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SUMMARY 

A method is presented for determining the control gearing and time 
lag necessary for a specified damping of the motions of an aircraft 
equipped with an autopilot having constant-time-lag characteristics. 
The method is applied to a typical present-day airplane equipped with an 
autopilot which applies rudder control proportional to the yawing angular 
acceleration. The types of motion predicted for this airplane-autopilot 
system by this method are in very good agreement with the airplane 
motions calculated by a s .tep-by-step procedure. 

For some values of control gearing there inayexist more than one 
range of time. lag for which the motions of the assumed aircraft-
autopilot system will have more than a specified amount of damping. 

INTRODUCTION 

Many present-day aircraft designed to fly at transonic and super-
sonic speeds have exhibited poor lateral stability characteristics. As 
a result, much interest has been shown in automatic tabilization systems 
as a means of obtaining satisfactory stability for high-speed flight. 
In analyzing the effect of a particular autopilot, the usual practice 
has been to determine whether the aircraft-autopilot system is stable 
by employing methods such as those presented in reference 1 (frequency-
response analysis) and reference 2 (Nyquist plots). For autopilots 
characterized by constant time lag (linear variation of control gearing 
and phase lag with frequency) the same information can be obtained by 
carrying out an analysis such as that of reference 3. This type of
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information is important in the analysis of an autopilot-aircraft 
system but affords little quantitative indication of the degree 
of stability which can be obtained by use of a particular autopilot. 
Since one of the purposes of equipping an aircraft with an autopilot is 
to improve its stability, the determination of the type of autopilot 
frequency response that will result in satisfactory stability appears to 
be of greater importance. The degree of stability which can be obtained 
by equipping an aircraft with a linear autopilot can be calculated by 
the methods of reference 11, but, if an over-all picture is desired of the 
variatibn of stability for different combinations of control gearing and 
constant time lag, the calculations become too laborious for practical 
application. A method of obtaining this information was discussed very 
briefly in the appendix of reference Ii-, but has been found inadequate 
for a comprehensive analysis of autOpilot systems which exhibit constant-
control-gearing and constant-time-lag characteristics. 

The purpose of the present paper, therefore, is to extend the 
concept discussed in the appendix of reference and thereby present a 
rigorous method of obtaining the combinations of constant control gearing 
and constant time lag necessary to provide specified amounts of damping, 
up to the maximum obtainable, to the motions of a linear ocillating 
system, with application to the automatic stabilization of aircraft. 
The method presented is applicable, in a strict sense, only to control 
systems which exhibit linear frequency-response characteristics, but, 
under certain conditions discussed in the paper, the analysis is valid 
for systems having a frequency response similar to that of a constant-
time-lag system over a limited, range of frequencies. 

Although in this paper the method is applied to the problem of 
automatic stabilization of aircraft, it is, in general, applicable to 
any linear oscillating system with constant time lag. 

SYMBOLS AND C0EFFICITS 

0	 angle of roll, radians 

angle of yaw, radians 

angle of sideslip, radians (v/V) 

r	 yawing angular velocity, radians per second (d41/dt) 

yawing angular acceleration, radians per second per second 

(d2c/dt2)
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p	 rolling angular velocity, radians per second (dØ/dt) 

v	 sideslip velocity , along lateral axis, feet per second 

V	 airspeed, feet per second 

p	 mass density of air, slugs per cubic foot 

q	 dynamic pressure, pounds per square foot (jpv2) 

b	 wing span, feet 

S	 wing area, square feet 

W	 weight of airplane, pounds 

m	 mass of airplane, slugs - (W/g); any integer 

g	 acceleration due to gravity, feet per second per second 

relative-density factor (m/pSb) 

inclination of principal longitudinal axis of airplane with 
respect to flight path, positive when principal axis is 
above flight path at nose, degrees 

7	 angle of flight path to horizontal axis, positive in a climb, 
degrees 

radius of gyration in roll about principal longitudinal axis, 
feet 

radius of gyration in yaw about principal vertical axis, feet 

KX0	 noidimensional radius of gyration in roll about principal 
longitudinal axis (kXo /b)	 - 

nondimensional radius of gyration in yaw about principal 
vertical axis (kZ0/b) 

nondimensional radius of gyration in roll about longitudinal 

stability axis (VKxo2cos2 T + K2s1n2r) 

nondimensional radius of gyration in yaw about vertical 

stability axis (K 2cos2r + Kx2sin2ul) 

rA
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• nondirnensional product-of-inertia parameter 

((K 2 - K2)sin ii	 COS Ti) 

CL trim lift coefficient
(W COS 

qS	 j 

C1 rolling-moment coefficient ('Rolling moment' 
qSb	 -1 

C yawing-moment coefficient
(Yawing moment\ 

qSb	 I 
Cy lateral-force coefficient

(Lateral force\ 
qS	 I 

C2 3 =-

Cn 
C=—

Cy 
Cy-

Cn 
Cnr =

2V

'-'flr - - 

2V 

2 
Cz=-

C	
Cy 

•	 Cy 
Cy
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- cl 
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_C C----
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Cfl8a - 3ç. 

