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SUMMARY

The present paper derives Von Kdrmdn's Fourier integral method in’
supersonic wing theory directly from the basic concepts of the harmonic
source and doublet. The method is first applied to investigate the
general solution of the wave drag of a tapered swept wing with a sym-
metrical diamond airfoil profile. The general solution includes all
kinds of wing plan forms which may be swept backward or forward, and
tapered or reversely tapered to any ratio. ‘A number of the limiting
cases are also investigated. ZFor practical aerodynamic design, two
families of wing plan forms with the fixed taper ratios 0.2-and 0.5, any
swept angle, aspect ratio, and Mach number are shown in graphs. Some
particular applications are illustrated. R "

The reversed-flow theorem on wave drag as shown by Von Kérmin and
Hayes checks well with the consequence of the general solution. This
method shows a certain elegance as no conical-flow assumption is needed
~and the mathematics i1s powerful enough to obtain a general solution
covering all possible geometrical arrangements without detailed
considerations.

While in recent years the direct problem of finding the lift dis-
tributlion with a given angle of attack of the wing has been well solved
by the method of conical flow and by other methods, the present treat-
ment, on the other hand, investigates the inverse problem, that is, to
find the downwash distribution in the plane of a wing with a -preassigned
pressure distribution. This is particularly favorable with the present
method. - The general solution of the downwash of the tapered swept wings
is derived for the case where a constant 1lift distributicon on the-wing -
is preassigned. Of course, the method may be applied to-any 1lift or
pressure distribution along the wing chord and span. The corresponding
angle of attack of the wing and the downwash can be determined everywhere
in the plane of the wing. To demonstrate the downwash distribution as

- given by the general solution, the downwash of a.number of wings,
including a sweptback tapered wing with supersonic trailing edge and a -
triangular wing, is shown in graphs.
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The general solution of the direct problem in the present formula-
tion is a singular integral equation of the Weiner-Hopf type and is
difficult to obtain.

INTRODUCTION

In 1935 Von Kérmén first showed that the concept of the Fourier
integral can be adopted to explain the similarity of Prandtl wing theory
and the theory of planing surfaces (reference 1). In 1946, Von Kirmdn
introduced the Fourier integral method to the supersonic wing theory
(an unpublished report of Northrop Aircraft, Inc.). The present author
under Von Kirmdn's guidance investigated this problem to a certain extent,
some of the results have been published (reference 2) but some, presented
in 1948 at the Sixth International Congress for Applied Mechanics, are
not available in published form. The present report may be considered
as an extension of the earlier work. As some of the literature is
unavailable at this moment, some of Von Kdrmfn's work is repeated.

As far as the linearized theory on supersonic wings is concerned,
the conical-flow method was originated by Busemann (reference 3) and
later reproduced and extended by Lagerstrom (reference 4), Hayes
(reference 5), Stewart (reference 6), Laporte and Bartels (reference 7,
and Snow (reference 8). Each of the later investigators approached the
same method with slightly different techniques but confirmed the essential
results of Busemann. Before the conical-flow method was known in this
country, Jones visualized the advantages of the conical flow and showed
some of the basic physical concepts (reference 9) in 1945. ILater, in
1946, with the concept of conical flow, Jones also showed the invariance
of the Lorentz transformation and introduced the oblique coordinate in
the swept-wing problem (reference 10).

The challenge of supersonic flight has aroused the interest of many
other investigators. Puckett showed that the source integration method
could be applied to study the wave drag problem (reference 11). Later
Evvard extended this method to solve the 1lift problem of a finite wing
of any plan form (references 12 and 13). Heaslet, Lomax, and Jones

. extended Volterra's and Hadamard's method to the supersonic wing problem

(references 1k and 15). Gunn applied the operational calculus to the
same problem (reference 16). There are many other works, all of which
cannot be mentioned in this paper.

On the other hand, the basic concept of the Fourier integral method
is quite different from the above methods. Instead of the concept of
conical flow or simple sources and doublets, the present method considers
along the direction of flight infinitely long harmonic source (or doublet)



NACA TN 2317 3

lines, the behavior of which is quite equivalent to the harmonic acoustic
source (or doublet) in the sequence of time. Each of such source lines
will send out a divergent cylindrical wave in the radial direction. The
potential of such a wave can be expressed by the product of the source-
strength function and the Hankel function of the second kind. For each
eigenvalue or frequency of the source oscillation, there is a corre-
sponding eigenvalue in the argument of the Hankel function. By means

of the principle of superposition, an arbitrary distribution can be
synthesized with such simple harmonic sources of different frequencies,
if the frequency spectrum is a continuous one. The most powerful tech-
nique to serve such a purpose is the Fourier integral method.

Now in the finite-wing problem, the boundary is considered as a
source sheet rather than as source lines. Such a sheet can be built up
by integrating elements of a source strip which is equivalent to a
source line in behavior.

The above simple physical interpretation may help to give some
insight into the mathematical theory to be discussed later.

The present paper first tries to give an introduction to Von Karmén's
method in terms of the physical rather than mathematical approach. Then,
the wave drag of a tapered sweptback wing is treated. This work is not
a duplication of that of some other concurrent investigators, but rather
a supplementary contribution. The next step is the lift problem. For a
given angle of attack, on an arbitrary wing plan form, it is rather
difficult to solve the integral equation analytically. But for a given
1ift distribution the downwash angle can be evaluated anywhere in the
plane of the wing.l

The method has a certain elegance. The complete physical effect
of the arbitrary wing can be expressed in terms of one integral. The
finite number of discontinuous points of the Fourier-Bessel integral
gives exactly the right picture. )

This investigation was conducted at the Department of Aeronautics
of the Johns Hopkins University under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.
Due appreciation should be given to Misses V. O'Brien and P. Clarken for
their assistance in carrying out the research.

17n some recent unpublished Navy reports, J. D. Miles has obtained
a solution of the direct problem, particularly for the rectangular wing
tip with constant angle of attack.
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GENERAL THEORY OF THE FOURIER INTEGRAL METHOD

Elementary Solutions

" In the three-dimensional, steady supersonic flow of a compressible
nonviscous fluid, the differential equation of motion in the linearized

sense 1is

¢yy + ¢zz = (M2 - l)¢xx (l)

where the velocity potential _¢ is defined by
grad § = q - UL = ui + vj + wk, the disturbance velocity vector. It
may be considered as a two-dimensional wave equation if x is conceived

as time in the sequence of which the future can contribute nothing to
X

the present. This can be shown clearly by introducing t = —————7;
(w2 -'1)1/2

that is,
Byy + P2z = Brt (2)

with the dimension in the flow direction being equivalent to time t.
After this transformation, the velocity of propagation in equation (2) is
unity. In this sense, equation (2) becomes the potential problem of the
acoustic source and doublet in the y,z-plane in the sequence of time as
pointed out by Von Kdrmin (reference 2). After this transformation, the
wing plan form has to be readjusted so that the Mach waves are inclined
backward at 45° from the flow direction. As an example of transforma-
tion, figure 1 gives a sweptback wing in the physical and transformed
planes.

For a simple time-dependent harmonic source with strengﬁh cos At
(where /21 1is the frequency of oscillation) located at (n,0) in the
y,z-plane, the elementary solution of equation (1) as given by Lamb

- (reference 17, p. 297) is

B (t,¥,25 0,0) = Re{} ﬁ eiktﬂo(e)(kr{] (3)

vhere r = VZy - q)2 + 22 and Ho(e)(Xr) is the Hankel function of the
second kind of zero order. It is easy to show that the solution satisfies



NACA TN 2317 >

both the differential equation (2) and the given boundary condition

cos At = Re eiXt. At very large values of Ar equation (3) becomes

Bo(t,r) xv_l_ Acos[:)»(t - 1) - ﬁ:l

8rar

the amplitude of which is inversely proportional to the square root

of r. Physically, this represents the potential at the point (y,z) at
time t due to a harmonic source of strength cos At at distance r
from it. Such a disturbance potential is called a divergent wave. This
disturbance propagates from the point (7,0) with a circular or cylin-
drical symmetry.

Now if the strength of the source is the real part of F(1)eirt

instead of just eikt,,the potential must be also written as

Bo(t,¥,2; 1,0) = Re[— %F(x)ei"tﬂo(”(uﬂ ()

where

F(A) = Fy(r) + 1F1(0) (5)

with Fpo(-1) = Fo(x) being even and Fy(-A) = -F{(A) being odd. It

is understood that F(A) is a function representing the strength,
amplitude, and location of the source line.

If two such harmonic line sources of equal but opposite strength -
the negative one located at (7n,-{/2) and the positive one at (n,§/2) -
approach each other, a harmonic doublet line can be obtained if

lim F(A)¢ = G(X) 1s considered as a finite quantity:

t =0
i [l n8) - o v )

o,

lim —2
(>0 3L

¢l(t;YJZ§ 1,0)

Re[— Eﬁl G(x)ei)‘tﬂl(z)(kr)é] (6)
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where the doublet is defined as positive, and
G(X) = Gg(r) + 1Gy(}) (1)

with Gg(-A) = Go(X) being even and Gy(-A) = -Gy(\) Deing odd. It is
very interesting to see that this potential of the doublet no longer has
cylindrical symmetry, but is antisymmetrical with respect to the
t,y-plane. The harmonic doublet line will be used for the wing 1lift
problem.

