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SUMMARY

A method is presented for determining the control gearing and time
lag necesgsary for & specified damping of the motions of an aircraft
equipped with an autopilot having constant-time-lag characteristics. '
The method is applied to & typical present-day airplane equipped with an
autopilot which applies rudder control proportional to the yawing angular
‘acceleration. The types of motion predicted for this airplane-autopilot
system by this method are in very good agreement with the alrpleane
motions calculated by a step-by-step procedure.

For some values of control gearing there may exist more than one
range of time. lag for which the motions of the assumed sircraft-
autopilot system will have more than a specified amount of damping.

INTRODUCTION

I

Many present-day aircraft designed to fly at transonic and super-
sonic speeds have exhibited poor lateral stability characteristics. As
a result, much interest has been shown in automatic stabilization systems
as a means of obtalning satisfactory stability for high-speed flight.
In analyzing the effect of a particular autopilot, the usual practice
has been to determine whether the sircraft-autoplilot system is stable
by employing methods such as those presented in reference 1 (frequency-
response analysis) and reference 2 (Nyquist plots). For autopilots
characterized by constant time lag (linear variation of control gearing
and phase lag with frequency) the same information can be obtained by
carrying out an analysis such as that of reference 3. This type of
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information is important in the analysis of an autopilot-aircraft

system but affords little quantitative indication of the degree

of stability which can be obtained by use of a particular autopilot.
Since one of the purposes of equipping an aircraft with an autopilot is
to improve its stability, the determination of the type of autopilot
frequency response that will result in satisfactory stability appears to
be of greater importance. The degree of 'stability which can be obtained
by equipping an aircraft with a linear autopilot can be calculated by
the methods of reference 4, but, if an over-all picture is desired of the
variation of stability for different combinations of control gearing and
constant time lag, the calculations become too laborious for practical
application. A method of obtaining this information was discussed very
briefly in the appendix of reference L, but has been found inadequate

for a comprehensive analysis of autopllot systems which exhibit constant-
control-gearing and constant-time-lag characteristics.

The purpose of the present paper, therefore, is to extend the
concept discussed in the appendix of reference 4 and thereby present a
rigorous method of obtaining the combinations of constant control gearing
and constant time lag necessary to provide specified amounts of damping ,
up- to the maximum obtainable, to the motions of a linear oscillating
system, with application to the automatic stabilization of aircraft.

The method presented is applicable, in a strict sense, only to control
systems which exhibit linear frequency-response characteristics, but,
under certain conditions discussed in the paper, the analysis is valid
for systems having a frequency response similar to that of a constant-
time-lag system over a limited range of’ frequen01es.

Although in this paper the method is applied to the problem of

automatic stabilization of aircraft, it is, in general, applicable to
any linear ‘oscillating system with constant time lag.

SYMBOLS AND COEFFICIENTS

¢ angle of roll, radians

¥ . —angle of yaw, radians

B angle of.sideslip, radians (v/V)

r yawing angular velocity, radians per second (d¥/at)

¥ yewing angular acceleration, radlans per second per second

(a2¥/at?)
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Hb

rolling angular velocity, radians per second (dg/dt)
sideslip velocity along lateral axis, feet per second
airspeed, feet per second

mass density of air,-slugs per cubic foot

dynamic pressure, pounds per square foot <%pVé>

wing span, feet

wing area, square feet

weight of airplané, poundé

mass of airplane, slugs "(W/g); any integer

acceleration due to gravity, feet per second per second

relative-density factor (m/pSb)

inclination of principal longitudinal axis of airplane with
respect to flight path, positive when principal axis is

above flight path at nose, degrees

angle of flight path to horizontal axis, positive in a cllmb
degrees

radius of gyration in roll about principal longltudlnal ax1s,
feet

radius of gyration in yaw about principal vertical axis, feet '

nondimensional radius of gyration in roll about pr1nc1pal
longitudinal axis (kxo/

nondimensional radius of gyration in yaw about principal
- vertical axis (kzO/b>

nondimensional radiusbof gyration in roll about longitudinal

stability axis <\/KX02c052q + Kzogsian)

nondimensional radius‘df gyration in yaw about vertical

stability axis <\/Kzo2cos2r, + KX02sin2q>



Kxz

O/IO/
R-1Ke!
<

¥ o8 R e
Eﬁé‘L< <$;‘h: <| o'l <ol

|&
nNls
AR

nondimensional product-of-inertia parameter

<(K202 - Kybg)sin 7 cOS n)

trim 1ift coefficient (W—CO;—7)
A _ 5

A}

rolling-moment coefficient’ (ROllingbmoment>
q

yawing-moment coefficient (Yaw1ng moment>

qSb
Lateral force>
qS

lateral-force coefficient (
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time, seconds
nondimensional time parameter based on span (Vt/b)

differential operator <41—>
dsy,

period of oscillation, seconds

time for amplitude of oscillation to damp to one-half its
original value, seconds

deflection of control surfaces, radians

real part of complex root of characteristic stability equation

' angular frequency, radians per second

nondimensional angular frequency <€a9

complex root of characteristic stability equation (a + iwg)
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T time lag between signal for control and its actual motion,
seconds )

T nondimensional time lag (%T)

k amplitude of control-surface oscillation produced by autopilot
in response to oscillation of airplane acceleration