	

_C2	 - 

cl 
Cl5=g; 

	

Cy	 - 
Cy.=g._ 

•

	

	 Cy
Cy= .—

t	 time, seconds 

Sb	 nondiniensjonal time parameter based on span (vt/b) 

differential operator (._) 

P	 period of oscillation, seconds 

T1/2	 time for amplitude of oscillation to damp to one-half its 
original value, seconds 

deflection of control surfaces, radians 

a	 real part of complex root of characteristic stability equation 

angular frequency, radians per second 

Ws	 nondimensional angular frequency (D) 

X	 complex root of characteristic stability equation (a + iw5)
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1	 time lag between signal for control and its actual motion, 
seconds 

nondimensional time lag (.-r) 

k

	

	 amplitude of control-Surface oscillation produced by autopilot 
in response to oscillation of airplane acceleration 

autopilot 

5	 2 

e	 phase angle, radians 

EQUATIONS OF MOTION 

The nondimensional linearized equations of motion, referred to the 
stability axes, are: 

Yawing 

•2ib(Kz2Db2 V + Kxz 2Ø)
	 + c	 + c i	 + Cn5Sr	 (la) 

Rolling 

2 b (Kx22Ø + KXZ 2) c	 +	 + lr	 + C2 5 5a	 (ib)a 

Sideslipping 

21b(DbP + D) = CY 3 + CY DØ + CLØ +	 DiV + (C
L tan y)i (ic) 

The derivatives C 5 , C1 5 , Cy5 , and CY5 have been neglected 
a	 r	 a	 r 

in equations (1). 

If a constant-time-lag autopilot which applies rudder control pro-
portional to the nth derivative of the yawing displacement is installed 
in the airplane, the equation for 5r as a function of Sb becomes
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r( sb)	 Dj'r(sb - T)	 (2) -	 Dbnr 

where the term D}j'lV(sb - T5) signifies that the control deflection at 
a given instant is proportional the the nth derivative of 'V which 
existed at a fixed time T5 previous to the given instant. The term 

r is the control-gearing ratio of the autopilot. Similarly, if a 

constant-time-lag autopilot which applies aileron control proportional 
to the nth derivative of the rolling displacement is installed in the 
airplane, the equation for a as a function of Sb becomes 

- _____ 
a(b)	 DbØ(sb - Ts) 

For purposes of illustration, assume that the type of autopilot 
described by equation (2). is to be investigated. Therefore, the value 
of 5r given by equation (2) is substituted for r in equations (1). 
The aileron deflection 5a is assumed zero. When Ø0e 5b is substi-
tuted for 0, '1c0e 5b for i, and 30e 5b for f3 in the resultant 
equations written in determinant form, X. must be a root of the charac-
teristic stability equation 

AX5 + BX + CX3 + DX + EX + ksXne T5X(A,X3 + B'X2 + CIX + DI) = 0	 () 

where A, B, C, D, E, A', B', Ct, and D' are functions of the mass and 
aerodynamic parameters of the airplane. The expressions for A, B, C, 
D, and E are given in reference 5, and, for this particular case, 

A' =	 I-Lb21CX Cn5	 S 

B' = (2bKX2CY + ILbCzP)Cn5 

C''(_zCY + CYpCl)Cn5 

D' = CLC Z Cn6	 -	 S 

636 
and k5=	 r 

63DbflStV

(3)
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The time to damp and the period of the lateral oscillation in seconds 
are, given by the expressions

- -0.693 b T1/2- 
a

(5) 
p2 

wsv 

where a and s are the real and imaginary parts, respectively, of a 
complex root of' equation (4-).

ANALYSIS 

The following assumptions are made in the derivation of the method 
which may be used to determine the combinations of k5 and T5 neces-
sary to provide a specified amount of d.amping of the lateral oscillations 
of an automatically stabilized airplane: 

(l)The characteristic stability equation of' an airplane equipped 
with an autopilot which applies rudder control proportional to the nth 
derivative of the yawing displacement which existed at time Sb - T5 is 

given by equation (1k); that is, the autopilot is assumed tp have linear 
characteristics. 

(2) This stability equation has as one of its roots X = a + 1W. 
(This . root X represents an oscillatory mode of motion, the time to 
damp to one-half amplitude and the period of which are given by equa-

tions (5).) 

The stability equation of the airplane-autopilot system (equa-
tion (1)) may be rewritten in the following form: 

-TX AXS + BX + CX3 + DX2 + EX 
k5e	 _______________________	 (6) 

- _XP (A t X3 + B t X2 + C'X + D') 

If X = a + 1w5 is substituted in each side of equation (6), the 
condition that X be a root of the characterist ,ic'stability equation is 
that the complex number A1 + iB1 obtained from the left-hand side must 

be equal to the one obtained from the right-hand side A2 + lB2. The' 
quantities'S Al + iB1 and A2 + iB2 may be represented by the expres-
sions R1e1 1 and R2e 102, respectively. Therefore, this requirement 
is equivalent to saying that R1 = H2 and l = 02 if X Is to be a
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root of equation (4-). If X = a + iw is substituted in the left-hand. 
side of equation (6), the following expression results: 

kse_T5a(cos T 8w5 - i sin .r sws). A1 + lB1 

Since the complex number A 1 + iB1 is unchanged when its phase angle Is 
increased by integral multiples of 2ir,. the following identitIes exist: 

