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By Sidney M. Harmon

SUMMARY

A method utilizing source singularities is presented for obtaining
the linearized downwash field due to lifting wings of infinitesimal
thickness at subsonic and supersonic speeds. The distribution function
for the source singularities is spécified by the loading on the wing.
The method is applied to derive generalized formulas for the downwash
field due to uniformly loaded swept and rectangular wings at subsonic
and supersonic speeds. The utilization of these formulas to obtain the
downwash due to wings of arbitrary loading is indicated. An example of
the procedure is given in which specific formulas are derived for the
dowvnwash field due to & rectangular wing at supersonic speeds for a
uniform loading and for a linear chordwise variation in loading.

INTRODUCTION

Several methods based on linearized theory are . available to obtain
the downwash field due to lifting surfaces at subsonic and .supersonic
speeds for use, as an example, in stability calculations. The calcu-
lation of the downwash field at subsonic speeds- has relied almost
exclusively on Prandtl's lifting-line theory, which is based on the
concept of & horseshoe vortex (for example, reference 1). Present
methods for calculating the downwash field at supersonic speeds are
those utilizing conical flows (reference 2), potential doublets (refer-
ence 3), vortices (references 4 and 5), and pressure doublets (refer-
ences 6 and 7). The integrations required of the foregoing vortex
or doublet singularities or in the conical-flow method in order to
obtain exact solutions of the linearized equations for lifting surfaces
have generally been found to be difficult; therefore practice has
usually had recourse to spproximate methods based on lifting-line
theories (references 5 and 7).

The present report, prepared at the NACA Lewis laboratory, indi-
cates a method that is intended to facilitate the computations for
obtaining the exact linearized downwash field due to lifting surfaces
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at subsonic and supersonic speeds. The method utilizes source singu-
larities with the distribution function specified by the loading on
the surface.  The method is applied herein to derive formulas for the
downwash field due to uniformly loaded swept and rectangular wings of
infinitesimal thickness at subsonic and supersonic speeds. The utili-
zation of these formulas to obtain the downwash field due to wings of
arbitrary loading, by means of the correspondence relations presented
in reference 8, is then indicated. An example of the procedure is
given in which specific formulas are derived for the rectangular wing
at supersonic speeds for a uniform loading and for a linear chordwise
variation in loading.

SYMBOLS

The following symbols are used in this report:

‘A,B,Cl,Cz refer to regions bounded by foremost Mach aft cone
D- ,Do,.eeD corners of rectangular wing at supersonic speed
1rrere S (plan view of regions in fig. 3) .

a ' constant used to describe prescribed linear chordwise
variation in loadlng

v

B = : VM -1 (also used to refer to Mach cone region as
' ‘ indicated in fig. 3)

B, = AL

b .arbitrary constant

c a éhofd for rectangular wing

h : | wing-semispan |

I | . refers to integral énd solution expressed by equa-

tions (25b) and (25e), respectively

I, refers to integral and solution expréssed by equa-
tions (25c) .and (25g), respectively

’at.subsonic speeds;

K ' constant in equation (1) (X = %;

. 1 '
K = = at supersonic speeds)
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u,v,w

Yo

%1

YLD

¥n,k

¥s

wxoayo; wﬁo:Yo

free-stream Mach number

cot A, where A 1is angle of sweep of wing leading
edge (fig. 1).

251282 [(y-m ]
’\/(;'-E 1)2.2(y1242'?)

disturbance velocities of fluid in flow field along
x-, y-, and z-axes, respectively (fig. 1)

value of u on upper surface of wing for uniform
prescribed loading

refers to downwash due to left half of wing

refers to downwash due to uniform prescribed loading
on wing .

refers to downwash due to linear chordwise variation

in prescribed loading on wing

contribution to downwash of continuous portion of
leading edge for semi-infinite oblique wing with
uniform loading shown in figure 1; also represents
downwash due to semi-infinite line source orlglnatlng
at leading edge of center section

contribution to downwash of discontinuity of leading
edge at origin in semi-infinite oblique wing with
uniform loading shown in figure 1

‘downwash due to term in series formed by expressing u

on wing as function of x, y, and ug

contribution to downwash of streamwise side edge for
semi-infinite oblique wing with uniform loading
shown in figure 1; also represents downwash due to
seml-infinite streamwise line source originating
at leading edge of center section

repreéents downwash due to semi-infinite line sdufce

originating at (x4s¥p) on right and left halves of

- wing, respectively



XyJs2
x'y',2!

