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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS .

TECHNICAL NOTE 2341

A LEAST SQUARES CURVE FITTING METHOD WITH APPLICATIONS
TO THE CAICULATION OF STABILITY COEFFICIENTS
FROM TRANSIENT-RESPONSE DATA

By/Marvin Shinbrot
- ‘ SUMMARY

The problem of calculating airplane stability parameters from the
aircraft response to an arbitrary disturbance is considered. To calcu—
late the coefficients of the linear differential equation which describes
the airplane transient response, application is made of a classical
least- squares curve fitting method.

It is shown that the method is applicable, although somewhat.
cumbersome, when -the input is an arbitrary function of time. Certain
inputs are demonstrated to lead to simplification in the application of
the method. Examples are given illustrating the means of using the
method and showing its practicability.

Finally, an appendix, in which Prony s method and a generallzatlon
thereof appears, is presented.

INTRODUCTION

The determination of the stability and control parameters of a
dynamical system from its measured response has been a subject of
increasing importance and interest, both from the standpoint of basic
aerodynamic research and automatic stabilization of airplanes. This
problem is essentially one of curve fitting and may be stated as follows:
Given the time history of an airplane response to a known transient dis—
turbance, and assuming a certain form of linear differential equation
with constant coefficients describing the relation between respdnse and
disturbance, required to find the coefficients of this differential
equation such that the sum of the squares of the differences between the
given response and the one corresponding to the differential equation is
a minimum.
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A number of methods for the solution of this problem have been
advanced by others and are noted in reference 1. However, these methods

do not apply the least squares principle in the correct sense described
above. ' :

The method presented herein involves obtaining the solution of the
differential equation in a form amenable to rigorous application of the
method of least squares and such that a completely arbitrary input may
be treated. A number of means are available for the fitting of a
function in this form by least squares. The solution by means of a -

Taylor's series expansion seemingly gives good results and is used
throughout this paper. -

Considerable simplification of the method is possible when free
-oscillation data are available or when the input can be exactly or at
least closely represented by a function the analytical form of which is
known. Solutions for a pulse, a step, or a ramp input are given in

detail or are indicated. The general solution for an arbitrary input is
also included.

Selected examples of different inputs applied to the same physical

system (airplane) are presented, which illustrate the different means of
.applying the method. ’

The report has been so organized that the engineer who is not
interested in the derivation of the formulas used may read the first
" section of the report entitled "Statement of the Problem" and proceed
from there directly to the section on examples.

METHOD OF ANALYSIS

Statement of the Problem

| tipp 1 =0, 1, . . ., V=1 of V values of t. Suppose the initial

Consider a quantity qm(t)' which has been measured at a set
con};tions on Qqp, obtained from the experimental data, are

am(0) = a4 -

dapy .
T g~ 2o

<dn—1 qu> = q (m1)
n—j (o]
dt t=0 .

where n 1is determined below.
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A physical interpretation of these quantities may be had by con—
‘sidering the data qp(t) as a time history of the pitching velocity of
an airplane in response to an elevator deflection F(t).

Consider next the differential equation

Po(D)a( t) = Py(D)F( t) (2)

where D is the operator d/dt, P, = D + an_, DXl 4+, . .+ ag and
Py = CpD® + Cpa D1 4+, . . +C, are two polynomials in D,
and F(t) 1is a known forcing function. Consider the set of all possible

solutions of this differential equation obtained by varying the constants
ai and Cj. Let qc(t) be that solution of equation (2) for which
v=1 , :
w= ) la(e) - a0 (3)
i=0 ’
- is a minimum, and subject to the same initial conditions as ém'

3:(0) =g,

dq .
| <__c - 4

dt/ t-0

> (1la)

It is then desired to find those values of the a4y and the Cy which
correspond to q.. These values will be unique, since to each set of
these constants there corresponds- one and only one solution of the differ—
ential equation if the initial conditions are determined.

In most practical problems, m is less than n, and this assump—
tion will be made throughout this paper. The extension of the method
described herein to the case where m 1is equal to or greater than n
should be clear.
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Let A1, A2y o « .5, Mn De the zeros of the polynomial Po(D). It
1s now assumed that A4 # xJ, i % J. The extension. of the following
solution to the case where not all the Ai are distinct can be found
in any textbook on elementary differential equations and needs not be
included here (reference 2). Tt is well known that if.

Po'(D) = 55 Po(D)

the solution of equatioﬁ (2) is
wre § {24 [ B [ o]}

where the constants Aj are functions of the initial condltions q(0),

/ dq art q dF , =l g
\ e o o 9 n—1 ) F(O)’ s o m—-1
dt | dt t=0 =0 at t=0

and of the coﬁstants Ciy C2y « o« « , Cppe The method described in this

paper consists of fitting q(t), by a least squares procedure, to a
function of the form (4). Several methods for fitting such a function
may be found in the 1iterature. 1In this report the classical device of

| linearization and iteration by means of a Taylor's series (reference 3,
pP. 214) is used. Therefore, a detailed study of this linearization

x follows, but it must be understood that it is in no way essential to the

| method. Fitting by steepest descents (reference 4), for example, could
be used in place of the Taylor's series iteration. The mechanics of this
iteration are cumbersome in the general case. They will, therefore, be
described for particular cases, thus, it is hoped, making the method
clear for any special case which may arise.

Formulation of the Method When Free
Oscillation Data Are Available

The method.— Suppose there exists a T such that F(t)=0 for all
t 2 T. Then, for t2 T, the expression

T Pa()rg) t —AjT
l_Al + ;;T(%EY \jC’ e | F(T)dT]

occurring in -equation (4) is constant. Call this constant Bj.
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Then for t 2> T

0 |
a(t) = z By ed* : ()
31 | |

" By some means (see e.g., reference 1), first approximations to the
constants occurring in e?uation (6) are found. Let B; °), Bo(©
'« « « 5 Bn\9/, A \0 , A2\ © . by Xn(o) be the approximations to
By, Boy « « « 5 Bny, Aay A2y ¢« o . 5 Apn, vrespectively. The function
q(t) 1is now expanded by means of a Taylor series about the "point”

)

l:Bl(o), ) Bn(o),‘ )»1(0): RIRIER Xn(o)jl

“with all terms of order higher than the first omitted. From equation (5),

R t 3 At ' :
E it A Bitei,i:l-,...,n
OB{ 8 ¥
Denote the values of q, -B%q— _Q‘i at the point" Bl(o), e ey Bh(o),

. (o) (o) _ '
Xl(o), . . . ,.)»n(O)J by q(° 3]31> Sf;) » respectively.

