plane to the hodograph plane. This affords an immediate 
simplification by providing a completely fixed set of boundaries for the 
transonic zone. The bow wave, in particular, goes over into a known 
shock polar, while, the separating Mach wave transforms into one of the 
fixed epicycloids which make up the characteristic net in the hodograph. 
The differential equation in the hodograph variables is still of the 
mixed type, as would be expected in view of the transonic nature of the 
original problem. The equation is also still nonlinear if the fluid 
rotation is included in the analysis. If the rotation is arbitrarily 
neglected, however, the differential equation in the hodograph becomes 
linear, in contrast to the previous situation in the physical coordi-
nates . Since the fundamentals of the problem 'are unchanged by the trans-
formation to the hodograph, the complication still remains that any solu-
tion must be a function of the three variables mentioned above. 

The second major step in the analysis is to introduce the assumption 
of small disturbances. Specifically, it is assumed that the entire flow 
field, Including the free stream, differs only slightly from a parallel 
sonic flow. From the physical point of view, this, assumption implies 
that the results of the theory are restricted to thin airfoils at flight 
Mach numbers not far removed from 1. From the mathematical point of 
view, it means that quantities such as t/c and (MO2-l) are regarded 
as arbitrarily smallso that only their lowest powers need be retained. 
in the analysis. As is well known, this small-disturbance approximation 
brings about important simplifications in 'the mathematics of the problem. 
First, the terms representing fluid rotation turn out to be of the same-
order as other terms which are neglected in the analysis. This means 
that the use of the linear differential equation in the hodograph is 

3Fran.kl*s uniqueness proof, mentioned. in the introduction, is based on 
the linear equation and thus ignores the fluid rotation. It seems 
unlikely, however, that the inclusion of rotational effects would 
alter the conclusions of this study.
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strictly justified within the framework of the approximate theory. 
Second, the differential equation itself, though still of mixed type, 
takes on an especially simple form (the Tricoiui equation). This equation 
has been the subject of considerable mathematical study, beginning with 
the work of Tricomi (reference 9). Third, the solution of the problem 
becomes a function of a single parameter which involves all three of the 
individual variables previously discussed. This single parameter is 
known as the transonic similarity parameter and will be denoted here by 
the symbol	 It can be written in several forms, as, for example, 

2_1
(1) 

{(y+l) (t/c)]2/3 

The use of this last simplification greatly reduces the amount of compu-
tation required. to investigate the effects of changes in the individual 
variables. 

• It may be remarked in passing that the foregoing assumption of small 
disturbances will obviously be violated near the stagnation point which 
exists at the leading edge Qf the profile. A similar situation is, of 
course, encountered in the classical theory of thin airfoils at . purely 
subsonic speeds. There the inconsistency is known to be of little prac-
tical consequence except in the immediate vicinity of the leading edge 
itself. It is to be expected that the same result will prevail in the 
locally subsonic flow encountered here. 

As mentioned in the introduction, a detailed account of the formu-
lation and solution of the boundary—value problem in the hod.ograph plane 
will be reserved for a later paper. It must suffice here to say that 
the boundaries and. boundary conditions are taken essentially as given by 
Guderley (reference 2), except that the supersonic portion of the tran-
sonic zone is replaced by an equivalent integral relation which must be 
satisfied everywhere along the sonic line. By this modification, which 
involves no approximations beyond those already employed, the mathemat-
ical problem is reduced to that of solving a purely elliptic differential 
equation. This was found essential to the numerical solution of the 
problem. The solution itself. is carried out according to methods well 
established for the numerical treatment of partial differential equations 
(see, e.g., references 10, 11, and 12). As usual, the domain under con-
sideration is first covered with a graded, square mesh; and. a finite—
difference approximation of the differential equation or boundary con-
dition is written for each mesh point. By this means the original 
boundary-value problem for the partial differential equation is reduced 
to the theoretically simpler problem of finding the solution of a large 
system of simultaneous algebraic equations. The latter problem is solved 
in normal fashion by the app1ication of relaxation techniques. The 
methods employed throughout are standard, except for the use of somewhat
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novel procethres in formulating the finite-difference equations along the 
shock polar and sonic line.4	 - 

Once the solution for the front half of the airfoil is determined 
in the hodograph plane, the transformation back to the physical plane is 
a simple matter. The purely supersonic flow over the rear half is then 
constructed, in the physical plane by means of the method of characteris-
tics as specialized to the small-disturbance theory. 

It will be noted that the solution of the problem in the present 
manner, though laborious because of the use of numerical techniques, 
requires no special assumptions beyond those implicit in the differential 
equations. In particular, no restrictions are necessary with regard to 
the geometric shape of the shock wave or sonic line. 

Although the transonic small-disturbance theory was originally 
formulated for the solution of problems of mixed flow, it is not con-
fined in its applications to problems in which such flow actually occurs. 
The theory may still be applied - in simple analytical form, in fact - 
in the completely supersonic regime, where the bow wave is attached and 
the region of subsonic flow has disappeared. This is accomplished by 
first reducing the 'complete equations for the oblique shock wave and the 
Prandtl-Meyer expansion to appropriate forms involving the transonic 
similarity parameter (see, for example, the work of Tsien and Baron, 
reference '13) and then applying these results as in the standard shock-
expansion method. This procedure is applicable to the present airfoil 
when	 21/3 = 1.260, this being the condition, to the order of accu-
racy.of the small-disturbance theory, for an attached wave with not less 
than sonic flow on the downstream side. 5 (Consistent with the remarks 
in the introduction, attachment of the wave itself takes place at the 

somewhat lower value of	 = 3/(4)2/3 = 1.191.) 

4

As is often the case with relaxation work, the numerical calculations 
made cOnsiderable demands upon the skill and perseverance of the com-
puter. Special credit is due Mrs. Helen Mendel for the successful 
completion of this phase of the study. 

5

In the shock-expansion method it is assumed that the pressure is uni-
form on each straight-line segment of the airfoil surface. Because of 
interaction effects between the shock wave from the bow and the expan-
sion fan from the ridge, this condition is not completely fulfilled 
until the flow behind the bow wave is somewhat greater than sonic, 
that is, until the value of 

C) is somewhat above. 1.260. In conform-
ity with usual practice, this complication is ignored in the piesent 
work since it is known to have only a negligible influence upon the 
computed characteristics of the airfoil.
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BEStJLTS IN ThANSOTTC IMILAMTY FORM 

Calculations have been carried out, according to the numerical 
methods described in the preceding section, for four values of the sim-
ilarity parameter o; namely, 0.1i.8i, 0 .703, 0. 921 , and 1.058. These 
four cases were found suff Ic lent to bridge the gap between the findings 
of Guderley and Yoshihara at M0 = 1 (=o) and the analytical results 
which are available when the bow wave Is attached and the flow is every-
where supersonic	 1.260). The complete results of the calculations 
will be presented In the present section in transonic similarity form, 
that is, in the generalized form which arises directly out of the small-
disturbance theory. The application of the drag results to a specific 
airfoil (i.e., to a given value of t/c) will be discussed in a later 
section of the report.

