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NATIONAL ADVISORY COMI"IITTEE FOR AERONAUTICS 

TECHNICAL NOTE 231L 

EFFECT OF QUADRATIC TER?IS IN DIFFERENTIAL 

EQUATIONS OF ATNOSPHERIC OSCILLATIONS 

By C. L. Pekeris 

It is shown that the negleôt of the terms in the differential 
equations of atmospheric oscillations which are quadratic in the veloci-
ties is not justified in the case, of free oscillations for heights 
greater than about 100 kilometers. This result is illustrated for two 
atmospheres of different temperature distributions where it is' shown 
that at about 130 kilometers the neglected quadratic terms become equal 
to the retained linear terms and that they even exceed the latter at 
heights greater than 130 kilometers. A method is outlined for including 
the quadratic terms in the theory of atmospheric oscillations. The 
bearing of this result on atmospheric tides is discussed. 

INTRODUCTION 

In the theory of tides, whether in the ocean or in the atmosphere, 
it has been customary since the days of Laplace to neglect the terms in 
the differential equations which are quadratic in the velocities. This 
procedure is justified inthe case of the classical theory of oceanic 
tides, since the tidal velocities are of the same order of magnitude 
throughout the depth of the ocean and their squares can be neglected. 
In the case of the tides in the atmosphere which are similar in struc-
ture to long waves propagated horizontally with vertical wave fronts, 
the particle velocities increase generally with height because of the 
decrease of density with height. At a sufficiently high level the 
particle velocity approaches the local velocity of sound, so that at 
such heights it is no longer permissible to neglect the squares of the 
velocities in comparison with their first powers. In the case of the - 
atmospheric oscillation of largest amplitude, namely, the solar semi-
diurnal tide, the particle velocity near the ground is about 3 centi-
meters per second, which is only 0.1 percent of the velocity of sound 
there. At 100 kilometers, however, the amplitude of the particle 
velocity, as deduced from the linearized theory, is greater than at the 
ground by a factor of 100 or more, while the local sound velocity remains 
of'the same order of magnitude. As long as the quadratic terms, as
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computed from the linearized theory, turn out to be negligible in corn-
parison with the linear terms, the linearization can be justified a 
posteriori. When, however, the quadratic terms turn out to be comparable 
with the linear terms, the linearized theory no longer applies. 

This work was conducted under the sponsorship and with the financial 
assistance of the National Advisory Committee for Aeronautics. 

SYNBOLS 

g	 acceleration due to gravity 

H	 depthin a uniform ocean 

H0	 height of homogeneous atmosphere 

k	 wave number 

p	 pressure 

p0	 unperturbed pressure at any level 

p1	 amplitude of pressure variation caused by wave 

R	 gas constant 

temperature at any level 

t	 time 

u, w	 components of velocity 

V	 phase velocity of wave (a/k) 

x, z	 distances in x- and z-directions 

y	 ratio of specific heats 

= -1 = 2 

'H0	 7H0 

p	 density of air
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p0	 unperturbed density 

a	 frequency of wave 

gravitational potential of tide-producing body 

ORDER OF MAGNITUDE OF QUADRATIC TER?IS 

In this section the order of magnitude of the quadratic terms, which 
are neglected in the linearized theory, will be determined. Consider a 
long wave propagated in the x-direction with a vertical wave front, and 

assume a time factor e1(), where a denotes the frequency and k, 
the wave number. For the purpose of this discussion the earth's rotation 
may be neglected and the differential equation of the principal component 
of velocity u may be written as 

dt	 at	 ax	 az

(1)


	

8x	 ax 

where w denotes the vertical component of velocity, p, the density, 
p, the pressure, and fl, the gravitational potential of the tide-
producing body. In the linearized tidal theory one substitutes p 0 au/at 

for the term p du/dt, where p 0 denotes the unperturbed density. By 

this substitution equation (1) becomes. linear in u. In order to estimate 
the order of magnitude of the error committed thereby, it will suffice 
to determine whether the term u au/ax is negligible in comparison with 
au/at. Now	 .	 - 