Then by Taylor's theorem, omitting all higher order terms,

i (am)}o e+ 2 <Bxi>(0) M (6)

i=1
where :
‘ m =q-ql°
ABy = By — Bi(o)
My = rg — 2ql0)
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Therefore, from equation (6)

n (o) '
A‘i t (o)
M = z e [ABi + By t Mi] (7)
1=1 |
The desired equations which lead to the minimization of
V-1 2
M= }; [ﬁc(ti) = ap(ty) J may now be found as follows: ILet
1=0 |

Mm = Qm _q(O)
Then

M= vil [Aq(ti) - Aqm(ti')J 2

=0

The equations for the increments then become

&
S

m=0 (8)
=1, ..., n

Since the expression (7) for Aq is linear in (ABi) and (Ang)
the equations (8) will be Precisely those found when fitting redundant
data to a linear function by least squares (reference 3, pp. 209-211) .
Equations (8) are solved for the increments ABi and A\j, and the
resulting values are added to Bi(o) and ki(o), respectively, to
glve the second spproximation.

s

The iteration process by means of Taylor's expansions is now
repeated until two successive iterations give the same values for the
parameters to the desired number of significant figures.
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It is of course true that in many cases, especially those in which
very good data are available, no such Taylor series expansion is neces—
sary, Prony's method (appendix A) giving sufficiently accurate values of
the parameters. Examples have been found, however, where Prony's method
did not lead to sufficiently good values, and the Taylor series was
essential.

Final calculation of the coefficients of Py(D) and P,(D).— All

that now remains for the problem to be completely solved is the computae—
tion of the coefficients of Py(D) and P,(D) from the calculated
values of Bif and M.

Since Po(D) =D% + a, , D™ + . . . + ag,. and since Ay, ..., Ap
are the zeros of this polynomisal,

an— =

I

- >~
>
e
>
LY

o
o
I

n
(-1)" 11 2y
i=1 .

(reference 5, p. 29).

The constants Bj were defined as follows:

P1(2 -
By = Aq + PalM) e M7 F(r)ar

Po'(2y)

where T 1is that value of t where free oscillation begins. It is
well known that the Ay may be solved for as functions of the constants
Ciy « « . 5, Cp. The integrals occurring in the definition of Bj can
now be found graphically since Ai and F(t) are known. There are,
therefore, n equations in the m-1 unknowns Cg, . . . , Cp (the
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coefficients of P;). It was assumed that m 1is less than n. There—
fore, m-1 1is not greater than n. If m-1 isg equal to n, the number

of equations is equal to the number of unknowns, and the constants Cy '
may be determined. If m1 .1s less than n, a least sqQuare Procedure

for solving redundant linear equations may again be used (reference 3,
PP. 209-211). '

The Method for a.Second-Order System

A case of great practical interest in aerodynamics_is that of the
second order, and in the present section this case will be treated in
detail. A secondrorder system is one in which equation (1) becomes

(D2 — a;D - a4) q(t) = (CyD — Co) F(t) .

: An example of such g second—order system which occurs in aero—
dynamics may be obtained by letting q be the response in pitching
velocity to an elevator input F(t). In this case (reference 1),

M :
Iy  mv, Iy  mv,

1 Iy mVo Iy

where
m mass of airplane
Vo trim velocity of airplane

Iy pitching moment of inertia
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L 1lift force
M pitching moment
5 elevator input F(t)
a angle of attack
i G
dt
Ly %%‘
oL
I
oM
Mg 35
oM
o R
oM
Mg a
M
Mo X

The general solution of (D2 + a;D + ag)q = (CyD + Co)F may be
obtained from equation (4) which becomes, if A; and A, are the roots
of x2 + a1x + a5 =0, ’

t
q = Aleht + Age)‘2t + %hlﬂﬂ et f M7 F(T)dT +
1—A2
o

t

C1Ao4C -

~1727-0 e)‘zt f e Aot F(r)ar
Az—Aa o ,

Differentiating, an expression for ¢ = %% may be found, and .
letting t=0, it may be seen that

Ay + A> = q(0)

A1d1 + Aohz = q(0) — C,F(0)



10

NACA TN 2341
or, using equation (la),
qd_quz_ClFo
Al =
A1—Ao
QO—'QOXI—CIFO
Az =
Ao—h1
Therefore,
o ' t —XlT
442 =C1FoH(C1r14C,) [o € F(r)ar
q = 0 eMt
A1—=Ao
QA M—C1F o+ C1r24C,) ft Py F(7)dr
oot 1o 1t2To) Jo ehet (5a)

Azha

Pulse input.— When a pulse-type input has been applied to a second—
order system, that is, when there is a T such that F(t)=0 for all
t=>T, ’ , :

.

< 3
T
CiA14C
By = Ay + —%;éng ‘jp e AT F(T)dr _
| Y (10)
T
C +C
Bo = Ap + CaratCo e 2T F(1)ar
A=A .
° J

using the same notation as before. Then, for t 2> T,

g = By ellt + Bo ex2t

Suppose now, as 1s generally the case, that \; and A, are con-
Jugate complex numbers. The form previously used for the description of"
the general method may still be followed in this case; however, simplifi-
cations occur if this notation is abandoned. If A; and A, are con—
Jugate complex, B; -and By must be so also, since q 1is real. Let
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14+ 1'%

X1=
: (11)
By =B + B'i
Then
12='L—7,'1, B2=ﬁ—'ﬂ'1
and
- nalt ' : .
q=2e"" (B cos I't ~B' sin 1't) (12)
It is assumed that at this point,.first approximations 1o, 1o',

Bos Bo' to the constants 1, 1 , B, B', respectively, have been
obtained. (See appendix A for one method for finding such approxima—
tions.)

