
GOVT. DOC 

iLH1ULOGY DEPT, 

APR 20 1951



629.1309
	 ERRATA 

Un34	 NACA TN 2341 

A lEAST SQUPS CURVE FITTING METHOD WITH APPLICATIONS 

TO THE CALCULATION OF STABILITY CTICNTS 


FROM TRANSlENI'-SPONSE DATA 
By Marvin Shinbrot 

April 1951 

Line	 In Place of 

2 X1 jX, ij 

27 Al 

4 equation (6) 

24 rn-i 

2 rn-i 

4 rn-1 

10 e 	 (1) 

U (D2 - a1D - a0) q(t) = (C 1D - Co) (t) 

6 (5a)

v-i 

19	 [q(t -ig(tj) ] 

4 

i	
= (l_1)Ci_c1Co+l'g.Q 

21 

16 (D2+bD--k) 

19 q=..

F(T)dT is constant and 

since F(t) is constant for t > T., 

and
f t	

F(T)dI may be evaluated. 

26I117 I 
fo

e 
u19 

Read 

X j l X j if 11j 

Ai 

equation (5) 

rn-I-i 

rn+l 

rn+1 

equation (2) 

(D2 + a1D + so) q(t) = (C 1D + c 0 ) F(t) 

(4a)

[q(ti)_q(ti) 2 

= - (x1 + ? 2) = - 21 

tqo 

21' 

(D2 + a1D + a0) 

q=. 

foe
	 F()d Is constant. 

since F(t) is constant for t?LT, 

f te•_iT p(-r )dT may be evaluated. 

F(0) 

- 2a 

2a l'p'+C 1 - °	 °	 CONN. STATE LIBRARY 
a0

JUL 12 1951 

fo 
e	 F(-r)dr 

Page 

4 

11 

5 

7 

8 

8 

8 

8 

10 

11 

13 

14 

14 

lii. 

i6 

17 22 F0 

19 24 012.6 

22 6 xz=z-i'i 

24 15 2k

2kl'+C0l 
24 16 - k



2	 NACA TN 2341 

Page 1 LineT in place of	 Rea 

26 {17 ft e X2TF(T)dT	
- ft	

F(T)dI 

2 8 7 (	 '	 -lot e lot 

30 1 z(+b+kq — C 1F	 -coF) 2 E(+ai+aoq—CiF—CoF)2 

31 24 Bj eiAt [ 	 i- Bj x1it Re 1101 + 

n_i (
	 +	 .	 +	 o ] Q_.1	 +	 • + Q0 ] 

32 20
(	

-	
Bi et)

:	
(q k -	 Bj etk) 

k=O

33 21 equation (2) equacion (23) 

33 24 i, 1, 2, 3 i,	 1, 2 

33 26 equation (4) eqjation (25) 

37 3 ktO(t)-6(0—)) 

37 3 equation not numbered equation (27) 

37 8 f	 e(t)at e(t)dt 

37 11 equation (19) equation (27) 

37 hi, equation ( l a) equation (4b) 

37 14 q(0+) 

15
=	

e'	 + q(t)
ix2q(0)+CiXi+Co e 	 + q(t) = x1(o—)-4	 Xit 

37

X2q1X2q-C1X-fC0 eX?t + X2(0—)-.1X2q(0)+CiX2+C0 eX2t + 
2(2'4i)

Co	 Co

NACA-Langley - 7-5-51 - 900 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 231 

A LEAST SQUARES CURVE FITTING METHOD WITH APPLICATIONS 


TO THE CALCULATION OF STABILITY COEFFICIENTS


FROM TRANSIENT—RESPONSE DATA 

By Marvin Shinbrot 

-	 SUMMARY 

The problem of calculating airplane stability parameters from the 
aircraft response to an arbitrary disturbance is considered. To calcu-
late the coefficients of the linear differential equation which describes 
the airplane transient response, application is made of a classical 
least-squares curve fitting method. 

It is shown that the method is applicable, aithoigh somewhat. 
cumbersome, when .the input Is an arbitrary function of time. Certain 
inputs are demonstrated to lead to simplification In the application of 
the method. Examples are given illustrating the means of using the 
method and. showing its practicability. 

Finally, an appendix, in which Prony's method and a generalization 
- thereof appears, Is presented.

INTRODUCTION 

The determination of the stability and control parameters of a 
dynamical system from its measured response has been a subject of 
increasing Importance and interest, both from the standpoint of basic 
aerodynamic research and automatic stabilization of airplanes. This 
problem Is essentially one of curve fitting and may be stated as follows: 
Given the time history of an airplane response to a known transient dis-
turbance, and assuming a certain form of linear differential equation 
with constant coefficients describing the relation between response and 
disturbance, required to find the coefficients of this differential 
equation such that the sum of the squares of the differences between the 
given response and the one corresponding to ' the . differential equation is 
a minimum.	 -
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A number of methods for the solution of this problem have been 

advanced by others and are noted in reference 1. However, these methods 
do not apply the least squares principle in the correct sense described 
above. 

The method presented herein involves obtaining the solution of the 
differential equation in a form amenable to rigorous application of the 
method of least squares and such that a completely arbitrary input may 
be treated. A number of means are available for the fitting of a 
function in this form by least squares. The solution by means of a 
Taylor's series expansion seemingly gives good results and is used 
throughout this paper. 	 - 

Considerable simplification of the method is possible when free 
oscillation data are available or when the input can be exactly or at 
least closely represented by a function the analytical form of which is 
known. Solutions for a pulse, a step, or a ramp input are given in 
detail or are indicated.. The general solution for an arbitrary Input Is 
also included.. 

Selected examples of different Inputs applied to the same physical 
system (airplane) aie presented, which illustrate the different means of 
applying the method. 

The report has been so organized that the engineer who is not 
interested in the derivation of the formulas used may read the first 
section of the report entitled "Statement of the Problem" and proceed 
from there directly to the section on examples. 

METHOD OF ANALYSIS 

Statement of the Problem 

- - Consider a quantity q(t) which has been measured at a set 

t tj, I = 0, 1, . . . , V—1 of V values of t. Suppose the Initial 
con.ItIons on qm, obtained from the experimental data, are 

qm( 0 ) = 

(dqm) t_
= q0

(i) 

dn-1 \ 
(

	

	 =	 (n-i) 
,q,.fl 1 I U 

where n is determined below.
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1 

A physical interpretation of these quantities may be had by con-
sidering the data qm(t) as a time history of the pitching velocity of 
an airplane in response to an elevator deflection F(t). 

Consider next the differential equation 

P 0(D)q(t) = P 1(D)F(t)	 (2) 

where D is the operator d/dt, P 0 = In + an-. 1 Dn-1 + • . • + ao and 

P1 = CmD ' +	 D' + . . • + Co are two polynomials in D, 

and F(t) is a known forcing function. Consider the set of all possible 
solutions of this differential equation obtained by varying the constants 
ai and Cj. Let q(t) be that solution of equation (2) for which 

M = X [q(tj) - qm( ti) ] 2 (3) 

is a minimum, and subject to the same initial conditions as 

q(o) =qo 

\ / dt_0	
(la) 

(d'

J 	
= q (') 

dtn-1 = 0 

It is then desired to find those values of the aj and the Cj which 
correspond to q c . These values will be unique, since to each set of 
these constants there corresponds one and only one solution of the differ-
ential equation if the initial conditions are determined. 