Boundary Conditions in the Supersonic Wing Problem

Let a flat body.or wing occupy a region in the Xx,y-plane and a,

and o_ be the slopes of the upper and lower wing surfaces at (x,y),
respectively. Both are small in comparison with unity and are zero
outside the finite region occupied by the wing. Within the approxima-
tion of the linearized theory, the wing may be considered equivalent to
the superposition of a symmetrical body and a mean-cambered surface.
The slope of the symmetrical body is

1
ap = —2-(0.+ - a,_) (8)
and the slope of the cambered surface is
1 .
il ='§cl+ + “-) (9)

where a, and ap are considered at the X,y-plane. In other words,

the effect of exact location of «, and a; in the z-direction is
entirg;y neglected in the future treatment which has been shown by

Von Karmdn to be consistent with the linearized theory for the flat body.
From the above, the required boundary condition of the potential is the
normal velocity to the wing surface which is zero; that is,

qgn = 0 (10)

In this case of a flat body, where the vertical velocity component pre-
dominates, equation (10) can be approximately expressed by

w, = (QQ

. 5Z)z=+o = Ua, (11)
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w_ = (%:i)zz_o = Ua_ (12)

where w, and w_. represent vertical velocity components on the top

and bottom of wing surfaces, respectively. Besides, at a distance far .
away from the wing in the upper stream, u =v =w =0 1if there is no
other disturbance generated in the upper stream.

Supersonic Flow about a Flat Symmetrical Body
If a source line at (n,0) is of any arbitrary strength with finite

time t the potential can be built up with equation (4) by means of a
Fourler integral as

#o'(t,5,2) = Re- dx[- 5 F(x,n)emHO(E)(xr)] (13)
-0

where U 1is the free-stream velocity. The insertion of U in the
source-strength function is purely for future convenience.

The above integral and its first derivatives exist if the Lebesgue
integral

fw PO, B ()] an < o
0

The above condition is automatically satisfied, if the source with finite
strength is in action for a finite time interval. Actually, equation (13)
can be considered as the potential of a body of revolution. Sometimes,

in conforming with the convention of the complex Fourier integral, the
above equation may be conveniently written as

Bo' (t,y,2) = - ‘g—if aF(x,1)eMap(2(r) (1)
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with the understanding that the path of integration of A 1is slightly
above or below the origin in the complex A-plane so that the singularity
at A =0 can be detoured. It can be verified easily because

F(")",T]) = Fo()\-:ﬂ) - .iF'l()";TI) = F(X,T])

Ho(e)(-xr) = Ho(e)(xrei“) = HO(E)(Xre_iﬂ) = Ho(e)(xr)

where the bar represents the complex conjugate of the original function.
Now, the above source line may be considered as an elementary strip of
a source sheet in the t,y-plane of width dn with the above strength as
the strength density per unit area. It is clear then that the potential
due to a source sheet built up by such strips is

'¢o(t)}’:z) =f ¢0' dn

-%lf dnf m(x,q)eimno(e)(u) © (1%a)

For the convenience of the later development, f(A,n) = - % F(x,n) is

introduced into equation (15a), and then

Bo(t,¥,2) =%f dnf ar(,n)eMa(Br)  (150)

One thing should be pointed out. Owing to the structure of the integral,
the source sheet may be composed of a number of discontinuous portions

in the y-direction, and the source-strength function f(\,n) may be
different in different discontinuous portions, but it must be the same
within one continuous portion of the source sheet. Of course, in that
case, the integration with respect to 1 has to be broken up accordingly.
Physically, this integral can give the potential not only due to one wing
but also to a number of wings or flat bodies in the t,y-plane. There-
fore, it can be used to study the interaction between wings.
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The preceding equation will be the disturbance potential of the wing,

if the relation of the source-strength function Re f(X,n)eiXt can be
identified with ag or the thickness distribution of the symmetrical

flat body. This can be obtained from the boundary condition. Differ-
entiating equation (15b) with respect to z, there results

3

a . 00 ) [v0]
& peif dnf xdxf(x,q)ei"tﬂl(g)(xr)% (16)

Now as z— 0 the integrand goes to zero except in the neighborhood of
n=y. Let n =y + z tan 8; dy = z sec®6 49, where O = tan~!l ﬂ.éJZ.

il
e
y n

Besides, Hl(z)(Xr) ~ 2i/rAr when Ar or r—»0. Thus equation (16)
becomes

o,
(W) z=10 = S——
Z /z=+0
_ ® n/2 o
= lim - U delirt AM(A,y + z tan 8) 21 27 5ec2g go
2—>+0 . -n/2 T 2
n/2
= lim %  delMt A(A,y + z tan 6)ae
z—3+0 o -n/2
= % aelrr(a,y) a8
~o0 -n/2

=U f dxei)"tf(x,y) (17)

=]
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From equation (10),

o0
(W)z=+0 = U(@0)z=s0 = U | arelPe(n,y)
—-00
or
00
a'o(t:YJ"‘O) =f dxeixtf(kyy)
-0
m«-
= 2f [fo(x,y) cos At + f1(X,y) sin At|dr (18)
o N

From the theory of complex Fourier transform,
N e Int
f(h,y) = 2_nf C"(t:Y)e— at (19)
- oo

This means that, 1f the source distribution f(A,y) is chosen to be
the Fourler transform of the distribution of the angle of attack, the
potential ¢o willl represent the flow about the wing automatically.

Since the angle of attack is zero ahead of the wing, it can be shown
easily that equation (15b) satisfies the second boundary condition of
equation (12).

Supersonic Flow about a Lifting Surface

By means of the same argument as in the last section, the potential

can be formulated for a doublet sheet of strength Re eiXtG(l,n) from
equation (6):

$1(t,y,2) = Re 2 dnf ar A G(x,n)ei“ﬁl(z)(u)f (20)
- 00 o

where a constant, free-stream velocity U is introduced. 1In order to
gimplify the later development, further introduce
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g(r,n) = %é;‘:—’ll = go(Mm) - 1gy(%,m) (21)

where, with equation (7),

go(r;n) = égl&}ill (even)
8m'
> (22)
g1(n,m) = }Egifiﬂl (0dd)
8m’

Then equation (20) can be written

B1(t,y,2) = Re -2m'Uf dnf pe(r,ne™n P anZl  (23)
- 0

The above equation can be written entirely in the complex form

B1(t,y,2) = -m'U dnf dxg(x,n)ei"tﬁl(g)(u)f- (2k)

if the path of A 1is chosen below A = O in the complex A-plane,
because :

8('X:n) = go(k;ﬂ) + igl(X;n) = g(l:n)
- (25)
1 (2) () = 8, (2 (hre-17) = By (2)(ar)

The path of A with Re A > O cannot be chosen in order to
detour A = 0. In that case,

B (2)(aar) = 1 (2 (areln) = 1, (2(ar) - 20y(ar) £ 8,(®)(ar)

which is impossible to reduce back to the original equation (23).
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In order to find out whether equation (24) for the doublet sheet
satisfies all the boundary conditions of the wing or not, first differ-
entiate it with respect to t.

d d >
—gi =m' -gi =m'u = -m'Ui dn A d}vg()»,n)eiXtHl(e)(Xr)E (26)
ot ox I . r

The above equation is identical in form with equation (16) if
1]
f(A,n) 1s replaced by %; g(:,n). Therefore, with the same technique,

it can be shown that, as z—+0, n—y.

3¢ v [
<__1> =BT petMgn,y) (27)
ot Z=+0 2

=

Now in the linearized theory the pressure coefficient on the wing
surface is '

. 3
-2u _ -2 / 1
C,(t,y,+0) = = 28
plt,y,40) = 8- 2SR ) (28)
Thus, with equation (27),
Cp(t,y,+0) = dretPMg(r,y) (29)
- 00
With the Fourier transform,
1 ” irxt
g(ry) = 5= [ dte”"Ch(t,y,+0) (30)
- o0

Therefore, if the pressure distribution along the wing chord is
given, the doublet distribution function g(\,y) of frequency A/2x
can be obtained with equation (30). The function g(l,y) is inde-
pendent of the pressure distribution of the neighboring chord. Further-
more, if A-=>0 1in equation (30),
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g(0,y) = zl—nf atCp(t,y,+0) (31)

=]

On the right side, dth(t,y,+O) i1s equal to one-half of the 1lift-

- 00

oCy,
coefficient distribution, 2?<by , at y. Thus, g(0,y) is eguivalent

-1foCy, .
to In at y which has a physical meaning.
n\Qy .

Unfortunately, equation (23) of the doublet-sheet potential satisfies
one of the boundary conditions on the wing, but does not satisfy the other
required boundary condition that the potential and its derivatives must
be zero far ahead of the body. In other words, the correct potential
must be zero as t—>-o.

The potential of the doublet sheet at large *t is investigated as
follows. Introduce Vv = At into equation (23):

p(t,y,2) = Re|-om’ Uf f iVHl(Q)(Vg”); (32)

For very large values of t there can be written

Hl(g)(E) r 21t

t wr

and

g({-,n) ~ g(0,n)

lim  @i(t,y,2) = lim “ha’ Ui dng(O,n) =— dv
t -9+ 't——)ioo

hmry 51n v
1im - ;5 dng(0,n) y av
t—p to o 0

o0

¢l(i°°:YJZ) = X' = +2n'U —ZE dng(0,n) (33)

o T
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where the negative sign corregponds to t =--» and the positive sign
corresponds to t = . As X (y,z) 1s independent of t, it satisfies

. d2x* . 3x*
the Laplace equation 2 X + 2 2 =0 and can be added to @, the
3x° 8y2
doublet-sheet potential, without an effect on the pressure distribution.
It should be noted that the value of the potential function as t—jyw
is 2x*. Hence X* may be interpreted physically as the potential
function of the downwash in the Trefftz plane.