The formulas.needed for the Taylor's series iteration will now be
derived. From equation (12),

% - otelt (B cos 1't — B' sin 1't) .
% =~ 2tez£ (B sin 1't + B' cos 1't)
\ 1
-g% = 2e!t cos 1t / (‘3)
-a%‘i'- = —2e!t g1n 1'¢
J

‘ Using & similar nOtation to that used in the previous section on
the Taylor's series expansion, :

V=1

) [m(ti) - mm(ici)]

1=0

=
i

]

[<M>(O)Al+ X (,O)A'L' +<—g—§ (O)AB+ aa:" (O)Aﬁ'+q(°)-q ]2 ’

Taking the derivatives of M with respect to Al Al', AB, AB' and
setting them equal to zero will result In the equations, the solution of
‘which will give those values of the increments which minimize M.
These equations thus become
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o TI@T o T @@ T @@
) @ @7 [wo] @
Mz<m>“”< e TG T @R

el (E >‘°)<aa>‘°’ V [a] (3)°
) <%%>‘°< ENNORORITCUN
e eI
S @ T @ e
2y (& >(°’<B><°’+As 77T
Tl @

As before, it is now assumed that this iteration is repeated until
two successive iterations give the same values for the Parameters to the
desired number of significant figures. .
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The parameters 1, 1', B and B' have thus been determined. The
solution to our problem will be complete if we can, from these values 5
‘calculate ag, a1, Co, C;. From equations (9), ‘

aj Al + A2 =_21

82 = AAo = 12 + 112

A means of finding C; and Co must now be found. In order to
accomplish this, comsider

\

T T
f e AT F(r)ar = f ‘e"z"' cos 't F(T)ar

o o
T -1T '
-1 f e gin 't P(r)dT
o
Let .
g = fm e lT cos 't F(T)dT
o)
Let
T
gt = f e l7 sin 1'r F(r)arT
o
Then
—ALT = t
: e F(t)dt = ¢ — o'y
o
and since A, 1s the conjugate of \; ’
f e*2T F(r)dt = o + o'y

o -

Recalling that By = B + p'i, it follows from equation (ka) that
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_ (1'0-10")C1—0"Co+1'qg

B XL

(15)

6 = 135~dg-[10+1' 0'=F(0) Ic 10, J
. - o

~ These equations may be solved for Co and C,.

The method when the forcing function continues throughout the
motion.— It is now supposed that in the given data, there is no T such
that the forcing function F(t)=0 for all t > T. Tn this case, the
coefficient of eM' in the expression for q(t) given by equation (4)
is no longer constant. Prony's method cannot, therefore, be used for
the first approximation. The simplification which occurs in the Taylor's
expansion in the previous case due to the fact that q(t) 1is a sum of
exponentials with constant coefficients is also not present here.

There are cases, however, even when free oscillation does not occur
where the present method can be applied with little difficulty. The
best examples of such cases are those in which F(t) is known to have s
certain analytical form. As an example, the two degrees of freedom
system (D2 + ®D + k) q(t) = (C,D + Co) F(t) may be considered, where

F(t)= 0, t<0

1 t5>0 the so~called "step" function.
’ . :

For this input, equation (4a) becomes

’

_ MAo—MiA2g0+Co Mt o, A290—A1A290+Co Aot Co (ka)
Aa(Aa=hz) Az2(Az-h;) Az

where, since dq/dt is discontinuous at t=0 if F(t) 1is a step,

do = 1im U

t —>0+dt’ |
positive values only. The apparent anomaly that q 1s independent of
C, 1is resolved in appendix B, where it 1s shown that

t—= 0+ indicating that t is to approach zero through

'4(0+) = 4(0=) + C1F(0+) = 4(0=) + ¢y
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First approximations to the constants

_ 222(04)=Aaha80+Co _ Ad(0-)-A1radg+CaA1+Co

B

' M(ra-rz) o abame) ,
B, = 223(0H)Mrz0o4Cy | A2d(0-)-Maroa #CaratCy

o = - At S

Az2(Az—ry) Az2(Az—hy)

: C

Ba = 9
Az

which occur in equation (4b) can be found by a simple extension to
Prony's method. (See appendix A.) A Taylor's expansion may then be
applied to obtain a closer approximation.

A very important input, closely related to the step is the so—called.
"pseudo-step."” In any physical case, an exact'step can never be obtained
for an input. The input will always have a certain finite slope near
t=0; there may also be a certain amount of overshoot or, reciprocally,
the input may undershoot its steady state value. Any input which rapldly
(but not instantaneously) attains a constant nonzero value will be called
a pseudo—step. Suppose then that F(t) is such a function. Then there
is a value T such that F(t) 1s a constant for all t > T. Suppose
this constant is ¢c. ILet this function be applied to the second—order
system (D2 + a; + ag) q(t) = (C1D + Co) F(t). The response in q 1is
then given by equation (ha). It is here assumed for simplicity that the
initial conditions q(0) and §(0) are both zero; F(0) is also zero.
Then '

q(t) = 9;&;:99 eklt\/p et F(r)aT + QdatCo exzt\/P ehaT F(r)ar
A=A o ' © o AzAa o

’

For t2 1T,

-

. . : .
Ciry+C — - :
q(t) = L2170 Jat [ e F(t)dT + e T F(r)dT| +

. - -t : -
__1___C)~)~2:Co ehat /I e 2T F(v)dT + f e 2T F(7)ar
2~ N1 LJo - T -
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~A4T ‘

fo e F(rt)dt 1is constant and since F(t) 1s constant for t > T, and

f; e MT F(7)dT may be evaluated. '

Let

c C]_X]_'FCO _ c C]_Kg'fco =G
M A=he Y X g, U2

T Caha+C T
Cir1+C 1A2
—l—i__o e X]_T F(T)dT = Hl) ___o. e A'2“' F(T)d-r = H2
A1—Ao o A~Aa o

Then G, Gz, Hy, Hx are constants, and

I

a(t) = B, eMt 4+ g, [eh(*"T)—l] + Hs er2t 4 g, [e’“z(_""f)—l]

| G G
Hy + == e)”lt +( Ho + 2 eket - (G_]_ + GZ)
AT HaT/)