In most practical problems, m is less than n, and this assump-
tion will be made throughout this paper. The extension of the method 
described herein to the case where m is equal to or greater than n 
should be clear.
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Let X,, X2, • • ., X- be the zeros of the polynomial P0 (D). It 
is now assumed that Xi Xj , I j. The extension, of the following 
solution to the case where not all the X1 are distinct can be found 
in any textbook on elementary differential equations and needs not be 
included, here (reference .2). It is well known that if. 

Po' (D) = 

the solution of equation (2) Is 

n
^eXjt [

Aj+

Pi(Xj) It	 jT
q(t) =

	

	
Po'(Xj) 	

e—X 
F('r)dT] }
	

(4)


j'=l 

where the constants Aj are functions of the initial conditions q(o), 

/dq	 (d1 q'
,	

.	 .	 (d1F 
n-i )	

, FO,,	 , . . • 

t=O	 ' 	 t=O 
and of the constants C 1, C21 . . . , Cm. The method described in this 
paper consists. of fitting q(t), by a least squares procedure, to a 
function of the form (4). Several methods for fitting such a function 
may be found in the literature. In this report the classical device of 
linearization and iteration by means of a Taylor's' series (refere -nce 3, 
p. 214) is used. Therefore, a detailed study of this linearization 
follows, but it must be understood that it is in no way essential to the 
method. Fitting by steepest descents (reference 4), for example, could 
be used in place of the Taylor's series Iteration. The mechanics of this' 
iteration are cumbersome in the general case. They will, therefore, be 
described for particular cases, thus, it is hoped, making the method 
clear for any special case which may arise. 

Formulation of the Method When Free 

Oscillation Data Are Available 

The method.— Suppose there exists a T such that F(t) =O for all 
t 2^ T. Then, for t 1: T, the expression 

[A1+ P1(x)
	 t -Xj1 

Po' (x)	
, e	 F(T)dT] 

occurring in equation ( It) is constant. Call this constant B.
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Then for t > T

n 

q(t) 
= L Bj e " 

j=1 

By some means (see e.g., reference 1), first approximations to the 

constants occurring in euation (6) are found. Let B 1( ° ) , B2(°), 
, Bn( 0 ), X1 ( o ), X2 0 ), • • • , o) be the approximations to 

B 1 , B2 , . . . , Bn, X 1, X2 , . . . , X, respectively. The function 
q(t) is now expanded by means of a Taylor series about the "point" 

[B1(o)	 . . -. ,	 (o),. :(0) , 	 (°) 
with all terms of order higher than the first omitted. From equation (5), 

i'	 q	 X1t 
—=e , — =Bjte , i=l, . . . ,n 

Denote the values of q, a q -, - q -- at the "point" B 1( ° ) , . . . , Bn(), 

•\ 
, xn( ° ) ] by	 °),	

q (0) ' ( 	
ç )(0) , respectively.

hi 
Then by Taylor's theorem, omitting all higher order terms, 

= 

((0)
iB

 + 1=1 

(^6q)(o) 
LXj	 (6) 

where

- Aq  =q_q(o) 

I •= Xi - Xj(°) 

1=1, . . . , n
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Therefore, from equation (6) 

	

,	 >1( 

=	
e	 + B1( ° ) t	 1]	 ( 7) 

i=1 

The desired equations which lead to the minimization of 

M =	 [c(ti) - q(ti )	 may now be found as follows: Let 

Aqm =	 - q(o) 

Then

v—i 
M =

	
[(ti) - Qm(ti)] 2 

1=0 

The equations for the increments then become 

(Bi) 

6M	
0 (8) 

. . . , n 

Since the expression (7) for Aq is linear in (EBj) and (LXj), 
the equations (8) will be precisely those found when fitting redundant 
data to a linear function by least squares (reference 3, pp. 209-211). Equations (8) are solved for the increments Bj and iXj, and the 
resulting values are added to Bj ( ° ) and Xi ( ° ) , respectively, to 
give the second approxiiñation 

The Iteration process by means of Taylor's expansions is now 
repeated until two successive iterations give the sane values for the 
parameters to the desired number of significant figures.
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It is of course true that in many cases, especially those in which 
very good data are available, no such Taylor series expansion is neces— 
sary, Prony's method (appendix A) giving sufficiently acàurate values of 
the parameters. Examples have been found, however, where Prony's method 
did not lead to sufficiently good values, and the Taylor series was 
essential. 

Final calculation of the coefficients of P 0(D) and P1(D).— All 
that now remains for the problem to be completely solved is the computa-
tion of the coefficients of P0(D) and P1(D) from the calculated 
values of Bi and Xi. 

Since P0(D) = In+ a 1 D'' + . . . + a, and since ), . ..,Xn 
are the zeros of this polynomial,

= - i-1Xi 

	

a 2 =	 XjXj 

i , j =1
	

(9) 
1<j 

nfl 
a0 =(—l) flXj 

1=1 

(reference 5, p. 29). 

The constants Bi were defined as follows: 

	

Bj = Ai + Pi(Xi)
	

F(T)dT 

where T is that value of t where free oscillation begins. It Is 
well known that the Ai may be solved for as functions of the constants 
C l., . . . , Cm. The integrals occurring in the definition of Bj can 
now be found graphically since Xi and F(t) are known. There are, 
therefore, n equations in the rn—i unknowns Co, . . . , C (the
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coefficients of p1 ). it was assumed that m is less than n. There- 
fore, rn-i is not greater than n. If rn-i is equal to n, the number 
of 

'
equations is equal to the number of unknowns, and the constants Cj 

may be determined. If ni-i is less than n, a least square procedure 
for solving redundant linear equations may again be used (reference 3, Pp. 209-211).

The Method for a . Second-Order System 

A case of great practical interest in aerodynamics is that of the 
second order, and in the present section this case will be treated in 
detail. A second-order system is one inwhich equation (1) becomes 

(D2 - a1D - a0 ) q(t) = (C ID - CO ) F(t) 

An example of such a second-order system which occurs in aero-
dynamics may be obtained by letting q be the response in pitching 
velocity to an elevator input F(t). In this case (reference 1), 

mV0 'y 'y 

	

ao = - 	 x 
mV0 'y 'y 

Co = x -  --x-i 
'y mV0 I y mV 

	

M	 L	 M. 
Ci=---- _ 

ly MVO 'y 

where 

m	 mass of air-plane 

V0	 trim velocity of airplane 

pitching moment of inertia
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L lift force 

M pitching moment 

B elevator input	 F(t.) 