Thus, from equations (24) and (33) the complete solution of the
present problem on supersonic wing 1lift is

r

B(t,y,z) =f1 + X* =m'U f 12 dn|2g(0,n) - fm r dkg(x,n)ei)“tﬁl(e)(k)

-0
(34)
In the case where Cyp 1s given, the above equation can be written,
with equations (30) and (31),

o0
®© 00

p(t,y,z) = %;H f%-dn dtCp(T,n,+0) |2 - k[‘ T dkeix(t'T)Hl(e)(xr)

- 00 00

(35)
Let Ar = v; then

£- .
-, P o (e
'U
¢(t)}’;z) = gn f —ze-dﬂf dTCp(’r,T],+O) 2 - dve r Hl(e)(v)
r
-00 -0

-~ 00

(36)
With reference 18, page 405, the bracketed term in equation (36) can be
evaluated as

-
- 0 toT<a
- iv(ii) . T
2 - ave N7 /g (®)(v) = (37)
L t -7 >
-0 V ] T 2 r
L (t - T)
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Thus, if the vortex of the foremost Mach cone is taken as the origin,
there can be written

om'y " 2 o (t - 7)C_(T,n,+0) (38)
B(t,y,2) = = =5 an ar -
e o Wt - 1)2 - 2

which is the equation of the potential in terms of the pressure coeffi-
cient on the wing. The value of Cp 1is zero outside the wing. Since

the radical must be positive, ¢ is zero outside the foremost Mach cone,
as predicated by other theories.

AERODYNAMIC BEHAVIOR OF SYMMETRICAL FLAT BODIES

IN SUPERSONIC FLOW

9

As the disturbance potential for the symmetrical flat body in
supersonic flow has been given in equation (15b), with the Fourier
integral method, the present section will show the expression for the
pressure coefficient and the wave drag of various types of wing plan
forms and airfoil sections.

Derivation of the Expression for the Wave Drag of a Wing

To the order of approximation of the linearized theory, the incre-
ment of pressure Ap anywhere within the disturbance area is

Ap =P - po = -pUu = -pgU — = - — —= (39)

where the relations x = (M2 - l)l/2t =m't and u = 5¢o/8x are used,

p and p are the local pressure and density, respectively, at the
point (x,y,$z), and p, and p, are the free-stream pressure and

density, respectively.

To find a¢o/at, equation (15b) can be differentiated as

) i :
1. -a% - g[ dn f r aAr(x,n)elMEy(2) (ar) (140)

where O@,/0t 1is an even function with respect to z.
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Substituting equation (40) into equation (39),

2
oo(%,y,2) = Z;U fdnfx ane(x,n)eirMu () (ar) (41)

If the pressure increment on the wing surface which is located
equivalently at z = +0 1is desired, r—|y - n| and

DOU2 m ® : At (2)
2p(t,y,%0) = —=— dn A anf(x,n)eMEt =/ (My - n]) (k2)

If it is the wave drag distribution along the span dD/dy which is
of interest, all the horizontal components of the pressure increment
along the' x- or t-direction on both the top and bottom surfaces over a
unit span width must be summed up. Mathematically, :

dp) *
(—a;)y =2 Jjw Apag -dx (43)

vhere a, 1is the surface slope of the airfoil along the line of con-
stant y as given in equation (18). With the expression for ao(t,y,+0)
and /p(t,y,+0) 1in equation (42), the drag distribution per unit span
can be determined as

%= 0oU2 fw an fm r anig 2 (hpy-nt)£(x,m) "t fw et ten 4y

o] (2]

(Lk)

where A' and y correspond to ag. To evaluate the last double
integral, write A' = -A" and the double integral can be written as
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> (M)t ® ® (A-A")t
1 -
me dttlw a'e £f(A',y) (-an")e" £(-A",y)
-00 -00 L] =0 ~00

.,ei(x-x")tm (45)

[
&

where

£(-A",y) fo(‘k":Y) + ifl(‘X":Y)

fo(A",y) - if1(A",y)

f(k":Y)

is introduced because f 1is even and fy 1is odd. From the complex
Fourier integral theorem,

00 0
ont(h,y) = dt el (AN ) (46)
-0 - 00
o0 .
if the Lebesgue integral A" eV, y) | < » exists or if £(A",y)
-
is of bounded variation, in the neighborhood A\ = \". (See theorem 23,

reference 19, p. 42.) Substituting equation (46) into equation (Lk)
gives
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Q/
SiE
<
1

2np U2 fw an f » (B (A fy - n)£(r, )T, Y)

2np0U2f dnf 3 dx[ﬂo(e)(kly - e, )£, y) +

Bo(2) (My - nl)f(x,n)f(x,yﬂ

21p U2 fdnf A dax {Jo(kly - D) [Fo(h,m) £o(A,y) +
Y 0

£100,m) £10053)] + YoMy - D [E1(0, ) fo(h,y) - fo(x,n)fl()»,yﬂ}

T (47)

where the relations

52 (Aly - 1) = B My - al) = Jo(rly - al) - 1My - 0 )

£( -X:ﬂ)f( ")":y) = f(k;’])f()":y)

are used so that the integration limit changes from O to o 1instead
of -o» to o The imaginary part automatically cancels out.

Now, if D, the wave drag of the whole wing system, is desired,
equation (47) can be integrated with respect to y:

i f (g'g‘)dy } E“pOUef v j“’ o J"“ » Al ®) (My - D) £(x,n)E(h,y)
IHTDOUQ fw ay f‘” dn fw Y dx{Jo(le - n|)[fo(x,n)fo(x,y) +
-0 -0 0

£, (21 03)] + Yolhly - 1) [0 56 (0y) - fo(x,mfl(x,yﬂ}

(48)

lw)
|
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Now, as the wave drag D is independent of y and 7, it should be
independent of the order of integration or of the interchange of y
with 1. In carrying out such an interchange,

00 o L
D' = u,mOU?f dqf dyf A dx{Jo(Mn - yl)[fo(k;y)fo(x,n) +
- -0 0

£, 00m) |+ Yolidn - 1) 2,003 Eo(0m) - fo(x,y)flu,nﬂ}

This shows that the necessary condition D = D' 1is

f dnf dyf A dx{Yo(My - b [rru o) - f1<x,n)fo(x,,y)]} =0
- - 0

(49)

This is one of the important relatlons that has been developed by
Von Kdrmin.

There is another way of evaluating the wave drag as pointed out by
Von Kdrmfn. The total momentum transfer through a cylindrical surface

of very large radius R which contains the wing in the flight direction
must be equal to the wave drag, by means of Newton's laws. Thus,

= -pof f R d6 a¢ §¢ (50)

which is the same as equation (48). Applying equation (49), equation (L48)
can be written as

o0 [0 [ee]
= lmpoUef de dnf A dJo(My - Tll)[fo(MTl)fo(MY) +
-0 -0 0

fl(k_,fx)fl(k,y)] (51)
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In the case of a sweptback wing which is symmetrical with respect
to the x,z-plane, fo( A,y) and fl( X,y) are even functions with

respect to y. To take care of this point, write

oo 0 [~
D= unpotﬁf dyf dnf A ado(Aaly - n|)[fo(x,|r3|)fo(k,|y|) +
-00 -0 0

£1(0, [nDE1(h, 1y D]

o] [+ 00
lxpol? f ay | an f » dx{muy )+
- o) 0

Jo[x(y +-n):\} [fo(k,n)fo( Ay D)+ £( X,n)fl(k,lyl)]

8npoU2f dyf dnf Py dX{JO(le -q]) +
0] 0 0 :

Jo[My + n)]} [fo(x,n)fo( My) o+ £1(0m)E( X,y)] (52)

where the limits of 1 and y change as shown. Equation (52) will be
used in the next section very often. If the span is finite (say that

b 1is the semispan) and the airfoil sections are .similar everywhere,
equation (52) can be written

b b o
D = 81tpOU2f dyf drlj‘ A dx{Jo(ny -nl) +
0 0 0

Jo[My + n)]} [0 n)Eo(hy) + £ (0y]] (53)
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Wave Drag of a Tapered Sweptback Wing

If the double-wedge profile is taken as the airfoil section of the
wing as shown in appendix A, and equation (A8) is introduced into
equation (53), there results

b b e
= BrpyUP dy dn rdar<Jo(My - nl) +
0 0 0

JO[X(y + r,)]} l - cos )vay)(l - cos )\an )cos MUyl - Inl)

2
8p U2 a ! o] b ©
o O
=——¥— dy dn %{Jo(kly-nl) +
0 0 0

Jo[My + qz‘} (1 - cos ray') (1 - cos rag')cos AB(Iyl - Inl) (54)

By definition,

b y 0 v R
v v - Y [ - | B
b ag' Y ap' 1 ag' v m'
ay' =a5'(1 - v'y*) 3 (55)

aol(l _ Vrnt)

For details of the notation refer to figure 1 and appendix B.
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The wave drag equation can be written in another form

bt bt 0
i D di
= dy' dT]' __{J (nv - yv))\a t +
80002(%')2(%')2 J:) j(; u[) > 0[ O:|

JO[(TI' + Y')Moﬂ}<— %{l - cos )\ao'[g +B(q' - y') -

vin' + y'ﬂ} " ﬁ{l - cos xao'[2 - B(n' - ¥') -

viin' + y')]}— %[l - cos Aag'(B + v')(n' - y')] -

£

{l - cos [ka'(B -v')(n' - y')]} +

o [

{.l - cos Aol + B(n' - ¥') - V'y']} '

n

{l - cos )«ao'[l
{1 - COSs )\ao‘[_-l
{l - cos kao'[l

SR |

N |
+

B(n' -y') - v'ﬂ':l} +

o+

!
w
—~
=
)
e
A
A
I
<
=
L=l
—
]