Thus q(t) is the sum of two exponentials plus a constant. First
approximations may now be found by the extension to Prony's method given

in appendix A, and Taylor's series. expansions may be used to improve
these values. '

Another simple exampie which may be considered is that where
0, t<O

F(t) = < £, t>0° In this case the résponse of the second—order system
would be* "’ " —
q = 71eht + 729)"21; = (71ha+72r2) t = (72+72)
if | _ A ‘
a(0) = 4(0) =0
where
C1ha1+Co Caha+Co

T — Yo = —T———
S Pecys R LI - Ty



NACA TN 2341 ' -7

A first approximation may be found by several means, the derivative
method (see example 3) being only one of these. Again, Taylor's series .
may be applied to improve these values. '

In the most general case, where F(t) is only known graphically or
tabularly, the method can still be applied; there is a certain amount
of added labor involved, but in case such an example should occur, the
method for this general case is outlined below. It 15 to be noted that
this general case is better suited to computation with a high—speed
electronic computer than it is to manual computation. However, it -may
certainly be applied manually.

The entire method proceeds from equation (4). It is assumed that
- the given differential equation has been solved for gq in this form.

Step 1l.— By some means, a first'approximation-to the parameters
must be found (several such methods may be found in reference 1).

Step 2.— The function gq(t) is expanded in a Taylor's series, all
teams of order higher tha% the first being omitted. Herein lies most of
the computation, since f é_ki1-F(T)dT must be found graphically as a

o
function of +¢.

As an example, consider again the second—order case (D + a;D + ag)
q(t) = (C1D + Cg) F(t), where F(t) 1is given graphically. It is
assumed for simplicity that -

Fo = a(0) = 4(0) = 0

Then, using the same notation as before, A; = Ao = 0, and q(t). is
simply the particular integral: '

_ Cir1+Co a3t -\ T CidatCq Aot “AoT
aly) = B e f M TR(naT+ 20 ¢ f 2T p(nar
) o . ’ o :

The éomputations (especially when it comes to taking derivatives for use -
in the Taylor series) are greatly simplified by the substitution
_ Clx1+Co Bo = C1X2+Co )

M=rz © Az
To find the best fit for q(t) to a function of the form.

B; . The problem is then restated as follows:

. t - ’ t : .
a(t) = By exlﬁjp Mt F(r)dT + Bo exzt\/P g2’ F(r)ar
) 0
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Minimization of M = £,(q,—q,)  Wwith respect to B, p', 1, 1', (where
B+B'l =By, Bp—B'L =Bz, L +1'1 =Xy, L = 1'1 =2r5) 1is equivalent
to minimization with respect to C;, Co, &1, and ag, which is the
desired minimization. The method now proceeds as before, with the first
- approximations being found and with the application of a Taylor's series.

Another means which might be employed in this general case would be
to first fit F(t) to some suitable function, and then find q(t) as
an explicit function of t as was done above for the step and the ramp, .

EXAMPLES

The engineer who is interested primarily in applications may read
these examples immediately after reading the first section of the report
entitled "Statement of the Problem." '

Example I ~ Pulse Input

Consider the input shown in figure 1(a) applied to the second—order
system

~

(D + a1D + ap)q(t) = (CiD + Co)F(t) (16)

The response is given in figure 1(b). The methods and fbrmulas described
previously can be used directly for this example. If t 2 0.b,

At Aot

g =B; e + Bs e

' (5a)

or, if By =B +B'4, Ay =1 + 1'i, and t 2 0.bL,

% = et (B cos 1't — B! sin 1't) (12)
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It is now assumed that by some means first approximation loy, lo',
Bo, Bo'stol, 1', B, B', respectively, have been found.! Prony's method

(see appendix A) gives 1o = —0.91, 1o' = 7.02, Bo = 0.3681,
Bo' = — 2.6775. : :

From equation (12)

%(%) =t elt (B cos 1't — B' sin 1't)
_6_<3> '
YA _
53
d\2/
d [a) _ it '

EE;.<;5:> = —e sin 1't _J

lProny's method, for example, may be used here. Prony's method is
actually applied to this example in appendix A. An ordinary period
and damping analysis (described below), which is shorter than Prony's
method, may also be used., The afore—mentioned period and damping anal-—-
ysis proceeds as follows: The minima of q 1ie on a curve q =K eZt,
K = constant. Iet q; and q- be two successive minima of q. Then
%E = elT, v = period of q (which may be found from figure 1(b)).

1 >
herefore, 1 = -}-r 7.n<%—g-> . As for 1', 1' 1is equal to g Then
1 . ,

—t et (B sin 1%t + B' cos 1't)

| > (13)

it

e cos 1't

2

q=2c¢elt (Bcos 1"t =B sin 1't)-

Fitting at any two points t, and t-

(cos 1'ty) B — (sin 1'ty) B et g(t,)

é-Zt2 q(tz)

Ol PO -

(cos 1'tz) B — (sin Z’tg)'a;

which may be solved for B. and B'. This analysis gives 1 X — 0.9,
i' ¥7.0. ILetting t; = 1.0, to = 2.0, it may be found that B * 0.4,
B! n2.6. -
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Therefore, by Taylor's theorem, 6m1tting all higher order terms,

t(B cos 1't — B sin 1't) Al —t (B sin 1't + B' cos 1't) Al' +
(cos 1't) A — (sin 1't) A" = % e % ~ (B cos 1't — B* sin 1't)

_ Referring to table I where circled numbers refer to columns,

@ a-@ a+@ow-0 » -
Minimizing M leads to the equations (see equations (14))
AlZ@Z—AZ'Z@+ABZ@ @—AB’Z @=z@‘ N
Al z@m'z @~ 8 :G) W+ @ @ --= @@ .
2@ @z () B 2: Ot OD -:6) ®

l—Al): ®+AAZ'Z—AQZ®+AB'Z 92-- (1 @

These equations give

Al = — 0.0100 Al' = 0.0052
MB =—0.0118 A8' = — 0.0320
or
1=-0.9200 1'= 7.0252
B = 0.3563 /B' = — 2.7095

A second_iferation was now applied, and it was found that the increments
were zero to four decimals.
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Finally, fqr computing a;, ag, C; and Cp

- 21 =1.84

ay

ag = 12 + 1'% = 50.1998

The functions e 'Y F(t) cos 1't and e"ZtF(t) sin 1't are now tabu—
. lated and plotted (table II and fig. 2).4 These two functions must now
be integrated to find ¢ and o¢'. It is to be noted that in this
example F(t) 1is exactly equal to t for 0 < t <£0.2, and to

(0.4 = t) for 0.2<t<0.4, and so the integration may be done
analytically. The integration may be done graphically by means of a
planimeter, however, when F(t) 1is not so clearly a perfect triangular
pulse, as is usually the case. A planimeter was actually used in this
example to give o = 0.00493 and o' = 0.0405. Equations (15) are now
set up: . ) :

© 0.280 Cy + 0.00493 Co = 38.0690

0.07189 C; — 0.0405 Co = 5.0061

which give C; = 134.0 and Co = 114.2, to four significant figures.