=iau 

au - = -iku 
ax

(2) 

+u=iau[1_ (k/a)u] 
at	 ax

ff iou[1 - ( u/V)1
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where V denotes the phase velocity of the wave (i.e., ajk). The ratio 
of the neglected quadratic terms in the differential equations to the 
retained linear terms is therefore of the order of the ratio of the 
particle velocity to the phase velociby of the wave. The phase velocity 
is comparable with the mean sound velocity in the vertical column of the 
atmosphere in which most of the wave energy is concentrated. Now it 
follows from the linearized equation (1) that 

p1 p-p0 = p0uV	 (3) 

= p1 = p1(z)RT0(z) 

V p0V2 	 p0(z)V2 

- p1(z)H0(z) 

-	 p0(z)H 

with

H0(z) = RT0(z)/g 

V2mgH 

The factor H0 (z)/H varies relatively little with height, so that u/V 

is essentially determined by the variation of P1(Z)/P0(z), which is the 

ratio of the aniplitude of the pressure variation caused by the wave to 
the unperturbed pressure at any level. 

The magnitude of u/V in equation 	 can be exhibited most easily 

for the case of the free oscillation of an atmosphere of constant 
temperature. Here	 / 

	

po() = p0 (0) exp (_z/H0) 1	
(6) 

p0 ( z) = p0 (0) exp (_z/H0) J 

H=yH0	 1
(7) 

P1P1(o)exPLxz^i(_Ia()1j
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X	 yH07H0 

pl(0) 

II = 	 exp (9.z/7H0) 

exp (z/'.6)	 :(9) 

where z is expressed in kilometers, and the values H = 7.87 kilo-
meters and p1 (0) = 1 millimeter have been assumed to correspond to 

resonance with the solar sernidiurnal tide. The right-hand side of 
equation (9) approaches unity at )4o kilometers, so that above )4o kilo-
meters the neglected terms in the differential equations of tidal motion 
are larger than the linear terms, which have been retained. 

Before proceeding to a discussion of this result, the results will 
be given here of similar determinations of lu/vi for two atmospheres 
in which the temperature is not assumed to be constant with height but 
to have a distribution more closely in agreement with observations. 

	

Figure 1 gives the ratio u	 for an atmosphere having the temper-
ax/at 

ature distribution shown by curve T. This is the atmosphere B treated 
by Pekeri in reference 1, which was found to possess a resonance period 
close to 12 solar hours, with H = 8.19 kilometers. It is seen that 
the quadratic terms are less than 10 percent of the linear terms in the 
first 80 kilometers of height. At 100 kilometers this ratio reaches a 
value of 28 percent, to become greater than unity above about l2 kilo-
meters. Figure 2 gives similar results for an atmosphere treated by 
Weekes and Wilkes (reference 2), which was also found to resonate with 
a period close to 12 solar hours. Here, the quadratic terms are less 
than 11 percent of the linear terms in the first 100 kilometers of height 
but exceed the linear terms at elevations greater than about 130 kilometers. 

DISCUSSIONOF RESULTS 

In the previous section it was shown that the linearized theory of 
atmospheric oscillations ceases to be valid at elevations greater .than 
80 to 100 kilometers, because at those heights it is no longer perinis-
sible to neglect in the differential equations the terms which are quad-
ratic in the velocities. The inclusion of these quadratic terms in the
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theory is a task of much greater complexity than the solution of the 
original linearized equations. A procedure which could be followed in 
obtaining a solution of the complete differential equations is to expand 
the exact solution into a series proceeding in powers of the amplitude, 
starting with the solution of the linearized equations as a first approxi-
mation. Such an expansion would be expected to converge rapidly below 
about 100 kilometers. At higher elevations the exact solution would be 
expected to differ materially from that represented by the first 

approximation. 1 

Pending the development of the exact solution for atmospheres of 
given temperature dis•tributions, a brief qualitative discussion will now 
be given of the possible effects of the neglected quadratic terms in the 
tidal equations on the resonance theory of atmospheric tides. 