( oy

- v2
b2

¥ lautopilot

oy

k =
s D2 v

6 phase angle, radians
EQUATIONS OF MOTION
The nondimensional linearized equations of motion, referred to the

stability axes, are:

Yawing

(K202 + Kyg D) = Cogb + Bny Do + ony Dp¥ + Cng & (12)

Rolling

2pb(KX2Db2¢ + Kyz Dbg‘lf): CI’BB + %-Czp Db¢ + %Clr DpV¥ + Clsaaa (1b)

Sideslipping

2up(DeB + Dp¥) = Cygh + %CYP Dyd + Crf + %Cyr DpV¥ + (Cr tan 7)¥ (1c)

The derivatives CnSa’ 'CZSr’ Cyaa,‘and CYSr have been neglected
in equations (1).

If a constant-time-lag autopilot which appliés rudder control pro-
portional to the nth derivative of the yawing displacement is installed
in the airplane, the equation for 8y as a function of sy becomes
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8r(sb) = —— Dp¥(sp - Ts) | \ (2)

where the term Dan(sb - Ts) signifies that the control deflection at

a given instant is proportional the the nth derivative of V¥ which
existed at s fixed time Tg DPrevious to the given instant. The term

38,
oD, Ry ,
constant-time-lag autopilot which applies aileron control proportional
to the nth derivative of the rolling displacement is installed in the
airplane, the equation for 8, as a function of Sp becomes

is the control-gearing ratio of the autopilot. Similarly, if a

. o :
Ba(sp) = BD:§¢ Dy @ (so - T5) | (3)

For purposes of illustration, assume that the type of sutopilot
described by equation (2). is to be investigated. Therefore, the value
of &, given by equation (2) is substituted for &, insequations (1).
The aileron deflection Jy is assumed §gro. When ¢oe b is substi-
tuted for #, VYoe' P for ¢, and Boe P for B in the resultant ;
equations written in determinant form? A . must be a root of the charac-
teristic stability equation :

' - X . .
AN + BAF + 0a3 + DA2 + EA + kABe 8M(a'A3 + B'A2 + C'A+ D') =0 (&)

_ where A, B, C, D, E, A", B', C', and D' are functions of the mass and
aerodynamic parameters of the airplane. The expressions for A, B, C,
D, and E are given in reference 5, and, for this particular case,

2
At = by 2Ky Crg,.
B' = (2ubKXQCYB + chlp)cnar
C!'= -lCZ Cy, + lCY CZB)CDS
2 'p B 2P r

D' = CLCZBCnsr
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The time to damp and the period of the lateral osc1llat10n in seconds
are given by the expressions

(5)

where a and wg are the real and imaginary parts, respectively, of a
complex root of equation (4).

ANALYSIS

" The following assumptions are made in the derivation of the method
which may be used to determine the combinations of kg and Tg neces-
sary to provide a specified amount of damping of the lateral oscillations
of an automatically stabilized airplane:

(1) The characteristic stability equation of an airplane equipped
with an autopilot which applies rudder control propbrtional to the nth
derivative of the yawing displacement which existed at time sy, - T4 is
given by equation (4); that is, the autopilot is assumed to have linear
characteristics. ' .

_ (2) This stability equation has as one of its roots A = a + iwg.
(This root A represents an oscillatory mode of motion, the time to
damp to one-half amplitude and the period of which are given by ‘equa-
tions (5).)

The stability equation of the airplane-autopilot system (equa-~
tion (L)) may be rewritten in the following form:

~Tgh _AMD + BAY + A3 + DAZ + EA
B(an3 + B'A2 + ¢c'a + DY)

(6)

kge

If A =a + iwg is substituted in each -side of equation (6), the
condition that A be a root of the characteristic stability equation is
that the complex number Aj + iBy obtained from the left-hand side must
be.equal to the one obtained from the right-hand side Ap + iBp. The-
quantities. Aj + iB; and Ap + iBp may be represented by the expres-
sions Rle1 1 and Reelee, respectively. Therefore, this requirement
is equivalent to saying that Ry} = Rp and 61 = 62 if A 1is to be a
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root of equation (4). If A =a + iwg 1is substituted in the left-hand
side of equation (6), the following expression results:

- ‘ i6
kge TSa<E:os TgWg - 1 sin Ts®%>-5 A + iBy = Rje 1
Since the complex number Aj + iB; 1is unchanged when its phase angle is
increased by integral multiples of 2n, the following identities exist:

-(1g) a
8'm

R

1 (ks) e

m

61 =2m - (Ts)sz

where m =0, 1,2, ... . If A =a+in, is substituted in the
right-hand side of equation (6), the values of Ry and-'e2 can be
calculated numerically. For each value of m, the value of (1g)

m

necessary to make 6, equal to 92 can be calculated ‘and since a 1is

a known fixed quantity, the values of (kg)  necessary to make Ry
: m

equal to Ry, can also be determined. For the combinations (Ts)l

and (ks)l, (Ts)2 and '(kS)z,.’ .. (TB)m, and (ks)m, therefore,

A =a + iwg 1is a root of the characteristic stability equation (equa- .