[l - cos Bray'(n' - y')]) (56)



NACA TN 2317 ' 23

With the known infinite integrals of Bessel functions as shown in
appendix C, the integration in equation (56) can be carried out.

ay* _ L 1 oep-1 2+ B(7" - :'r') -'v'(n' +y) % cosn-1 2+ B(n* - y:) - \:'(n' +¥')
8po U2 7 -y n ey

y) - vin'+y') -%cosh-l 2-8(n' -y -v'(at +y")
YR Pr—

]]icosh'l 2 -8ln'-

4yt [ gt o
L oot BN =) L ot (g uyr) - dcosnd (8 - v0) - b oosnt Bl o)
b n' +y' P
1 vy} Loytyt 1 T oyt) oty 1 - Vgt L ytt
%cosh'l +Bnt - y") -viy % cosn-1 L Bn' - ¥') - v'y' | % cosn-1 Bln' - y') -v'y' |
n -y n' o+ ¥y Nt o+ oyt
- BlnT - v') - ,'y! 1 T yt) _ oyttt 1 o ogr) o tnt
L cosn-l 1 - 8n y) -v'y + L cosnl + Bln y) -v'n + % cosnl + B(n ¥y') -v'n +
2 n' -y 2 q -y 2 h + ¥
- T y') - 'yt _ Vo yt) - ootat -
i cosh-1 1 - Bln y') - v + 1 cosn-1 1-80 y') - v'n - cosh-1 —B(q y') - cosh-1 8 (57)
2 ' -y 2 Tt o+ ¥y nt o+ y

In all cosh~l (A) terms, A must be positive. In order to carry out
the integration, a transformation of the coordinate system may be intro-
duced as follows: Let u' =1n' +y', v' =1q' - y'. Then,

dy' dy' = :Ei"n‘; du' av' = % du® av'
y"y =0, =0—u" =0, v'! =0
' =0, 7" =b-—u" =Db, v = b
y'=b, 0" =0 —u' =b, v' = -b

Lyt =D, 1 b-—>u' =2b', v=0

With this transformation, the square domain in the y',n'-plane will
transform to a diamond-shaped domain (of twice the area) in the
u',v'-plane.
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-(b')z[-]* coshl (B + v') + l cosh™l (B - v') + cosn~l ﬁ] f du'f (- L cosnl (Z_‘V"’J+ a) -

1 coenl (22 BV . v') - L cosnl (2———_ via' B) - L coshl (2——- LA v') < Loyl {Br vV
I u' L v' 4 u' & u!

ot 0] [ (220 ) Lo (B0 )

1 . 2 - 2y'b' + y'u' ) 1 _ 2 - pv! £ _ (B+V')V'
ﬂCOShl(__T_-B -Icoshl e a— - -hcoshl_.——_zb' — -

1 (B - v 1 (e v s e ey wr
i cosh PTSEE 2 cosh g + B+ 2 + cosh’ o > +

-1 {2 - v v! af2-(28-vt vt v -1 {2 - v'u' v
cosh’ (-—2v|—-a+? + cosh — e "% + cosh’ —2v—l+p-?o

Aafe v (2 - vy v -1 {2 - v'u' v a2 -(es+ vt v
cosn [—'eu—v—'?”“" T P e A TRl

1 1 {2 -2vh xviut o i) p-l |2 (2B 4 vt vt e (2 - 2v'p' o+ vt o £)+
1 %osh (_——ZV' + B > + oS8 2o ) > c T a— 8 >

_ )y v oyt 'y B "yt i
cosh'l 2————(2B vt - v— + r:osh'1 (—-——2 2v'b’ + viu + B - v_) + (:osh'l |:2—————r—+ (25 vt - V— +
2(2bt - u') 2 2v' 2 2(26* - u') 2

o 4 i . _ et oyt .
cosh-1 (2 = bzv: B - v?) + cosh™d [2 2(2?-i t X';v i l‘2—]} * ( -cosh~ Bv_ - cost-l 2b'Bv- u')) (s8)

The details of the integration are too complicated to be given here.

The result

Bo = B+ V',
if | Al > 1. The upper line with 1 - B

can be summarized in equation (59) which follows, where
B =B ~ V', o=1-v'd", and sin~t (A) = (sign A)Z

5
2 should be used, if B < 1;

the lower line with B2 - 1 should be used, if B > 1: and the signs

of all cosh'l terms should be reversed if B < -1. The above rules
should be also applied for B, and Bj. Therefore equation (59) covers

all cases except a few limiting cases: B = %1, B, =1, B ==
yv' =0, and B =o (i.e., M — 1). These limiting cases will be shown
in the next section.
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b »
EN ]'L( ! 7z o

0? - 1) ED)

% 2 Bo . |82
Lo« a) == ()] cosh-t
‘ ol {[ 2(s2 - 1)

“«
1+ )2

wl e

oBg +
el 22
[un T
281 - B

(o + 285072

>l [ T | PO T R L
q 20T+ ey | 2080 a)(x 2)1/2

N <
2
X .
1 ‘ - —Aﬂi comd |2 | ol Z o beomd St
2 - 1) 2 ® 3

o + 2 Y
TRy M [‘

e

(2 - 83w

{102 |]

- cosh-l
cosh t"' 2(1 .« ) |

(1« pp)? [ t r;o . e
1/2 1+ b 2(po + ’)(%2 i l)x/z:

a8(se? - 1)

[“:Q'h-l Ialo M I

lo+ 2858}

|

+ cosh-1 | +
ot o 2pgb!
J

woe |- L (- aﬁ)b"ﬂ (o - 28y0)2 e |-; A (- a,z)v—l
21 - 5,2)1/2 1- ey 1T oy - ) Jj 201 00 -2 o 1T
' 2)y v | -
Y T | BT N LT Y L
Lza(h? 1)t 2£ e | e e e 208, + 8)(ps2 - )12 il E-r ) il e
ne
(a - 2pv' )2 LY [, - uz)n-] R % aprl @B '} - nz)v]
z(a, G- ’2)1 2 o G - 2pb 2(e1 + B)(2 - )112 o+ 28 o+ 285"
< *
(o202 [ [ae 2 | + comet |g . 182w ]. (o e 2pp)® | fen s 2w | v com-1 |p o (1= 8n
215., +8)? - 02l o - o - 280! 2(p) + B)(82 - 1)1/2 o+ 28 o + 280"

1
av(1 - Boz)l;2

(-
- a

- 8.2)p
[,2 cosh-1 ‘Bo - (L—::il - @ cosh-l g,

1
2v(8a? - ,)i]z

~

- - By
. hﬂhgiﬂjmﬁvLuqﬁm
21 - 82 /2 20 o

("512)"" Bo
% I

1 - 8,2)b
81+ ——( 2:) + & conn-l lgl .

Lm;—l)"i[z comt

n

Fm@¢%m4w¢¢¢ﬁ_wﬁuwﬂ

o2 come
8

cosnl |51 “(r- af)%. .

5 [ﬂo (2 - B2 ] :;'B:";: sta-l a,]

1 IB" .- ao’");—'| - ﬂ:f 5 coen-1 !uo D SR Y g.%%:'_a.s))_

R I e e ORI RN B - e

28
CED

48(8o - 8)

Nxpoer el

sin-l i} Q- ;2)h']

cosh"l |s°|]

al - m) 0,

25

+

cosnl ln, -a- alz)b'l - —(_T:z’: - :1) cosn=! |al|:|

r

where

W{ﬁ sta°l [p - (L'_Z:Q_)"_] - @ atnt [y - Q_'?ﬂ"_]. %B_f_e sin-1 [g (1= f)n.} _ 902505

1
2v (92 - 12

a, b, ¢,

. 1 - v . ) - 2y 28; ~ | 28,
['zcoshllﬁ-( 25 !tazcolhllﬂ-(—%—— -mcolhllﬁé(l-aa)blo S

A, B, G

used in the next section.

For a given sweptback wing,
line ahead, on, or behind the leading edge, respectively; By > 1,
or < 1 means the Mach line ahead, on, or behind the trailing edge.
a fixed taper ratio, the trailing edge may be swept forward; B,

B}
_iﬁ_LTwm”ﬂ

i A M ey e

B+ B
(59}

D, E, and F designate the terms to be

=1, or < 1 means the Mach
=1,
With

Bo > 1,

-1

means the sweptforward trailing edge coincides with the Mach line.

Similarly,

ness.

slope of the curve of the wave drag.

B
At all B's

equal to

refers to the midchord or the line of the maximum thick-

|l| there occurs a discontinuity of the

In other words, curves for = |1]

are the envelopes of cusps of the CD/CDO curves at constant .
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To demonstrate the use of these results, the wave drag coefficients
of two families of sweptback wings have been calculated as shown in
figures 2 and 3 with taper ratios of 0.2 and 0.5, respectively. The

essential parameters are CD/CDO, A tan A, and B. The effect of the
Mach number is contained in B = tan A/m' and Cpo = haog/m', the two-

dimensional wave drag coefficient of Ackeret. To use these curves, first
fix the sweptback angle A and aspect ratio. Of course, o Wwill have
to be chosen as 0.2 or 0.5 in order to use these graphs. Then, with a

fixed A tan A, read off CD/CDO at various values of B along the fixed

abscissa. Replotting CD/CDO against B, the example shown in figure 4,
actually gives a family of swept wings of fixed A tan A. The curve of Cp

2
against Mach number can be plotted from the relation M = V(EEE—Q) + 1.