Higher harmonics.- The solution of the exact wave equations for the 

free oscillations of the atmosphere will be periodic in time with an 
admixture of higher harmonics whose relative magnitude increases with 
elevation. A sinusoidal tidal potential will excite in the lower atmos-
phere a nearly pure sinusoidal oscillation of the same period, but at 
high elevations the oscillation will contain, besides the fundamental, 
also strong higher harmonics. The amplitude of the fundamental in the 
E layer may differ considerably from that predicted by the linearized 
solution, because the quadratic terms in the equations also contribute 
to the fundamental.	 - 

Free period.- The quadratic terms will cause a change in the free 

period of oscillation of the atmosphere or, more directly, in the velocity 
of propagation of long waves. This change would, however, be expected to 
be small in those atmospheres in which the linearized solution shows that 
only a small fraction of the wave energy in an atmospheric column is 
contained in the upper layers where the quadratic terms become significant. 
In the example of an atmosphere of constant temperature treated in the 
preceding section, the quadratic terms become dominant above 1 40 kilometers. 
The part of the atmosphere above 140 kilometers carries, however, only 
10 percent of the total wave energy in the atmospheric column, so that it 
is not likely that the inclusion of the quadratic terms will appreciably 
alter the period, computed from the linear theory. This would also hold 
for the atmosphere (B) of figure 1, since it is seen that the area under 

'Some exploratory work on this method of solutibn has been made, 
showing that on account of the earth's rotation the second harmonic will 
not be amplified by resonance, as is the first harmonic. A contrary 
result would have proved a serious difficulty in the proposed method.
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the E curve (energy density) above the 80-kilometer level is a small 
fraction of the total area under this curve. On the other hand, if the 
temperature distribution in the atmosphere is such that a substantial 
portion of the wave energy in a column is located at the high levels 
where the quadratic terms are significant, then the free period of such 
an atmosphere may differ radically from that computed on the basis of 
linear theory. An atmosphere of the latter type is one' having a positive 
temperature lapse rate in the oute,r layers. 

Resonance theory.- It would follow from the preceding discussion 

that,' provided the temperature distribution in the outer layer of the 
atmosphere is of the type sllown in figure 1, the linear theory yields a 
good approximation to the amplification of the tide and the free period. 
Thus the claims of the resonance theory are not weakened for this type of 
atmosphere by consideration of the effects of the quadratic terms. On 
the other hand, the linear theory cannot be relied upon for a description 
of the features of the tidal oscillations in and above the E layer. 

Effects of temperatu'e distribution above 100 kilometers.- Since in 

the E layer and higher elevations the quadratic terms in the tidal equations 
become dominant, it is clear that any consequences, drawn on the basis of 
the linear theory, which result from assumed specific changes in the tem-
perature distribution in and above the E layer are open to question. Thus 
the explanation given by Weekes and Wilkes (reference 2) of the observa-
tions on the lunar tide in the E layer made by Appleton and Weekes (refer-
ence 3) cannot be accepted, because it is dependent on the existence of 
a temperature maximum in the E layer where the quadratic terms turn out 
to be not only not negligible but twice as large as the retained linear 
terms. 

The question as to whether the resonance theo±y of atmospheric tides 
is reconcilable with an assumed positive temperature lapse rate in the 
outer atmospheric layers must await a detailed attack on the solution of 
the nonlinearized tidal equations. 

Effect of density distribution on atmospheric oscillations.- The 

emergence of the quadratic terms in the , tidal equations is but a concealed 
effect of the density on the atmospheric oscillations, since the increase 
with height of the amplitude of the particle velocities is due to the 
decrease with height of the density. 

Institute for Advanced Study 
Princeton N. J., September 22, 19O
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Figure 1.- Ratio of neglected term u(ôu/x) to term au/st which is 
retained in equations of atmospheric oscillations. Curve T is assumed 
temperature distribution; E, the wave-energy density. 
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Figure 2.- Ratio of neglected term u(au/ax) to term au/at which is 
retained in theory of atmospheric oscillations. Curve T shows assumed 
temperature distribution.
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