tion (4)). The parameter m in the preceding equations is necessary

if the analysis is to hold for values of & which represent dampings

less than the natural airplane damping. More specifically, the ranges
of Tg and kg which result in greater stability than the natural

stability of the airplane alone cannot be obtained correctly by
utilizing the methods as presented in reference 4. For example, the
curves presented in figure 10 of reference 4 fail to provide the
important information that, for small values of Tg, the autopilot-

airplane system discussed in that reference is less stable than the
airplane alone. In addition, the parameter m 1is necessary if the

analysis is to hold for values of Ts>>g£' These values of Tg must
Wg
be included in a theoretical analysis of the problem since, asg Tg 18

increased by multiples of ex, the phase relation again exists which

: ® :

is necessary for the system %o have an oscillatory mode the. damping of
which is indicated by a. The analysis of reference 4 considered only

the case of m = 1 and was therefore restricted to values of Ts<:E§

or, in effeét, to values less than the natural period . of the oscillation.
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\

For a given value of a corresponding to some desired value of
Tl/2 of the lateral oscillation, the analysis may be made throughout
the range of wg and the required combinations of (ks)m and (Ts)m
determined for each wg. For each m, therefore, a curve representing
this value of a may then be plotted as a function of (ks)m and (Ts)m.

This family of m curves will divide-the kg,Tg plane into regions for
which the lateral oscillations will have more or less damping than that
indicated by the value of a being investigated.

General expressions for (Tg)p and (ks)m for each wg, in terms
of ‘Rp and 6p, are as follows:

(ra)g = (ra)g + 22
(Ke)y = (ke)ge2 ™%
where |
| (Ts)g = —g%
(kéio _ R2e(TS)Oa =fR29-92a/ws \

Thus, for any value of .wg, it is necessary only to obtain (Ts)o and

.(kg)o since, by use of the preceding generating functions, the required

combination of 15 and kg are readily obtained for any integral value
of m. '

ILLUSTRATIVE EXAMPLES AND DISCUSSION

Since the purpose of installing an autopilot is to impro&e the
lateral stability of the airplane, one logical value of a to investi-
gate would be that value which corresponds to the damping of the lateral
oscillation of the airplane without the autopilot installed, hereinafter
referred to as airplane damping. Thus, the curves corresponding to that
value of a would indicate those combinations of kg and 1g for which
the airplane is more stable with a given autopilot than without it. This
value of a may be determined, of course, by solving for the complex
roots of the characteristic stability equation when kg  1is set equal to
zero, The family of curves obtained for this value of a forms the
boundary between two different types of curves; that is, the curves for
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dampings greater than the airplane damping are of a different shape than
those for dampings less than this value. This change in the damping
curves is discussed in detail in a subsequent paragraph. .

_For purposes of illustrating the present method, the airplane is
assumed to have freedom only in yaw. Several damping curves were calcu-
lated for a typical present-day airplane equipped with an autopilot.
sensitive to yawing acceleration for both the three-degree-of-freedom
and the one-degree-of-freedom cases. The results of the calculations,
although not always in quantitative agreement, indicated that the nature
of the damping curves obtained for both cases was essentially the same
and therefore subsequent discussion is based on the results obtained when
the system was assumed to have freedom only in yaw.

The mass and aerodynamic characteristics of the typical present-day
airplane are presented in table I. The characteristic stability equa-
tion for the three-degree-of-freedom case was presented previously
(equation (4)), and the characteristic stability equation for the one-
degree-of-freedom case-is given by - :

-TgA

22 -1 kge 22 (T

2upKyz 5Cnp? - Chw = Cngr

The derivative ChW is assumed equal to QCnB. The equation used in the

calculations, obtained by rearranging equation (7), is

1
2 K,2A8 - 2C, A - C -
-Tgh Hp"2 2 Pr Dy :
Kkee™ BM = (8)
Cp, A° -

- As was pointed out in a previous section, the damping curve corre-
sponding to the damping of the airplane oscillatory motion without the
autopilot installed forms the boundary between two characteristically
different types of curves. In order to illustrate the types of curves '
which will be encountered, calculations were made. for the airplane
damping and for dampings less than-and greater than this damping. The
results are shown in figure 1. For the airplane described in table I,
the airplane damping is Tl/2 = 2.02 seconds. The values of T4 and kg
obtained from equation (8) have been converted from the nondimensional
time parameter sy, to time in seconds. Thus, the curves are plotted as
a function of the dimensional parameters k and 7T in seconds. Each’
point on these curves corresponds to a different frequency wg, which
varies from infinity at the point (7=0,k=0.062€) to zero as T .and k
approach infinity, It is interesting to note that all the damping
curves approach the point (0,0.0628) as wg->w. For this point, the
roots of the characteristic stability equation do not indicate any high-
frequency oscillation; however, for any finite value of 7, the roots of
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this equation will indicate a high-frequency oscillation in addition to
the usual lateral oscillation. For a given value of k, the frequency
of -this additional oscillation decreases with increases in 7. Also,

all the damping curves approach a minimum value of k for a value of wg
corresponding to a frequency close to the natural frequency of the air-
plane. In general, frequencies greater than and less than the airplane
natural frequency are separated by the point of minimum k on each of
the damping curves. For this airplane the natural frequency is approxi-
mately 5 radians per second.