This is not given in this report.

It is very interesting to note that (CDICDO)max occurs when the
Mach line coincides with the leading edge, Bo = 1, or the line of maxi-
mun thickness, B = 1. In figure 2 (o = 0.2), (CD/CDO)max occurs at
B=1 for A tan A > 7.5 approximately, and at Bo = 1 for
A tan A < 7.5, In figure 3 (o = 0.5), (CD/CDO)max occurs always
at Bo = 1 except for A tan A < 2/3. Also, CD/CDO increases mono-
tonically with A tan A at By, =1, B =1, or By = 1, but decreases
monotonically with A tan A for B; = -1.

Figure 5 shows f corresponding to By =1 and By = 1 plotted
against A tan A. This is needed for locating the cusp of the curve
of CD/CDo against B, as shown in figure 4. These curves are obtained
from the relations:

2(1 - a)
(1 + o)A tan A

By = B|1 -

2(1 - o)
= Bl1
Po |: "1+ o)(a tan )
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A few interesting facts can be drawn from figures 2 and 3, although
the taper ratios are fixed at 0.2 and 0.5, respectively. First, if

B=tan A/m' = 0, M—yo for A #0, or A =0 for M>1., For A # O,
Cp[Cpo =1 or Cp = Cp, as indicated. For A =0, 0<Cp[Cpy 51

and the exact value of CD/CDo is indeterminate. As B increases

from O to 1, CD,CDO rises quickly with A tan A until it meets the

curves By = 1 and then varies with A tan A very slowly. At B = 1,
CDICD0 is extremely high. This means that the closer the Mach line to

the maximum-thickness line, the higher the drag. As B increases
further, from 11—, CD/CDo decreases with increasing B. This means

that the closer the Mach line to the maximum-thickness line, the higher
the drag also.

If the sweptback angle is negative, or if the flow direction is
reversed, the curve of CDICDO against -A tan IAI is actually the
reflection of the present curves with the following changes: g — -B,
Bo=1—pB1 =-1, B1 =1—"Bg =-1, and By = ~-1—x B =1 if B,
is defined as corresponding to the leading edge, and f; as corre-
sponding to the trailing edge. It will be found that CDICDO depends
only on A tan |A| and |B| for the same wing whether it flies forward

or backward. This confirms the reversed-flow-theorem in references 2
and 5.

Spécial Cases of the Wave Drag Equation

Most of the special cases of the wave drag equation are required in
calculating the curves shown in figures 2 and 3 and therefore must be
written down one by one. These special cases are based upon the taper
ratio that is between O and 1.

(a) As PBo —»1, expressions A and D in equation (58) take on the
following limiting values while the rest of the equation stays the same
except a =b =c¢ = 0.
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A

] - v'b' + b - V'D' + b

+

2(v' - 1)

(l - y'b' + 2b')2 1 - v'b! 2! 1/2 1 - v'p?
2b’ 1 - v'd' + 2p

(1 - v'p 4 )2 _(1 - Vb - b'>1/2 . ( 1- v >1/2 , A
1

2(v' - 2) - Vv'd' +
D = 2—::,- 03/2B1 - v'd' + b')l/2 - (1 - v'p' + 2b')l/2] +
2y' -1 (1 - b')l/2 _2(v ~1) (1 - 2b')l/2 . v!'
v -1 v -2 (v - l)(v‘l- 2)

This case occurs when the right characteristic coincides with the
leading edge on the right side.

(b) Similarly, for By = 1, expressions B and E become

B

(- v -p)2lf1 - v s o \Y2 1y (/2 .\
2(v' + 1) 1 - v'b' -1 1 - Vb' - b’

(1 -v'p' - 2p')2 _(1 - Vb + 2b')1/2 . ( 1- v )1/2
1

2(v' + 2) 1-v'b' - 2b' - v'b' - 2b
E = 1 03/2[;(1 - v'b' - b')l/2 + (1 - v'b* - 2b')l/é] -
2v'
\ - L} ]
v+ 1, pnl/2 20 1) 0 12, v
v+ 1 v' o+ 2 . (v' + 1)(v* + 2)

Here b = 0. All the other terms remain the same as shown in equa-
tion (59). This case occurs when the right characteristic coincides

with the trailing edge on the right side.

,(60)

»(61)
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(c) When B.= 1, the expressions C and F are

C = (0 + 2b' )2 i g - 2b')1/2 + o )l/é1 +
T 2(2 - V) : g + 2b' o+2v') |
(o - 2b‘)2-: o+ 2b')1/2 . ( . )1/éT
2(2 + v') | \o - 2p' g - 2b’ ]
> (62)
= 2% 03/2[—(0 + 2b' )1/2 4 (o - 2b')1/2] -
21 -v') (3 _opyl/2, 21+ v;) | W1/2 b
o (L -2 5o (1+2v) (Z':TIS??Y'
J

Here b.= ¢ = 0, All the rest remain the same as shown in equation (59).

(d) When By = -1, A and D become

A =B 1in equation (61), where By =1
(63)

ol
1]

E in equation (61)

Here a = 0. The rest of the terms in equation (59) remain the same.
This case occurs when the left characteristic coincides with the leading
edge on the right side. This conforms with the reversed-flow theorem,
Bo = -1 — By = 1, if the flow direction is reversed.

(e) When By = -1, B and E become

B

A in equation (60), where B, =1

. (6k)

'E =D in equation (60)

Here a = b =c = 0. The rest of the terms remain the same as given in
equation (59).
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(f) When B = -1, C and F are the same as given above for
B =1 with some rearrangement of terms and a = c = O,

(g) When V' = 0, or there is no taper, B, = B; = B and equa-

tion (59) becomes

2
ab! —— = (b’ )2 -3 cosh-l IB 2; 1

lﬂaZ

(1+Bb‘)2 _1B+b +si-1[5+(1'52)b'-‘|}+ (1 + 2pb*)2

- cosh-1 |-L
B

+ 4 cosh-1 |L| +
2b'

in-1 B+ ev - sin-l |p + M
1+ 2pb’ 1+ 2pb*
2
] + (1 2pv') [cosh-l
2p(g? - 1)4/2
[S

Q- | EoY s s - G-eol|, G- 2Eb‘)2 wr B o] (- e
25(1 _ Bg)l/e b 2(1 - gb') 25(1 - /2 1 - 2pp’ 1 - 2b’

1 +

- 8y’ - - @b _ 132 _ _ g2

Q - gvr) cosh-1 B L - cosh-1 (1 b )b + (x - 2pv') -cosh-1 |B 2 - .m
28(p2 - l)1/2 1 - eb' 2(1 - pv') 28 (82 - l)1/2 1 - 2pb' 1 + 2pb'
L

25(1 )72 | e 20+ 01 gp(a - g2)H2
4 +
2 _ 62)pr . g2l
(Lrpo)® |y |Beb »cosh'l (1 82)v praw | B¢(l-B)b
26(g2 - 1)1/2 I+ ﬁb' YD) T+ 2po | 1+ 20
&

[

~

————28(1 vz \}m-l b ze)b] - sin-1 [B v (- ae)b-] + sin-l [B - (1_'22_)”'] - sin-l E, - Bg)b,]

-cosh-1 ———(l - 82
23(32 _ 1/2 2
L |:sin'1 [a - @b—z‘ - sin-l [} + Q;%)V:L 2 sin-l [5 + {1 - 32)1/21)'__] - 2 sin-l [B - (1 - 32)1/217]}

+

B -

(1 - 8w
2

+ cosh-1 ,e (1 - Bg)b'l]

+ cosh-1 |B + (1 - Bg)b" - cosh-1

- P2

2)v - )b
( 52 . )l QECOSh-l Iﬁ % + cosnt l * % -2 cosh™ |8+ (1 - 92)1/2\)' + 2 cosh™l |B - (1 - 82)1/2b' :| ’
52 - )Y
~
1 " ‘Il/a N 1/2 . 1 1/2 . N 1/2
A B R (2 - p)? - (01)° (1+ po)2 - (o) (1 - o) - ()2

I— h 1/2 ) 1/2 N 1/2 N 1/2
1/2 * 2 2 B P) 2 (65)
1) 2 + 001 - 012 (2 - )2 - (or) (1 )2 - (8)2 (-2 - ()

The above equation is in accord with the results given in reference 2.
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(h) If M—1, B —*0 as A ~1is positive or negative.
definition, u = bfap, V'b' = vu, ® = tanA, Wy
w; = p tan Aj.

b -
.32(2.v)=310g1—ml“-+%log&%+%logﬁ-logz+

By

- 2+ 20 - 1f @ \fl+ o+ ag\2 1-
£&+ 1)2 1og2(1——vﬂ)-1og % +_(m \( ) -log hd + log 1ro +
o 1+ 1+ 2\w + ap/ wo l1+o+a 1+w+

1l+ w4+ 2 1+
1 o @2 1 -yp ®, 1o N2 1l -
§(m+uyl)( w )(l°gl+w+w1+1°gl+u)+ *Euylﬁ 1 1cgl‘m—1og

31

= p tan A,, and

l-w- 2 _ 1-aw 1l - - 2 _
i o % -log 1 yu + log ° + i { ot ~log 1-ve + log
@ w 1-w-a0 1l-w-ay, 2w+ -

2 2
Q- w)® log l:l o ] - log (1 + —0 ) I C LY IRy (1 + 2 )+ log ( " ) +
2vpag 2(1 - wp) 1 -y 2yuw 1-vu 1-wy

(1 - w)? ®y @1 1 v 2- ‘"(;) ©+ oy - 2wyl
2vpwy {-mg[l-e(l-vu'):]+105 (l-l-vu)}+2vum°[( _I) log( 2 - ®+ @, 1og (1-%) *

1Ll (Sremw 108(1-w)+(w log (1 + @) - —p0 |,
2vpm ® + @ O+ @ (m+w1)(m+ub)

ﬁ{(‘”;w) 16g (2 ; “’l) . (‘“;‘:’1&; Vl-l) log (1 + @) + w(:u:qﬁq)} i %ll;(wi%)

There are a number of other limiting cases such as Bo + B =0
(Ao = -A) and By +B =0 (A} = -A) which are also required in cal-
culation. If o =0 and By = 0, equation (59) will give the wave

drag of the triangular wing which checks with Puckett's results.
to limited space, they are all omitted.