Bow Wave and Sonic Line 

The generalized ordinates of any chosen line which intersects the 
streamlines are given in the transonic small-disturbance theory by an 
ordinate function of the form

= ("o)

	

(2) 

where x/c is the actual abscissa and. 	 is the transonic similarity 

parameter. The actual ordinates y/c for given values of M 0, t/c, and 
y can be approximated by means of the relation 

1/3
(3) 

(For derivation of the transonic similarity laws on which theseand 
later equations are based, see references lb-, 15, 16, or 17.) The cal-
culated shape of the bow wave and sonic line is shown in figure 1 in 
terms of the foregoing quantities. 

To facilitate the discussion, the results of figure 1 and of the 
succeeding similarity plots will often be spoken of as if they were 
directly applicable to fixed values of t/c and x. Thus, a decrease 
toward zero in the similarity parameter will sometimes be described 
simply as a decrease toward 1 in the free-stream Mach number. As will 
'be seen in a later section of the report, this interpretation , is neces-
sarily somewhat loose from the quantitative point of view. It does, 
however, lend a useful physical significance to the similarity plots.
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In a figure such as the present one, in particular an appreciation of 
physical proportions can be achieved by dividing 	 by the nuiiical 
factor (0.211.) 1/3 and. plotting the results to equal vertical and hori-
zontal scales. Thus, for the specific conditions of t/c = 0.10 and 
y = 1.11. (air), the vertical scale reads directly in values of y/c, and 
the figure provides as it stands a geometrically correct representation 
of the flog field. The corresponding values of M0 , as approximated 
from equation (1), are given by the upper figure along the shock wave. 
(On the sane basis, the sonic velocity will first appear in the flow 
field about the 10-percent-thick section at a free-stream Mach number of 
approximately 1.219 ( = 1.260). Detachment of the shock wave will 
occur- at the slightly lower Mach number of 1.208 ( = 1.191).) 

The dashed. outline of the airfoil which appears in figure 1 is to be 
regarded as a diagriimitic representation only. In a similarity plot of 
this kind, the profile must be regarded, properly speaking, as coinciding 
with the horizontal axis. (For a more ôomplete discussion of this point 
see page 29 of reference 18.) The dashed profile in figure 1 is included 
only as an aid in orienting the reader. 

It will be noted that in each case in figure 1 the shock wave and 
sonic line as calculated do not meet at a common point. This discrep-
ancy appears in the course of the transformation from the hodograph to 
the physical plane; it is primarily a reflection of the fact that a 
solution of the system of finite-difference equations in the hodograph 
is not an exact solution of the boundary-value problem for the original 
partial differential equation. This so-called "truncation error" can, 
in principle, be made as small as desired by progressively decreasing 
the mesh size in the hodograph. In the present work this procedure has 
been carried in each case to the point where increased refinement caused 
only an insignificant change in the pressure distribution or over-all 
drag. Because of the nature of the hodograph transformation, however, 
the details of the accompanying flow field are subject to somewhat 
greater error, particularly with regard to the over-all height of the 
subsonic region. As implied by the size of the gap between the shock 
wave and sonic line, the absolute magnitude of this error increases as 

decreases, though the percentage error in terms of the height of 
the subsonic region is nearly constant. The actual magnitude of the 
truncation error is in all cases certainly less than the errors caused 
by the basic theoretical assumption of small disturbances. 

It is seen in figure 1 that in each case the calculated sonic line 
begins at the inidchord point at right angles to the horizontal axis. 
This result is consistent, to the accuracy of the small-disturbance 
theory, with the imown fact that the sonic line given by any rigorous 
treatment wuld leave the ridge normal to the forward surface of the 
profile. As it leaves the airfoil, the sonic line curves at first 
rather sharply toward the rear. The initial curvature can, in fact, 
be shown to . beiufjnj.e A short distance from the airfoil, the
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rearward trend is reversed, with the result that the sonic line has a 
predomihately forward curvature over most of its length. The flow 
across most of the sonic line in the present problem Is apparently axial-
ogous to the accelerating transonic flow through a continuous-walled, 
converging-diverging nozzle, where the sonic line is known to have a 
consistently forward curvature. The rearward curvature which is evident 
close to the airfoil is only a localized effect caused by the presence 
of the sharp corner at the ridge. 

The rapidity with which the subsonic region expands vertically with 
reduction in the free-stream Mach number is striking. For the airfoil 
of 10-percent thickness ratio, for example, the semiheight of the sub-
sonic region in figure 1 grows from approximately 2.11 chord lengths at 
N0 1.187 to approximately 18.3 chord lengths at N 0 = 1.090. The 
height of the, subsonic region (and the distance of the shock wave ahead 
of the airfoil) would, of course, tend to infinity as the Mach number 
approached still closer to unity. These results imply that the tip 
effects are likely to be considerable on finite-span wings at free-stream 
Mach numbers close to 1. 

According to the transonic similarity laws, the speed of flow at 
any point in the generalized flow field is determined by the local value 
of a dimensionless speed function , which can be written in one of its 
several forms as

M2-1
(11) 

[(y+l)(t/c) 
2/3 

where M is the local value of the Mach number. (The transonic similar-
ity parameter is thus merely the special value of the speed function 
which applies at points in the free stream.) As a matter of interest, 
contours of constant speed function 	 In the region between the shock 
wave and sonic line have been determined for the case of 	 0.921.

These results are shown in figure 2. By virtue of equation (4), the 
contours of constant	 may be interpreted, for fixed values of t/c 

and ', as contours of constant Mach number. They mayalso be regarded, 
to the order of accuracy of the transonic small-disturbance theory, as 
contours of constant velocity, pressure, density, and temperature. It 
will be noted that certain of the contours, in common with the sonic 
line, fail to meet the shock wave. This again is a reflection of errors 
inherent in the finite-difference solution. 