The curves presented in figuré 1(a) correspond to Ty/p = The

complete boundary for neutral stability is made up of the curves for
=0,1, 2,. . . ©,. Unless m 1is allowed to take on integral values
1t is 1mposs1ble to define correctly the stable region of the k,T plane.
For example, consider the point (k=0.035,7=1.6) in figure 1(a). The
point, according to the curve for m = 1, represents a stable condition,

“but since it falls on the unstable side of the m = 2 curve, the pre-

sence of unstable oscillatory modes in addition to the stable oscillation
is indicated and thus this combination of k- and T would result in an .
unstable condition. The true boundary of neutral stability is shown as
the solid curve of figure 1(a). Only the curves for m =1, 2, and 3

are shown  The curve for m = O would fall in the region corresponding
to negative values of T and therefore was omitted. From this figure

it is apparent that for some values of k there exist several ranges

of T for which the system will be stable. The width of these ranges
diminishes as m 1increases and eventually disappears completely. For
this special case of T1/p = « and a given value of Kk, the ranges

of T necessary for stability can be calculated analytically by the
methods of reference 3, since the alrplane was originally stable. The -
results obtained by using this method agree exactly with those of

figure 1(a). The analysis presented in this reference was for a one-
degree-of -freedom system and in appendix A it has been modified to apply
to an airplane-autopilot system with three degrees of freedom. It should
be emphasized that the method of reference 3 is applicable only to the
special case for Tl/2 = o and an originally stable airplane. On the

other hand the method presented in this paper is equally applicable to
originally unstable airplanes, in which cases the 'Tl/2 = w curves will

have the form of the curves for dampings greater than the original air-
plane damping.

" For T1/2 = 3.50 seconds, the resulting curves for m = 0, 1, 2,

and 3 are presented in figure 1(b)., The general shape of the curves is
the same as for those of figure 1(a), and the same.general conclusions
apply. Only that part of the curve for m = O which is in the region
of positive time lags is shown in the figure. The. curves for the air-
plane damping, Tl/2‘= 2.02 seconds, are shown in figure 1(c). For the
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combinations of k and T within the triangular-like regions, which
are formed by the curves for m, m+ 1, and k = 0, the oscillatory
motion of the airplane is more stable with the autopilot than without
it. The damping curves for T1/2 = 1.40 seconds and T1/2 = 0.70 second
.are presented in figures 1(4) and 1(e), respectively, for m =1, 2,
and 3. These curves are quite different from the ones presented for
damping less than the airplane damping. The combinations of k and 7
for which the airplane would be more stable than is indicated by the -
curves for Ty/2 = 1.40 seconds or T1/2 = 0.70 second, for example,
are enclosed in island-like regions in the stable part of the k,T plane.
A similar region exists for each value of m, but as m is increased
the size of the region diminishes. In addition, as Tl/2 is decreased

these looped regions become increasingly smaller for each value of m,
As Tj1/o is reducéd beyond some finite value these loops will cease to

exist. The value of T1/2 for which the m =1 loop disappears

represents the maximum damping obtainable for this airplane by the use

of a specific autopilot. A method of obtaining this maximum damping

for each value of m 1is Presented in appendix B. It can be seen from
figure 1(e) that no loops exist for m > 1. This amount of damping,
therefore, can only be obtained for all the oscillatory modes within

the m = 1 loop. This conclusion could have been reached by carrying

out the analysis of appendix B.. As a matter of interest, for this parti-
cular autopilot-airplane system, the m = 1 loop ceases to exist for
Tl/2 < 0.35 second. ' :

The regions in the k, T plane, which correspond to the dampings
shown in figure 1, have been combined and are presented in figure 2,
This figure gives an over-all picture of the effects of the specific
autopilot on the lateral stability of the airplane. In order to verify
the results indicated by this figure, airplane motions were calculatgd
for the combinations of k and T identified as points A, B, C, and D.
Step-by-step calculations were made by assuming freedom only in yaw, and
the airplane motions in yaw subsequent to a 5° displacement -in yaw for
these combinations of k and T are presented in figure 3. Point A
is located within the m = 1 loop corresponding to Tl/2 < 1.40 seconds

and the motion of figure 3(a) checks this prediction. The motion for
point B (fig. 3(b)) is very lightly damped as is indicated by its near-
ness to the zero-damping curve. Point C represents a combination of k
and T for which the airplane is less stable with this. autopilot than
without it. Also, as seen from figure 2, the motion for this combina-
tion of k and T should indicate two oscillatory modes of different
frequency with approximately the same amount of damping. The.motions.

of figure 3(c) support this prediction since more than one oscillatory
mode is indicated. The combination of k and 7T for point D is located
within the m = 2 loop, T1/2 S 1.40" seconds. The motion for this combi- .

nation (fig. 3(d)) is approximately as heavily damped as that of
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figure 3(a), but because of the larger value of time lag this high

damping is not realized as quickly. It is of significance, however, that
this amount of damping can be obtained for the combinations of k and

T within the m =2, 3, . . . loops as well as for those within the

m = 1 loop. In actual practice the phase lags encountered in conventional
autopilots which can be represented by second-order systems generally do
not exceed 1800 at any frequency and the assumption of constant-time-lag
characteristics usually is valid only within the frequency range where
the autopilot phase lag is less than approximately 900, The time lags

‘common to the m =2, 3, . . . loops 1imply phase shifts greater than

25 and thus are beyond the range where the assumption of constant time
lag is usually valid. Two conceivable cases may be mentioned for which
it might be desirable to develop devices with such large time lags.
One is the case of a high-natural-frequency system (not necessarily an
aerodynamic system), for which it might be impractical to obtain the
small lags necessary for the stability of the system with automatic
stabilization in the m = 1 region. Another case is that of an aero-
dynamic system which is to respond to automatic control in addition to
being automatically stabilized, in which case it might be desirable to
delay the operation of the stabilization device.in order to reduce its
effect on the response time of the automatic control.