Owing

(66)



32 - NACA TN 2317

AERODYNAMIC BEHAVIOR OF A WING WITH A

GIVEN LIFT DISTRIBUTION

From the section Supersonic Flow about a Lifting Surface,

o0

ghy) = = | av e ey (t,y,40) - (30)

Thus, when the pressure-coefficient distribution Cp(t,y,+0) is given
on the wing plan form, g(A,y) can be obtained with this equation.

Consider a tapered sweptback wing with a constant 1ift distribution

|
Q

Cp(t}y) = PO

A

b=y Sv
Bol¥l - &g’ St S ﬁ1IYIaO'

where B, and B; are defined in figure 1. Thus, at any y within

the span,

Bl|Y|ao'
1 -iAt -
s(hy) = = Cpoe dat
Bo|Y|‘ao‘
i -1 ' -iMB ~ag'
_ 21{;})\0[} (Bllylao ) —e 1 ( ol¥l »oil (67)
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As ) — 0, g(0,y) can be evaluated as

C B. . ~-B
g(0,y) = %(ao' - oTl-lyl> (68)

Substituting the above equation in equation (24), there results

‘ -m'U ds Cpo , Bo - By
oo -2 [ L resm
b

v =l | 3, PO I}-i)»(ﬁll.’)’l**&o') )
2 2\

-ix(Boly|-a ':‘ it (2)
e (O o)e Hy (HY-TII)
, b
-m' UCphq dn Po - B
- Tox — 318’ - —z—Il) -
. (y - n)

e [Tl

e—i)»(Bo |Y|'ao')]eiktﬁl(2)()‘,|y - TI‘) (69)
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With the aid of appendix C, the infinite integrals can be evaluated
and

- Pom'U
2x

w(t,y,+0) =

.L—
[t - By Inl
-L L s0, ty-pynl € |y -
Iy -l
vy - )
B
2 2
£ - 2\(ty = B1in})° - (y - 1)
I e L1 \j(l 1 ‘)‘ » ty - Brinl 2 |y -1l
Ly -l 1y -
R -
to - B
o = Poldl 'y poinl S |y - nl
|y -l
ly -l
- ﬁ (70)

to = Boln| _ 2\](to - ﬂolﬂl)a - (y -n)?
L {y -0l ly - ni

) to'Bo"’]‘? ‘Y"’ﬂ

where tg =t + ag', tij =t -a Only one of the two expressions

1
o
holds for the range specified in the bracket.
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If the integration of n is written from O to b only,

1 b 1 1
~Cpon'U N 2ay' - (Bo - B1)n , 22" - (Po - Pyn

b (y - )2 (y + )2

W(t;Y)+O) =

2ag' - (Bo - Bl)T] s 2ao' - (Bo - Bl)T]
2

(y - n)° (y + 1)

1

2\[(‘00 - Bon)2 - (y -n)? iy(to - Bon)2 - (y +7)?

- +
(y - n)2 (y +1)2

2\(¢ - B1n)2 - (y - n)2 . 2\](*?1 - Bn)2 - (y + )2

(y - n)? (y +1)2

b
—Cpom‘U \I(to = BOTI)2 = (y - Tl)2

2 (y - 1)

(ty - B1)2 - (y - n)? X \j(tO - Bgn)2 - (y + n)° .

(y - 0)2 (y +1)2

<

(t1 - B)® - (v +n)2

(y +1)2

-—

(71)

where to - t] = 2ay' 1s used so that the first terms cancel out.
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Now, carrying out the integration with respect to 1,

W(t;)':+o) = (72)
where
\I - Boﬂ -(y -n)?
(see table I) (73)
(y -n)2
b
ty - Bm)2 - (y - n)?
B = dan V( L lﬂ) y-n) (see footnote, table I) (7h4)
5 (y - )7 -
b
'\J(to - Boﬂ)z - (y + T\)2
C = ~dn (see table II) - (75)
5 (y + )2
b
\rtl - )@ - (v + 1)?
D = -dn (see footnote, table II) (76)
o (y + n)

The present treatment is equivalent to considering two hypothetical
wings. The first one is of constant positive 1lift distribution (Cﬁo is
an assigned constant) starting at the leading edge and extending down-
stream to infinity with semispan b. The second wing is of constant
negative lift distribution (Cpo is an assigned negative constant)
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starting at the trailing edge and also extending downstream to infinity
with semispan b, The superposition of both hypothetical wings gives
the aerodynamical behavior of the actual wing.

Integral A, equation (73), gives the contribution of downwash due
to the right-side area of the first hypothetical wing in the forward
Mach cone of the point P(t,y). Similarly, integral C, equation (75),
gives the contribution for the area on the left side.

On the other hand, integral B, equation (74), gives the contri-
bution.of the right side of the second hypothetical wing. Similarly,
integral D, equatlon (76), gives the left-side contribution.

As far as the limits of the integrals are concerned, each holds
for within the limit O +to b, whenever the integrand is a positive
real quantity. However, for many locations of P(t,y), the integrand -
is positive only in a much narrower range of 1 than the interval (O,b).
In order to determine the valid range of the integrals and their respec-
tive values for all possible locations of P, tables I and II are glven.
The corresponding values of the integrals for the different cases are
given in the right-hand columns of the tables.

Take table I as an example. If the leading edge is subsonic
(Bo >-l) the lower limit of 1w is always zero because the forward

Mach cone at P always intersects the wing center line within the wing
area. When Bgo >1 the upper limit of 7 is given in the upper half

of table I. Condition 1 concerns the location of the point P, which may
be ahead of, on, or behind the leading edge, while condition 2 concerns
the right 1ntersect10n of the forward Mach cone of P with the leading
edge, or side edge. Under both conditions 1 and 2, there are six
possible cases. The upper limit of 71 is given in each case, and the
value of the integral A is also given accordingly.

If the leading edge is supersonic (BO < l), the integral A exists

only when the point P is behind the leading edge. In particular,
both the upper and the lower limit may vary within the interval (0,b).
The condition for the lower limit depends on the intersection of the
left side of the forward Mach cone of P. It is zero when and only
when the intersection is on the center line of the wing in the wing
area. If the intersection is on the right-side leading edge, the lower
limit is Z;:—Eg as indicated. The condition for the upper limit

- Po . '
-depends on the right-hand intersection of the forward Mach cone of P.
If the right side of the forward Mach cone cuts the leading edge within

' to + -
the span, the upper limit is EEI—EZ; otherwise, the upper limit of n
o]

is b.
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The tables for the other three integrals can be explained similarly.
Figure 6 shows four typical cases concerning the integral limits. Fig-
ure 6(a) shows the forward Mach cone of a point P(t,y) that lies only
in the right-side area of the wing. Therefore only integral A exists
and all the other three integrals are zero. Since the leading edge is

ty +
supersonic (BO <11L the upper integral limit is —9———2. It belongs

1+ Bo
to integral A-9 as indicated, according to table I. Figure 6(Db) shows
the forward Mach cone covering both the left- and right-side areas of
the wing. Thus, only integrals A and C exist. The integrals are indi-
cated., Figures 6(c) and 6(d) can be similarly explained.

Although the lift distribution of the wing with supersonic trailing
edge is well-known, the downwash may be interesting to explore., Fig-
ure 7. shows three infinite half-wings with trailing edges at 15°, 30°,
and 450 from the leading edge which is normal to the direction of flight.
This is shown in the t,y-plane, or the x,y-plane with a Mach number. equal
to JE: A negative infinite downwash always occurs at the tip. The
curves are plotted as Eﬂw(y/t)/m'CPoU against y/t. As is known,

C
po
nw/alU can be plotted against y/t. Between the tip cone and the wing

= 2al/m1, where a7 1is the angle of attack of the wing; therefore,

the downwash is constant but increases with increasing trailing-edge
angle. Owing to the conical flow, the downwash is identically the same
along the radial lines expressed in the conical coordinate y/t. The
above curves were calculated with equation (72) and the tables for-

integrals A and B by setting B, = 0; By = tan 15°, tan 30°, and tan 450,

and a/' = O. (Here t = to = ty.)

Figure 8 shows a wing tip of unit chord with a raked angle of 30°
for three values of t. At t = 0.5, it behaves exactly the same as
the 30° case of figure T(b), but at t = 1.5, it is quite different.
Two infinite downwashes occur, one at the center of the leading-edge
tip cone, and the other at the center of the trailing-edge tip cone.
The former remains negative, the latter positive. Outside the two tip
Mach cones, the downwash is identically zero as predicted by the two-
dimensional theory. The above calculations can be made from equation (72)

and the tables for integrals A, B, and C by letting By, = B = tan 30°
and ag' = 0.5. (Here t = to - 0.5 = t7 + 0.5.)