*X0230

(&90)y

FE ST AN L
3 =

a

gb .=

Subscripts:

4,B,C,,C,

Dl’Dz) . .DS

NACA TN 2344

rectangular coordinates with origin at leading edge
of center section (fig. 1)

oblique coordinates related to rectangular coordinates
according to eguations (5)

rectangular coordinates indicating origin of semi-~
infinite line source '

y-h
y+h

contribution to downwash of wing cut-off at trailing
. edge for uniform loading

infinitesimal distance in y-direction across side
edge

auxiliary variables used to replace X, ¥y, Z, X',
y', and 2z', respectively

| B“Jyaa+z2

Bﬂ/yb2+z2
‘V‘BZ (y2+22)
V|B2 (y'2+z'2)

upper limit for integral in equation (7) (See dis-
cussion following equation (7).)

region of integration (See discussion following
equations (1) and (3).).

function representing solution of linearized partial
differential equation (2)

refer to corresponding regions indicated in figure 3
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crp refers to chord at center section of swept wing

Cy : refers to chord at tip section of swept wing

L,s,T,LD,TD refer to continuous portion of leading edge, side
edge, trailing edge, discontinuity in leading edge,
and discontinuity in trailing edge, respectively

u,l refer to upper and lower surfaces of airfoil,

respectively

Single or successive subscript coordinates indicate partial
differentiation with respect to subscript variable.
xs,yt " indicates partial differentistion with respect to x
and y, s and t times, respectively

BASIC THEORY

The analysics is based on the usual assumptions for thin airfoils
in the linearized potential field. A solution for the disturbance
parameters can thus be obtained by integrations of source and doublet
singularities in the plane of the wing (z = 0). The basic equation is
(for example, references 9 and 10)

Q(x,5,2) = - : ff X&‘ Ql)’f(Q Qz)a‘()] a4 dn (1)

where the function (2 is a solution of the linearized partial differ-
ential equation for subsonic and supersonic flows

-

'Bzﬂxx +QW,+Q =0 (2) -

Zz

In equation (1), r = '\/(x-E)B-B2 Ey-n)2+z2] and the region T
includes the entire = 0 plane that can influence the point (x,y,z).
At subsonic speeds, the factor K 1is equal to l/Zn. At supersonic

- speeds, the factor K is equal to l/n and only the finite part of
the integral is used. It is important to note that the function {2 can
represent either the velocity potential or any of its derivatives, ard
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(o))

if all these values vanish sufficiently far ahead of the wing, the

integrals of () are solutions of equation (2).. In case the deriva-
tive of (I becomes infinite at one or more points, the substitution
of this derivative for {2 in equation (2) depends on the condition-
that the isolation of each si cuLarlty yields a finite integrand in

the limit.

SOURCE DISTRIBUTION FOR DOWNWASH FIELD

A lifting wing of infinitesimal thickness is considered. The
perturbation veloeity u vanishes everywhere in the z = 0 plane
except on the wing 1tself, and the perturbation veloc1ty v vanishes
everywhere in the =0 plane except on the wing and in the wake.
In equation (1), letting Q = w and noting that

=
~
1}

- (),

—~
<

~
L}

= (vn)z
result in

W(x;yiz) = - f (B u Vr) di dn (3)

vhere T represents one surface of the wing and of the wake that can
influence the point x,y,z. The quantity v is a function of u
through the irrotationality relation

Therefore,

X . '
v = dé’ uq ag ' - (4a)
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X '
vy = I upy 4§ ’ (4b)
4 L : ,

According to equation (3), the perturbation velocity w at any
point in the flow field due to a lifting-surface is determined by an
integration of elementary source solutions with the dlstrlbutlon
function given by (B2 ug-vn)