-(i-)a 
R1 m(k)e	 in 

2irm - (Ts)mWs 

where m = 0, 1, 2, . . . . If X = a + Icn is substituted in the 

right-hand side of equation (6)., the values of R2 and e2 can be 

calculated numerically. For each value of m, the value of (r5)
in 

necessary to make e 1 equal to e2 can be calculated'and since a is 

a known fixed quantity, the values of (ks) necessary to make 

equal to R2 can also be determined. For the combinations 

and (k5 ) 1, (T5) 2 arid. (k5 ) 2 ,.. . . (r 8 )	 and (ks)m therefore, 

X = a + 1w8 is a root of the characteristic stability equation (equa-

tion (1.)). The parameter m in the preceding equations is necessary 
if the analysis is to hold for values of a which represent dampins 
less than the natural airplane damping. More specifically, the ranges 
of T 5 and k8 which result in greater stability than the natural 

stability of the airplane alone cannot be obtained correctly by 
utilizing the methods as presented in reference Ii.. For example, the 
curves presented in figure 10 of reference II- fail to provide the 
important information that, for small values of	 the autopilot-

airplane system discussed. in that reference is less stable than the 
airplane alone. In addition, the parameter m is necessary if the 

analysis is to hold for values of T 5 > 2L These values of T must 

be included in a theoretical analysis of the problem since, as	 is 

Increased by multiples of !, the phase relation again exists which 

is necessary for the system to have an oscillatory mode the, damping of 
which is indicated by a. The analysis of reference considered only 
the case of in = 1 and was therefore restricted to values of T < 8 
or, in effect, to values less than the natural periodof the oscillation.
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For a given value of a corresponding to some desired value of 
of the lateral oscillation, the analysis may be made throughout 

the range of	 and the required combinations of (ks)m and (Ts)m 
determined for each u. For each m, therefore, a curve representing 
this value of a may then be plotted as a function of (ks)m and (Ts)m• 
This family of m curves will divide-the ks,Ts plane into regions for 
which the lateral oscillations will, have more or less damping than that 
indicated by the value of a being investigated. 

General expressions for (Ts)m and (ks)m for each w5 , in terms 

of R and e2 , are as follows: 

(Ts)m = ( Ts) 0 + 

(ks '= (ks)0e2/W5 

where

(T) = e2 

(k5)0 = R2e(5) 0a .R02a/ws 

Thus, for any value of .ws, it is necessary only to obtain ( T 5 ) 0 and 

- (k5 ) 0 since, by use of the preceding generating functions, the required 
combination of T 5 and k5 are readily obtained for any integral value 
of m.

ILLUS'TRAT IVE EXAMPLE S AND DISCUSSION 

Since the purpose of installing an autopilot is to improire the 
lateral stability of the airplane, one logical value of a to investi-
gate would be that value which corresponds to the damping of the lateral 
oscillation of the airplane without the autopilot installed, hereinafter 
referred to as airplane damping. Thus, the curves corresponding to that 
value of a would indicate those combinations of k 5 and TS for which 
the airplane is more stable with a given autopilot than without it. This 
value of a may be determined, of course, by solving for the complex 
roots of the characteristic stability equation when ks is set equal to 
zero. The family of curves obtained for this value of a forms the 
boundary between two different types of curves; that is, the curves for
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dampings greater than the airplane damping are of a different shape than 
those for dampings less than this value. This change in the damping 
curves is discussed in detail in a subsequent paragraph. 

For purposes of illustrating the present method, the airplane is 
assumed to have freedom only in yaw. Several damping curves were calcu-
lated for a typical present-day airplane equipped with an autopilot. 
sensitive to yawing acceleration for both the three-degree-of-freedom 
and the one-degree-of-freedom cases. The results of the calculations, 
although not always in quantitative agreement, indicated that the nature 
of the damping curves obtained for both cases was essentially the same 
and therefore subsequent discussion . is based on the results obtained when 
the system was assumed to have freedom only in yaw. 

The mass and aerodynamic characteristics of the typical present-day 
airplane are presented in table I. The characteristic stability equa-
tion for the three-degree-of-freedom case was presented previously 
(equation (u)), and the characteristic stability equation for the one-
degree-of-freedom case is given by 	 -

-T5 X	 - 
2ibKZ2A.2 - nr - Cn = Cn kse	 X2	 (7) 

The derivative Cn is assumed equal to -Cnn. The equation used in the 

calculations, obtained by rearranging equation (7), is 

f	 (1 "	 -	 -'n.' - 
kse_T5? =	 2	

(8) 

As was pointed out in a previous section, the damping curve corre-
sponding to the damping of the airplane oscillatory motion without the 
autopilot installed forms the boundary between two characteristically 
different types of curves. In order to illustrate the types of curves 
which will be encountered, calculations were made for the airplane 
damping and for dampings less than-and greater than this damping. The 
results are shown in figure 1. For the airplane described in table I, 
the airplan& damping is T1/2 = 2.02 seconds. The values of T 5 and k5 
obtained from equation (8) have beeii converted from the nondimensioual 
time parameter 5b to time in seconds. Thus, the curves are plotted as 
a function of the dimensional parameters k and T in seconds. Each 
point on these curves corresponds to a different frequency w 5 , which 
varies from infinity at the point ('r=0,k=0.0628) to zero as T and k 
approach infinity. It is interesting to note that all the damping 
curves approach the point (0,0.0628) as w5 -.-00. For this point, the 
roots of the characteristic stability equation do not indicate any high-
frequency oscillation; however, for any finite value of T the roots df
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this equation will indicate a high-frequency oscillation in addition to 
the usual lateral oscillation. For a given value of k, the frequency 
of this additional oscillation decreases with increases in T. Also, 
all the damping curves approach a minimum value of k for a value of w5 

corresponding to a frequency close to the natural frequency of the air-
plane. In general, frequencies greater than and less than the airplane 
natural frequency are separated by the point of minimum k on each of 
the damping curves. For this airplane the natural frequency is approxi-
mately 7 radians per second. 