As another interesting example, the downwash distribution near the
nose of an infinite constant-chord sweptback wing is calculated (fig. 9).
The leading edge is swept back at 30° but is still supersonic. The
downwash at different locations on the span is plotted along t. In
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2
. : . Ql - Bo w(t,y) .
this case, the curves are plotted with 5 against t
o .
1

2a,
at different values of y where Cpo = —1 is introduced.

m‘\'l - Bo2

At y = 0, the downwash angle reaches the maximum value (0.8165)
at a single nose point and remains zero along the chord up to the
trailing edge. There the downwash angle is negative and equal to the
maximum value in magnitude and recovers to zero downwash downstream.
For instance, at y = 0.4, the downwash angle is constant in the super-
sonic region, and drops down under the influence of the nose Mach cone.
At the trailing edge, the downwash angle drops to a negative value
abruptly and continues to decrease until the trailing Mach cone is
reached. The drop of downwash at the trailing edge is exactly equal to
the downwash angle at the supersonic leading edge. Further along t,
the downwash angle rises again and becomes asymptotic to 0 &as t ~— w.
The same can be applied at any value of y until the nose Mach cone is
off the trailing edge.

Of course, it is very difficult to build a wing with the angle of
attack as required by the constant pressure distribution. But by the
present method it is so simple to calculate the downwash distribution
anywhere in the plane of the wing that it will surely afford many
applications if the trailing edge is supersonic. With a given pressure
distribution, it is easy to calculate the sidewash; however, the details
are omitted here.

As another example, the downwash of a finite triangular wing with
a 60° sweptback angle is calculated. Figure 10 shows the downwash dis-
tributions at different values of y. Figure 11 shows the downwash
distribution of a tapered sweptback wing. The taper ratio is 1/6.
Figure 12 shows the downwash of the same sweptback wing far downstream.
It is very interesting to examine the effect of different Mach cones
on the downwash. One important feature of the subsonic leading edge is
the infinite-downwash angle. As before, the above curves are calculated
with equation (72) and the tables for integrals A, B, C, and D.

The present approach to calculating downwash of a wing with constant
lift distribution cannot be applied to wings with subsonic trailing
edges, because the Joukowski-Kutta condition must be satisfied at such
trailing edges. In order to investigate the case with a subsonic
trailing edge, it is necessary to assume the distribution of the pressure
coefficient drops to zero at the trailing edge.
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The preceding discussion just gives some cases with simple pres-
sure distribution along the chord to demon§trate the application of
the method. Of course the method is not limited to these cases alone.

The Johns Hopkins University
Baltimore, Md., November 4%, 1949
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APPENDIX A
FOURIER TRANSFORM OF THE SLOPE DISTRIBUTION ON AN AIRFOIL

As an example of the slope distribution on an airfoil, the Fourier
transform of the slope on a double-wedge airfoil is calculated.

ZI |
I=F
| .

— X
t=I_IlT
o
4
GO‘
0 Lo
T -%tt=m.£'
] ] T
je—— a8 —p—— g’ —>
to——ﬂ

The accompanying figure shows the shape and slope of a double-wedge
airfoil on a sweptback wing at a distance y from the center of the
wing span. The slope distribution is as follows:

a(t,y) = 0, t <to(y) - a'(y) i
alt,y) = ao'(¥), toly) - a'(y) <t St
> (A1)
alt,y) = -ao'(¥), to <t <to(y) +a'(y)
a(t,y) = 0, t >t,(y) + a'(y)
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where o, ay', t, and a' are functions of y in general. Sub-

stituting equation (Al) into equation (19), it yields

f(X)Y)

fo(X:Y) + ifl(x:Y)

00

- 51; at,y)e 1At gt
-00
t
' ° ~irt %'
= —— e d_ - ——
2xn to—a' 2n
0
_ Jo -iMo emiMT g
21 _a’

where t = tg + T 1is used in substitution.

-ag'  -iAt
(o} e fe)

f(k,y) =

oo’

fa(r
O( )Y) -

ol i
e dt
to
a'
e-1AT dr (A2)
0

It is easy to show that

(1 - cos ') (A3)

— sin Atg(l - cos Aa') (even with respect to A)  (Ak)

£1(ny) = 2o cos Mo(l - cos Aa') (o0dd with respect to A) (a5)

A
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For a rectangular wing with constant airfoil section, where a4',
ty, and a' are independent of y in the span, equations (A4) and (A5)
reduce to

fo(h)Y) =0

%o
fl(k,y) == (1 - cos Aa')

if ty 1s chosen equal to zero.

For the case of a straight tapered sweptback wing, as shown in
figure 1,

ag - v|y|

a'(y) = - ,
m

to(y) = Bly|

ay' (y) = a,' independent of y

For the details of the definitions of the different parameters, refer
to the figure. Then,

g
£o(%,¥) = == sin (AB|y])(1 - cos lay')

(A6)

1

a
) .
- cos (XB|y|)(l - cos Aayo

fl(k)Y)
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Now,
—— _ | %" _-iMBlyl| A | 2’ -iABIn| A
£( M}’)f(k;ﬂ) = [—;X— e (l - cOos )\ayil[i—ﬂ—): e (l - CcOs xay)
2 .
Qo i1yl =)
= e 1l - cos MAay'){1l - cos !
222 ( v ) an)

(e

2232

( - cos 2ay')(1 - cos xay') [cos w(I1yl - Inb) -
i sin'XB(lyl - ITII)]

- [romtotum) + 50umn0um] + il 0untgtam) -

2000, 3) 1 (0m)] (a7)
Therefore, separating the real and imaginary parts,

fo( )":Y)fo()‘ﬂl) + fl( X:Y)fl( Am) =

1\ 2
(igx)2 (l - cos Aay') (l - cos kaﬂ') cos M(|¥] - Inl) (48)

-fl()wy)fo()";'ﬂ) + fo(k,y)fl()\,,q) =

(l - cos kay')(l - cos Aa.n') sin AB(1y| - In}) | (A9)
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coefficient

D drag

-~

W5

APPENDIX B
SYMBOLS
a velocity of sound
aq half root chord
ag' = ao/m‘
a4 half tip chord
ay' = ayfm'
ay nalf chord at y (s, - vlyl)
ay' = ay, m'
A aspect ratio (;;—%Bg;)
b half span
bt o= 2 =L T tana
ag' 2B

Cp wave drag coeffigient
Cpo two-dimensional wave drag coefficient (haoz/mF)
Cy, 1ift coefficient
Cp pressure coefficient
C two~dimensional pressure cogfficient or assigned pressure
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F(x,m) distribution function of the harmonic source (complex);
see equation (5)

f()»,'f]) = - % F(x,m)
G(A,m) doublet distribution function (complex); see equation (7)
iAG( A
g(k,n) = _(_.i).
8m'

Ho(l)( ) Hankel function of the first kind of zero order

Ho(z)( ) Hankel function of the second kind of zero order

Hl(l)( ) Hankel function of the first kind of first order

H1(2)( ) Hankel function of the second kind of first order

H1(2)( ) conjugate of Hl(2)( ) (Jl( ) + in( ))

JO( ) Bessel function of zero order

Ji( ) Bessel function of first order

M Mach number

m = \M -1

n unit vector normal to solid surface
P pressure

Po free-stream static pressure

velocity vector

o]
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r =\/(y -n)2 + 22

t longitudinal coordinate in transformed plane (equivalent
to time in supersonic case) (x/m')

t1 =t - a8y’

U free-stream velocity

u velocity component in x- (or t-) direction

v velocity component in y-direction

w velocity component in z-direction

b'4 longitudinal axis

Yy spanwise axis

y' = Y/ao'

Yo( ) Bessel function of the second kind of zero order
Y;( ) Bessel function of the second kind of first order
Z vertical axis

a angle of attack

oy angle of attack of upper surface of airfoil

a_ angle of attack of lower surface of airfoil

Qg slope of upper surface on symmetrical airfoil

ay angle of attack of cambered wing

B = taz'A = tan A'
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By =B - v'
A angle between midchord and y-axis (x,y-plane)
Al angle between midchord and y-axis (t,y-plane)
Aq leading-edge sweepback angie (x,y-plane)
Ay trailing-edge sweepback angle (x,y-plane)
¢ source location along z-axis
n source location along y-axis
6 = tan~1 ﬂ—i—l
A oscillation frequency of continuous spectrum
K= b/ao
a, - 8
VT T
., _ v _1-0
(T
3 source location along x-axis (t-axis)
P density
Po free-stream density
o taper ratio (at/ao)
T = g/m'
¢ velocity potential
X* potential in Trefftz plane
w=p tan A
wo = p tan Ao
w) = p tan N

NACA TN 2317
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APPENDIX C
INTEGRALS FOR USE IN TEXT

The following integrals are those which are used often in the text
and many of which are not available in the ordinary handbook. In the
first 13 formulas, the upper line corresponds to B < 1, and the lower
line to B > 1. :

1K -1 _ 2 u
ﬁ(l - 52)1 5 cosh [B t{(1-B) K:I

K ) _ 3
Wsml[ﬁ 7 (p2 -I)E:I

FK
—— — cosh-1 [(1 - pu + 5]
K
Q- B2)1/2
du sin-! (B i ‘}—f) = u sin~l (B T +

el
~——

tK -1
i (1 -p2)8
e et [ (- 09 ]
du cosh-! (% i B) = u cosh-l ({(—1 ¥ B) +

du cosh'l (ﬁ ¥ é

(ﬁ

(;Tf%EGsmf-Bl-sﬂ%tﬂ
)= u cosh~1 (B jrd §)+
(



"\’lcm

= 4
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cosh~1 [a + (2 - a’c‘)%] + JE t(1- 32)%]2 _ 1}
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B2)3/2
du \I(K ¥ Bu)2 -u =
xxe
)3/2
~
2y - 52)3/2

du \](au FKR)Z - w? = <

u duKE ¥ B) cosh- 1
u

a

E(Bz 1)3/2 82 _ 1)u ]\[732 ; 1)_+ 8% - 1 - cosnl [(52 -1)
) )