Chordwise Distribution of Mach Number and Pressure 

At points on the surface of the airfoil, the speed function 
is related to the similarity parameter 	 by an equation of the form
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= !('	
(5) 

The calculated values of 	 at the surface of the airfoil are shown in 

figure 3 for the four values of the similarity parameter. Also included 
in the figure are results for o = 0 as obtained from the previously 
cited work of Guderley and Yoshihara (reference 7). In line with the 
earlier interpretation, the curves of figure 3 may be looked upon here 
as representing the chordwise distribution of Mach number for fixed 
values of t/c aml 7 but different values of l4. 

All of the distribution curves of figure 3 have the sane general 
shape. In each case, for example, the calculated Mach number at the 
leading edge has an infinite negative value. This physically impossible 
result, which is characteristic of small—disturbance theories in general, 
represents the staaation condition which nui.st prevail in the real sub-
sonic flow at the leading edge. Rearward from the leading edge, the 
Mach number in each case rises more or less rapidly to the prescribed 
value of unity on the forward side of the ridge. Turning the corner at 
the ridge, the flow expands discontinuously to a supersonic Mach number 
which, for given values of t/c and. 7, is independent of conditions in 
the free stream. Over the rear half of the airfoil, the Mach number 
decreases slightly as a result of the compression waves reflected from 
th sonic line (see sketch on page 6). In general, for an airfoil of 
fixed thickness ratio, increasing the free—stream Mach number from unity 
brings about an increase in the average local Mach number over both the 
front and rear surfaces of the profile. 

'The nature of this latter variation is illustrated more clearly in 
figure 14., which is a cross plot of 	 versus	 o for the 25— and. 75-
percent chord.wise stations. The short vertical lines labelled S at 

= 1.260 denote the point at which the transonic small—disturbance 
theory predicts an attached bow wave with uniform sonic flow over the 
forward half of the profile. Results at this point and at all points to 
the right of S can be determined analytically as explained earlier in 
the'text. It is apparent from figure 14. that the values given by the 
present numerical work satisfactorily bridge the gap which would other--
wise exist between the analytical results at either side. 

As can be seen from figure 4, the change in local conditions with 
change in free—stream Mach number is slight for a considerable distance 
away from a free—stream Mach number of 1. The curves of this figure 
have, in fact, been drawn with a horizontal tangent at	 0. This 
is in conformity with information which the authors have received from 
Gottfried. Guderley concerning analytical results which he has recently 
obtained regarding flows with a free—stream Mach number close to 1. 
Guderley's results, which are , yet to be published at the time this is 
written, indicate that just at the sonic flight speed the local Mach 
number' at any point on an arbitrary two—dimensional profile is
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stationary with respect to variations in the free—stream Mach number, 
that is,

(dM	 - 
(b) 

in terms of the present variables (see equations (1) and. t))) this 
requires that

(1) 

The same results were anticipated by Liepinann and Bryon on the basfs of 
the physical considerations presented in reference 8. 

The pressure at a point in the generalized flow field of the small—
disturbance theory is epresented. by the local value of a generalized 
pressure coefficient C defined by the equation 

—2(—)	 (8) 

In transonic similarity considerations, C is ordinarily related to 
the pressure coefficient Cp E (p—p0 )/q0 in an actual flow field. by the 
approximate equation

_ .,	 - 

CP = (t/c)"	
.(9) 

At points on the surface of the airfoil, eqtiation(5) applies for , so 
that equation (8) there has the form 

p	 (10) 

The values of Cp for the double-wedge section, as calculated from 
equation (8), are shown in figure 5. The curves here are essentially 
the same as the curves of g in figure 3, except that they are inverted 
and shifted vertically by an amount which differs for each curve. It 
can be seen from this figure that as the free—stream Mach number 
increases above 1 the pressure distribution tends toward the well—lcnown 
supersonic type of distribution in which the pressure is uniform over 
each surface of the airfoil. 

6 The considerations of Liepmrnm and Bryson appear to be quite general 
with regard to the shape of the body or to the number of dimensions 
which characterize the flow field. Whether or not the 2 results have 
in fact such wide validity is at present an open question. 	 -

16



NACA TN 2339	 17 

Pressure Drag 

Let the ordinates of the profile be given by y/c = (t/c) f(x/c). 
With this notation, the pressure drag can be represented in the present 
theory by a generalized drag coefficient Cd defined by the equation 

ft(_ d(	 = cd(o)	 (11) Cd f Cp	 o)	 c) cJ 

where f'(x/c) is the derivative of f(x/c) with respect to its argu-
ment and the integration is performed around. the profile in the c1ock.ii 
irection. According to the usual transonic similarity considerations, 

Cd can be related to the actual drag coefficient cby the approximate 
relation

_	 1/3 
('+1) 

Cd - ( t/c)513 
C d 

For the front half of the present profile, the ordinates are given by 
y/c ±(t/c)(x/c) arid equation (ii) becomes 

1/2 

0df = 2f	 3p d()	 , (13a) 

where, because of symmetry, the Integration need be performed over only 
the upper surface of the section. For the rear half, the ordinates are 
given by y/c =±(t/c)(l_x/c) and equation (11) reduces to 

1 

	

Cdr = _2f p d( .	 '	 (lab) 
1/2 

In the present study the integrals were evaluated by mechanical integra-
tion of the pressure—distribution curves of figure 5. In the case of 

a small,.analytically determined allowance, was included for the 
efect of the singularity at the leading edge. The final results are 
shown in figure 6. The drag coefficient of the complete airfoil was 
obtained, of course, by adding the drag coefficients for the front aM 
rear wedges. 

The results of figure 6 indicate that at a flight Mach number of 1 
approximately two—thirds of the drag of the section is contributed by 
the rear half of the profile. As the Mach number increases from 1, the 
drag coefficient of the rear wedge is seen to decrease continuously. At 
the same time, the drag coefficient of the front wedge first increases' 

(12)
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until it is considerably above that of the rear half, &fter which it also 
dec. eases. At a sufficiently high free—stream Mach number, the drag 
coefficient of each half of the airfoil is essentially the same. As a 
result of the difference in the drag variation of the two halves, the 
drag coefficient of the complete profile shows little variation for some 
distance above a Mach number of 1. As the shock wave attaches to the 
leading edge, however, and the local flow becomes everywhere supersonic, 
the total drag coefficient drops markedly. Far into the supersonic 
regime the variation is again less rapid. As will be seen, these state-
ments may require some modification when applied to a specific airfoil, 
particularly with reference to the behavior of the total drag near the 
sonic flight speed. The curve for the front wedge in figure 6 can be 
continued into the subsonic range' of flight speeds (<O) by means of 
recent analytical work of Cole (to be published in the Jour. of Math, and 
Phys.). The continued curve decreases monotonically toward zero as the 
value of	 i's reduced. Because of mathematical difficulties discussed 
by Cole, the continuation of the curve for the rear wedge into the sub-
sonic range has not yet been accomplished. This curve would apparently 
reach a maximum at some subsonic flight condition and. then also decrease 
toward zero. 