The curves presented in figure 1(a) correspond to T 1/2 = . The 

complete boundary for neutral stability is made up of the curves for 
m = 0, 1, 2,. . . .. Unless m is allowed to take on integral values 
it is impossible to define correctly the stable region of the k,T plane. 
For example, consider the point (k=0.037,T=l.6) in figure 1(a). The 
point, according to the curve for m = 1, represents a stable condition, 
but since it falls on the unstable side of the m = 2 curve, the pre-
sence of unstable oscillatory modes in addition to the stable oscillation 
is indicated and thus this combination of k and i - would result in an 
unstable condition. The true boundary of neutral stability is shown as 
the solid curve of figure 1(a). Only the curves for m = 1, 2, and 3 
are shown: The curve for m = 0 would fall in the regidn corresponding 
to negative values of T and therefore was omitted. From this figure 
it is apparent that for some values of k there exist several ranges 
of -r for which the system will be stable. The width of these ranges 
diminishes as m increases and eventually disappears completely. For 
this special case of Tl/2 =	 and a given value of k, the ranges 

of T necessary for stability can be calculated analytically by the 
methods of reference 3, since the airplane was originally stable. The 
results obtained by using this method agree exactly with those of 
figure 1(a). The analysis presented in this reference was for a one-
degree-of-freedom system and in appendix A it has been modified to apply 
to an airplane-autopilot system with three degrees of freedom. It should 
be emphasized that the method of reference 3 is applicable only to the 
special case for T 1/2 =	 and an originally stable airplane. On the 

other hand the method presented in this paper is equally applicable to 
originally unstable airplanes, in which cases the T1/2 = 	 curves will 

have the form of the curves -for dampings greater than the original air-
plane damping. 

For T1/2 = 3.70 seconds, the resulting curves for m = 0, 1, 2, 

and 3 are presented in figure 1(b). The general shape of the curves is 
the same as for those of figure 1(a), and the same general conclusions 
apply. Only that part of the curve for m = 0 which is in the region 
of positive time lags is shown in the figure. The. curves for the air-
plane damping, T1/2 .= 2.02 seconds, are shown in figure 1(c). For the
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combinations of k and T within the triangular_like regions, which 
are formed by the curves for m,. m + 1, and k = 0, the Oscillatory 
motion of the airplane is more stable with the autopilot than without 
it. The damping curves for T1/2 = l.-0 seconds and T 1/2 = 0.70 second 
are presented in figures 1(d) and 1(e), respectively, for m = 1 ., 2, and 3. These curves are quite different from the ones presented for 
damping less than the airplane damping. The combinations, of k and T 
for which the airplane would be more stable than is indicated by the 
curves for T1/2 = i.ti.o seconds or T1/2 = 0.70 second, for example, 
are enclosed in island-like regions in the stable part of the k,T plane. 
A similar region exists for each value of in, but as m is increased 
the size of the region diminishes. In addition, as T 1/2 is decreased 
these looped regions become increasingly smaller for each value of in. 
As T1/2 is reduced beyond some finite value these loops will cease to 
exist. The value of T1/2 for which the rn = 1 loop disappears 
represents the maximum damping obtainable for this airplane by the use 
of a specific autopilot. A method of obtaining this maximum damping 
for each value of m is presented in appendix B. It can be seen from 
figure 1(e) that no loops exist for in > 1. This amount of damping, 
therefore, can only be obtained for all the oscillatory modes within 
the m = 1 loop. This conclusion could have been reached by carrying 
out the analysis of appendix B. As a matter of interest, for this parti-
cular autopilot-airplane system, the in = 1 loop ceases to exist for 

< 0 .35 second. 

The regions in the k, T plane, which correspond to the dampings 
shom in figure 1, have been combined and are presented in figure 2. 
This figure gives an over-all picture of the effects of the specific 
autopilot on the lateral stability of the airplane. In order to verify 
the results indicated by this figure, airplane motions were calculated 
for the combinations of k and T identified as points A, B, C, an D. 
Step-by-step calculations were made by assuming freedom only in yaw, and 
the airplane motions in yaw subsequent to a 0 displacement in yaw for 
these combinations of k and T are presented in figure 3. Point A 
is located within the in = 1 loop corresponding to T112 1.1.O seconds 
and the motion of figure 3(a) checks this prediction. The motion for 
point B (fig 3(b)) is very lightly damped as is indicated by its near-
ness to the zero-damping curve. Point C represents a combination of k 
and T for which the airplane is less stable with this autopilot than 
without it. Also, as seen from figure 2, the motion for this combina-
tion of k and T should indicate two oscillatory modes of different 
frequency with approximately the same amount of damping. The motions. 
of figure 3(c) support this prediction since more than one oscillatory 
mode is indicated. The combination of k and T for point D is located 
within the m = 2 loop, Ti/2 < lii-O seconds. The motion for this combi-
nation (fig. 3(d)) is approximately as heavily damped as that of
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figure 3(a), but because of the larger value of time lag this high 
damping is not realized as quickly. It is of significance, however, that 
this amount of damping can be obtained for the combinations of k and 
T within the m = 2, 3, . . . loops as well as for those within the 
m = 1 loop. In actual practice the phaBe lags encountered in conventional 
autopilots.which can be represented by second-order systems generally do 
not exceed 180° at any frequency and the assumption of constant-time-lag 
characteristics usually is valid only within the frequency range where 
the autopilot phase lag is less than approximately 90 0 , The time lags 

common to the m = 2, 3, . . . loops imply phase shifts greater than 
2i and thus are beyond the range where the assumption of constant time 
lag is usually valid. Two conceivable cases may be mentioned for which 
it might be desirable to dve1op devices with such large time lags. 
One is the case of a high-natural-frequency system (not necessarily an 

aerodynamic 'system), for which it might be impractical to obtain the 
small lags necessary for the stability of the system with automatic 
stabilization in the m = 1 region. Another case is that of an aero-
dynamic system which is to respond to automatic control in addition to 
being automatically stabilized, in which case it might be desirable to 
delay the operation of the stabilization device in order to reduce its 
effect on the response time of the automatic control. 