‘ The true values of the parameters in the preceding example were

ay = l.Sh
8 = 50;?

‘ ci = 13k4.0
Co =

11k .4 .

Example II — Step'Input

A 0, t <0
" " = 4
~ Consider a "step" input F(t) = 1, t>0

described by equation (16). The response is given by equation (Lb).

applied to the system

From the response shown in figure 3 it may be seen that q(0) = 0,
4(0~) = 0. Then equation (4b) becomes
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_ _CidiCo Mt Cad2+Co RY N Co
Xl(kl—kg) )\-2(X2_)‘-1) ) A‘-l)"Z

Let
_ C1ha+Co |
A1(ha—h2) ' '

B, = _CarztCo
A2(Azry)

Co
"~ Aik2

Then, using the same notation as before, with Ay =1 + 1'i, A1 = 1 = i,
A + A2 =~ a3, MAz = ag,

Co ‘Crao0+Col

By = —
* 2ay  21l'ag .
Bp = — CQ + C1a0+Col i
2&0 21'30
- CO Clao+001 CO
i = 1 D e — Vs e e = e

Lgt By =B + B'i. Then B = Tag? B STy But Bga a0
Therefore, Bz = — 28 . Then % = glt (B cos 1't — B' sin 1't) — B.

First approximations may now bé‘found by the extension to Prony's
method described in appendix A or by a generalization of the ordinary
Period and damping analysis. For simplicity, this period and damping

method was used to give 1o = — 0.91, 1p' = 7.0, Bg = — 1.11, Bo' =-9.7.
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The Taylor's expansion is now applied

nla

elt (B cos 1't — B! sin 1't) —
i 3>= it 1f — Bt
57 <2 t e’ (B cos 1't — B! sin 1't)

S (3) —t e (B sin 1't + B' cos 1't) -

_?_(g); el cos 116 -1
B \2

-—a—<9->= ~ e’ gin 11t
OB \2

Therefore, -
-
S = [e“,(a cos 1't—B' sin z't)—a] + [t e’ (B cos 1't—p" sin l't):] Al -

[t e't (B sin 1't+p! cos Z't):lAl' +[<—3Zt cos l't-l}AB-[eZt sin 1'tJAB'

Or, referring to table III, Az + gm' @AB 'AB' @

Again minjmizing M, it may be found

Al = — 0.0100
BN ARES 0.02&2

pB = ~ 0.0092 .~

A8t = 0.3116

which in turn give
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1 =~ 0.9200

1! = 7.0242
‘ p =—1.1392
B' = — 9.3890

A second Taylor's expansion was then applied (see table IV), giving

1 =-—0.9201
1 = 7.0258
B =—1.1400

’ B! = —9.3875

Another iteration would lead to increments which are zero to four
decimals.,

For the final calculation of the coefficients P

a = - (ll'FXg) = =21 = 1.8&02
8y = Mha2 = 1%1'2 = 50,2084
Co =2kB = 11k.4715

it : ,
Cy = - ?kl%ic_o_l = 134,0072

It is to be noted thé.t a second iteration such as was applied above
was hardly important, since the results of the first Taylor's series
give .
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ay = 1.8k

ag = 50.19
'co = 11&;3L
Cy =_13u.oo

the true values being, as before,

a; = 1.84 _ : T
8g = 50.2
Co = 11k.4

‘ Cy = 134%.0 .

Example IIT — Input Requiring thé General Method

Consider finally the input shown in figure h(a) applied to the
system

(D? + alD + ao)q(t),= (C1D + Co)F(t) . : (16)

Such an input might occur, for example, in a stabilized alrplane where
the pitching velocity q is fed back to the elevator to change the
input. : .

First approximations by the derivative method.— The so—called
"derivative method" will here be applied in order to find first approxi-—
mations to the desired constants. From figure L, F and g are found
graphically as functions of t. Then q is plotted (fig. 5), and from
this, q is found and tabulated. (See table V.) Rewriting equation (16),

(3)ay + (q)ao - (F)Cl ~ (F)Co = - (q)
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and referring to table V,

@al + @ao - @Cl - @Co = —»®

A least—squares analysls 1s now applied to this equation, giving

a; = 1.84

ap = 50.19
Cy = 133.89
CQ = 114,91

The high accuracy of these first approximations is due, of course, to the
excellence of the data in the example. "The leading objection to the
derivative method obviously is the necessity of finding the derivatives
graphically, which in many cases leads to errors so gross as to make the
values of the parameters found in this mamner entirely valueless.

The Taylor's series iteration.— Since F(t) is continuous at t=0,
the constants q(0), 4(0), F(O) of equation (4a) may be found as usual,
by inspection of figures 4 and 5. Since q(O) 4(0) = F(0). = 0, from
equation (ka), ‘

A t
q = M ehrt f eMT p(r)ar + 912:8_ thf ehaT F(T)aT
A=A o o
C .
or, letting 'B; =M, Bo =C4?:Z_'*’_CQ.,
A1—A2 A=Ay

t . t '
q = B, exlt\/P ReY F(7)dT + Bo ex2t\/p ehaT F(r)dr
o . o]

Using the same notation as before, with Ay =1 + 1'1i, By =8 + B'i,
t
fo €M7 F(r)aT = 0 — o'1, it follows that Ap = 1 — 1'4,

t -
=p-p'i, [ e Ao F(t)dT= 0 + o'i, and that,
o .
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q=2el*[(Bo + B'0") cos 1't + (Bo' — B'c) sin I't] (17)
It will also be noted that B = %l , B! = - %;-:ﬁl . Letting zero sub—

scripts denote the values of the indicated parameters at the first
approximations,

lg == 0.92
Z'o = 7.02

B, = 66.945
B'O = — 0.59 .