As shown by Liepinann and. Bryson (reference 8), the slope which the 
curves of figure 6 should have at the vertical axis can be determined 
from the previous results regarding the behavior of the local Mach number 
at the sonic flight condition. For example, taking the derivative of 
equation (13a) with respect to I , we write for the front wedge 

1/2v. (dcc\	
=2r	 d d	 =o	 Jo d0)=O ()	

(i) 

Bu,t it follows from equation (8) that 

(dCP)	
=-2	 —i] 

and hence, by virtue of equation (7), that 

" d, J=O 2 

Substitution of this value into equation (1J4.) leads to the final result 

, dc 
(	

U.f'\	
= 2
	

(ia)
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This is the result given previously 
ogous relation for the rear edge, 
(l3b), is

by Liepmann and. Bryson. The anal—
obtained by proceeding from equation 

()	
= —2 

0 =0 -	 0 
The curves for the front and rear halves of the airfoil in figure 6 
thus have equal but opposite slopes where they meet the vertical axis. 
It follows at once that the curve for the complete airfoil has zero 
slope at the same point, that is, (d/d0) 	

0 
= 0.? 

It will be noted that figure 6 also includes curves obtained from 
the standard supersonic small—disturbance theory. That such results 
can be included in a transonic similarity plot of this kind has been 
shown by several writers (see, for example, reference 17). In the case 
of the present profile, the drag coefficient of the complete section 
as given by the supersonic small—disturbance theory is (see page 1514. of 
reference 19)

(t/c)	
(16) Cd = (y2l)1/2 

If both sides are multiplied by ' (7^l)"/(t/c)", this equation can be 
written

1/3 
(7+1)	 ______________ 
(t/c)5"3 Cd
	 (2l)i/2 

or, by virtue of equation (1),

1/3 
(7+1)	 4 
(t/c)/ Cd =	 1/2 

0 

Comparison of this equation with equation (12) shows that the results of 
the supersonic theory for the complete airfoil can be represented in a 
transonic similarity plot by the curve 	 = 4/ /2 Since the front 
71n an earlier report of limited circulation, the curve of reduced drag 

coefficient for the complete airfoil was faired with a slightly posi-
tive slope at =O. This fairing was made before the results of the 
foregoing equations were known and was dictated by the results of the 
calculations as they stood at that time. The accuracy of the nu.mer-
ical work has since been improved through careful reduction in the 
truncation error. The present calculated points are completely con-
sistent with the ar1aly-ticafly determined slopes at 	 =0.

(17)
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and, rear of the airfoil contribute equal drag in the supersonic theory, 
the corresponding results for the two halves can both be represented by 
the single curve	 =	 = 2/,'1 . The dashed curves of figure 6 
have been drawn in accordance with these relations. 

For the rear half of the airfoil, the two theories illustrated in 
figure 6 are in reasonable agreement down to well within the regime of 
transonic flow. This result might not be anticipated, since the super-
sonic small-disturbance theory is based on the assumption of supersonic 
flow throughout the flow field. It is probably associated in some way 
with the fact that the local flow over the entire rear half of the air-
foil remains supersonic (and nearly uniform) even after the flow over 
the front has become subsonic. For the front wedge, the results of the 
two theories diverge markedly even before the transonic regime Is 
reached. The sain is true ff 

the curves for the complete airfoil. 
Within the transonic regime itself, the two theories give radically dif-
ferent results for both the front wedge and the complete airfoil. Near 
o=O the two sets of results for the rear wedge are also completely-
different. This basic disagreement is a reflection of the fact that the 
supersonic theory is inherently incapable of dealing with problems 
involving mixed flows. 

APPLICATION TO A SPECIFIC AIRFOIL 

In the present section, the generalized curves of fIgure 6 will be 
used to obtain drag results for a specified value of t/c. This is done 
with the twofold purpose of providing some idea of numerical magnitudes 
for a representative Specific case and of illustrating a certain indeter-
minacy which is encountered when the transonic small-disturbance theory 
is applied to airfoils of finite thickness. The numerical results will 
be prefaced by some general remarks concerning the nature of the informa-
tion afforded by the small-disturbance theory. 

General Considerations 

The indeterminacy to be considered here derives from the fact that 
the transon.ic small-disturbance theory, though developed for vanishingly 
thin airfoils at free-stream Mach numbers infinitesimally close to 1, 
must be used in practice to provide results for airfoils of finite 
thickness at Mach numbers a finite distance from 1. Situations of this 
kind arise, of course, in any small-disturbance theory and bring with 
them questions which cannot be answered within the framework of the 
theory itself. The nature of the indeterminacy in the present theory is 
most easily illustrated by reference to the adiabatic ener equation. 
This equation is essential to the theory as a means of expressing the
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local Mach number in terms of the lOcal velocity and the so-called - 
critical velocity. Before the small-disturbance approximation is intro-
duced, the energy equation can be written in the well-known form 

2 (u2+v2) 

a2 
N2= __________________ 

u2+v2	
(18) 

(y+l)-(7-l) ( a
2 ) 

where M is the local Mach number; u and. v are the horizontal and. 
vertical components, respectively, of the local velocity; and a is 
the critical velocity, that is, the velocity at which the velocity of 
flow and the velocity of sound are equal. . In accordance with the basic 
assumption of the transonic small-disturbance theory (see page 9), the 
velocity components u and v are written 

U = a. 4. [
i + (_ _) I 

v = a6 

where the dimensionless disturbance velocity u/a-1 and the stream 
inclination 6 are both small compared with 1. Substituting these 
expressions into equation (18) and discarding the second-order terms in 
u/a-1 and 6, one can write the energy equation for the transonic 
small-disturbance theory in the. alternative forms 

	

__	 u 1 
7+1 

	

2(I)	 =	 1. [(	

2	 (19) 
7+1	 . [\.	 -1 

The braces here indicate that, to the order of accuracy of the present 
theory, either of the terms on one side of the equation may be set equal 
to either of the terms on the opposite side. 8 In the liniit as M - 1 
and u/a - 1, the various forms of equation (19) are, of course, 
identical. Since the assumptions of the small-disturbance theory imply 
such a limiting process, it is immaterial from the mathematical point of 
view which of the various forms is employed in the theoretical 

8Actually, an Infinity of equivalent terms 'can be obtained, on each side. 
by multiplication on the left by [(MI,l)/2]n l and on the, right by 
[(u/a*+1)/2]1, where in and n are any positive or negative nuin-
bers. The terms written in equation (19), however, are the only ones 
which will be considered here.