M angle of attack 

dm•
dt 

Lb 6L 

LM 6M 

M6 

Md 

Mq

•	 The general solution of (D 2 + a1D + a0)q = (C ID + c0 )F may be 
obtained from equation (4) which becomes, if ? and X2 are the roots 
Of x2+a1x+a0=0, 

q = AieX 1t + A2eX2t + C1X1+Co e'1	
rt 

e1T F(T )dT + 
Jo 

C1A.2+C0 e '2	 rt e2T F(T)dT 

Differentiating, an expression for ci =	 may be found, and 

letting t=O, It may be seen that 

A1+A2=q(0) 

A1X1 + A2X2 = (o) - C1F(0) 
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or, using equation (la),

A1
cj0-q0x2--c 1F0 

-  
x1-x2 

A2 =  
x2-.1 

Therefore,

q = 0-q0?-c1F0+(c1X1+c0) f	 F(T)d.-r e
xit + 

t 
0-q0X1-C1F0+(C1X2+C0) f e ' F(i-)d.i- e?2t
	 (5a) 

- 

Pulse input.- When a pulse-type input has been applied to a second-
order system, that is, when there is a T such that F(t)=0 for all 
t2:T,

B1 = A1 + C 
1X1+C0

 X1X2 

fT 

C1)2+C0	 T 
B2 = A2 

+ 2- 1 

e1T F(T)dT

(10) 

e2T F(T)dT

J 

using the same notation as before. Then, for t 2 T, 

q = B1 e1t + B2 e)2t 

Suppose now, as Is generally the case, that X 1 and X2 are con-
jugate 'complex 'numbers. The form previously used for the description of' 
the general method may still be'followed in this case; however, simplifi-
cations occur if this notation is abandoned. If X 1 and X2 are con-- 
jugate complex, B1 'and B2 must be so also, since q is real. Let
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x1 =z+i'i	 1
Hil) 

B1=+'i	 J 
= I - P1, B2= 0-0'i 

	

q = 2e it (P cos Pt - ' sin Pt)	 (12) 

It is assumed that at this point, first approximations 10, 
002 00 1 to the constants 1, V, 0 2 ', respectively, have been 
obtained. (See appendix A for one method for finding such approxima-
tions.) 

The forniulas.needed for the Taylor's series iteration will now be 
derived. From equation (12), 

= 2te it 	 cos Pt - ' sin i't) 

= - 2te 1  (p sin Pt + ' cos i't)	 I (13) 

= 2e 1 cos Pt 

2e 1t sin 2?t 

Using a similar notation to that used in the previous section on 
the Taylor's series expansion, 

M = ' [(ti) _m(ti)] 

= '  1061 °i^(jozt +	 46 1
 
+q(o)_qm]2 

Taking the derivatives of M with respect to t,i, si', t, 46 1 and 
setting them equal to zero will result in the equations, the solution of 
which will give those values of the increments which minimize M. 
These equations thus become 

Then 

and
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Al	
[f'\(o)12

.:
()(o)(a'(o)

+	 P Oat
o) ( (o) + 

)	 ) T) 

AP I

$o) 

()	 (70

(0) q\ 

)	 =
[qm0)] (w 

q%\(0) 

) ( (0)	 qO2 
Al	

o)	
+ Al'	 K) ' 1 +	 ) 

o)( o) 

.+ 

(0)	 .\(0)	 f	 \(o) 
I 6q-  [ qm—q(o)]	

) 

Al

 

(^q\( 0)

+	 , L) 
(0).	 (	 \( 0 )	•• 0)	 (0) ()(	

+

2 

nJ	 +

	

(\(0)(	 (o)	 (0)_ 

	

)	 -	
[q(0)]	 j 

Al	
(o)	 (o)	 q(0)	 .s\(0) 

(•;7)	 +LV	
(w (7) + 

A3)  (0)	 (0)	 q\(0)]


	

(T	 () 
+ A'	 [(T 

( o) 

=	
Iqmq(0)] (Zo^)	 (114) 

As before, it is now assumed that this iteration Is repeated until 
two successive iterations give the same values for the parameters to the 
desired number of significant figures. 
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The parameters 1, 1', 0 and ' have thus been determined. The 
solution to our problem will be complete if we can, from these values, 
calculate a0, a1, Co, C1 . From equations (9), 

a1 = X1 + X2 = 21 

a2 = X1X2 = 12 + it2 

A means of finding C 1 and Co must now be found. In order to 
accomplish this, consider 

1T e1T F(T)dT 
1T 

eiT cos VT F(T)dT 

T 

I

_IT -	 e	 sin Z'T ,-)d.T F(
 

a =
	

eT cos VT F(T)dT 

T 
a' = I e—I T  sin VT F(T)dT 

Then

IT e' F(r )dT = Cr - cr'1 

and since X2 is the conjugate of X1, 

e2 F(T)dT = a + a'j 

Let 

Let 

Recalling that B1 = + P l iy it follows from equation (4a) that
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Z' (c—la')c1--a'c0+z'q0 

2r

	

(l) 

J/	 21' 

These equations may be solved for CO and C1. 

The method when the forcing function continues throughout the 
motion.— It is now supposed that in the given data, there is no T such 
that the forcing function F(t)=O for all t 2! T. In this case, the 
coefficient of e xi t in the expression for q(t) given by equation (4) 
is no longer constant. Prony's method cannot, therefore, be used for 
the first approximation. The simplification which Occurs in the Taylor's 
expansion in the previous case due to the fact that q(t) is a sum of 
ex-ponentlals with constant coefficients is also not present here. 

There are cases, however, even when free oscillation does not occur 
where the present method can be applied with little difficulty. The 
best examples of such cases are those in which F(t) is known to have a 
certain analytical form. As an example, the two degrees of freedom 
system (D2 + bD + k) q(t) = (CID + C O ) F(t) may-be considered, where 

F(t) = {'
	

, the so—called "step" function. 

For this input, equation (4a) becomes 

e1t X2q0X1X2q0+00 .2t +	 (4a) +	 e q 
= x1( 17x2 )	 x2(x2—x1) 

where, since dq/dt is discontinuous at t=O If F(t) is a step, 

= him	 , t—> 0+ indicating that t is to approach zero through 
t _>o+d.t 

Positive values only. The apparent anomaly that q is independent of 
C l is resolved in appendix B, where it is shown that 

= i(o—) + c 1F(o+) = j(o—) + C1
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First approximations to the constants 

B1 -	 ( o+)—x2q0+c0 - )( o—)—x 1x2q0+c 1X,,+Cp -	 -  
x1(x 1—)L2 )	 x1(x17)L2) 

B2 
= x2c(o+)—x 1x2q0+c0 =  

x2( x—x 1 )	 x2( x—x1) 

C 
3= 

which occur in equation ( lcb) can be found by a simple extension to 
Prony's method. (See appendix A.) A Taylor's expansion may then be 
applied to obtain a closer approximation. 

A very important input, closely related to the step is the so-called. 
it 	 In any physical case, an exactstep can never be obtained 
for an input. The input will always have a certain finite slope near 
t=O; there may also be a certain amount of overshoot or, reciprocally, 
the input may undershoot its steady state value. Any input which rapidly 
(but not instantaneously) attains a constant nonzero value will be called 
a pseudo-step. Suppose then that F(t) is such a function. Then there 
is a value T such that F(t) is a constant for all t ? T. Suppose 
this constant is c. Let this fp.nction be applied to the second-order 
system (D2 + a1 + a0 ) q(t) = (C 1D + CO ) F(t). The response in q is 
then given by equation ( .a). It is here assumed for simplicity that the 
Initial conditions q(o) and (0) are both zero; F(0) Is also zero. 
Then 

q(t) = C1X1+C0 eXit
I

t e1T F(T)dT + C1X2+C0 eX2t rt e7-2T F(T)dT 
0	 X2X1	 J0 

For t^:T, 

q(t) 
= C1X1+C0 eXit [f e1TF(T)dT+ r t e > 1T F(T)dT] + 

Ci2O e)62	 e2T.F(T)dT+fT e2TF(T)dTJX2- 	 [j X1	
0 	

t
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f	 F( T)d.T is constant and since F( t) is constant for t -> T, and ft e1' F( T)d.T may be evaluated. 