It should be reemphasized that the preceding analysis was made for

" an airplane equipped with an autopilot having constant time lag. Demping

curves such as those presented in figure 2 therefore apply, in a strict
sense, only to autopilots which have these assumed characteristics. If,
however, a frequency-response analysis of a given autopilot indicates
that the assumption of a constant time lag is valid for only a limited

"range of frequencies, the preceding methods can still be used to good

advantage. Damping curves such as those of figure 2 can be constructed
end the values of k and 7, which will result in a given amount of
damping of the oscillatory modes of motion, can be determined since for
each point in the k,T plane there will be certain complex solutions of
the 'airplane-autopilot characteristic stability equation (equation (7)).
If the frequencies of the oscillatory modes characteristic of a parti-
cular point in the k,T plane are such that the autopilot can be made to
exhibit constant-lag characteristics up to and beyond the highest ‘
frequency involved, then the damping of the oscillatory motions for the
airplane-autopilot system will be essentially the same as predicted by
the constant-time-lag analysis. The validity of this statement can be
seen by examination of equation. (8). The left-hand side of this equation
is the autopilot frequency-response function Sr/DbEW. Likewise the
right-hand side of the equation is the airplane frequency-response func-
tion Br/DbEW- ‘The necessary and sufficient condition that A = a + iwg

be a solution of the characteristic equation (equation (7)) is that,
when a + iwg; is substituted for A in equation (8), the complex number

~obtained from the autopilot frequency-response function ‘ar/DbEW be
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identical with that obtained from the airplane frequency-response func-
tion Sr/DbEW. The frequencies characteristic of any point in the k,T

plane are readily identifiable and; if the frequency-response function
dr/Dpe¥ of an actuel autopilot can be closely approximated by the ex-

-T x : o
pression __5_ . up to and beyond those frequencies, then the

complex roots of the airplane-autopilot characteristic equation must
be essentially the same as those predicted by a constant-time-lag-
analysis, .

CONCLUDING REMARKS

»

A method is presented for determining the control gearing and time
lag necessary for a specified damping of an aircraft equipped with a
constant-time-lag autopilot. The method is applied to a typical present-
dey airplane equipped with an autopilot which applies rudder control
proportional to the yawing angular acceleration. The results calculated.
for an airplane-autopilot system by the method described are in excellent
agreement with the airplane motions calculated by & step-by-step procedure.

The investigatlon shows that, for some values of control gearing,
there exists more than one range of time lag for which the’ assumed
aircraft-autopilot system will have a specified amount of damping. The:
width of these ranges diminishes with increased time lags, and beyond
some value of lag, these ranges cease to exist. '

It should be emphasized that the analysis presented in this paper
1s. applicable, in a strict sense, only to systems which exhibit constant-
time-lag characteristics; however, under certain conditions discussed
in the paper, a constant-time-lag type of analysis is valid for systems
which have constant time lags for only a limited range of frequencies.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsasutics
Langley Field, Va, , September 26, 1950
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APPENDIX A

EXTENSION OF ANSOFF'S STABILITY CRITERION TO THE LATERAL

MOTIONS OF AN AIRPIANE EQUIPPED WITH YAW AUTOPILOTS

Reference 3 analyzes the effects of constant time lag in the feed-
back of a one- degree-of -freedom oscillatory system on the stability of
the oscillation. The analysis shows that, in general, for a given
gearing, ranges of time lag will exist for which the system remains
stable. These ranges are separated from each other by unstable ranges.
The expression for these -stable time-lag ranges is obtained in closed
form in terms of the other parameters of the system, It should be
emphasized that the analysis is valid only for a system originally
stable without feedback.

This appendix extends the method of reference 3 to the three degrees
of freedom of latersl motion of an airplane with a yaw autopilot. The
argument and analysis presented in reference 3 are repeated herein only
to the extent necessary to present the modifications of the method and
to emphasize or clarify points. ’ ‘

The autopilot is assumed to provide a yawing moment proportional
to the yaw displacement or to the nth time derivative of the yaw, with
the moment lagging the disturbance by a constant time 7. The resulting
nondimensional equations of motion are given by equations (1) and (2),
and the characteristic stability equation of the system is equation (4).
Note that the first five terms of equation (U4) are the characteristic
function of the airplane without the autopilot installed. If, therefore,
equation (4) is divided through by this characteristic function of the
airplane alone, the characteristic equation of the total system is
obtained in the form )

(A'23 + B'A2 + C'A + D') \Pkge™T8*

F(A) =1 + =1l + WX =0 (A1)