22
	

NACA TN 2339 

development. Where N and u/a* differ from 1 by a finite amount, 
however, as will be true in any practical case, the various forms of 
equation (19) are only approximate equalities; and a certain numerical 
indeterminacy will exist in the calculation of corresponding values of 
the two variables. From the practical point of view, therefore, the 
question of which form of equation (19) is employed is a matter of some 
importance.	 - 

The indeterminacy noted in the energy equation is reflected in other 
equations of the transonic small-disturbance theory. For example, the 
speed function , which was previously given in a single form in equa-
tion (4), can, in view of equation (19), be represented, equally well by 
the alternative expressions

M2 -1	 2(M-1) 

- f(y+i)(t/c)]21 

1/3 
(y+)	 ru	 1 
_____ — -11 
(t/c)2" La* J -

1/3	 2 
(7+1) 

2(t/	 L) _l] (20) 

By the same token, the transonic similarity parameter	 previously 
given in equation (i), can be written alternatively as 

N 2 -1	 ,	 2(M0-1) 
2/3 = 

f(y+l)(t/c)]	 [(y+l)(t/c)]2" 

1/3	 1/3	 2 
( y+i)	 ________ 

________	
, (y+l) 

= (t/c)213[ a* ll 2(t/c)2/3 [() _]	
(21) 

With regard to the use of these alternative expressions, two points of 
view must again be distinguished: (a) From the point of view of the 
mathematical derivation, which presupposes that t/c - 0 and 
N —> 1, the alternative expressions of equation (20) constitute inde-
terminate forms of the type 0/0. At any given location, all these 
indeterminate forms have the identical limiting value . Analogous 
observations can be made, of course, with regard to equation (21). Math-
ematically speaking, therefore, the equation 	 = (,	 given earlier 
as equation (5), provides a functional relationship between the limiting 
values of two indeterminate forms, each of which can be expressed in 
several wholly equivalent ways. Only In this limiting sense can the 
small-disturbance theory be said to provide a unique result for the flow 
over a given type of profile. (b) In practical application, the alter-
native expressions of equations (20) and. (21) must be regarded as quo-
tients of two small but finite quantities, and. the equations themselves 
as only approximate equalities. From the practical point of'view, there-
f ore, the quantitative relationship between the Mach number on the
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airfoil and the Mach number in the free stream will depend upon which 
form of equations (20) and (21) Is chosen for substitution Into the 
relation between	 and	 For this reason, the small-disturbance 
theory will not provide in actual use a unique result for the distribu-
tion of Mach number over a given airfoil for given values of t/c and 

An indeterminacy of a slightly different nature arises in the corn-
putation of the pressure coefficient. 9 The basic assumptions of the 
small-disturbance theory imply not only that the local velocity and the 
free-stream velocity differ only slightly from the critical velocity but 
also that the local velocity and free-stream velocity differ only 
slightly from each other. On the basis of this last implication, the 
pressure coefficient C	 (p-p0)/q0 can be approximated by the follow-




ing relation, weU-knoi from the small-disturbance theories of corn-
pletely subsonic or supersonic flow:

u-u0 Gp=_2 0	 (22a) 

By setting u0 = a + (uo-a ) in the denominator, carrying out the divi-
sion, and. neglecting terms of higher than the first order of smallness, 
one can write equally well in the present theory 

C	 - 2	 (22b) 

These two ,expressions are obviously identical in the limit as 
u0/a* - 1. They are thus completely equivalent insofar as the mathe-
ematics of the theory is concerned.. In any practical application, how-
ever, the quantitative results will again depend on which expression is 
used. Taking equation (22b) first, if this equation is rewritten as 

C-2 [(-l) ('\1 a* //i 

and substitution is made from the appropriate form of equations (20) and. 
(21), then one obtains for the pressure coefficient 

(t/c)2" 
Cr = - 2( —g0 ) 

This indeterminacy was first pointed out to the authors by 
Uans W. Liepinirni.	 --
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With the previous definition of -the generalized pressure coefficient 
2( -.	 (see equation (8)), this becomes 

(y+i)'I 

(t/)2" Cp =
	 (23) 

This is the relation given earlier as equation (9). ' If equation (22a) is 
used for Cp then one writes 

Cp-21°	 ..2u_uo 
a0	 a	 u0 

which gives finally, with the aid of the third form of. equation (21), 

(y+i)"	 (t/c)" 
(tic)2t3 p [i	 (7+1)1/3 0] Cp	 (24) 

In the limit as t/c - 0, equation (214. ) reduces to equation (23), 
which is the form commonly used in transonic similarity considerations. 
Using equation (24) for the practical calculation of the pressure coef-
ficient is thus equivalent to arbitrarily retaining a higher—order term 
in t/c in the computations. This is perhaps inconsistent' with the 
mathematical procedures used In developing the theory, but it may have 
certain advantages from the practical point of view. The nature of 
these possible advantages will be discussed later. 

To obtain the drag coefficient, the pressure coefficient is inte-
grated in the clockwise direction around the section according to the 
equatiOn

	

Cd = f , ()	 ( 25) 

With section ordinates given by y/c = (t/c) f(x/c) as before, this 
equation becomes

cd=fCPft(_"' (\ \c) d 

Substituting for C from equation (23) and utilizing the previous 
definition (11) for the generalized drag coefficient	 gives finally 

(7+1)1/3 

(t/c)" 0d = Cd
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which is the result cited earlier as equation (12). Equation (26) is 
the relation ordinarily used in transonic similarity considerations. If 
equation (24) is used for Cp instead of equation (23), one obtains in 
place of equation (26) 

1/3	 2/3 
(7^1)	

, [	

(t/c)
Cd	 (27) 5/3Cd	 1—	 1/3 (t/c)	 (7+1) 

As before, this equation reduces to the previous form as t/c —O. 

