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SUMMARY

An iterative transformation procedure suggested by H. Wielandt for
numerical solution of flutter and similar characteristic-value problems
is presented. Application of this™ procedure to ordinary natural-
vibration problems and to flutter problems is shown by numerical
examples. Comparisons of computed results with experimental values and
with results obtained by other methods of analysis are made.

INTRODUCTION

Existing methods of flutter analysis include the representative-
section method, generalized-coordinate methods, matrix methods, and
operational methods. The present paper presents an iteration procedure
for analysis of flutter and similar characteristic-value problems.

For ordinary natural-vibration problems, iterative procedures of
the Stodola type (references 1 and 2) are suitable for finding the funda-
mental and higher-order natural modes and frequencies. The higher-order
solutions are obtained through use, of the orthogonality relations that
exist among the natural modes.

,Orthogonality relations analogous to those that exist in ordinary
vibration problems can be found in the flutter problem only by intro-
duction of the so-called "adjoint" problem. (This additional step is
unnecessary in ordinary vibration problems by virtue of the fact that
they are "self-adjoint.") Wielandt has suggested an iterative transfor-
mation procedure (reference 3) which is well-suited to the flutter
problem in that it avoids the need of orthogonality relations and hence
does not require consideration of the adjoint problem. The iterative
transformation procedure can also be applied to ordinary natural-
vibration problems with less labor than is generally required in the
extended Stodola procedure.
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Because both the original and translated works of Wielandt are
difficult to follow, an explanation of the idea of the iterative trans-
formation procedure is given in the présent paper and the application
of the procedure to ordinary natural-vibration problems and to flexure-
torsion flutter problems is shown in numerical examples. Comparisons
. of computed results with experimental values and with results obtained
by other methods of analysis are also made.

SYMBOLS
EI flexural stiffness
GJ torsional stiffness
X spanwise coordinate with origin at root of wing
y complex representation of amplitudes and phases of translation

of elastic axis in harmonic motion

7

¢ complex representation of amplitudes and phases of rotation
about elastic axis in harmonic motion
W coupled mode (y,#)
.Py complex coefficients of y which, when multiplied by y, give

complex representation of amplitudes and phases of aero-
dynamic and inertia forces associated with translational
component of harmonic motion

Py .  complex coefficients of ¢ which, vwhen multiplied by @, give
complex representation of amplitudes and phases of aerodynamic
and inertia forces associated with rotational component of
harmonic motion :

Qy complex coefficients of y which, when multiplied by Y, give

’ complex representation of amplitudes and phases of aerodynamic
and inertia torques associated with translational component
of harmonic motion

Qg complex coefficients of @ which, when multiplied by @, give
complex representation of amplitudes and phases of aerodynamic
and inertia torques associated with rotational component of
harmonic motion

gy,g¢ structural-damping coefficients associated with flexure and
torsion, respectively (see appendix B)
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coefficient of artificial damping.(hay be eilther positive or
negative)

reduced frequency (bw/v)

frequency of harmonic motion

2

1+ iga
characteristic value _—
w

length of semichord of wing

length of cantilever wing from root to tip

mass ratio \(7/npb2)‘

velocity of.air relative to wing

distributed mass of wing per unit length'of span

masé density of air

distance between midchord axis and elastic axis in terms of
local semichord, positive when elastic axis is behind mid-
chord axis

disténcé between elastic axis and gravity axis of distributed

mass of wing in terms of local semichord, positive when
gravity axis is behind elastic axis

-radius of gyration of distributed mass of wing about elastic

axis in terms of local semichord
transcendental functions of k (see reference k)
time
Cry
eigenvalue factor ({=— -1
Cn
ratio of complex constants

length; in numerical solutions, distance between specific
adjacent stations of wing

applied force
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q applied torque

V. shear

M bending moment

a curvature

B slope of eiastic axis

T twisting momént

6 angle of twist

Subscripts:

1,2,3,... true modes or eigenvalues )
a2,a3,ak,... transformed modes

b intermediate derived mode
A,B,C,... stations

R . real

I imaginary

o , reference value .
bl,ba2,ba3,... sweeping functions
Superscripts:

(1),(2),(3),... cycles of iteration

A bar over a symbol indicates a concentrated quantity instead of a
distributed quantity.

A prime is used to denote division by wg.