Let

C C1X1+C0• = G1, c C1X2+C0 
Xl X1X2	 -	 = 

 
c	 C]X2+C0	 T 

X 17X2 

iXio	
e1 F(T)d.T = H,	 f e2 F(T)dT = ll 

•0	 0 

Then G1 , G21 Hi, 112 are constants, and 

q(t) = H exit + G 1 [eX'(t—T)—i] + 112 e)-2t + G2 [eX2(t)_1] 

(H1 	
G1Xit	 + G2' eX2t - (G1 + G2) + 

eX1TJ	 e?2T) 

Thus q(t) is the stun of two exponentials plus a constant. First 
approximations may now be found by the extension to Prony's method given 
in appendix A, and Taylor's series, expansions may be used to improve 
these values. 

Another simple example which may be considered is that where 
10, t < 0 F(t) = 1	 > 0 • In this case the response of the second—order system 

would be I- 

q = y1e Xit+ 7e	 - (71X1+72X2) t - (71+72) 

if

q(o) = c(0) = 0 

where

- c iX1+Co	 - c1X2+co 

71 - x12(x1—x2) 7 - _________
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A first approximation may be found by several means, the derivative 
method (see example 3) being only one of these. Again, Taylor's series - 
may be applied to improve these values. 

In the most general case, where F(t) is only known graphically or 
tabularly, the method can still be applied; there Is a certain amount 
of added labor involved, but in case such an example should occur, the 
method for this general case is outlined below. It is to be noted that 
this general case Is better suited to computation with a high—speed 
electronic computer than it Is to manual computation. However, It may 
certainly be. applied manually. 

The entire method proceeds from equation (4). It is assumed that 
the given differential equation has been solved for q in this form. 

Step 1.— By some means, a first approximation to the parameters 
must be.found (several such methods may be found in reference 1). 

Step 2.— The function q(t) is expanded in a Taylor's series, all 
teams of order higher than the first being omitted. Herein lies most of 

the computation, since 10 eT F(T )dT must be found graphically as a 

function of t. 

As an example, consider again the second—order case (D2 + a1D + a0) 
q(t) = (C ID + CO) F(t), where F(t) is given graphically.. It Is 
assumed for simplicity that  

F0 = q(Q) = c(0) = 0 

Then, using the same notation as before,. A 1 = A2 = 0, and q(t) is 
simply the particular integral: 

C1X10 e1t fot e)1TF(T)dT + C1X2+C0 e?2t fe2TF(,-)di-q(t)

0 

The computations (especially when it comes to taking derivatives for use 
in the Taylor series) are greatly simplified by the substitution 

C 1x1+C	 C1x2+C 
B1 =	 0 B2 =	 0 • The problem is then restated as follows: 

To find the best fit for q(t) to a function of the form 

q(t) = B1 eXitf e1T F(T)dT + B2 eX2tf e7)-2T F(T)dT
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Minimization of M = E i (q._q) 2 with respect to 0, ', 1 1 1 1 , (where 
= B1, 0 - 'i = B21 1 + Vi = X 1, 1 - i'i = X2 ) is equivalent 

to minimization with respect to C 1 , Co, a1 , and a0, which Is the 
desired minimization. The method now proceeds as before, with the first 
approximations being found and with the application of a Taylor's series. 

Another means which might be employed in this general case would be 
to first fit F(t) to some suitable function, and then find q(t) as 
an explicit function of t as was done above for the step and the ramp. 

EXAMPLES 

The engineer who is interested primarily In applications may read 
these examples immediately after reading the first section of the report 
entitled "Statement of the Problem." 

Example I - Pulse Input 

Consider the input shown in figure 1(a) applied to the second—order 
system

(D'. + a1D + ao)q(t) = (C 1D + Co)F(t)	 (16) 

The response is given in figure 1(b). The methods and formulas described 
previously can be used directly for this example. If t ^! 0•1, 

q = B1 eXit + B2 eX2t	
(5a) 

or, if B 1 =	 + p li, X 1 = 2 + l'i, and t	 O.li., 

= e 1 (0 cos l't - ' sin i't)	 (12)
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It Is now assumed that by some means first approximation l, is', 

o, Oo l ytoi, 1 1 , 0, O t , respectively, have been found.' Prony's method 
(see appendix A) gives 10 = - 0.91, to' = 7.02, o = 0.3681, 
Po l = - 2.6775. 

From equation (12) 

l \.,2
	 = t e 1  (P cos l e t - ' sin i't) 

.. 3- -S) 'T1 , (2
= - t e 1  (P sin l't + 3' cos tit)

(13) 

2
 q= elt cos i't 

2J 

(q\ = - elt sin tit 

Prony's method, for example, may be used here. Prony's method is 
actually applied to this example in appendix A. An ordinary period 
and damping analysis (described below), which is shorter than Prony's 
method, may also be used. The afore—mentloned period and damping anal-
ysis proceeds as . follows: The minima of q lie on a curve q = K elt, 
K = constant. Let q, and q2 be two successive minima of q. Then 

(	 )= e1T, T = period of q (which may be found from figure 1(b)). 
i 7q\	 2t Therefore, 1 = - In - ) . As for P, 1' is equal to -. Then T \ q,J	 T 

q = 2 elt (P cos tit - ' sin i't).. 

Fitting at any two points t, and t2 

(cos t
i
t .,) - (sin Pt,)	 = 1 - e —it,q(t,) 

2 

(cos z't2 )	 - (sin z't2) ' =	 e11 q(t2) 
2 

which may be solved for P. and 3 1 . This analysis gives 2 Z. - 0.9, 
1'	 7.0. Letting t, = 1.0 1 t= 2.0, it maybe found that 3 0.i., 

1	 2.6.
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Therefore, by Taylor's theorem, omitting all higher order terms, 

t(P cos i't p' sin i't) ci - t (0 sin Pt + ' cos Pt) All + 

(co l
i
t) 46 - ( sin p t) £' = e7lt ( cos Pt - ! sin lit) 

Referring to table I where circled numbers refer to columns, 

L2 -
	

All 
+	

43 -
	 = 

Minimizing . M leads to the equations (see equations (14)) 