Variation of Drag Coefficient With Mach Number 

As is apparent from the foregoing remarks, •various procedures are 
possible in app1yin the results of the small—disturbance theory to an 
airfoil of given t/c. In the remainder of the report, these procedures 
will be discussed with reference to the variation Of drag coefficient 
with free—stream Mach number. Similar considerations would apply, how-
ever, with regard to the variation in pressure coefficient at a point on 
the surface of the airfoil. The value, of tic to be used, in the dis-
cussion will be taken as 0.0787, which is the value corresponding to the 
thinnest wedge tested by Liepmann and Bryson (semiangie of wedge = 
4-1/2°). The value of y will be taken as 1.4, the value commonly used 
for air. 

The final results for the selected thickness ratio are given in 

figure 7, in which the pressure drag coefficient of the front wedge, the 
rear wedge, and the complete profile are shown as functions of the Mach 
number in three separate plots. In each plot, four full curves are 
shown, all derived from the basic transonic small—disturbance results of 
figure 6. For the two upper curves in each case, the drag coefficients 
were computed by means of the elementary equation (26). For this pair 
of curves, the Mach numbers for 'the curve to the right were computed 
from the form of equation (21) containing (M 0 —1); the Mach numbers 
for the curve to the left from the form containing (2 - 1). 'For the 
two lower curves in each plot the drag coefficients were determined from 
equation (27), which retains the higher—order term in t/c. The,Mach 
numbers here were courputed in the same way as for the previous pair of 
curves. In addition to the foregoing results, each part of figure 7 
also includes a curve calculated according to the standard shock—
expansion theory (see, for example, reference 20). This theory, which 
is based on a stepw'ise application of the complete equations for an 
oblique shock wave and a Prandtl—Meyer expansion, applies only in the 
range in which the shock—wave equations predict an attached wave with 
not less than sonic velocity on the downstream side. Except for a very 
small error in the drag of the rear wedge near the low end of this 
range (see footnote 5), the shock—expansion theory provides the exact 
inviscid solution for the present profile. Also contained in figure 7
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are curves given by the supersonic small—disturbance theory (as, for 
example, by equation (16)). The results shown in this figure are rep-
resentative, qualitatively speaking, of those which are obtained for 
other values of t/c. 

On the basis of figure 7, it is possible to assess the relative 
merit of the various procedures for applying the tra.nsonic small—
disturbance theory to airfoils of finite thickness. This can be done by 
comparing the results given by the various procedures with the results 
given by more rigorous methods in the regions where such methods are 
available. It was hoped originally that such a comparison would, show 
one of the procedures to be definitely superior to all of the others. 
The results of figure 7 show, unfortunately, that the situation is not 
that simple. The details are worth discussing at some length, since the 
present work affords one of the first rigorous quantitative applications 
of the transonic small—disturbance theory at other than the sonic flight 
condition. 

As a basis for the discussion, the earlier considerations regarding 
the rate of change of the drag coefficient at the sonic flight speed 
must first be extended to airfoils of finite thickness. As previously 
implied, the analytical results of Guderley regarding conditions at a 
free—stream Mach number of 1 (see page 15) do not of themselves require 
the assumption that t/c - 0. (The same observation can also be made 
with reference to the physical considerations of Liepmarin and. Bryson.) 
This means that the result of equation (6) - namely, that (dM/dJ40 ) 1 = 0 - is not restricted to airfoils of vanishing thickness 
but may be applied in cases of finite thickness as well. On the basis of 
this result, it is, in fact, a simple matter to obtain exact relations 
for the slope of the drag curves at a free—stream Mach number of 1 (see 
appendix for details). The final equatiouas, which are the only items of 
importance here, are as follows: 

For the front wedge 
7dc, \ 
I	 (,Lf

0 

For the rear wedge 
(dc

dr) 
\ dl4o"M0=l 

For the complete airfoil

/ 41t	
C

df M0=l 

(t -!( = -	
7+1	

rJ = 1

(28a)

(28b) 

{dcd,\\	 2 /' \ (28c)
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Each of these relations is seen to contain a negative term which is pro-
portional in value to the drag coefficient itself. As pointed out in the 
appendix, this term is the result of a relative variation between the 
dynamic pressures in the free stream and at the sonic point. The other 
term which appears in the equations for the front and rear wedges is 
associated with a relative variation between the corresponding static 
pressures. This term is of opposite sign for the two halves of the air-
foil so that it disappears in the final equation for the complete profile. 
The most significant final result is that the exact theoretical curve 
for the pressure drag of the complete airfoil must have a negative slope 
at a free—stream Mach number of 1.10 

The foregoing exact equations provide a standard against which to 
compare the various procedures used to obtain the approximate transonic 
curves of figure 7. Equation (26), which is the basis for the two upper 
curves ineach part of the figure, will be considred first. Differen-
tiation of this equation and application of the results of equations 
( 15a) and (15b) leads to the following approximate equations 3- 3- for the 
slope of the drag curve at M0 = 1: 

For the front wedge 

(dcdf \\	 _- ( "\	 (29a) 
\dM0	 7+l\c) 

0 

For the rear wedge 

(dr	

-	
(i.)	

(29b) 

For the complete airfoil

(dcd\
(29c) 

oM=1 
0 

These results differ from the exact equations (28) by the omission in 
each case of the term which is proportional to the drag coefficient. 
The slope of the upper pair of curves in each part of figure 7 conforms 
with these approximate relations. 

Equation (27), which is the basis for the lower pair of curves in 
each plot, provides a different result. Differentiation of this equation 

10This fact was brought to the authors' attention by Gottfried Guderley. 
1].	 .	 .	 .-	 .	 .	 /	 t. It is immaterial here which form of equation t21) is used for the 

necessary relation between	 and N0.
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can readily be shown to lead) in fact, to slope equations identical in 
form with the exact equations (28). The slope of the lower pair of 
curves in each part of figure 7 conforms with these exact relations. 

It appears from the foregoing results that the simple equation (26), 
which neglects all higher—order terms in t/c, takes proper account near 
the sonic flight speed of the relative variation between the static pres-
sures inthe free stream and. at the sonic point. It fails, however, to 
reflect the variation in the corresponding dynamic pressures. Because of 
this deficiency, the curves based on equation (26) fail, in particular, 
to show the proper negative slope for the pressure drag coefficient of 
the complete airfoil at N0 = 1. The shortcomings of equation (26) in 
this regard can be overcome rather simply by using in its place an 
equation such as (27) in which an appropriate higher—order term in t/c 
is arbitrarily retained. The slopes of the curves given by this equation 
at M0 = 1, in fact, fall short of being completely exact only by the 
fact that the drag coefficients ( cd) 1) etc., which appear on the 

right—hand side of the slope equations are not 1nown exactly for the 
given t/c. It appears, therefore, that equation (27), though somewhat 
arbitrary from the theoretical point of view, is to be preferred for the 
computation of the drag of an airfoil of finite thic]mess.near M 0= 1. 