NACA TN 2346 f 5

ITERATIVE TRANSFORMATION METHOD OF SOLUTION

General Features of Method

The principle of the iterative transformation procedure is similar
in form to that of the standard iteration procedure for solving
characteristic-value problems. Both procedures require the determina-
tion of the solutions in the order of the magnitudes of the eigenvalues,
beginning with the fundamental. Both procedures require assumptions of
modes, integrations which generally must be done numerically, and
sweeping operations for higher-order-mode determinations. The distin-
guishing features of the iterative transformation procedure occur in
the determination of solutions higher than the fundamental and are as
follows: (1) The immediate aim is to determine not the true nth mode,
as in the standard iteration procedure, but a particular linear combina-
tion composed of all modes from the fundamental to the nth, This linear
combination is referred to as the transformed nth mode. The transformed
nth mode can be made to have nodal (zero) points at specified stations
of the wing; such a feature is highly desirable in numerical work.

(2) The sweeping operations, which consist of subtractions of lower-
order-mode shapes from the function obtained by integrating the assumed
mode, do not employ the orthogonality relations as in the standard
iteration method but make use of forcing functions that, in numerical
work, greatly simplify the sweeping operations and increase the over-
all accuracy of the results by meking the sweeping operations more
consistent with the rest of the process. (3) Although the true nth
eigenvalue i1s determined directly in the iterative transformation pro-
cedure, the true nth mode must be computed from quantities within the
iteration cycle after the transformed nth mode is found.

Qutline of Steps in the Procedure

The equation of equilibrium of a cantilever beam v1brat1ng harmoni -
cally in pure flexure is

2 2
9—2- EI d—% = 7Py (1)
ax ax .

or, after integration with proper attention to boundary conditions,

oy ] ®
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The solutions of this integral equation are the true natural modes
(eigenfunctions) Yy» ¥z, ¥35 - - .- and the corresponding natural

frequencies (eigenvalues) Wy, Wo, W3, « . . . For convenience in

subsequent discussion, the true modes are:assumed to be normallzed to
unity at some position (station A) along the beam.

The first mode and frequency are assumed to have been previously
determined by the Stodola process. The iterative transformation pro-
cedure becomes applicable in the determination of the second mode and
frequency. As mentioned previously, the immediate aim in the iteration
for the second mode. is the determination of a linear combination of first
and second modes which is called the transformed second mode. The linear
combination y, - Y1 which has zero ordinate at station A is chosen and
defined as the transformed second mode to be determined. The iteration’
for determination of this transformed second mode may be described as
follows:

(1) A plausible shape yéz) for the transformed second mode is

assumed. This shape must have zero ordinate at station A and should
satisfy the boundary conditions as closely as possible.

(2) The displacement

X b'e L L
1 2 (1) L
wof ) ES ] e e
P 0 0 EL bid b4 2 “a2

2 (1
resulting from the inertia load YW yég) corresponding to the assumed

(1)

shape ¥y . vibrating harmonically at frequency  is calculated.
a2 Wo

This calculation must usually be done numerically with the square of the
frequency |wo ) being carried along as an undetermined factor.

(3) A first-mode shape (previously determined) is subtracted
(swept out) from the calculated displacement ¥y, in an amount such

that the resulting displacement is zero at station A. Thus the

resulting displacement is
Y(g) =Y <yb> ¥y
a2 ‘b " \y;/ ‘1
ylA

(2)
1 az2
displacement y;2 . When the computations are numerical, the

(4) The resulting displacement y is compared with the assumed
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2 1
ratios y;2) yéQ) are compared at all the stations. If the assumed
displacement is exactly equal to the transformed second mode, the ratios
are equal to each other. These ratios contain the single unknown ap,
and the second frequency is that value of wp which makes the ratios
unity.

(5) If the ratios yég) yéé) from the first cycle of iteration

outlined in the four preceding steps are not reasonably the same st all
stations, the process must be repeated until the ratios become reasonably
the same. Each new cycle starts with the resultant displacement of each
preceding cycle. The convergence of this process to the second frequency
and. the transformed second mode is proved in appendix A. :

The transformed third mode and the third frequency are computed in
the following manner. The transformed third mode i1s defined as that
combination of the first three natural modes which has a zero ordinate
at the same station that was used in the transformed second mode (sta-
tion A) and also a zero ordinate at some other station, station B. Thus
the transformed third mode is defined as

<y3-yl>( ]>
Yy =¥y - {07 Y, -
3 1 Yo = Y1 /5 2

The ~iteration is as follows:

1
(1) A plausible shape y;3) for the transformed third mode is

assumed. This shape must have zero ordinates at stations A and B and
should satisfy the boundary conditions as closely as possible.

(2) The displacement
2(1 b
Yy = J/\ JF EIQ/‘ Jf Y03 Y3 (dx)

is calculated, with the square of the frequency Gn32) carried along as
an undetermined factor.