It should be reemphasized that the preceding analysis was made for 

an airplane equipped with an autopilot having constant time lag. Damping 
curves such as those presented in figure 2 therefore apply, in a strict 
sense, only to autopilots which have these assumed characteristics. If, 
however, a frequency-response analysis of a given autopilot indicates 
that the assumption of a constant time lag is valid for only a limited 
range of frequencies, the preceding methods can still be used to good 
advantage. Damping curves such as those of figure,2 can be constructed 
and the values of k and T which will result in a given amount of 
damping of the oscillatory modes of motion, can be determined since for 
each point in the k,T plane there will be certain complex solutions of 
the :airplane_aito PilOt characteristic stability equation (equation (7)). 
If the frequencies of the oscillatory modes characteristic of a parti-
cular point in the k,T plane are such that the autopilot can be made to 
exhibit constant-lag characteristics up to and beyond the highest 
frequency involved, then the damping of the oscillatory motions for , the 
airplane-autopilot system will be essentially the same as predicted by 
the constant-time-lag analysis. The validity of this statement can be 
seen by examination of equation (8). The left-hand aide of this equation 
is the autopilot frequency-response funclion 8r/ 2f. Likewise the 
right-hand side of the equation is the airplane frequency-response func-
tion r/Db24r. The necessary and sufficient condition that X = a + 

be a solution of the characteristic equation (equation (7)) is that, 
when a + iCD5 is substituted for X. in equation (8), the complex number 

obtained from the autopilot frequency-response function br/12'1! be
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identical with that obtained from the airplane frequency-response func-

tion r/Db2r . The frequencies characteristic of any point in thek,T 

plane are readily identifiable and, if the frequency-response function 
br/Db2* of an actual autopilot can be closely approximated by the ex-

-TX 
pression	 = k8e	 - up to and beyond those frequencies, then the 

complex roots of the airplane-autopilot characteristic equation must 
be essentially the same as those predicted by a constant-time-lag 
analysis.

CONCUJDING REMAIKS 

A method is presented for determining the control gearing and time 
lag necessary for a specified damping of an aircraft equipped with a 
constant-time-lag autopilot. The method is applied to a typical present-
day airplane equipped with an autopilot which applies rudder control 
proportional to the yawing angular acceleration. The results calculated. 
for an airplane-autopilot system by the method described are in excellent 
agreement with the airplane motions calculated by a step-by-step procedure. 

The investigation shows that, for some values of control gearing, 
there exists more than one range of time lag forwhich the assumed 
aircraft-autopilot system will have a specified amount of damping. The 
width of these ranges diminishes with increased time lags, and beyond 
some value of lag, these ranges cease to exist. 

It should be emphasized that the analysis presented in this paper 
is.applicable, In a strict sense, only to systems which exhibit constant-
time-lag characteristics; however, under certain conditions discussed 
in the paper, a constant-time-lag type of analysis is valid for systems 
which have constant time lags for only a limited range of frequencies. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va. , September 26, l9O
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APPENDIX A 

EXTENSION OF ANSOFF' S STABILITY CRITERION TO THE LATERAL 

MOTIONS OF AN AIRPLANE EQUIPPED WITH YAW AUTOPILOTS 

Reference 3 analyzes the effects of constant time lag in the feed-
back of a one-degree-of-freedom oscillatory system on the stability of 
the oscillation. The analysis shows that, in general, for a given 
gearing, ranges of time lag will exist for which the system remains 
stable. These ranges are separated from each other by unstable ranges. 
The expression for these stable time-lag ranges is obtained in closed 
form in terms of the other parameters of the system. It should be 
emphasized that the analysis is valid only for a system originally 
stable without feedback. 

This appendix extends the method of reference 3 to the three degrees 
of freedom of lateral motion of an airplane with a yaw autopilot. The 
argument and analysis presented in reference 3 are repeated herein only 
to the extent necessary to present the modifications of the method and 
to emphasize or clarify points. 

The autopilot is assumed. to provide a yawing moment proportional 
to the yaw displacement or to the nth time derivative of the yaw, with 
the moment lagging the disturbance by a constant time -r. The resulting 
nondimensional equations of motion are given by equations (1) and (2), 
and the characteristic stability equation of the system is equation (I). 
Note that the first five terms of equation (h-) are the characteristic 
function of the airplane without the autopilot installed. If, therefore, 
equation () is divided through by this characteristic function of the 
airplane alone, the characteristic equation, of the total system is 
obtained in the form 

F(X) = 1 +
(A t X3 + B t x2 + C'X + Dt) XTlkse_T5X

AX5 + BX+ CX3 + DX2 + EX
a 1 + W(X) = 0	 (Al) 

The theory may be given very briefly as follows: The roots of 
equation (1i ) are also the roots of equation (Al ) and are the character-
istic roots of the system. In order for the system to be stable, their 
real parts must all be negative. In the complex X-plane a closed curve 
consisting of the imaginary axis and the infinite semicircle to its 
right will enclose all values of X with positive real parts. Then by 
a theorem in the theory of functions of a complex variable (see refer-
ence 6), it can be shown that the transformation of this closed curve
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into the complex F-plane will circle the origin in the F-plane 'once in 
a positive direction for each root of F( X) = 0 enclosed by the curve 
in the X-plane and once in the negative direction for each pole. It can 
be seen from equation (Al) that the origin of the F-plane corresponds 
to the point (-1,Oi)'in the W-plane, and, in fact, each curve in the 
F-plane is simply displaced u.ni•t distance to the left in the W-plane. 
If the airplane were originally stable, F(X) would have no poles in 
the right half of the 'X-plane; therefore, the condition that the'whole 
system have no roots in this right half of the plane (unstable roots) 
is simply that w(X) , should not enclose the (-1,Oi) point in the 
W-plane. 