Near the uer end of the transonic regime, where the presence of 
the shock—expansion curve provides a second opportunity for comparison 
between the exact and. approximate theories, the situation is less clear 
cut. To examine the circumstances here, it is not appropriate to compare 
values of the drag coefficient at a given Mach number since, at certain 
Mach numbers, the points on the various curves would then correspond to 
essentially different regimes of flow. A more meaningful procedure is 
to make a separate comparison of both the drag and. the Mach number at 
the various points which correspond to uniform sonic flow over the for-
ward half of the profile. As in the earlier figures, these points are 
denoted in figure 7 by the letter S. 

First, with regard to the drag coefficient at the points S, it is 
apparent that the simple equation (26), which neglects all higher—order 
terms in t/c, overestimates the drag of the front wedge at this flow 
condition by about 12 percent. The more complicated equation (27), 
which retains a higher—order term, underestimates this drag by a somewhat 
lesser amount. For the rear wedge, equation (27) gives a value which is 
in almost exact agreement with the shock—expansion value, while equation 
(26) gives a value which is approximately 19 percent too high. For the 
complete airfoil, the iet error in the pressure drag is about —5 percent 
by equation (27) and +ll . percent by equation (26). 

With regard to the Mach number N0 at the poInts S, it is seen 
from figure 7 that both the first and second forms of equation (21) 
predict too low a. Mach number for the attainment of uniform sonic flow
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over the forward surface of the profile. The second form - that is, the 
form involving (M0-i) - is the least inaccurate in this regard. The 
discrepancy with even this'form, however, is still significant for an 
airfoil of the present thickness. 

To suimnarize the discussion of the foregoing paragraphs, it appears 
that equation (27), which retains the higher-order term in t/c, has 
certain advantages over the simpler equation (26) for determining the 
variation of drag coefficient with Mach number for an airfoil of finite 
thickness. These advantages are particularly evident at free-stream 
Mach numbers close to 1; they are:less evident, though still present, at 
Mach numbers approaching the regime of purely supersonic flow. The most 
troublesome point in the application of the results of the small-
disturbance theory to airfoils of finite thickness appears to be in the 
determination of the free-stream Mach number at which the calculated 
drag coefficient applies. For Mach numbers some distance removed from 
1, both of the pertinent forms of equation (21) give values of 
which are erroneously low. Because of this deficiency, the over-all 
curves based on equation (27), though probably of good. accuracy atMach 
numbers close to 1, lie considerably below the more accurate shock-' 
expansion curve in the regime of purely supersonic flow. In this regime, 
in fact, the curves obtained from equation (26) appear to give the better 
agreement with the shock-expansion results. This agreement is, however, 
the result of compensating errors in the drag coefficient and Mach num-
ber and is therefore largely illusory. In view of the possible advan-
tages of equation (27) at the lower Mach numbers, this seeming agreement 
on the basis of equation (26) might be expected to disappear rather 
quickly if the shock-expansion curve could be extended into the transonic 
regime with undiminished accuracy., 

In light of the foregoing results, it is hardly possible to recom-. 
mend any single procedure for applying the results of the small-
disturbance theory to airfoils of finite thickness. Other methods than 
those illustrated here can, of course, be tried - 'there are, in fact, 
an infinite number of possibilities, all equally valid from the mathe-
rnatical point of view. There is little to be gained, however, by corn-
plicating matters any further. For airfoils thinner than the one chosen 
here, the discrepancies between the various results become rapidly 
smaller and can be neglected. For airfoils of thickness equal to or 
greater than that used in figure 7, an interpolated curve which should• 
be accurate enough for most practical purposes can be obtained by - 
extending the shock-expansion curve judiciously into the transonic 
regime, using the results of the transonic small-disturbance theory as 
a guide. In the absence of exact knowledge of the drag coefficient at 
M0=l, this curve would be drawn through the 'point given by Guderley and 
Yoshihara with an appropriate local slope as given by one of the exact 
equations (28). A possible curve of this type is included, for example, 
in figure 7(c). Since the effects of finite, span will be to reduce the 
drag at transonic speeds, such an interpolated curve may be looked upon 
as providing anapproximate upper bound for the inviscid pressure drag
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of a three- linensional wing. In fact, until some knowledge is obtained 
regarding the effects of finite span and fluid viscosity, it is doubtful 
if more accurate two-dimensional, inviscid calculations for thin double-
wedge profiles would be worth the trouble from an engineering point of 
view. In the present state of theoretical development, knowledge of 
these effects will probably have to come from experiment. 

CONCLUDING REMARKS 

The results of the present numerical analysis show the salient 
features of the two-dimensional inviscid flow over a thin, doubly syrn-. 
metrical, double-wedge profile in the range of supersonic flight speeds. 
in which the bow wave is' detached. The most important findings are 
Summarized in the following paragraphs: 

1. The vertical extent of the subsonic region behind the detached 
wave is large even when the wave is only a relatively small distance 
removed from the leading edge. This implies that the tip effects may 
be large on finite-span wings when the bow wave is detached. 

2. The local Mach number M at a point on the surface of the 
airfoil increases nionotonicafly as the free-stream Mach number M0 
increases from 1. The increase in M is at first very slight for a considerable increment away from the sonic flight condition. This 
confjrms previous findings that the local Mach number has a stationary 
value at N0 = 1 and shows that these findings'provje a good working 
approximation even at Mach numbers a short distance removed'from 1. 
When considered in terms of the pressure coefficient on the surface of 
the airfoil, the results show how the transonic pressure distribution 
tends, as the flight Mach number increases, toward the purely super-
sonic type of distribution known to exist in the upper portion of the 
speed range. 