<

THE SEMI-INFINITE OBLIQUE WING WITH UNIFORM LOADING

An important application of equation (3) can be obtained by con-
sidering a semi-infinite oblique wing with uniform loading (fig. 1).
The origin of the coordinate system is taken at the intersection of
the leading and side edges, where both edges extend to infinity. For’
uniform loading, the term wu; in equation (3) vanishes everywhere over
the region T except across the leading edge. In evaluating the dis~
continuities in u or v +that occur across the edges, a limiting-
procedure is used throughout the present &énalysis, which corresponds
to the assumption of a linear variation in u or v across an
infinitesimal strip of the edge. The distribution of v over the
region T for this type of loading, as obtained from equation (4a),
is shown in figure 2, and v, 1s seen to vanish everywhere except
across the edges. In terms of equation (3), therefore, the downwash
field for a semi-infinite oblique wing of uniform loading is obtained
by means of a line integration of sources along the edges. '

It is subsequently shown that the downwash solutions for the semi-
infinite line sources along the leading and side edges may be used by
simple manipulation to obtain the downwash field for finite plan forms
of uniform loading.

The Semi-Infinite Oblique Leading Edge

The éemi-infinite oblique leading edge with origin at (0,0,0) con-
tributes to ug and v along the edge and, by virtue of the dis-
continuity of the edge at the origin, contributes to vn along the

x-axis beginning at the origin and extending backwards to infinity.
(See distribution of v in fig. 2. ) The downwash contribution of
the continuous portlon of the leading edge is desivnated L% whereas

the contribution of the edge discontinuity at the origin is designated
W
*LD*
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Contribution of contimuous portion of leading edge. - The integra-
tion of equation (3) along the oblique leading edge is most conveniently
performed in terms of an oblique system of coordinates, such that -

x'= x-mBzy -1

yl. = y-mx ’ ) (5)

z' = z’\E-szz_J

It may be shown that the differential equation (2) is invariant under
the change of variables x—wx', y—»y', and z—»z' at both subsonic
and supersonic speeds. If 2 (x,y,z) is a solution of equation (2),
Q(x',y',z') is therefore also a solution. For .other examples of the
use of the oblique transformation in wing-theory problems, see‘refer-
ences 11 to 13.

In the oblique coordinate system, equation (3) evaluated along
the wing leading =dge becomes

1
vi(x',y',2') = -K‘j: 7 wontabr (6)
where ‘
r! = V(xl_gl)z_ BZ(y|2+z'2)
Noting that

. . B2 gr-v,.,~-mB2 -vis)
(e )L_Bug vy -mB (uq. VE)

z' - . B
Al 252

and along the leading edge for an infinitesimal strip of width An',

-u€,=VE'=O
u
- 0
LI
VT]'AT] -m.
u_An' = -u

2la21
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results in

w(x',y',2") = K i ()

. gé
uo‘Vl-Bzm2 gii
m N
0

At subsonic speeds, the upper limit ié = o, and the integral is

divergent. In actual cases, however, this divergence does not present
‘any difficulty because the construction of the finite leading edge by
means of the superposition of two semi-infinite leading edges of
opposite sign leads to the result that the infinite upper limit
cancels. At supersonic speeds,_ﬁé is the position of the last

source with Mach aftercone including the point x',y',z'; that is,

£, = x'-BANy'%+z'?

Integration of equation (7) yields the following expressions for
the line source originating at (0,0):

At subsonic speeds,

uo\LmB12 1 g

v (x,5,2) = ——p—— sinh i ~ (8a)
da -

where

e = AIBEl(y'222)

and
'Bl = /\Il-mz

In equation (8&),.the term that arises from substituting the upper
limit of 1ntegration has been neglected because, as indicated pre-
viously, it vanishes for leading edges of finite lengths.