One condition for the preceding theorem to apply is that there be 
'no zeros or poles of F(X) on the boundary curve in the X-plane. It 
will be shown subsequently , that for n > 2 stability is impossible; 
thus, the only autopilots of interest are those where n = 0, 1, and 2, - 
that is, displacement, velocity, or acceleration autopilots. Now the 
zero root of the characteristic equation ) for n = 1 and 2 is 
removed by the division which gives equation (Al); therefore, no diff 1-
culty occurs for these two cases. For n'= 0, however, equation (Al) 
gives a pole for F(X) at X = 0, which is on the boundary curve; 
therefore, for n = 0 dividing through by X is not convenient. Thus, 
for n=O

(A'x3 + BtX2 + C'X + D')k5e	
= 0	 (A2) F( x) = x + w( x)	

+	 AX + BX3 + CX2 + DX + E 

Finally, it is shown in reference 3 that, because of the negative 
exponential in equations (Al) and (A2), the transform in the W-plane of 
the boundary curve of the right half of the X-plane degenerates to simply 
the transform of the , imaginary axis. Thus, this curve can be obtained 
by placing iw5 for X in equations (Al) and (A2) and letting w5 
vary from - to . Equations (Al) and (A2) become 

F(iw)	 1 + W(iws) = 0	 (A3) 

for acceleration and velocity autopilots, and. 

F (iw5 ) a io + W (iu 5) = 0	 ,	 (A)) 

for displacement autopilots. 

For displacement autopilots, the critical point in the W-plane 
corresponding to the origin in the F-plane becomes the point - 10 S, a 
'varying point; that is, w(w8 ) must not enclose the point (O,-iw5).
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Aceleration Autopilots 

The expression for W as a function of ci may be obtained for 
the acceleration autopilot by use of equations (Al) and (A3). For the

	

acceleration autopilot, letting a A t ks, b B'k5, c	 C'k5 , and 
d D t k5 gives 

W(ws) = [(aws -	 2) +	 - bws3)]eT5 

(Aws - Cw82 + E)	 i(L	 - Bw53) 

or r'	 2 

W(w5) - I (aw - cw8 )2 + (d	 - bw53)2 1/2
ei_Ts +	 (A5) 

- [(A 5 - Cw + E)2 +	
-	 3)2] 

where

0	 -	 (A6) 

and

- bu 5 3	 d - bw52 
tan e1 

= aU)s 4 - cws2 = au 5 3 - cws	
(Ala) 

Ikl)8 - B83 

Aus - c 2 + E
tan 62 (Am) 

The angles O and 62 may be obtained from these equations for any 
given value of w since the algebraic sign of the numerator of tan 6 
is the algebraic sign of sin 6 and the algebraic sign of the denomi-
nator is that of cos 0. These signs determine the proper quadrant 
for 6. 

The W(w5 ) curve cannot encircle the point (-1,Oi) in the W-1ane 
unless wi > 1. Thus, the ranges of w5 must be found where wi > 1 
by setting wI = 1 and solving for w5 . In the following discussion 
only the part of the curve for positive u will be considered inasmuch 
as the curve for negative WS is simply the mirror image of the curve 
for positive u	 in the real axis. 

An important result can be obtained by considering what happens 
to W(w5 ) as W5 —co. The phase angle of W is seen to spiral around 
the origin whereas
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I	 ksKX2Cnr	 I	 Ik5rt 
lal I________________	 ______ urn WI = i —i = I	 I	 i	 I	 (A8) 

(Ds -	 1A1	
I2 b (Kx2 cz2 - Kxz)	 I2bKz2I 

Thus, W(w5 ) spirals about a circle of this radius, and it can be seen 
that stability is impossible if the limit is greater than 1, since the 
point (-1,Oi) would certainly be enclosed in this case. Therefore, 
stability is impossible for n > 2 since in this case	 lim WI = - W5—)c0 

In the cases of interest the limit of equation (A8) is less than 1. 
The next step is to find the critical values of w5 by setting. IWI = 1. 
This condition gives a quartic in ws 2 . If x is substituted for w52, 
the critical roots are the positive real roots of the resulting equation 

(a2 - A2S)x + (b2 - B2 + 2AC - 2ac)x3 + (c 2 - C2 + 2BD - 2bd - 2AE)x2 + 

(d2 D + 2CE)x - E2 0
	

(A9) 

When there are no positive real roots of equation (A9), the system 

is always stable. Moreover, for < 1, there must always be an even 

number of such roots (double roots being counted twice). For the one-
degree-of-freedom case considered in reference 3 this equation was a 
quadratic; consequently, there was only one pair of values (ws 1 ,w52 ) for 
which WI = 1, and between these values wI > 1. This condItion corre-
sponds to the fact that the frequency-response curve of the system has 
only one maximum. In the three-degree-of-freedom case there are four 
possible positive real roots, a condition which corresponds to the fact 
that the frequency-response curve may have two maximums (see fig. (a)). 
Since either of these maximums, in case four critical roots exist, may 
enclose the point (-1,Oi), each pair of successive roots must be treated 
in the same way as the single pair was treated in reference 3. In most 
cases equation (A9) will have only two positive real roots. A necessary 
condition that there be four positive roots is that equation (A9) have 
four sign changes in its coefficients. The necessary and sufficient 
conditions for existence of four real roots can be found in most algebra 
books (for example, reference 1). 