AN + BAt £ 0a3 + DA2 + EA

The theory may be given very briefly as follows. The roots of
equation (L) are also the roots of equation (Al) and are the character-
istic roots of the system. In order for the system to be stable, their

; real parts must all be negative. In the complex A-plane a closed curve

i consisting of the imaginary axis and the infinite semicircle to its
right will enclose all values of A with positive real parts. Then by
a theorem in the theory of functions of & complex variable (see refer-
ence 6), it can be shown that the transformation of this closed curve
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into the complex F-plane will circle the ofigin in the F-plane once in
a positive direction for each root of F(A) = 0 enclosed by the curve
in the A-plane and once in the negative direction for each pole. It can
_be seen from equation (Al) that the origin of the F-plane corresponds
to the point (-1,01) in the W-plane, and, in fact, each curve in the

F-plane 1s simply displaced unit distance to the left in the W-plane.
If the airplane were originally stable, F(A) would have no poles in
the right half of the A-plane; therefore, the condition that the ‘whole
system have no roots in this right half of the plane (unstable roots)
is simply that W(XA). should not enclose the (-1,0i) point in the
W-plane. ' )

One condition for the precedlng theorem to apply is that there be

‘no .zeros or poles of F(A) on the boundary curve in the A-plane. It
will be shown subsequently. that for n > 2 stability is impossible;
thus, the only autopilots of interest are those where n = 0, 1, and 2, -
that is, displacement, veloc1ty, or acceleration autopilots. Now the
zero root of the characteristic equation (4) for n = 1 and 2 is
"removed by the division which gives equation (Al); therefore, no diffi-
culty occurs for these two cases, For n-= 0, however, equation (Al)
gives a pole for F(A) at A = O, which is on the boundary curve;
therefore, for n = 0 dividing through by A is not convenient. Thus,
for n=0 ’

(A23 + B2 4 ¢'a + D)kge ™ 8*

M B3+ 02 DA+ E

F(A) = A+ W(A) = 1 + =0 (A2)

Finally, it is shown in reference 3 that, because of the negative
exponential in equations (Al) and (A2), the transform in the W-plane of
the boundary curve of the right half of the A-plane degenerates to simply
the transform of the imaginary axis., Thus, this curve can be obtained
by placing iwg for A in equations (Al) and (A2) and letting Wg
vary from -wo to . Equations (Al) and (A2) become

: F(iog) = 1+ W(ing) = 0 (3)
for acceleration and velocity autopilots, and

F(ing) = img + W(ing) = 0 L (ab)

for displacement autopilots,

v For displacement autopllots, the Crltlcal p01nt in the W- -plane
corresponding to the origin in the F-plane becomés the point -iwg, a
-varying point; that is, W(wg) must not enclose the point (0,-iwg).
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Acceleration Autopilots

The expression for W as a function of wg may be obtained for

. the acceleration autopilot by use of equations (Al) and (A3). For the

acceleration autopilot, letting a = A'kg, b =B'kg, c = C'kg, and
d = D'kg gives

o Lt sl
s (Aws* - cos® + E) + 1(Dog - Bag3)

L 2 1/2
(a‘”s g °‘Ps2> * (d‘”s - bg)? / i(-wsTg + @)
W((Ds) = )4- 5 5 e (A5)
| (o™ - cwg? + E)? + (Dwg - Bug3)
where
¢ =06, - 65 : (A6)
and
tne—d”°‘~"'b‘”‘53—d'bms‘2 (ATa)
& 1- a(.l)su - C(DSQ - all.)s‘3 - CWg &
Dwg - Bms,3
- tan 65 = (ATD)

Awg™ - Cag? + E

The angles 67 and 6, may be obtained from these equations for any

given value of wg since the algebraic sign of the numerator of tan 6
is the algebraic sign of sin 6 and the algebraic sign of the denomi-
nator is that of cos 6. These signs determine the proper quadrant

for 6. :

The W(wg) curve cannot encircle the point (-1,0i) in the W-plane
unless IWI > 1. Thus, the ranges of wg must be found where !w >1
by setting |w| = 1 and solving for wg. In the following discussion
only the part of the curve for positive wg will be considered inasmuch
as the curve for negative wg 1is simply the mirror image of the curve
for positive wg 1in the reasl axis.

- An important result can be obtained by considering what happens
to W(wg) as wg->w. The phase angle of W 1is seen to spiral around.
the origin whereas
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kSKXQCnSr keCng_

2, 2 ~ 2
2Hb(Kx Kz© - sz) 2HpKy

lim |W] = I%' - (48)

Wg —> ®

Thus, W(wg) spirals about a circle of this radius, and it can be seen
that stability is impossible if the limit is greater than 1, since the
point (-1,0i) would certainly be enclosed in this case. Therefore,

stability is impossible for n > 2 since in this case lim |W| = o,
. - a)s-—)oo

_ In the cases of interest the limit of equation (A8) is less than 1.
The next step is to find the critical values of wg by setting. |W| =1,

This condition gives a quartic in wsz. If x 1is substituted for wsg,
the critical roots are the positive real roots of the resulting equation

(a2 - 22)x* + (b2 - B2 + 2aC - 2ac)x3 + (c2 - ¢2 + 2BD - ovad - 2AE)x2 +
(a2 - D2 + 2cE)x - E2 = 0 | (A9_)