At supersonic speeds, for Bm < 1 ksubsdnic leading edge),

- u !
wL(x,y,z) = E? A/1-B2n® cosh~1 ?—, _ ' (8b)
. ) d :
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and for Bm > 1 (supersonic leading edge), equation (8b) becomes
. u -
0 2 x'
v (x,y,2) = - po ﬂ/B mz—l cos™t B (8e)

In equations (8) and in all subsequent expressions, the positive
value in a radical term must be preserved when extracting -the root.
For example, if

y<©oO

then

’\ryé = (-9 = -y= PR

For a leading edge normal to the flight direction, m = = and
equations (8) yield the following expressions:

At subsonic speeds,

0 -1 )
sinh (8d)
: :Ux2+31222 ’

Biu
VL(X:Y:Z) =

At supersonic speeds,

Bu

. O - _B\ .
wL(x,y,z) = - —= cos 1_ = (8e)

2_p2ge

It is shown by equations (8) that the downwash fields w; con-
tributed by the oblique and normal leading edges are conical, or w
is constant along redial lines emanating from the origin.-

Contribution of leading-edge discontinuity at origin. - From fig- -
ure 2, it can be seen that the leading edge cut-off at the origin
results in

v.Aay = - 2 | o . . (92)

along the semi-infinite side edge. When equation (92) is substituted
into equation (3) (with ug equal to zero along the side edge), there
results ) . '
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K . .
WLD(X)V;Z) = - _uO_f _g' (9b)

where Ez is the position of the last source that can influence the
point X,¥,%Z; that is, at subsonic speeds, ;2 is at infinity; and at’

supersonic speeds,
ig = x-B‘\ly2+z2

Integration of equation (9b) yields the following:

At subsonic speeds,
. u . .

. -l X .

where the term arising from the infinite upper limit of integration has
been neglected because it vanishes for leading edges of finite length

and
a= ,«/tszl (y%+2%)

At supersonic speeds,

u
: _ 0 -1 X (10b)
wiD(x,y,z) = - — cosh £

It is shown by equations (10) that the downwash contribution of the
leading-edge discontinuity at the origin results entirely from the
obliquity of the leading edge. Thus, if the leading edge is normal to
the flight directionm, this contribution vanishes.

The Semi-Infinite Streamwise Side Edge

Along the streamwise side edge, the'quantify u, vanishes; thus

the source-distribution function along this edge is proportional only
to the quantity wv,. :

- The deteails of evaluating the contribution of the streamwise side
edge @o.the downwash field are given in the appendix. The results for
the semi-infinite left streamwise side edge are as follows:



beginning at

12 ' o . NACA TN 2344

At subsonic speeds,

Blzuoy ‘ 1 2?
IR E) = - —— + — 5 11
w(752) en x +4x +€d2 v Edz ( é)‘

At supersonic speeds,

2
B usy
0 1l x2 (11b)

 walx,y,2) = -
- g\ %X, Y,
X +VX2-Ed2 Ed
Equations (11) show that the downuash contribution of the streamvise
side edge is independent of the obliquity of the leading edge.

FINITE WINGS WITH UNIFORM LOADING

The downwash field due to finite wings with uniform loading can
be obtained by superimposing the fields due to & number of semi-infinite
wings of the type considered in the previous section (fig. 1). This
superposition is equivalent to superimposing the fields due to the
source lines expressed by equations (8), (10), and (11).

A plan form with curved edges requires an infinite number of
source lines. If the edges are composed of straight-line segments,
however, a finite number of source lines can be used to represent the
plan form.

-

Swept Wings with Streamwise Tips

Let the downwash field due to & semi-infinite line source
O’yb be denoted by Wy v let the subscripts
. O } +

L, S, T, LD, and TD refer to the leading, side, and trailing edges

and the leading- and trailing-edge discontimuities, respectively, all for
the right half-wing; and let W refer to the effect of the source

lines originating on the left half-wing. Then, the downwash field for

a uniformly loaded wing, which is symmetrical with respect to the

x-axis and which has uniformly swept leading edges and streamwise tips,
1s given by the following sum:
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wo = | (W) - (w+W) = () = (w+w) -
0 0,0 c
. m L,LD . m T,TD
[( W) - () ] (12a)
. h . .

In equation (12a) and in the subsequent expressions, the upper and
lower signs preceding & term refer to the right and left half-wings,
respectively. - :

The downwash fields due to the semi-infinite line sources indi-
cated in equation (12a) can be obtained by simple manipulation of equa-
tions (8), (10), and (11). The following transformations are made to
obtain the effect of a semi-infinite line source originating at X Yg:

x in equations (8), (10), and (11) = x-x,

(12v)
y .in equations (8), (10), and (11)

il

4-'(}’-.Y())

Equations (8) and (10) can also be applied to a semi-infinite line
source along the trailing edge by replacing m in these equations
with the cotangent of the sweep angle of' the trailing edge.