Although equation (A9) will usually have -only one pair of real 
positive roots, for the sake of generality the possibility of two pairs 
must be considered. Corresponding . to the two pairs of successive roots 
(ws1 and ws2) and (w51 t and n ), where	 >	 > (Ds1 > 

two pairs of values (øi 02) and (0i ' 02') can be obtained from equa-

tions (A6) and (A7). Then, there are two conditions to determine the 
stable ranges of time lag:
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(_l)+Ø2<<(+l)n+Øl (AlOa) 
(1)61 

(2in-l)+Ø2 '	 (2xn+1)it+Ø1' 
<T <	 ( Alob) 

wslt 

For the system to be stable, both of these must be satisfied; that is, 
the stable time-lag ranges are those where the ranges in equation (AlOa) 
and equation (AlOb) overlap. Here in = 0, 1, 2, . . . . The values 
of, m for which the stable, ranges exist are given by the condition 

(IC + Øl)Ws2 + ( IC - ø2)°sl (Alia) m<
2IC(Ws1 - w52) 

or	

( + Øf)w2' + ( -	
(Allb) in <	

2IC(w511 - ws2') 

Of course the smaller of these two bounding values Is actually the 
largest m for which stable ranges exist. Thisvalue can be used in 
the corresponding equation (A1Oa) or (AlOb) to find the maximum value 
of -r for stability.

Velocity Autopilots 

The procedure for velocity autopilots is the same as that for 
acceleration autopilots, the only difference being that the magnitude 
of W(w5 ) is divided by a>5 and the phase angle decreased by I/2. 
The change in phase angle appears in el, which is now given by 

cw - aw3 
tan l =

	

	 (-Al2) 
d-bu52 

Setting jWI equal to 1 now yields, for a>52 

A2x + (B2 - a2 - 2AC)x3 + (C 2 - b2 + 2ac ± 2AE - 2BD)x 2 + 

(D2_c2+2bd_2CE)x+E2_d2=Q	 (A13)
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It might be noted that for this case	 urn 1 W ! = 0, so that no condition 

similar to that of equation (A8) arises. However, in this case, 	 wi 
does not vanish as w5 —>0:	 - 

d'

2ksClj3Cn5r 
urn !wi = I = _____________________________________ .(A14) w5 —)0	 CnrCl - CZCn + (Ci•pCn	 CnCi)tan I 

Since IE I is generally very small, this quantity will generally be 
greater than 1. In this case, equation (A13) will have one or three 
critical roots (usually one), as may be seen from figuxes 4(b) and 4(c). 

In the case	 <1 an even number of critical roots will exist, and 

this case is treated exactly as in the case of the acceleration autopilot 
by using equations (Alo) and the associated discussion, with equa-
tion (Al2) replacing equation (Ala). However, in the more general case 
of	 > 1, a slightly different treatment is needed. 

For the usual case of an odd number of critical values of 	 the 
lowest value is treated separately. Call 'this value	 Then, JWJ >1
when w <ws0, as can be seen in figure 4(b). Since the phase angle 
(-U 5 T + 0) is a monotonically decreasing function of w5 and vanishes 
in this case for w5 =0, ±he first condition for stability becomes 

50T + Oo > -it, where øo is obtained when CD50 is used in equa-
tions (Au2), (A7 b ) and (A6). Thus, the stability condition for the 
first maximum of W isthe stringent one that 

T< 
0)50
	 (A15) 

In the case of one root, this is the only condition. For three roots an 
additional condition must be satisfied since the second maximum may - 
enclose the point (-1,Oi). In this case the remaining two roots, with 

<	 < s1 , are paired just as in the acceleration autopilot, except 

that equation (Al2) of course replaces (Ala), and equation (AlOa) applies. 
Note that both conditions (equations (AlOa) and (A15)) must be satisfied 
for stability, as described in the discussion of the acceleration autopilot. 

Displacement Autopilots 

In comparing equation (A2) -with equation (Al) for n = '1, the W(w5) 
in equation (A4) for displacement autopilots can be seen to be exactly the
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same as the W(ws) in equation (A3) for velocity autopilots. The 
difference between the two cases arises from the change in the critical 
point of the W-plane, as point;ed out in the paragraph following equa-
tion (A 1-). Only positive values of Ws need be considered, and for 
these values the critical point is (O,-iu). Since this point cannot be 
enclosed except when WI > w5 , the critical values of w52 are given 

by the positive real roots of WI 2 = w52 , and the critical phase angles 

are now _(ai +	 rather than -(2r - i)ic. 

The equation determining the critical values for x WS2 Is 

A2x5 + ( B2 - C)x + ( c2 - a2 + 2AE - 2BD)x3 + 

( r2 - b2 + 2ac - 2CE)x2 + (E 2 - c2 + 2bd)x - d2 = 0	 (Al6) 

This equation gives the intersections of the function 1w! with the 
straight line witl unit slope, as shown in figures li-(d) and (e). From 
these figures the equation is seen always to have an odd number of real 
positive roots (double roots being counted twice); and, in particular, 
figure li.(e) shows how the maximum of five critical values might occur. 

The method of procedure is the same as that given for the velocity 
autopilots with an od4 number of roots. Equations (Al2), ( .ATb ), and 
(A6) are used to get 0(w8). The first critical frequency w80 gives as 

the stability condition in this case that -U)SQT + Oo > -. Thus, the 

first stability condition for this case is apparently the very stringent 
one that

T <

	

	 ( A17) 
(Ds0 

For three critical values, the next two are paired' as before and 
give the additional stability condition for w <u52 <usl: 

( -	 + 02	
(2m +	 + Oi 

U)52	 wSl 

which replaces equation (AlOa). Equations (Al7) and (A18).must both be 
satisfied for stability. 