At E@	 7j	 + LW E (3	 —z' E = z GJ ® 

- E 

At F, T	 E ®
	

+ 46 E 0	 : ® = 
E ® 

ij

—xi	 + At' z ® j -	 +	 2 =_ z 

These equations give

At = - 0.0100 Al l = 0.0052 

= - 0.0118	 46' = - 0.0320 

or

2 = - 0 .9200	 P = 7.0252 

0.3563	 ' = - 2.7095 

A second., Iteration was now applied, and it was found that the increments 
were zero to four decimals. 
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Finally, for computing a 1 , a0, C 1 and Co 

a1 = - 21 = 1.84 

a0 =2 + 112 = 50.1998 

The functions e lt F(t) cos Pt and e_itF(t) sin Pt are now tabu-
lated and plotted (table II and fig. 2). These two functions must now 
be integrated to find a and &. It is to be noted that in this 
example F(t) is exactly equal to t for 0 :^ t !^, 0.2, and to 
(0.4 - t) for 0.2 t'S 0.14, and so the integration may be done 
analytically. The integration may be done graphically by means of a 
planimeter, however, when F(t) is not so clearly a perfect triangular 
pulse, as is usually the case. A planimeter was actually used in this 
example to give or = 0.001493 and a' = 0.0 1405. Equations (15) are now 
set up:

0.280 C 1 + 0.00493 Co = 38.0690 

0 . 07189 C 1 - 0.0405 co = 5.0061 

which give C1 1314.0 and Co = 114.2, to four significant figures. 

The true values of the parameters in the preceding example were 

a1 = 1.814 

a0 = 50.2 

C 1 = 1314.0 

co = 114.4 

Example II - Step Input

Consider a "step" input F(t) 
= {'	

applied to the system 

-	 described by equation (16). , The response is given by equation (4b). 

From the response shown in figure 3 it may be seen that q(0) = 0, 
= 0. Then equation (4b) becomes 
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c1x1+co 
q(t) =
	

e	
+ C1X2+CO	 + Co 

x2 ( 2—x 1 )	 x1x2 

B1- ________ 

B2- c1x2+co 
X2 ( x2—) 

B - 
3 - X1X2 

Then, using the same notation as before, with X, = 2 + P1, Xl = 2 - jTj, 
X1 + X2 = - a 1, X 1X2 =

B1	
Co	 'Ciao+Col 

=--- 
2a0	 22'a0

Co B2 = -	 + C1a0+C01 
2a0	 21'a0

= Let B1 13 + 13 ' 1. Then	 = -
C0	

- - 
- 
C1a0+C01 . But B3 Co 

Therefore, B 3 = - 2 13 . Then	 = e (0 cos Pt - ' sin Pt) - 

First approximations may now be found by the extension to Prony's 
method described in appendix A or by a generalization of the ordinary 
period and damping analysis. For simplicity, this period and damping 
method was used to give to = - 0.91, l' = 7.0, 13o = -	 13o' =— 9.7.

22 

Let
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The Taylor's expansion is now applied 

q it 
= e	 (13 cos l't - O f sin i't) - 

(2)
=t e 1 ( cos l't - 13' sin Pt) 

l 

6 (-q) - 	
it 

2) - t e	 (13 sin l't + O f cos lIt) 
61,

6 (q 
= e 1 cos Pt - 1 

60 2)

- elt sin l't 
13' (

q) -
2 

Therefore, 

q [
lt = e ( cos l't-13' sin Pt)_13] + [ elt ( cos Pt-13' sin lit) 	 i - 

2 

I
t e lt (0 sin 1 1 t+0 1 cos l't)]tP +[elt cos 11 t_1]_[e1t sin Vt]461 

Or, referring to table III, 3Il + () Alt + () i13 - () 43' = 
Again minimizing M, it may be found at 

At = - 0.0100 

Al l = 0.0242 

L3' = 0.3110 

which in turn give



24
	

NACA TN 2311.1 

= - 0.9200 

i t = 7.0242 

=—l.l392 

=-9.3890 

A second Taylor's expansion was then applied (see table Iv), giving 

1 =-0.920l 

i' = 7.0258 

= - 1.11100 

= - 9.3875 

Another iteration would lead to increments which are zero to four 
decimals. 

For the final calculation of. the coefficients, 

a1 = - ( x1+x2 ) = - 21 = 1.81102 

a0 = X1X2 = 121t2 =50.2081 

Co ='2ko 114.4715 

C:L = - 2k11101 = 1314.0072 

It is to be noted that a second iteration such as was applied above 
was hardly important, since the results of the first Taylor's series 
give
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a1 = 1.84 

a0 = 50.19 

co = 114.34 

-	 C1 = 134.00 

the true values being, as before, 

a1 = 1.84 

a0 = 50.2 

co = 114.4 

C i = 134.0 

Example III - Input Requiring the General Method 

Consider finally the input shown in figure 4(a) applied to the 
system

(D2 + a1D + a0 )q(t),= (C 1D + C0)F(t) -	 (16) 

Such an input might occur, for example, in a stabilized airplane where 
the pitching velocity q is fed back to the elevator to change , the 
input. 

First approximations by the derivative method.— The so—called 
"derivative method" will here be applied in order to find first approxi-
mations to the desired constants. From figure 4, F and t are found 
graphically as functions of t. Then 	 is plotted (fig. 5), and from 
this, j is found and tabulated. (See table V.) Rewriting, equation (16), 

+ (q)a0 - (F)C ]. - (F)c0 = - ()
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and referring to table V, 

a1 + () a0 - ® C 1 - (3) C0 = - 0 
A least—squares analysis is now applied to this equation, giving 

a1 = 1.84 

a0=50.19 

C 1 = 133.89 

Co = 114. 91 

The high accuracy of these first approximations is due, of course, to the 
excellence of the data in the example. The leading objection to the 
derivative method obviously is the necessity of finding the derivatives 
graphically, which in many cases leads to errors so gross as to make the 
values of the parameters found in this 1nnrner entirely valueless. 

The Taylor's series iteration.— Sine F(t) is continuous at t=O, 
the constants q(0), 4(0), F(0) of equation ( Il-a) may be found as usual, 
by Inspection of figures 1 and 5. Since q(0) = 4(0) = F(0)-,=0, from 
equation (4a),

t	 t 
C1X1+Co e1t I e1T F(r)dT + ClX2+CO eX2 P e2T F(T)d-r 

q-	 _______ 

or, letting B1 = C1X1+C0 
x1_x2 

q = B1 eXit J  

pt 
eT 

o

B2 - 
- C1x2+Co 

x2_x1 

F(T)dT + B2 eX2t
	

e2T F(T)dT 

Using the same notation as before, with X 1 = 2 + I l i, B1 = + pli, 

f e' F ( ) d T = a - a' i, it follows that X2 = 2 - ? 

B2 = - 3'i, 10 eX2T F(T)dT = a + a'i, and that,
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q = 2 elt[(1 +	 cos l't + (pci' - 'a) sin l't]	 (17) 

It will also be noted that p = .1, 	 = - 
C].l+Cp • Letting zero, sub-

2	 2V 
scripts denote the values of the indicated parameters at the first 
approximations,

10 = - 0.92 

= 7.02 

= 66.9145 

p ' 0 = - 0.59 

From equation (17) 

= 2 elt { [(c+'ci')t— (pp+p'p')] cos l't + 

[(pa'')t + (p"pp')] sin 

= 2 e 1t {[(Pat_P?c)t + (ptp.ppt)] cos Pt - 	 - 

[(p+p t at )t - (pp+p'p')] sin
	

(18) 

= 2 elt (a cos Pt + & sin i't) 

- 2 e	 (Cr , cos Pt - a sin i't) 

where

I

P =f tF(t)e lt cos Pt dt 

f
t F(t) elt sin Pt
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The function F(t) is now inzltiplied by the four quantities 


	

ebot COB lt0t ebot Bin l' 0t, t ebot coB 1 1 0t, t	 sin 

point by point, and the resulting products are plotted against t 
(fig. 6). These four curves are integrated as functions of t, giving, 
respectively, a, a l l p, and p' (table VI). 