At subsonic speeds, every point in the field is affected by all
the terms in equation (12a); whereas at supersonic speeds, the point
is affected only by those terms that refer to edges which lie within
the Mach forecone from the point under consideration.

Rectangular Wings

For the rectangular wing, the edge discontinuities LD and TD
disappear and equation (12a) becomes
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Vo = I:(W+§)()"O _‘ (W‘—})O,ﬂ;\i - .[:(wﬁ)c’o - (wﬁ)c,_ﬂ;l‘r -

I:(ww) o,tn - (w-ﬁ)c,ith]s | (12¢)

WINGS WITH ARBITRARY LOADING

If the wing loading is an arbitrary function of x and Yy, the
integration in equation (3) for the downwash field is, in general,.
required over the entire wing surface and in the wake. An alternative
sprocedure in this case is the use of "correspondence formulas' as
indicated in reference 8 by means of which the downwash field due to
a variable loading may be expressed in terms of the downwash field due
to a uniform loading with the addition of corrections for the edges of
the plan form. ' '

In reference 8, it is shown that if u on the wing is expressed
in a series as & function of x and y in terms of the uniform
prescribed velocity ugy and any term in the series is differentiated

with respect to x and y, s and t times, respectively, such that

() Byt = Do (on wing) (138)

 where b 1is a constant; then subject to edge corrections, there
results ' ; ) ‘

(Vn’k)xsyt (xJY:z) = bwo(x,Y:z) : . (13b)

where wh k and wb " refer to.the downwash fields due to the term in

the serieé and to a uniform loading, respectively. The edges of finite
plan forms may alter the given relation (13a) so that edge corrections
may be required for the relation expressed by equation (13b). At . -
supersonic speeds, the relation given by equation (13b) thus applies

to finite wings at all points in the flow field outside of the Mach
aftercone from the edges that alter the given relation (13a) on the
wing. Correspondence formulas for rectangular wings at subsonic and
supersonic speeds are given in reference 8, table I.

27 27
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ILLUSTRATIVE EXAMPLE FOR RECTANGULAR WING
AT SUPERSONIC SPEEDS

As an illustration of the method described herein, the downwash
field is obtained at supersonic speeds for a rectangular wing with
uniform loading and with linear chordwise variation in loading. The
lettered regions in the subsequent discussion refer to figure 3.

Uniform Loading

For the rectangular wing with uniform loading at supersonic speed,
equations (8e), (1lb), and (12¢c) are applicable.

"Region A. - In the region Wiuhln the leading-edge Mach cones and
outside of the side-edge and trall*ng—edge Mach cones,

(vo)al%5¥,2) = (W, 0%%0, 0)1

Bu - Ry 1 ‘
=-_0 cosl______B.y.___+ cosl_'_giz___ = -Bug (14)
4

Ax2-p2g2 Al2_B22

Region B. - In the region within the trailing edge Mach cones and
outside of the side- edge Mach cones,

( ) (x,y,z) = (wO)A (WC,O + ﬁc,O)T

Buo -1

- -B; - B
= -Buo + —|cos ———-——-3L—§—E + cos 1-—————425—————
‘V(x-c) -B%z (x-¢) -BZz2
' (15)
_ Region C. - Region C, which refers to points outside the trailing-
edge Mach cones, is divided into two subregions depending on whether
the po;nt lies within one or both side- edge Mach cones.

Region Cy. - If the point lies within one side- edge Mach cone,
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'(wo)cl(xyyyz) = (WO)A - (Vb,h)L '.(WO,h)S

Bup 1 -Bya

- 1.
(wo) At =9 |cos -By, -
T A2 pege ,‘, 2t 2
Vx~-B~z x+ Al x 'Ea 4

X
2

a

B ,
1 Ya +Byg 1 - X (186)

x+'\/ xZ-Eaz iaz

Bu -
—0 lcos

ﬂ Alx2_p242

where ' .
§o = B‘Vyaz+zz

and i -
Ja = y-h

Region Cp. - For points within both side-edge Mach cones,

(o) ¢, (%s¥52) = (vo)Cl - (W, nlL = (ﬁo;-h)s

(wa)a + o cost B +B$r 1 X

= —_ ——e b —_— -

0’Cy P A/x2-B2z2. <t /‘/xz_gbé' Ebz
where ' : - *(17)

gb =B Vyb2+zz

and

Yp = yth

Region D. - Region D refers to points that are always within Mach
cones from. the leading, side, and trailing edges. This region is sub-
divided into five regions, as shown in figure 3.