When there are no positive real roots of equation (A9), the system
is always stable. Moreover, for '%1 < 1, there must always be an even

number of such roots (double roots being counted twice). For the one-
degree-of-freedom case considered in reference 3 this equation was a
quadratic; consequently, there was only one pair of values (wsl;®s2) for

which |W| = 1, and between these values |W| > 1. This condition corre-
sponds to the fact that the frequency-response curve of the system has
only one maximum. In the three-degree-of-freedom case there are four
possible positive real roots, a condition which corresponds to the fact
that the frequency-response curve may have two maximums (see fig. 4(a)).
Since either of these maximums, in case four critical roots exist, may
enclose the point (-1,0i), each pair of successive roots must be treated
in the same way as the single pair was treated in reference 3. In most
cases equation (A9) will have only two positive real roots. A necessary
condition that there be four positive roots is that equation (A9) have
four sign changes in its coefficients., The necessary and sufficient
conditions for existence of four real roots can be found in most algebra
books (for example, reference 7). ' '

Although equation (A9) will usually have only one pair of real
positive roots, for the sake of generality the possibility of two pairs
must be considered. Corresponding to the two pairs of successive roots
(msl and wsg) and (wsl' and  wg,' ), whe?e wgy ' > wSE':> W > g
two pairs of values (¢l, ¢2) and (¢l', ¢2') can be obtained from equa-

tions (A6) and (A7). Then, there are two conditions to determine the
stable ranges of time lag:
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(em - 1)x + P <t <
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(AlOa)

(A10b)

For the system to be stable, both of these must be satisfied; that is,

_the stable time-lag ranges are those where the ranges in equation (AlOa)
and equation (AlOb) overlap. Here m =0, 1, 2, . . . .

The values

of m for which the stable. ranges exist are given by the condition

Gl Pr)osp + (7 - Bo)os)
Qansl - ws2)
(n + #1")ws,' + (n - Bo')wsy"

2n(wsl - w52 )

(Al1a)

(A11Db)

Of course the smaller of these two bounding values is actually the
largest m for which stable ranges exist. This-value can be used in
the corresponding equation (A1l0a) or (AlOb) to find the maximum value

of 7 for stability.

Velocity Autopilots

The procedure for velocity autopilots is the same gs that for
acceleration sutopilots, the only difference being that the magnitude
of W(wg) is divided by wg and the phase angle decreased by =n/2.
The change in phase angle appears in 6], which is now given by

cwg - aws3

ten 67 = — 5
\ 1o Te bwg?

Setting TWI equal to 1 now yields, for wsg'z X,

(Alej

oAb+ (32 - a2 - 2Ac)x3 + (02 - b2 + 2ac + 2AE - 23D)x2 +

(D2 - ¢c2 + 2bd - 2CE)x +EC - a2 =0

(A13)
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It might be noted that for this case lim [w] = 0, so that no condition’
Wg oo

similar to that of equation (A8) arises. However, in this case, |W|
does not vanish as wg -»0: ’

2kg CyaCng_

- (ALL)
Cn.C1g - CernB + (CzanB - CanzB)tan y

. _|a] _
wsl’gnolwl - IEI -

Since |E| is geherally very small, this quantity will generally be
greater than 1. = In this case, equation (Al3) will have one or three
critical roots (usually one), as may be seen from figures 4(b) and 4(c).

In the case I%I <1l an even number of critical roots will exist; and

this case is treated exactly as in the case of the acceleration autopilot
by using equations (A1l0) and the associated discussion, with equa-
. tion (Al2) replacing equation (AT7a). However, in the more general case

of l%] > 1, a slightly different treatment is needed.

For the usual case of an odd number of critical values of ag, the
lowest value is treated separately. Call ‘this value Wg e Then, ' |[W| >1
when ®g < wgny, as can be seen in figure 4(b). Since the phase angle
(~wgT + ¢) is a monotonically decreasing function of ws and vanishes
in this case for wg =0, the first condition for stability becomes
~“WwgnT + Po > -1, where @0 1is obtained when &so is used in equa-

tions (A12), (ATb), and (A6). Thus, the stability condition for the
TW is the stringent one that

a4 ¢O

T< o (A15)

In the case of one root, this is the only condition. For three roots an
additional condition must be satisfied since the second maximum may
enclose the point (-1,0i). 1In this case the remaining two roots, with
Ws < Ws, < Wgq, are paired just as in the acceleration autopilot, except

that equation (Al2) of course feplaces (ATa), and equation (AlOa) applies.
Note that both conditions (equations (A1l0d) and (A15)) must be satisfied
for stability, as described in the discussion of the acceleration autopilot

Displacement Autopilots -

In comparing equation (A2) with equation (A1) for n = 1, the W(wg)
in equation (AL) for displacement autopilots can be seen to be exactly the
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same as the W(ws) in equation (A3) for velocity autopilots. The
difference between the two cases arises from the change in the critical
point of the W-plane, as pointed out in the paragraph following equa-
tion (Al). Only positive values of wg need be considered, and for
these values the critical point is (0,-iw). Since this point cannot be
enclosed except when |W| > g, the critical values of wg? are given

by the positive real roots of |W|2 = wse, and the critical phase angles

. are now -<2m + %)n rather than -(2m - 1)x.