3. As the free-stream Mach number increases from 1, the pressure 
drag coefficient contributed by the front half of the airfoil increases 
until it reaches a maximum at a flight speed somewhat below that for 
which the bow wave attaches to the leading edge. It then decreases, 
the rate of the decrease being at first'rapjd In the vicinity of bow-wave 
attachment and then less rapid In the range of purely supersonic flow. 
The pressure drag coefficient contributed by the rear half of the air-
foil decreases continuously over the entire supersonic range of flight 
speeds. This latter result indicates that the drag coefficient of 'the 
rear half must attain its maximum at a subsonic flight condition. 
Because of the differences in the drag variation for the two halves, the 
pressure drag of the complete airfoil varies relatively lIghtly near 
the sonic flight speed, decreases rapidly in the vicinity of bow-wave 
attachment, and then decreases at a Progressively less rapid rate in the range of purely supersonje flow.
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The results of the analysis also serve to illustrate the numerical 
indeterminacy which is encountered when the transonic small-disturbance 
theory is used. to obtain quantitative results for airfoils of finite 
thickness at free-stream Mach numbers a finite distance from 1. It is 
shown, in particular, how various approximate curves of pressure drag 
coefficient versus Mach number for a given thickness ratio can be 
obtained by using equations which differ only to the order of terms neg-
lected in the mathematical development of the theory. With these curves 
and the fragmentary results of more rigorous theories as a guide, an 
interpolated curve can be drawn which is probably as accurate as is 
practically justified in view of the fundamental disregard of' tip effects 
and fluid viscosity. As required by the physical considerations of 
Liepmann and Bryson and by the mathematical findings of Guderley, such 
a curve for the complete profile would have . negative slope at a free-
stream Mach number of 1. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Jan. 19, 1951.
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APPENDIX 

EXACT RELATIONS FOR SLOPE OF DRAG CURVE 

AT A F'REE-SEAM MACH NUMBRE OF 1 

In the section APPLICATION TO A SPECIFIC AIRFOIL, exact relations 
are given for the slope of the curve of drag coefficient versus free—
stream Mach number at a free—stream Mach number of 1. These relations 
are based, as explained in the text, on the fact that at the sonic 
flight condition the local Mach number M at the surface of an airfoil 
is stationary with respect to variations in the free—stream Mach number 

- that is, (dM/d)c1.= 0. The details of the derivation are 
given in the following paragraphs. The results are not restricted to a 
double—wedge section but are applicable to the zero—lift drag of a 
symmetrical profile of any shape. 

The general equation for' the pressure coefficient, valid for any 
Mach number and thickness ratio, can be written as 

	

CP2=X (.2) 1
	

(Al) - q0 -	 q0 7 p	 p 

where p is the static pressure at an arbitrary point on the airfoil, 
P.. and q are the static and dynamic pressures at the point on the 
airfoil at which M = 1, and p0 and q are the static and dynamic 
pressures in the free stream. When M0 = 1, conditions In the free 
stream and at the sonic point are obviously equal (P% = 

q	 =a	 "\sothat 
°M0=1	 Mo=l)

CpNo=l =	
[()M0=l - l]_
	 -	 (p2) , 

Differentiation of equation (Al) with respect to . M0 then gives for the 
rate of. change of the pressure coefficient at M0 = 1 

- ?X [dpJp	 - d(Po/P*)j	 - 
dN0 '1 =1 - " L	 JM0=l [ dN JM0=l 

0	
[d(qQ/q*) ]

	
( .A3) M0=l L dN0	 M0=l 

It is now nacessary to evaluate the tbree derivatives on the right—hand. 
side of this equation.
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If there are no shock waves present on the surface of the airfoil, 
the ratio p/p can be expressed solely in terms of the local Mach num-
ber by an isentropic equation of the form 

-- =r(M) 

where the exact nature of the function f(M) is immaterial in the pres-
ent application. Prom this equation and from the knowii fact that 
(/)=i = 0, it follows at once that 

[
d(P/1]	 = f'(M)	 = 0	 (Au.)


	

aM0 M0=l	 \dN0JM0=1 

If there are shock waves present on the airfoil, the argument is slightly 
more involved, but the same result applies. Equation (All-) states, in 
effect, that as the free-stream Mach number varies from unity the entire 
pressure distribution on the surface of the airfoil varies in direct pro-
portion to the pressure at the sonic point. 

The derivative [d(p0/p)/dN0 ) 1, which defines the relative var-

iation between the static pressures in the free stream and at the sonic 
point, can be found by first expressing the ratio P0/P.- in terms of 
the free-stream Mach number N0 . The necessary expression can be obtained 
obtained either from the equations for isentropic flow alone (M0 <1, no 
shock wave ahead of the airfoil) or from these equations plus the equa-
tions for the normal shock wave (M0 >1, detached wave ahead of airfoil). 
In either case, if the expression is expanded about N0 = 1 in terms of 

ascending powers of (MO2-1), the result is 

-	 - Z_ (14 2_1) + 0[(MO2_l)21 
y+l 

Differentiation of this equation then gives 

______	 - 

	

L dM0	 M0=1 - 7+1 

The derivative [d(q0/q)/dMO] 1 , which defines the relative van-

lation between the dynamic pressures in the free stream aM at the sonic 
point, can be found by expressing q0/q in terms of 1iown quantities. 

The necessary relation Is given by

(A5) 

22 =( 2"MO2 
q '\P*J
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from which it follows that 

[d(o/ * ]	 = [d(Po/P.)]	
+ 2 = 

dM0	 M0=1	 dM0	 M0=l	 7-i-i 

The findings of equations (Au.), (A5), and'(A6) can now be substi-
tuted into the previous equation (A3). The result is the following 
important relation for the rate of change of the pressure coefficient at 
the sonic flight speed: 

()	
=	 - --

dM0 M0=l y+1 y-i-1 M0=l 

This relation is exact within the limitations of the inviscid. theory and, is 
applicable to an airfoil of any shape and thickness ratio. 

The drag coefficient of the front portion of any symmetrical air-
foil at zero lift can be written, by virtue of the general equatlon (25). 
of the main text, as

(t/c) 
2	 (y\ 

Cdf=ç1 Cd) 

where the integration is carried out over the surface forward of the 
position of maximum thickness. Differentiation of this equation with 
respect to M0 and substitution from equation (AT) gives, after integra-
tion,

(A6) 

(dC	 -	
(t	 2 (Cd \\ 

- T "%1	 +l \ fIM0=l 

Similar reasoning gives for the rear portion of the airfoil 

,'dc \	 .	 ,\	 / 
r)	 -	 1.	 (t	 2	 (c, 

	

dN0"M0 1 - y+1 \cJ	 y+l \ '' =1 

	

It follows that for the complete airfoil 	 - 

( )dM M0=i	 7+1	 M=l

(A8) 

(A9) 

(Mo)
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These equations are given as equations (28) in the main body of the 
report. It is apparent from the foregoing derivation that the negative 
term proportional to the drag coefficient in each of these equations 
appears as a consequence of the relative variation between the dynamic 
pressures in the free stream and at the sonic point. The terni propor-
tional to t/c in equations (A8) and (A9) is a result of the relative 
variation between the corresponding static pressures.
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