Region Dl' - For points in Dy,

‘(Wo)Dl(x:Y:z) =t(w0ycl - (Wc’o + WC,O)T = (WQ)Cl + Buo (18)
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Region Ds. - For points in D,

(Wo)e,

1

+ BuO + (wc h) + (w

’ (wo)Dg(x:y}z) 51 T

c,h)S

Bug -1 BYg

= (W), + — |co8™" — +
0°¢, X - Af(x-c)2-B2z%

1 X-C (19)

By, - -
: X-c+ 'V( x-c) 2-5.&2 iaz

Regiop Dz. - For points in Dz,

(wo)ps(x,y,Z) = 1“0)D1 - (g, n) - (ﬁo,-h)sl

Bu - By, o
= (wglp, + 'EQ cos™t —2— 43y, - - =

Region D4. - For points in Dy,

(v0)p,(x:3:2) = (vghp, = (T, )y, = (Fo, )5 = (o), + (o), - (v0)p,

(21)
Region Dg. - For points in Ds,
(YO)DS(X;V:Z) = (Wo);[)4 + (‘T’c,-h)T + (‘?c,.-h)s
Bu B
= (wo)p, - —9 |cos™? b +
4 T 1, 22, 2 \
x : (x-c)4-B%2“ .
By, [ 1 - x=¢ - (22)
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Linear Chordwise Loading
For linear chordwise loading, let

u; = augx (on wing) ' (23a)

where a and ugy are constants. The downwash field for this type of

loading can be obtained by using the correspondence formulas of refer-
ence 8 in conjunction with the downwash field obtained in the preceding
section for the uniformly loaded rectangular wing at supersonic speed.

If wi and wo' refer to the downwash fields due to linear chordwise

loading and to uniform loading, respectively, then from reference 8,
table I, for all points outside the trailing-edge Mach cones,

. X o,
w (%,7,2) = a‘jf wo(E,752) at (#50)
Bz : '
and for points within the trailing-edge Mach cones,
‘ X
w(x,y,2) = a,:f wolt,y,2) dg+ C(Awo)T(x,yﬂﬂ (23c)
Bz

where (Awp)p refers to the effect of the wing cut-off at the trailing
edge for uniform loading.

Region A. - For the region within the leading-edge Mach cone and
outside the side-edge and trailing-edge Mach cones, equations (23b)
and (14) are applicable and there results

(#)) p(%,7,2) = -aBug (x-Bz), (@

Region B. - In the region within the trailing-edge Mach cones and ,
outside the side-edge Mach cones, equations (23c), (14), and (15) yield

c+Bz

(Vl)B(X:Y:Z) = "a-BuOf ,dE + acBug = O , (25)
_ Bz

Region C. - In fhe region within one or both side-edge Mach cones
and outside the trailing-edge Mach cones, equation (23b) applies.
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Region Cy. - For points in region C,, equation (23b) may be
1 1

written

X X
(Vl)cl(x,Y)z) =Va.fBz WO(E:Y:Z) at = a j;z (Wo)cl(-f,y,z) da¢

- a_,liu_gf cos™t e ag +
. . Bz :UE§-B§Z§
x
By _— ¢ ) ag | (26a)

2 E E"' ng_gaz Eaz
a

In equation (26a), wo(ﬁ,y,z) is represented'as ({vo)cl (equation (18))
throughout the entire range of integration because (wo)cl evaluated
in region A is equal to (wo)a (equation (14)), inasmuch as the
imaginary part is discarded. '

Equation (26a), requires the evaluation of the following integrals: ’