The quantities

	

q0	 (q/1) 0 (q/11)0	 (q/)0and 
t'	 ' 

	

e0	 eiOt	 elot	 elOt 
/q\ 10t 

e	 are than computed from equation (18). 
o 

Then, using a Taylor's series and table VI, 

© L1 +	 1' + 0 L43 + © L' = 

Minimizing M with respect to At, tl', Ap ., 4a l gives 

At	 0.00 

At' = 0.01 

L0.l7 

t' =—O.05 

Due to the inherent inaccuracy of a planimeter, only two decimal places 
were preserved here. 

Thus

1 = - 0.92 

1' = 7.03 

/	 =67.o3 

= - 0.611.



NACA TN 2341
	

29 

The desired parameters were finally computed to be: 

a1 = 1.811. 

a0 = 50.28 

CL 131h06 

Co = 114.69 

CONCLUDING REMARKS 

A method has been described by which the coefficients of the differ-
ential equation

	

d'q	 d.a 

	

dtfl_1 dth1_1	 . . 
.

dt 

	

d'F	 dF 
+ . . . + C 1 - + CF = Cm	 + C1 dt'
	 dtdtm 

can be calculated from the graphical knowledge of q(t) and F(t). It 
is noticed that the method may become somewhat cumbersome if the input 
F(t) is not of certain types. The input which allows the method to be 
applied most easily is one which goes to zero quickly, giving free oscil-
lation data. A simplification also occurs when the input F(t) is 
known accurately to be a function of a certain type, such as a step, a 

pit ramp F(t) = t or, perhaps, something of the form 

The method has as its primary advantages first, the fact that the 
correct quantity (the sum of the squares of the differences between the 
calculated and the measured quantities) is minimized. The ordinary 
simple equations of least squares may be used in this minimization, since 

- the equations of condition (the redundant or inconsistent equations to 
be solved by least squares) satisfy the restrictions under which the 
least squares solution is normally derived. That is, the equations are 
linear, and only the right—band sides are subject to error. The so—
called "derivative method" used in example III minimizes
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2 
Z(q + b + kq - C 1F - C 0F) , a quantity with little, if any meaning. 
Other methods, Prony's, the Laplace and Fourier methods, are subject to 
the same objection. 

Another advantage of the method is that the data are analyzed 
directly in the time plane, thus eliminating the possibility of the 
introduction of errors due to graphical integration (in the case of 
Fourier and Laplace transform methods) or differentiation (derivative 
method). Where the inputs give free oscillation data there is a certain 
saving of time due to this directness, no preliminary steps having to be 
taken before the method can be applied. 

For the usual type of problem which is found, those with the pulse—
or step—type inputs, the method is at least as rapid as any other which 
gives comparable results. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Jan. 17, 1951.
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APPENDIX A 

PROIY' S METHOD 

A problem which occurs quite often is that of fitting a function 
q(t) to a sum of exponentials. One method used to fit a function of 
this form is known as Prony's method and Is described below. (See also 
references 1 and 3.) 

It Is first assumed that the data are given in tabular form with equal Intervals of the argument t. Suppose measurements of q(t) are 
taken at Instants t0, t 1, . . . , t...1 , V > 2n, where n Is the number 
of exponentials to which q Is to be fitted. Then It is assumed that 
tk = to + k(E,t), At = constant, k = 0 1 1, . . . , V—i. By a proper shift 
of the time axis, to may be taken equal to zero. Let q

k = q(t) = 
q(kt). Fundamental to Prony's method. Is the following theorem: If 

	

=

Bj eXitk	
(19) 

k = 0, 1, . . . , V—1, then q satisfies the linear difference equa-
tion

qk+ + Qn_1_1 +	 fl_ + . . . + %q = 0	 (20) 

where %, . . . ,Qn^-3. are constants such that the roots of the equa-
tion

n	 + . . . Qo = 0
	

(21) 

xi(At) 

	

are e	 , i = 1, . . • , n. The proof Is as follows: 

n 

+ Q._1 	 + • • • + %q =	 Bj	 + 

1=1 

n n 

Bj eX1(k+n-)t + •	 . 
+ Q'o	 Bi e?1t 

11	 1=1 
-	 n 

	

=	 B1 e?jt	
+ Q 1 

(eXi"

t

)' + . . . + 

1=1
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Certainly there exist n constants %, . . . , Qn-.1, such that Xi t Xtt	 Xntt e	 , e	 , • . . , e	 are the roots of equation (21). Choosing 
these constants in this way then makes the bracketed expression above 
and, therefore,	 + Q_1 	 + • • . + % vanish. This completes 

the proof. 

Prony's method consists of writing down the equations 

qn + sn—i qn_1 •+ . . + Q0q0 = 0 

. . . 

+ Q_1 n 1 + . . . + Q0q2 = 0 

and solving them by least squares 2 for Qj, I = 0, . . . , n—l. From 
the normal equations obtained from the least-squares process, 

can be found. Then the roots of the equation 

n-i + . . . 

are calculated, giving eXi( t ) and, therefore, Xi. 

2Herein lies one of the objections, to Prony's method, since 

v—n 

Y1 (+ + n-i k+_1 + • . . + Q0q) 

k=0 

rather than

V-1	 n 

(qk —
	

Bi etk) 

k=0	 i=1 

is niininilzed., the correct minimization procedure leading, in this 
case, to a forbidding amount of calculation.
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The coefficient, exit of Bj in equation (19) can be tabulated 
for each 1, since Xi is known Therefore, Bj can be found by a 
second least—squares procedure. This completes Prony's method. 

The objection described In the preceding footnote can be overcome. 
by considering the Xi and Bj found by Prony's method not as the best 
possible values of these'parameters, but only as a first approximation 
thereof. A better approximation can then be found by means of a Taylor's 
series. This method is described in the body of this report. 

Extension to Prony's Method 

Suppose now that it is required to find some way to fit a function 
to a sum of expdnentials plus an (unknown) constant. The solution will 
be presented herein for the case in which the exponentials are two in 
number, but the generalization to a greater number of unknowns will be 
evident. 