From equation (17)

-:—3 =2 eZt{ [(Bo+p'a’ )t — (Bo+B'p')] cos 1'% )
[(Bo'—B'o)t + (B'o-Bp')] sin Z't}

Saig'- =2 elt{[(so'—ﬁ'o)t + (B'o-p0")] cos 't —
[(Bo+B'o' )t — (Bp+B'P')] sin l't} | . S (18)

% _ 5 ol (5 cos 1t + o' sin 1't)

38

dq |

= _5 eZt.(o' cos 't — o sin 1't)

op!' ;)

where

t F(t) et cos 1't dt

t F(t) e 't sin 7't dt
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The function F(t) 1is now mpltiplied by the four quantities
~lot og 't e ot gin ot, t e0t og 'ot, t et iy 1'ot,
point by point, and the resulting products are plotted against t_
(fig. 6). These four curves are integrated as functions of t, giving,
respectively, o, o', p, and p' (table VI).

o (3a/d1), (3q/d1') 3q/3
The quantities ﬁ%f’ ( e{ot o ( :{ot o | :{oi)o ,

a .
Sé%- el°t are then computed from equation (18).
. /0 : '

Then, using a Taylor's series and table VI,

AZ +. @AZ'} AB'.+ @AB' = @

Minimizing M with respect to Al, Al', AB,_A&' gives.

Al = - 0.00
Al' = 0.01
AB = 0.17

AB' =~ 0.05

Due to the inherent inaccuracy of a planimeter, only two decimal places
were preserved here, :

Thus
1 =-0.92"°
1 = 7.03

B = 67.03

B8 = — 0.6k
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The desired parameters were finally computed to be:

ay = 1.84
a0 = 50.28 -,
Cy-= 134.06
Co = 114.69

CONCLUDING REMARKS

A method has been described by which the coefficients of the differ—
ential equation

d%g Sl aq
+ + .. .48 + anq
a2 o PrE at 0

aw . dTF

=C—+ A —
R T

dr
+0-o+cl'—'+c
dt of

"can be calculated from the graphical knowledge of q(t) and F(t). It
"i{s noticed that the method may become somewhat cumbersome if the input -
F(t) 1is not of certain types. The input which allows the method to be
applied most easily is one which goes to zero quickly, giving free oscil—
lation data. A simplification also occurs when the input F(t) 1is

" known accurately to be a function of a certain type, such as a step, a .

ramp F(t) = t or, perhaps, something of the form Z Aiepi

The method has as its primary advantages first, the fact that the
correct quantity (the sum of the squares of the differences between the
calculated and the measured quantities) is minimized. The ordinary
simple equations of least squares may be used in this minimization, since
- the equations of condition (the redundant or inconsistent equations to
be solved by least squares) satisfy the restrictions umder which the
least squares solution is normally derived. That is, the equations are
linear, and only the right-hand sides are subject to error. The so— 1
called "derivative method" used in example III minimizes
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. . 2
Z(q + b§ + kq — CyF — CoF) , a quantity with little, if any meaning.
Other methods, Prony's, the Laplace and Fourier methods, are subject to
the same objection.

Another advantage of the method is that the data are analyzed
directly in the time plane, thus eliminating the possibility of the
introduction of errors due to graphical integration (in the case of
Fourier and Laplace transform methods) or differentiation (derivative
method). Where the inputs give free oscillation data there is a certain
saving of time due to this directness, no preliminary steps having to be
taken before the method can be applied.

For the usual type of problem which is found, those with the pulse—
or step—type inputs, the method is at least as rapid as any other which
gives comparable results.

Ames Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Jan. 17, 1951.
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APPENDIX A

PRONY'S METHOD

A problem which occurs quite often is that of fitting a function
q(t) to a sum of exponentials. One method used to fit a function of
this form is known as Prony's method and is described below. (See also
references 1 and 3.)

It is first assumed that the data are given in tabular form with
equal intervals of the argument t. Suppose measurements of q(t) are
taken at instants t,, ti, « ¢ o, ty—, V> 2n, vhere n 1is the number
of exponentials to which q 1is to be Pitted. Then it is assumed that
tk = to + k(At), At = constant, k = 0, 1, . . « » V=1. By a proper shift
of the time axis, t, may be taken equal to zero. Let Qe = q(ty) =
q(kAt). Fundamental to Prony's method is the following theorem: If

n :

At
qk=ZBieik (19)
i=1
k=0,1, .. .,v=1l, then q satisfies the linear difference equa~
tion

Qetn + Q1 Yy g * Uy Y, t e o - + Q@ = O _ (20)

where Qg, . . ., Qn-, are constants such that the roots of the equa—
-tion . .

xn+_qn_lxn‘1+v.’. . Q=0 . (21)

S

M (at)

are »1=1, ..., n. The proof is as follows:

n
Uesn + Uy Ygapey *+ « » « + Qi = Z By oM (k4n)at
| 1=1 3
n n '
Qp—1 Z By e)‘i(kfn—l)At + ...+ Q Z By oMEAL
=1

gl

i=1
n . n—1
By e)'m"t [ <;ki£ﬂi> + Qn__1 <éli£ﬂi> + .. .+ Qb]

1

i
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Certainly there exist n constants Qos + « + , Qp-ys such that
MAt  AoAL t

e 17, ™2 3 o 0 . 4 € are the roots of equation (21). Choosing

these constants in this way then makes the bracketed expression above

and, therefore, Qeen + Uy Aip—y + « « « + Q, vanish. This completes
the proof.