A2-B

~where Bya and 'Bzzz are constants, and

X ,
B .
I = f cos™l —2a at - (26b)
. Bz 222

X ) '
. 1 14 :
12 = f - dE i (ZGC)
e \erVEZ-52 6,7
vhere £g 1is a conétant. 4 |

The solution for Il obtained by integration by parts and simpli-
fication is
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1 Bygx

, ) By,

-1 a -1 X - :
1.(x,y,,2z)= X cos”" ——— -By, cosh - Bz cos
1 g F_—XZ_BZZZ a . -Fa ga ”}{E-Bzzz

' (264d)
The solution fpf I, is
( oy o 1 1 X X sz'éaz .
I5(%,¥q52) = 7| cos [ (26e)

Utilizing the solutions for I; and Iz given by equations (264)
and (26e), equation (26a) yields for points in region C within one side-
edge Mach cone, )

. aBug,
(wl)cl(x’y)z) == " [Il(X)ya)Z) + ByaIZ(x)ya}Z)] (26f)

Regioﬁ Co. - For points in region C within both side—edgé Mach
cones, equation (23b) may be written

fx
(E,y,2) a€
a Joz Vol 85,2

1

(wl)cz(xyy)z)

aBu,, -1 By

X
(wl)C + — Jr €cos = ———
]_- ’ BZ, /\ ,EZ'BZZZ

» |

dt +

. E . '
By, fx 1 - aE (272)
e e B |

Pl

where wo(&,y,z) has been obtained from equations (16) and (17).
Utilizing the solutions for I;. and I, given in equations (26d)
and (26e), in which y, and ¢, sare replaced by y, and §y,
respectively, changes equation (27a) to yield

UL :
0
I:Il(x,.yb‘,Z) + By, Iz(x,yb,Z)]

.(wl)cz(x,y,z) = (wl)Cl +
(27b)
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Region D. - In the region within the trailing-edge Mach cone and
within one or both side-edge Mach cones, equation (23c) applles.

Region Dy. - For p01nts in region Dl, the integral in equa-

tion ZZScS becones

N - .
aj; vo( £,v,2) dE= (wl)Cl + aBu, f d¢ = (Wl)Cl + aBu, (x-c-Bz)

Z c+Bz .
(2ga)

where wy(€,y,2z) has been obtained from equations (16)>and (18).

The quantity (Awg)p in equation (23c) is evaluated for this case
as the ‘difference between (WO)D and (wo)c ; that is, from equa-

tion (18), (Aw ) = Buy. When these results are combined, equa-
tion (23c) yields

(wl)Dl(ny)z) = (wl)cl + a'Buo (X'BZ) - (\ZSb)

Region Dp. - For points in region Dy, the integral in equa- .
tion (23c) becomes

X ' X '
. aBu By,
Bz : 1 c+Bz AfE-c)2-B222
a |
. E-c ‘
By, = ag (29a)

" o, \eerafli-azg? b

where wq(§,y,2) has been obtained from equations (16) and (19). The
integrals in equation (292) may be evaluated by utilizing the solutions
for I; and Iy as expressed by equations (26d) and-(26e). In these
solutions x 1s replaced by x-c. The quantity (Amo)T in equa-

tion (23c) is evaluated in this case as the difference between (WO)D

and (wo)C . When these results are combined, equation (23¢) yields
1
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aBu

o .
(wl)D (X)y}z) ( l)Cl + T Il(x~c,ya,z) + Byalz(x—c,ya,z) +

5 .
el|cos™t Ya +Byg [ — 1 - ¥l§
- Z 2.2 Z, 2 &g
(x-c)"-B"z x=ct+ Y(x-¢) £ o

(29b)

Region Dz. - For points in region DS’ equation (23c¢c) yields

(wl)Ds(x’y’z) (w 1) + _ )

aBu L/‘ Byy, ¢
: d
Bz RIEZ-BZZZ

| % 1 : -
By: f e~ at (30a)
P \eehTEE wY | |

where wo(i,y z) has been obtained from equations (18)'and (20) and the -

term (AMC)T

may be evaluated by utllizing the solutions for I1 and I, as
excressed by equations (26d) and (26e). In these solutions, Yo is
replaced by ¥,; thus

is ineluded in (w ) - The integrals in equation (30a)

("1)D3(x’f’z) (w )D I; (x,¥,,2) + By, Iz(x,yb,zzl' (30b)