To be specific, a quantity q must be fitted to a function of the 
form

q = B1 e ? 1t + B2 e)2t + B3	 (22) 

q is first fitted to a function of the form 

q = B1 eXit + B2 e?2t + B3 eX3t	 (23) 

and the condition that X 3 = 0 is put in later.. Prony's method is 
applied first to equation (2). As before q satisfies the difference 
equation

+ 2 q +2 + Q 1 q 1 + Qoqk = 0	 (24) 

where the constants Q , , 1=0 1 11 2, 3, are such that the equation 

x3+Q2x2+Q1x+Qo=0	 (25) 

has e)i(t) as roots. But X3 = 0. Therefore, equation (11.) has 
unity as a root, and 1 + Q 2 +Q, + Qo 0. Eliminating % (say) 
between this and equation (24)
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( qk+2 -. k) Q2 + ( q 1 - qk) Q1 = ( qk - qk+3 )	 ( 26) 

is obtained. Thta equation is now solved by least squares for 

and Q2. The exponentials eXi(t) and eX2(t) are now found to be 
the roots of x2 + (Q2 + 1) x + (Q1 +	 + 1) = 0. Pony's method now 
proceeds as before. 

An evident extension of this method may be used to simplify the 
problem of fitting a sum of exponentials when one or more of the expo-
nents are already known.

Example of Prony's Method 

Suppose the data found in column () , table VII is to be fitted to 
two exponentials (see example I of the body of this report). In this 
case, equations (20) become

+ ® Q, + © QO = 0 

Solving by least squares, 

Q 1 E	 +
2 = -

which give

Qo = 0.8320 

= - 1.3922 

Equation (21) thus becomes 

- 1.3922 x + 0.8320 = 0 

or
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= exit) = 0.6961 + 0.5895 

Therefore,

1 
= - in (0.6961 + 0.5895 i) 

At 

10 [in . /(o.6961) 2+(o.5895) 2 + I arc tan'a 0.5895 ] 
0.6961 

= - 0.91 + 7.02 1 

= - 0.91 - 7.02 i 

Since X . and X2 are complex conjugate, so are B1 and B2 . Let 

B 1 = 0 + P l i. Then q = 2 eit (0 cos Z't - ' sin i't). Referring to 
table VII, this becomes 	 - © ' =	 . Solving as before by 
least squares,

= 0.3681 

= - 2.6775

L
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APPENDIX B 

DISCONTINUOUS INPUTS 

Consider the differential equation 

dnq 
dtn+	 d'q + • . . + a1	 + a0q Cm	 . + C 1	 + C0F d.t	 dtm	 at

(2) 

A fundamental question which often arises is the following. Suppose 
F(t) or one of its derivatives is discontinuous at a point. At this 
point all higher derivatives fail to exist. What is the meaning, If any, 
of the differential equation (2) at this point? 

An instance of this problem occurs in example II of the present 
rO, t<O report. There, F(t) is a step: F(t) 

=1, , t> o	 At t 0 
dF/dt and all higher derivatives of F do not exist. 

Throughout the following discussion, let x(O+) = ha x(t), 
t —>O+ 

where x(t) is any function, and t —> 0+ indicate that t is to 
approach zero through positive values only. Consider again the differ -
ential equation

	

a1 4 + a0 q = C 1F+ C0 '
	

(16) 

where dots denote differentiation with respect to t. Integrate equa-
tion (16) between the limits -€ and t ( E> 0) to obtain 

[(t) - (—€)} + a1[q (t) — q(—€)] + aof q(t)at 

= C 1 [F(t)—F(—e)] +. Cot F(t)d 

It is now assumed that ft€q(t)at is continuous. (In all examples used 

in this report, q(t) represents the pitching velocity of the airplane, 

making ftq(t)dt the angle of pitch which, from physical considera-

tions, may be seen to be continuous.)
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( 
I	 F(t)dt = I F(t)dt = t, since F(t) - O t <0 

t 

J_	 t>0 E	 J o  

Letting € —> 0, 

[(t)—(O—)) + a1[q(t)—q(o—)} + k[e(t)-0(0—)1 = c 1F(t) + dot 

where

e(t) = /	 q(t)d.t 
Jo 

Integrating once more with respect to t, this time from -€ to +€, 

[q(c)—q(—€)-2€4(0--)I + a [e(€)—e(--c)-2€q(o--)] + 

ao[ft e(t)dt - 2€e()] = c 1 € 

Again letting €—>0, it is seen that +q(o+) - q(0—) = 0, since 
0(t) was assumed continuous. Thus q(t) is continuous at zero. Going 
back to equation (19) and letting t—>0, t(O+) - q(O—) = C 1F(0+) = C1. 
Thus, c(t) is discontinuous at zero, and the difference between the 
right—hand and left—hand limits of (t) as t approaches zero is C1. 
Thus, writing equation (4a) in terms of (o —) rather than q(0+), 

- x1q(o—)—x1x2q(0)+C1x1+C0 eXit + X2q(0)X1X2q(0)+C 1X2+CO X2t (t)	 + q	
-	 X1(x1—.2) 

Co 
X1X2 

and q(t) may be seen after all to be dependent on C1.
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TABLE II. - FURTHER CALCULATIONS NECESSARY FOR EXAMPLE I

12 3 4 5 6 7 8 9 10 

Raw t 0. 92t e92t 7.0252t cos (a sin (J F(t) @00 ®®® 
1 0 0 1.0000 0 1.0000 0 0 0 0 

2 .05 .o46 .9550 .3513 .9389 .3441 .05 .04483 .0164 

3 .1 .092 .9121 .7025 .7632 .6461 .1 .06961 .0589 

14. .15 .138 .8 11 1.0538 .4943 .8693 .15 .06469 .1136 

5 .2 .184 .8319 1.4050 .1650 .9863 .2 .02745 .1641 

6 .25 .230 .7945 1.7563 -.1844 .9828 .15 -.02198 .1171 

7 .3 .276 .7588 2.1075 -.5113 .8594 .1 -.03880 .0652 

8 .35 . .322 .7247 2.4588 -.7758 .6310 .05 -.02811 .0229 

9 4 .368 .6921 2.8103 .914.55 .3256 0 0 0

NACA 
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TABLE V.- TABULATION OF F(t), 1(t),q(t), q(t), AND q(t) FOR EL491LE III 

t F.  
1 0. 0 7.03 0 0 941 
2 .1 .5893 4.35 3.940 68.4 327 
3 .2 .8206 .21 10.939 57.1 -532 
4 .3 .6521 -3.33 12.974 -23.9 -978 
5 .4 .2251 -4.81 5.847 -113.9 -702 
6 .5 -.2290 -3.92 -7.837 -146.1 no 
7 .6 -.5062 -1.46 -20.407 -91.3 938 
8 .7 -.5141 1.23 -24.019 24.6' 1266 
9 .8 -.2947 2.92 -15- 576 137.9 886 

10 .9 .0175 3.05 1.300 184.8 5 
11 1.0 .2694 1.81 18.214 .138.3 95 
12 1.1 .3606 -.01 26.577 21.5 -1334 
13 1.2 .2779 -1.53 22.181 -io5.4 -1092 
11+ 1.3 .0869 -2.11 7.319 -178.7 -312 
15 1.4 -.1103 -1.67 -10.555 -163.6 594 
16 1.5 -.2258 -.57 -22.775 -71.0 1171 
17 1.6 -.2226 .60 -23.785 50.6 1155 
18 1.7 -.1221 1.31 -13.711 141.4 589 
19 1.8 .0152 1.32 2.053 160.2 -219 
20 1.9 .1228 .75 15.764 103.1 -866 
21 2.0 .1582 -.05 21.207 2.5 -1058 
22 2.1 .1182 -.70 16.504 -91.2 -741 
23 2.2 .0329 -.93 4.663 -134.9 -107 
24 2.3 -.0525 -.71 -8.250 -112.8 520 
25 2.4 -.1005 -.22 -16.219 -41.0 849 
26 2.5 -.0962 .29 -16.060 42.6 755 
27 2.6 -.0503 .58 -8.637 98.6 324 
28 2.7 .0100 .57 1.945 104.0 -211 
29 2.8 .	 .o558 .31 10.555 61.6 -595 
30 2.9 .0693 -.04 13.468 -4.3 -666 
31 3.0 .0501 -.32 9.997 -61.1 -426 