Prony's method consists of writing down the equations

I
o]

A + Qg Gpy + ¢ o o+ Quq, =
A4y + Qn_l Qn + - « « +Qya; =0

A4z + Qg nty + o ¢ o +Quay =0

and solving them by least squares2 for Qi, 1 =0, ..., n-1. From
the normal equations obtained from the least—squares process,
Qos « « « 5 Qp, can be found. Then the roots of the equation

B Quy x4, L L s Q =0

are calculated, giving eki(At) and, therefore, xi;’

2Herein lies one of the obJectioné.to Prony's method, since

V—n

. 2
Sﬁ (dgsn + Uy Qean—g + - » - + Q)
k=0

rather than

vl | n C
| y .<qk_ Z By e)“itk)

k=0 i=1 1

is minimized, the correct minimization proceduré leading, in this
case, to a forbidding amount of calculation.
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The coefficient, eM?t of Bi 1in equation (19) can be tabulated
for each 1, since Aj 1is known, Therefore, Bj can be found by a
second least—squares procedure. This completes Prony's method.

The objection described in the preceding footnote can be overcome. .
by considering the A3 and Bj found by Prony's method not as the best
possible values of these-‘parameters, but only as a flrst approximation
thereof. A better approximation can then be found by means of a Taylor's
series. This method is described in the body of this report.

,Extension to Prony's Method

Suppose now that it is required to find some way to fit a function
to a sum of exponentials plus an (unknown) constant. The solution will
be presented herein for the case in which the exponentials are two in
number, but the generalization to a greater number of unknowns will be
evident. . '

To be specific, a quantity q must be fitted to a function of the"
form - :

q = B; eMb 4 B, er2t 4 By . (22)

q 1s first fitted to a function of the form

Aot

Mt +Ba e

Aot (23)

g =3B; e + By e

and the condition that Ag = 0 is put in later.. Prony's method is
applied first to equation (2). As before q satisfies the difference
equation '

Qges *+ U Tgsz + Q) Qiiy + Uk = O (2k),

where the constants Qy, 1=0, 1, 2, 3, are such that the equation

~

x°+Q,%x2+Q, x+Q =0 : (25)

nas e (AY) ag roots. But Mg = 0. Therefore, equation (4) has
~unity as a root, and 1 + Q, + Q; + Qo = 0. Eliminating Q, (say)
between this and equation (2L) S '
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(g4 — ) W + (qk+1'“ %) @ = (9 = Yy4a) (26)l

is obtained., This equation i1s noﬁ solved by least squares for Q,
and Qs. The exponentials exl(At) and ex2(A¢) are now found to be

the roots of x% + (Q, + 1) x + (Q; + Q, + 1) = 0, Prony's method now
proceeds as before, ‘

An evident extension of this method may be used to simplify the
problem of fitting a sum of exponentials when one or more of the expo—
nents are already known. -

]Example of Prony's Method

Suppose the date found in column (:) , table VII is to be fitted to
two exponentials (see example I of the body of this report). In this
case, equations (20) become

A +®u+@ w=0
Solving by least squares,
Q12@2+Q02@®=—;@@
w:I® @+Q¢,z@2=-z® @

which give

W

Qo = 0.8320

Equation (21) thus becomes

xZ - 1.3922 x + 0.8320 =

or
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x = ) _ 6 6061 4+ 0.5805 1
Thezje fore,

1l
Ay = e In (0.6961 + 0.5895 1)

= 10 [zn.~/(o.6961)2+(o.5895)2 + 1 arc tan 2:28% ]
' 0.6961

=—=0,91 + 7.02 1
Ao = —0.91 - T7.02 1

Since Ay and M\ are complex conjugate, so are B; and By. Let
By =B +B'1. Then q =2 elt (B cos 1't — B' sin 1't). Referring to
table VII, this becomes @ B — Bt = @ . Solving as before by
least squares,

0.3681

w
Il

- 2.6775

B'
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APPENDIX B
DISCONTINUOUS INPUTS

Consider the differentisl eduation

L W o'

dg - op &F ar
3t +an o s + . . f aj 3t + apq Cm e + .. .4+0C3 at + CoF

(2)

A fundamental question which often arises is the following. Suppose
F(t) or one of its derivatives is discontinuous at a point. At this
point all higher derivatives fail to exist. What is the meaning, if any,
of the differential equation (2) at this point?

An instance of this problem occurs in example IT of the present
: 0, t<0
report. There, F(t) is a step: F(t) = l:'t> o- At t=0
dF/dt and all higher derivatives of F do not exist,

Throughdut the fdllowing discussion, let x(0+) = . lim  x(t),
: = 0+
where x(t) is any function, and t —> 0+ indicate that t is to

approach zero through positive values only. Consider again the differ—
ential equation

q+a 4+ a0 q = C3F + CoF (16)

where dots dénote differentiation with respect to t. Integrate equa—
tion (16) between -the limits —e and t (e>0) to obtain

t .
q(t)dt

Y

[4(t) = d(=€)] + axq(t) - q(=)] + aof

- €

: t
= Cy [F(t)-F(—¢)] +'co‘/P F(t)dt

- €

. . t ]
It is now assumed that f__eq(t)dt is continuous. (In all examples used

In this report, q(t) represents the pitching velocity of the airplane,

making j‘teq(t)dt the angle of pitch which; from physical considera—
tions, may be seen to be continuous.),
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f ’ F(t)dt =f

—-€ o

% .
F(t)dt = t, since F(t) =-{

| Letting € — O,
[d(t)—4(0-) ] + ayfa(t)—=a(0-)] + k[6(t)-6(0-)] = C1F(t) + Cot

where

t
e(t) =f q(t)at .