Region Dy. - For points in region D,, equation (23c) yields

~

(wp)p,(x,7,2) = (v D, * )y - (o) (31)

where wo(ﬁ,y;z) has been obtained from eéuations (19) and (21).
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Region Dg. - For points in region Dg, equation (23c¢) yields

aBu - By .
(v p(x5752) = (v} - -0 f cos™t b ag +
5! 4 b1 2 n2, 2
R c+Bz V(Q-C) -B¢z
o | ’
1 t-c
£ 2.t 2 ¢
c+€b i C+’VE£-C) "Eb b
-1 Byy, 1 _ x-C
2

¢ |cos ‘ +Byy, \
‘V(x-c)z-Baz2 _ x-c+‘V(x-c)2--£b2 gb

(322)

where wo(i,y,z) has been obtained from equation (22). The integrals

in equaticn (32a) may be evaluated by utilizing the solutions for I and.

I, as expressed by equations (26d) and (26e). In these solutions,

xd is replaced by x-c, and Yy, and ia are replaced by ¥y, &nd gb,
respectively. Thus '

BuO

(w.)y (x,5,2) = (wy)p - I, (x-c,¥5,,2) + By, Io(x-c,yy,2) +
1/Dg 1'p, ~ & b b 2

| - By, - -
c | cos 1 b +Byf 1 - X=C
2_n2,.2 2 2 i‘z
(x-c)“-B%z x-c+\[(x-c) -ih b
(32pb)

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Chio, January 22, 1951.
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~

APPENDIX

DERIVATION OF DOWNWASH FIELD DUE TO SEMI-INFINITE
LEFT STREAMWISE SIDE EDGE

~

The subsequent derivation for the downwash field refers to the
left streamwise side edge of the unlformly loaded semi-infinite oblique
wing, as shown in figure 1.

The downwash field contributed by the side edge méy be obtained by-
means of equation (3), in which the integrel is evaluated along the side
edge. As noted in the text, theé quantity ug is zero along the stream-

vise side edge (of width An); therefore,
o vpAn dg
WS(_XJYJZ) = Kf ' T . © (A1)
S

Across the side edge there is an sbrupt increase in u. This-
increase is assumed to occur over an infinitesimal width ¢ across the
side edge. Then according to equation (4a),

X
v(x,0,0) = f d£= ?-9- x (A2)
0 €

At ¥y ='c, however, u, due to the side edge vanishes and therefore

L
‘v(x,€,0) = O .  (A3)

The distribution'of v in the vicinity of the 51de edge (y =
is shown in the following sketch:

=
(@)
»

-

ml

<
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It is assumed that the abrupt changes in v indicated in the
sketch occur over the infinitesimal distances An, so that along the
line (E ,0,0) » . ' ‘

(=]
oee

e = ' (A4)

and along the line (£,¢,0),

u
'

K | ()

Substituting these values for vT]AT] into equation (Al) results in

®, x-B ‘V y2+z2
Zo : ¢ at i
© Yo Mix-0)%-8%(3%2%)

o, X-B '\/( y-¢€) 2+zE
¢ af

0 | . /\/(x-i)z-BZ(y-c)zﬂz

(o]

WS(X:Y) z) =

(A8)

where the two upper J:imits refer to subsonic and supersonic speeds,
respectively. Integration of equation (A6) yields

Ku ' ’
ws(x,y,z) B __e_O_ {-x log ‘x-i + /\/(x-ﬁ)z-Bz(y2+zz)\ +

oy X~B ‘Vy2+zz
[} )
%c—ﬁ)”-Bz(yZ-l-z"} . +

0
{x log

'\[x-i)z-BZE( y-€) 2+z?l

x-£ + ’\kx-i)z-Bz (y-e)z+zgj.,
=, x-B '\/( y-€) Z-FZE

0 .

(a7)
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When the limits are substituted into equation (A7) and ¢ is
made to approach zero, the following results are obtained:

At subsonic speeds,

2
B; "upgy 1 2x :
wg(x,y,2) = 227 |- - (48)

2n N g .2
X+ x2+ Edz d

where

At supersonic speeds,

wg(x,y,2) = —= (L - X (49)
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