.... ® 2	 329048.34	 E©2	 6660.992256	 E®(.)	 -0.428921 
= 190.3603	 = -82.75361	 = 16887.46 
= 4691.967	 = +98.2381628	 E J2= 2.66225444 
= 83. 67703	 E0 	 = -334446.428	 E®J = -4835.7037 
= 2 3599. 0	 E®2	 +159.8717
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TABLE VI.- TAYLOR'S SERIES ITERATION APPLIED TO EXAMPLE III 

12 1	 3 1	 5 5 6 7 8 9 10 11 12 13 

p P, qo
( ( i ()p qm 

10 0 0 0 0 0 0 0 0 0 0 0 
2 .1 .0297 .0149 .00191 .0029 3.9370 -.0110 -.2114 .02947 .00711 3.940 .0030 

3 .2 .0692 .0884 .00755 .0138 10.9405 .5410 -.6242 .08210 .04459 10.939 -.0015 
4 .3 .0526 .1813 .00287 .0309 12.9966 1.3609 -2.3545 .09799 .10445 12.974 -.0226 
5 .4 .0075 .222 -.01278 .0449 5.8985 -.0912 -4.3174 .04535 .14683 5.847 -.0515 
6 .5 .0094 .226 -.01141 .0572 -7.7700 -3.0022 -3.8860 -.05688 .13094 -7.837 -.0670 
7 .6 .0550 .270 .01376 .0850 -20.5630 -5.9425 -1.5001 -.15168 .04685 -20.407 -.0440 
8 .7 .0682 .364 .0218 .1323 -24.0540 -8.0511 3.5835 -.18022 -.07340 -24.019 .0250 
9 .8 .0270 .435 -.0094 .1757 -15.6851 -.5.1771 9.9342 -.11866 -.17151 -15.576 .1091 

10 .9 .0001 .447 -.0317 .201 1.1454 2.3728 11.6801 .00683 -.19527 1.300 .1546 
U 1.0 .0325 .465 -.0006 .235 18.0924 9.6213 7.8174 .13400 -.12840 18.214 .1216 
12 1.1 .0700 .541 .0385 .303 26.5549 14.3646 -.1106 .19833 -.00064 26.577 .0221 
13 1.2 .0500 .633 .0150 .383 22.2894 12.8773 -10.8027 .16760 .12714 22.181 -.1084 
14 1.3 .0059 .670 -.0400 .436 7.5236 3.1852 -17.4231 .05790 .19405 7.319 -.2046 
15 1.4 .0113 .674 -.0321 .473 -10.3501 -.8.5878 -15.2285 -.07581 .16976 -10.555 -.2049 
16 1.5 .0573 .722 .0345 .545 -22.6711 -17.0053 -.6.4301 -.16872 .06866 -22.775 -.1039 
17 1.6 .0670 .817 .0491 .658 -23. 8430 -18.8982 6.5720 -.17860 -.05885 -23.785 .0580 
18 1.7 .0243 .884 -.0217 .753 -13.9088 -10.8324 18.0802 -.10522 -.15221 -13.711 .1978 
19 1.8 .0004 .894 -.0629 .805 1.8028 3.2344 20.3838 .01196 -.17032 2.053 .2502 
20 1.9 .0353 .914 .0020 .871 15.5842 15.2862 13.2823 .11553 -. 10984 15.764 .1798 
21 2.0 .0706 .994 .0705 .999 21.1858 21.0787 .3580 .15819 -.00415 21.207 .0222 
22 2.1 .0474 1.084 .0225 1.141 16.6536 17.1277 -13.8916 .12522 .09590 16.504 -.1496 
23 2.2 .0044 1.117 -.0697 1.229 4.9112 4.1234 -21.3879 .03794 .14266 4.663 -.2582 
24 2.3 .0135 1.122 -.0589 1.291 -.8.0209 -10.1541 -18.2064 -.05883 .12177 -8.250 -.2291 
25 2.4 .0594 1.174 .0591 1.413 -16.1158 -19.3557 -7.3413 -.11994 .04793 -16.219 -.1032 
26 2.5 .0656 1.269 .0736 1.591 -16.1305 -20.0720 7.0345 -.12083 -.04042 -16.060 .0705 
27 2.6 .0216 1.333 -.0386 1.734 -.8.9181 -10.8053 18.2719 -.06694 -.10187 -8.637 .2811 
28 2.7 .0010 1.352 -.0928 1.811 1.7033 3.3439 19.9773 .01174 -.11129 1.945 .2417 
29 2.8 .0381 1.365 .0096 1.913 10.3952 14.8375 12.6147 . 07702 -.06981 10.555 .1608 
30 2.9 .0710 1.447 .1030 2.103 1,3.4568 19.4655 .0845 .10049 -.00133 13.468 .0112 
31 3.0 .0447 1 .535 .0250 2.305 10.1343 14.9646 -12.5013 .07622 .06024 9.997 -.1373 

L	 = 4286.39139342	 E	 = -35.532782573 

L	 -228.77281991	 E	 = 51.02915154 

= 35 .627945979	 E .(g)a	 0.3725473211 

= 0.755833829	 F	 ©	 0.0552286301 

E	 ® tj)	 1.43276343	 E	 ()	 -.0.014427701 

® 2	 4140.34158937	 E @2	 0.3777271561 

I	 - 4.987891922	 1	 = -0.438887876
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0
(a) Pulse input, F(t). 
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2 	
/1\

v-Free oscillation begins 
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Independent variable, / 

/	 (b) Response q(/) to the pulse F(t). 

Figure I.- Pulse input and associated response used in example I.
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Independent variable, 
(b) Response, qjt), to Input F(t), of figure 4(c). 

Figure 4.-Input and associated response used in 

example M.

NACA TN 2341 



NACA TN 2341 51 

v
I') 

c4

Vs,j 

9 

..
q)

IF 

tk 

qp 
to 
Cl-



52
	

NACA TN 2341 

N 

QO 

N 

N 

)

.3 

'U N % 

	

.:	
c	 N	 03 

	

•- 	 •	 .	 N 
/'z WS(/)J1.7..9	 i:i ws(ILi4,.z..91 

_•.-I_

	

_____ I	 I	 II	 I	 I	 I	 I	 I 
03	 co 'U co ( 03 'U 

I •	 i•	 •-.:	 I•	 - 

/ Z

 

Soo (/)J,...9 /'z O.2(/)j1.9/ 

—S

Q) 
-o 

q3
q) 

0 

q) 

•	 $ 
$q) 

NACA-Langley - 4-17-51 - 900 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55