(o)

Integrating once more with respect to t, this time from —e€ to +€,

[a(e)—a(-e)—2e§(0-) ] + ay [8(c)-H(—€)-2eq(0-)] +

a;,[ft g(t)at - 2e9(0—5} =Cy €

-

Again letting € —>0, it is seen that q(0+) — q(0-) = 0, since
6(t) was assumed continuous. Thus q(t) is continuous at zero. Going
back to equation (19) and letting t—>0, §(0+) — q(0-) = C,F(0+) = Cy. -.
Thus, 4(t) is discontinuous at zero, and the difference between the )
right—hand and left—hand limits of §(t) as. t approaches zero is C;.
Thus, writing equation (4a) in terms of q(0-) rather than q(0+),

A1 (Aa—rz) Ao(Azh1)

) A12(0—)-A1A2q(0)+C A3 +C A2q(0—=)=A1A2q(0)+C1Ao+Co
a(t) = 12(0=)-21229(0)+C111+Co exlt + 23(0=)-21229(0)+C1A24Co exgt +

Co

Aid2

and q(t) may be seen after all to be dependent on C;.
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TABLE TT.— FURTHER CALCULATIONS NECESSARY FOR EXAMPLE T
1 3 4 5 6 7 8 9 10
Row 0.92t | 2% | 7,025t | cos (3) | s1n ) | 7(%)| ® ®® (@G0,
1 0 1.0000 | O 1.0000 |0 0 o . |o
21 .05 .046] .9550| 3513 9389 | .34k1 | .05 .04L83 .0154
31 .1 .092 | .9121 | L7025 | 7632 | 6461 | .1 .06961 | .0589
bt .15 | .138| .871111.0538 | .hou3 | .8693 | .15| .o6h69 | .1136
51 .2 184 | .8319 [1.4050 | .1650 | .9863 | .2 02745 | 1641
16 | .25 .é3o T945 [1.7563 |-.184k | .9828 | .15| —.02198 | .1171
T .3 .276 .7588 [2.1075 |-.5113 | .859% | .1 | —.03880 | .0652
81 .35 |..322 | .7247 |2.4588 |-.7758 | .6310 .05‘ -.02811 | .0229
91 .k '.368 6921 12,8100 |-.9455 | .3256 |0 0 0
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TABLE V.— TABULATION OF F(t), F(t), a(t), d(t), AND q(t) FOR EXAMPLE TTT

k3

Q] & ©) @ ) © @
_t . F. oy q q q
T 0. 0 7.03 0 0 oL1
2 1 . 5893 4.35 3.94%0 68.4 327
3 .2 .8206 21 10.939 57.1 . =532
L .3 .6521 -3.33 12.974 -23.9 —978
5 A .2251 —4.81 5.847 -113.9 —T702
6 .5 —.2290 -3.92 -7.837 -146.1 110
7 .6 —. 5062 -1.46 —20. 407 -91.3 938
. 8 .7 —. 5141 1.23 —24.019 24 .6 1266
9 .8 —. 2947 2.92 -15.576 137.9 886
10 .9 .0175 3.05 1.300 184.8 5
11 1.0 .2694 1.81 18.214 -138.3 -895
12 1.1 . 3606 -.01 26.577 21.5 —1334
13 1.2 2779 -1.53 22.181 -105.4 —1092
14 1.3 . 0869 -2.11 7.319 -178.7 -312
15 | 1.4 —. 1103 -1.67 -10.555 -163.6 594
16 1.5 —.2258- -.57 -22. 775 -71.0 1171
17 1.6 —.2226 .60 -23.785 50.6 1155
18 1.7 - 1221 1.31 -13.711 1414 589
19 1.8 .0152 1.32 2,053 160.2 —219
20 1.9 .1228 ) 15. 764 '103.1 866
21 | 2.0 .1582 -.05 21.207 2.5 -1058
22 2.1 .1182 -.70 16.504 -91.2 —7h1
23 2.2 .0329 -.93 4,663 —134.9 -107
2L 2.3 —. 0525 -7 -8.250 -112.8 520
25 2.4 —.1005 —.22 -16.219 —41.0 849
26 2.5 —. 0962 .29 —16.060 ko.6 75
27 2.6 —.0503 .58 -8.637 - 98.6 - 324
28 2.7 .0100 .57 1.945 10k.0 -211
29 2.8 .0558 .31 10.555 61.6 -595
30 2.9 .0693 —. 04 13.468 4.3 —666
31 3.0 .0501 -.32 9.997 —61.1 426
£(® %= 329048.34 = 6660.992256 :Q)® = -0.ke80%1
2 - 190.3603 =B = 82. 75361 z®(?) = 16887.46
z()(E) = ¥691.967 () = +98.2381628 = B)°= 2.6625ukk
(@) = 83.67703 =(3)(7) = —33uhs6.428 23)(7) = 4835.7037
t@®@ =23599.0  (B)>= +159.8717
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TABLE VI.— TAYIOR'S SERIES ITERATION APPLIED TO EXAMPIE III

1| 2 3 I 5 6 7 8 9 10 n 12 13

| % 29 _2 (E’s.

| Row| ¢ 14 o' P o' L5 (a A (Bl‘ 38 3By ™ @‘@
3 1jo0 Jo [¢] o [¢] o o] ("] 6 [o] o] o]

<1 .0297] .01k9] .00191| .0029 3;9370 -.0110 =.211% | 02947 +.00711 3.9%0 .0030
2| .0692| .088%| .00755| .0138| 10,9405 5410 | -.62k2 | .08210 { .04459 | 10.939 | -.0015
23 .0526| .1813( .00287| .0309| 12,9966 1.3609 | —2.3545 | .09799 | .10845 | 12,974 | —.0226
&1 .0075| 222 | -.01278] .oubg| 5.8085| -—.0012 | 4.3174 | .ous535| .1%683 | 5.847 | -.0515

L0094 [ .226 | =.01141| .0572] -7.7700| —-3.0022 | ~3.8860 |-.05688 | .1309% { ~7.837 | ~-.0670
.61 L0550 .270 ( .01376] .0850| —20.3630| -5.9%25 { -1.5001 |-.15168 | .04685 |-20.407 | ~.0kk0
71 0682 .36k .0218 | .1323| —2k.oMko | -8.0511 3.5835 | —.18022 | -, 07340 [~2k,019| .0250

0 @ ~N. O W oW n
.
U

.8 0270 .435 | —.009% «1757 | ~15.6851 —5.1771 9.9342 |-, 11866 | =.17151 [-15,576 | .1091

[
(=]
.

0

L0001 | JB47 | -.0317 .201 1.1454 2.3728 | 11.6801 | .00683 | ~.19527 1.300 | .1546

B
-
°

0325 | 465 [ -.0006 [ .235 | 18.092k| 9.6213 | 7.8174 | .13400 |—.128% | 18.21k | L1216
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- Figure .- Pulse input and associated response used in example I .
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(b) Response, qm(f), fo input, F(t) of figure 4(a).

Figure 4.-Input and associated response used in -
example 1T .
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