Finally, for five critical values, an almost impossible case, the 
final pair of values ( 52 t ,1t) gives a third necessary condition when 

used in equation (A18), as described in the discussion of equation (Alob).
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APPEND DC B 

DETERMINATION OF MAXIMUM DAMPING OBTAINABLE. BY USE 

OF A SPECIFIC AUTOPILOT 

The conditions which must be satisfied if the damping curves are to 
have loops are that (T s )m have both a maximum and a minimum value for 
some values of Ws, say (WS)1 and (w5 ) 2 , and that ( ks)m be a mini-
mum for some value of u	 which is between (w) 1 and. (w5 ) 2 . (See 

fig. 1(d).) The loops will break down when d(k:)m and d(T:)m vanish 

for the same value of . w5 . The value of a for which these conditions 
are satisfied is the maximum damping of the ' system obtainable by use of 
a specific autopilot. A curve representing a damping greater than this 
maximum in the k 5 ,T 5 plane will have no practical significance, since 
for every point on this curve some oscillatory mode with less damping 
than the maximum will always exist. 

Now, ( ks)m and (T s)m are defined by the expressions 

(ks)m = e(Tma 1
(Bi) 

2irm-92 
Ts)m - ________ 

where - R2 , (is)m, and. 02 are functions of w5 and were discussed in 
the section entitled "Analysis." Differentiation of equations (Bi) 
results in the expressions 

d(ks)m = R2e ( s)ma __ [( --5 a] + eT5)ma d.R2 
dLD5 

dO2 
d.( Ts)m = 

-(1)	 - 2icm + 

Setting these expressions equal to zero and considering m = 1 gives
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=ãR —+--0 
dL5	

2	
dLD5

(B2) 

dT

	

= 2t -	 + CD5 	 = 0 

dT8 Since - = 0 is a necessary condition, - must also be equal to 
ULU5 

zero if	 is to vanish. The expressions for R2 and 2 are both 

functions of w, with the quantity a as a parameter. Equations (B2) 
shotild therefore be solved simultaneously in order to determine the 
maximum obtainable damping since

- -0.693 b 
T1/2-	

a 

A convenient method for determining the maximum obtainable damping is 
as follows: For several values of a. for which the loops are known to 

be small, determine the values of w8 for which	 = 0. Substitute 
dT5 

these.combinations of a and w5 into the expression - and evaluate 
dT	

uws 

the function. A plot may then be made of —k against a as abscissa, 

and the value of a for which 	 = 0 is the required solution. As 

a check, this value of a should be substituted into _a = 0 and the 

corresponding value of w determined. This combination of a and w5, 

if a solution, will then satisfy 	 = 0. 

The same analysis is applicable to the loops corresponding to 
m = 2, 3 . . . Equations (Bl) show that B2 and e2 are independent 

of m; hence,	 is also independent of m. The general expression 

d(T5) 
for	 m = 0 is (see equations (B2)) 

-	 +	 = 0 

Rearranging the equation gives 

2inn=92 -U) 	 (B3) S dLDs
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dR'D 
Thus, if the combinations of a and w which satisfy —s are deter-

dLD8 

mined for a sufficiently wide range of a and substituted into the 
right-hand side of equation (B3), the value of a for which loops will 
cease to exist for any value of m can be determined. For example, the 

m = 1 loops will break down when 62 - Ws	 = 2ii; the m = 2 loops, 

when this expression equals 4ii; and so on. In general, the value of a 
for which the loops break down decreases as m increases. 

The preceding analysis was applied to the in = 2 and m = 3 case 
for T1/2 = 0.70 second since these loops were known to have broken 
down for this damping (see fig. 1(e)). As was expected, the analysis 
verified the fact that the loops did not exist for these values of m 
for T1/2 = 0.70 second.
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TABLE I 

MASS CUARACTERISTICS AND STABILITY DERIVATIVES OF A 

TYPICAL PRESENT-DAY AIRPLANE 

w/s,	 lb/sq	 ft	 ............................ 65 
S,	 sq	 ft	 ............................. 130 
b,	 ft	 ............................ 28 
p,	 slugs/cu ft	 .......................... 0.00089 
V,	 ft/sec	 ............................ 797 
y,	 deg	 .	 ••	 ............................. 
CL................................ 0.23 
Pb•	 .............................. 80.7 
Kx2............................... 0.00967 
K•	 ................... .	 .........0.0513 
KXZ............................. 0.O01I.5 
r,	 d.eg	 ............................. .	 -2.0 
C	 , per radian 

C1r'	 per radian	 ............... .	 .	 .	 .....	 0.08 
Cflp	 per radian	 ..................... .	 -0.016 

Cnn ,	 per radian	 ................. •	 .......e0.1l.0 
CYp per radian	 .......... .	 .	 .	 0 
CYper radian	 .............. •	 ............0 
CY	 per radian	 ..... •	 •	 •	 •	 -1.0 

per	 radian	 ....................... .	 0.25 
C,	 per	 radian	 .......................... -0. 13 
C,	 per	 radian	 ......................... -0. 163
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w S 2 	 wsl	 ws2 ws1 

Angular frequency, w3 

Acceleration autopilot
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Figure 4-.- Types of frequency response for IWI showing possible critical 
frequencies .for acceleration, velocity, and. displacement yaw autopilots. 
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