B

t ‘52) \l E+(l_BEJ+51n_lE+(1'2)J}
‘ ‘ﬂ%]\][ﬁi(ﬁg-l)%]z—l;cosh'lﬁ;(BZ_l)ﬂ}

El - gﬁ)%t;{] \Jl - B1 - 52)%’: az + sin-! [(1 - 32)%'5 p]}

]

7

11

(K ¥ %)u cosh™t (E ¥ B) +
T omnrl Ea ¥ (p2 - 1)B] +—Ke E ® (p2 - 1)‘—*]2 -
2(p2 - 1)/ E o2 - )2 :

sin~1 b
a

Jo(at)(l - cos bt)

-1b
cosh’ z

® o’

N3

Ji1(at}(1 - cos bt) =

2 coshl

at 5
2
o]
QE- Yo(at) sin bt =
-cosh~1 2
a

f—d? Ji(at) sin bt = b - Vo2 - a2
a

(a >b)

(b >a)

(a >0b)

(b >a)

(a >1b)

b+l

a  2Za

(-0 2) e
(a >1)

(b > a)
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(sin‘l 3)2 {a 2 ®)

{%‘r - [cosh—l (:)]"} (b2a)

by (o

T Yo(at)(l - cos bt) =

A

= Yy(at) cos bt

n

b2 - a

‘ f o] (a >b)

(b >a)

i 0 (a > 1) )

9‘-2- Yi(at) sin bt

1 2 2 2 -1 b)
= b\‘b - - cosh~1 = (b >a)
2&( & & a

_ 1 2842
22)1/2 - (2s - 1)!a

48(s + 1)1(s - 1)t

N R

2
B1© - 1)n + y - Byt
512-1cosh-l(l ) 11

t1 - By
5 1
\I '31"1) -(y-n) . ﬁd:q:-—n-rﬁlcosh'l 1 - B
(y-m)? v Y -0 2
5 ., (m -Yn+y - Bty
\ll - B1° sin-l
t) - Py
{62 - 1 cosn-1 (22 - Yn - (v + #1t1)
| ty + Byy
: - 2 _ )2 ; t; - Bin
| \I(l B1n)2 - (y +n = i_—dr.—--j—n;-elcosh‘ll m
‘ v+ 2 vi2 Y+

0 (a >b)
& L ¥)(at)(1 - cos bt) = A e
—— (b >a)

TR st (B2 - Yn - (v + Byty)
.1 B< sin ot Py

In the last two formulas, use upper line if B > 1, lower line if By < 1.
Similar integrals for Bp are obtained by substituting to for tj,
Bo for Bl.
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TABLE I
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INTEGRATION LIMITS OF n AND CORRESPONDING VALUES OF THE INTEGRAL Al

Bo > 1 (The lower limit is always zero.)

Upper
Condition 1| Condition 2 1imit Integral A
to.- ¥ to - ¥ | \to? - to ¥ = Boto
1 |ty >BoY —<b + Bo cosh~l =2 4+ \]502 - 1cogh=l = — 700
Bo -1 Bo -1 y to - Boy
2
- to ¥ - Bot
° + By cosh=} — + V Bo° - 1 cosh-} 9% _
to - ¥ y to - Boy
2 to > Boy 2b b
Po - 1 V(to - Bob)2 - (y - b)2 to = Bob (82 - Vb + v - 8oto
- Bo cosh=l —— 2 _ 1302- 1 cosh-1
y-» y-b to ~ Bo¥
3 to = BoY y<b y «
b ] to = Boy y2b L ks
2
to+y to + ¥ [\te® - ¥ 1o, \oE ] 1Y - Boto
5 to < BoY <b + Bo cosh™ — + \[B° - 1 cosh™ ——0-=—
°e ° Bo + 1 Bo + 1 y y © to - Boy
to2 - t r— - Bot
il y2 + Bo cosh™1 =2 4+ Boa - 1 cosh™l X_BH -
y ¥y to = BoY
to + Y
6 | to <Boy B°+l=>b b
o]
(ko - Bo)2 - (v - b)2 1t -Bd 3 2 (B2 - Do+ v - Boto
- Bp cosh™ —————— - {B8,° ~ 1 cosh
y-b y-b to - BoY
Bo < 1 (The integral exists only @hen to > BoY.)
Lower : Upper
Condition limit Condition 1imit Integral A
y-t to * ¥ to+ ¥ ﬁ 2. t - Bot,
U 2ol o ° <= 1('Jl-$302+ 2 ye*ﬂocosh']:—°+\!l-Bozsin'lm
- 6o 1+ Bo 1+ Bo |2 y y to - BoY
t.2 - , - . _B.Db 2 . - b 2
e - ¥ + By cosh™l =2 4+ \‘1 - Bo2 stn-l LT Boto _ V(to Bob) y - -
y y to - Boy y-0
8 |Lo2eco| o |ftY¥sy|
1 =80 1+ Bo )
to - Bob -b{1 - 8,2) + y - Bot
Bo cosn-1 o7 Bob _ Y1 - 82 sin-l (1 - 562) +y - Boto
y-b to - BoY
y - to Y-toltoty to+y {——2
9 >0 < n \l1 - B,
1-Bo 1-Bo|l+Bo 1+ 8o o
2 2
to - Bob)2 - (y - b) to - Bob
n\'l- 2_\K° - osp-1 20 = Fo?
5 Bo 7 -5 Bo cos! PR
-t - to | to +
10 ©so|l fefle? Y, b
- Bo 1-Bo|l+Be ( 2)
-b\l - + ¥y - Bot,
\Jl - Bo2 sin-1 Bo Y - Boto
to - Boy
lA table for integral B may be obtained from table I by substituting By for By and t; for t,.
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TABLE II
INTEGRATION LIMITS OF 1 AND CORRESPORDING VALUES OF THE INTEGRAL C1
Bo>1 (The integral exists only when to > y; the lower limit is. always zero. )
ditio Upper tegral C
Con: )1 1imit Integra.
- to - oS - % -(y+ Bot
1 to-¥ <b CRR A ¥ + By cosh-1 2 - \,BOE - 1 cosh-l Y + Boto)
1+ B, 1+ Bg y y to + Boy
to? - ¥ 1to ,’ 7.1 ~(y + Boto)
—— + By cosh™ — - B, -1 cosh~l |2 — 29 | o
y © y ° to + Boy
t, -
2 1o BY > b
+ Po
2 2
V(o - 801 - (v + ®) _1 to = Bob 2 2 (8% = )b - (v + Boty)
- Bo cosh™ — — - «Bo - 1 cosh
y+b y+b to + Boy
Bo <1 (The integral exists only when to > y; the lower limit is always zero.)
Upper
ditio Int 1l C
Condition 1tmit ntegra’
to - ¥ to- ¥ to" - t
o 0 s 2 0 o Y + Boto
3 <b -\'1 - Bo® + + B, cosh-1 =2 \’1 - Bo? sin-1
1+ Bo 1+ B |2 ° y Bo to + BoY
JEOE - ; to " — 3 ¥ + Boto
+ By cosh-1 2 - {1 - B‘:,:2 sin-l —— 20 _
y y to + Boy
bl Y >y b
1+ B8,
2 2 2
Jto-ﬂob - (y + 1) to - Bob b1 - B - (y + Bot.
( ) - Bo cosh-l 22 4 \‘1 - 502 sin-l ( °) (y ° o)
y+b y+b : to + Boy

15 table for integral D may be obtained from table II by substituting By for B, and

t] for t,.
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(a) In physi_éal plane (x,y).

Figure 1.- Sweptback wing in physical a_nd transformed planes.

PARAMETER RELATIONS BETWEEN PHYSICAL PLANE (x,y)
AND TRANSFORMED PLANE (t,y)

3, half root chord a,' = ao/m'
a half tip chord a' =a¢/m'
b half span pr=L 10 ptana
a,' 28
tan A
tan A B = ?.11111'
V_ao_a‘t oy _l-o_ _ 28 1-o
- b “m'- b' ~ AtanA 140
ay=ao-v|y| al = ag /m!
o= at/ao co=1 - vibt
. __2b A =_2b"
—a0+at m'(l + o)
m'= Mz-l 51=p-v'
a, surface slope By = B+ v!

571
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(b) In transformed plane (t,y). Mach line at 45°,

Figure 1.- Concluded,
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Figure 2.- Wave drag coefficients for the family of sweptback wings with taper
ratio of 0.2.
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Figure 3.- Wave drag coefficients for the family of swepiback v}ings with taper
ratio of 0.5.
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(a) Trailing edge at 15° from leadihg edge which is normal to direction
of flight.

Figure 7.- Downwash distribution for three infinite half-wings,
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(b) Trailing edge at 30° from leading edge which is normal to direction
of flight. : ' ‘

Figure 7.- Continued.
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(c) Tréiling edge at 45° from leading edge which ié normal to direction

of flight.

Figure 7.- Concluded.
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Figure 8.- Downwash distribution over a wing tip of unit chord with a raked
angle of 30° for three values of t.
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