The equation determining the critical values for x = wsg is

12x5 + (82 - 2ac)x™ + (c2 - a2 + 2aE - 2BD)x3 +

(D2 - b2 + Pac - 2CE)x2 +(E2 - 2 + 2pd)x - @2 = O (A16)

This equation gives the intersections of the function |w| with the
straight line with unit slope, as shown in figures 4(d) and 4(e). From
these figures the equation is seen always to have an 0dd number of real
positive roots (double roots being counted twice); and, in particular,
figure 4(e) shows how the maximum of five critical values might occur.

The method of procedure is the same as that given for the velocity
autopllots with an odd number of roots. Equations (Al2), (ATb), and

(A6) are used to get @(wg). The first critical frequency ws, gives as
the stability condition in this case that -wsgT + fo >--% - Thus, the

first stability condition for this case is apparently the very stringent
one that
‘ 5 + 8o :
T EY——— o (A17)
Wgq

. For three critical values, the next two are paired as before and
glve the addltlonal stability conditlon for Ws < wgy, < Wsy:

QQm - —)n + ¢ <T<<2m + )K ¢1 | (A18)

®gq

which replaces equation (AlOa).- Equétions (A17) and (A18). must both be
satisfied for stability. .

Finally, for five critical values, an almost impossible case, the
final pair of values (wsg',wsl‘) gives a third necessary condition when

used in equation (A18), as described in the discussion of equation (A10b).
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DETERMINATION OF MAXIMUM DAMPING OBTAINABLE BY USE

OF A SPECIFIC AUTOPILOT

The conditions which must be satisfied if the damping curves are to
have loops are that (Ts)y have both a maximum and a minimum value for
some values of wg, say (ws); and (ws)y, and that (kg), be a mini-
mum for some value of wg which is between (wg), and. (ws)e- (See
fig. 1(d).) The loops will break down when dks)y ana L7slm vanish

dwg dwg
for the same value of . wg. The value of a for which these conditions
are satisfied is the maximum damping of the. system obtainable by use of
a specific autopilot. A curve representing a damping greater than this
maximum in the kg,T g plane will have no practical significance, since

for every point on this curve some oscillatory mode with less damping
than the maximum will always exist,

Now, (kg)y end (Ts)y are defined by the expressions

-

(ks)m = Rée(TS)ma ‘
> (B1)
(1e)y = 2nmwg )

where - Rp, (Ts)m, and 6, are functions of Wg and were discussed in

the sectlon entitled "Analysis." Differentiation of equations (Bl)
results in the expressions .

d(k ' T a
ﬂ = REe( S)ma S (Ts)ma] + e(TS)ma Eﬂig
dwg . divg dwg
_ déo o 6
-— - +
d( TS)m ) —-W®s dug o 2 .
dwg wg2

Setting these expressions equal to zero and considering m =1 gives
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o 2
i ar dR
—=2 = aRy s, T2
s dwg
> (B2)
drg 5 5 déy o
?‘g')—s— n - 2+(.l)sﬁ;—
dTg - dRp
Since =—2 = 0 1is a necessary condition, == must also be equal to
dwg . QAg A
zero if %%ﬁ is to vanish. - The expressions for Ro and 6> are both
S

functions of wg, wiﬁh the quantity a as a parameter. Equations (B2)
should therefore be solved simultaneously in order to determine the
maximum obtainable damping since . :

A convenient method for determining the maximum obtainable damping is
as follows: For several values of a. for which the loops are known to

be small, determine the values of wg for which gg% = 0. Substitute

ar
these.combinations of a and wg into the expression EE? and evaluate
5

the function. A plot may then be made of drg against a as abscissa,

T
and the value of a for which %%i =0 is‘tie required solution, - As

a check, this value'of a should be substituted into .gg% = 0 and the
corresponding value of g determined. This combination of a and g,
if a solution, will then »satisfy’ g‘—E = 0.

The same analysis is applicable to the loops corresponding to
m=2,3. ... Equations (Bl) show that Rp and 6p are independent .

of m; hence, dRp is also independent of m. The general expression

alTs) dwg
S'M _ 0 is (see equations (B2))
dwg :

for

: dae
2mm - 8o + Wg 3—§ =0
Rearranging the‘equation gives

d6o ‘ :
2mm = 8 - (33)
2 S dmg
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) dr
Thus, if the combinations of a and wg which satisfy a&% are deter-
s

mined for a sufficiently wide range of a and substituted into the
right-hand side of equation (B3), the value of a for which loops will
cease to exist for any value of m can be determined. For example, the

= 1 loops will break down when 6o - wg 222 = 2n; the m = 2 loops,

when this expression equals bx; and so on. In general, the value of &
for which the' loops break dowr decreases as m increases.

The preceding analysis was applied to the m =2 and m =3 case
for Tl/g 0.70 second since these loops were known to have broken
down for this damping (see fig. 1(e)). As was expected, the analysis
verified the fact that the loops did not exist for these values of m
for Tl/2 = 0.70 second, .
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TABLE I
"MASS CHARACTERISTICS AND STABILITY DERIVATIVES OF

TYPICAL PRESENT-DAY AIRPLANE
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Figure 4.- Types of frequency response for |W| showing possible critical
frequencies .for acceleration, velocity, and displacement yaw autopilots.
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