(3) The first of two sweeping operations, in which a first-mode
shape is swept from the displacement Yp so as to make the resulting
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displacement at station A zero, is performed. This operation gives the

displacement
y ZE Yy

(4) The second sweeping operation, in which a transformed-second-
mode shape (previously determined) is swept from the resulting displace-
ment of step (3) so that the new resulting displacement is zero at
station B as well as at station A, is performed. (This second sweeping
operation cannot disturb the zero condition at station A established in
step (3) because the second sweeping function (the transformed second
mode) is identically zero at station A.) Thus, the final resulting dis-
placement is

ya3 yl Na a2 ya2

b
(2) _ y, - (Xp) y, - o <Zl>A 1
A |

(

(5) Comparisons of the ratios yag) yéé)

and, if they are not reasonably the same, additional cycles of iteration
are carried out until the ratios become reasonably the same. The third
frequency is then computed from the ratios as explained previously.
Convergence of this process to the third frequency and the transformed
third mode is proved in appendix A.

at all stations are made,

Frequencies and transformed modes higher than the third may be
computed by extensions of the process Jjust described.

Physical Interpretation of the Procedure

A physical interpretation of the iterative transformation procedure
can be given. With regard to the transformed second mode, for example,
the following question may be asked: Under what conditions can the beam
vibrate in the transformed-second-mode shape at the second natural
frequency? Vibration in shape y,o = yp - y; at frequency - implies
an inertia loading 7w22(y2 - yl). But if this load is substituted in

place of 7&Q2y in the right-hand side of equatioh (2), the result
after integration will not be Yo = Vy but
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j;x ELI/;L LL 7(1)22 (ye _ yl)(dx)h (3)

However, if an external (forcing) load of an amount 76m2 - w12)yl is
added ‘to the inertia load, the total load 76»2 Yo - w12y will pro-
duce the shape Yo = ¥q- Thus

f:j: El_I/x\L f: 7(“’223’2 - ‘*’123’1)(@()h =¥o - Y1 (&)

The inertia and forcing loads are illustrated in figure 1. . The inertia
load acting alone produces a displacement (equation (3)) generally dif-
ferent from zero at station A. The forcing load produces the displacement

2_21—22_' Y =ff EI/ f )yl(GX)L‘ (5)

This displacement (equal to the sweeping function) has the shape of the
previously determined first mode and is equal and opposite at station A
to the displacement due to the inertia load; that is, by virtue of the
previously assigned normalizations at station A,

wp? _ wp?
(w?')(yl)éf'é""w?”lx '

Thus the displacement due to.the forcing load is completely determined
when the displacement due to the inertia load is known. The gist of the
foregoing analysis is that vibration in the transformed-second-mode
shape 1s the response of the beam to an oscillatory forcing load of the
first-mode shape and of frequency equal to the second natural frequency,
superimposed on a free vibration of the beam in the second natural mode.

Similar physical interpretations of the iterative transformation
process for modes higher than the second can be made.
Application of the Procedure in Ordinary
Coupled Natural-Vibration Problems

The procedure that has been outlined in a preceding section for
pure flexure can easily be extended to systems capable of simultaneous
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flexural and torsional displacements. Airplane wings belong to the
latter class of systems. The only distinguishing element in coupled
flexural-torsional vibration problems is that each natural mode contains
two components, the flexure and the torsion. These components must
always appear together in a fixed relation to each other. The two com-
ponent$ must be computed together and must be used together.

Each coupled mode is a solution of the simultaneous differential
equations

32 2

o2 EI g;% = 7% (y + bug) (1)
- % GJ %g = 7(1)2 (buy + b2r2¢) (8)

'Equations (7) and (8), after'integration, become (for a cantilever beam)

y=f()xf()x%fJ{Lf)(L7w2<y+bu¢)(u)” (9)

b . L .
6= a5 Pty 322w (o)
X,

The solution of the integral equations (9) and (10) for the coupled trans-
formed second mode by the iterative transformstion procedure is outlined
diagrammatically in figure 2. The flexural component of the displace-
ment for a particular step is illustrated in the left-hand side of the
figure and the torsional component is illustrated at the same level in
the right-hand side. .

In the first step, an approximation to a linear combination of the
true first and second coupled modes is assumed. The particular linear
combination having zero flexural displacement at the tip station (sta-
tion A) is chosen. (For greatest numerical accuracy, this nodal point
should be chosen in the component and at the station where the first

coupled mode has its maximum numerical value.) The symbols yéé)

1) .
and ¢g2) are used to designate the flexural and torsional components

of this assumed displacement, respectively. In general, the magnitude
of the torsional component relative to the flexural component is

'
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difficult to estimate; the most expedient thing to do is take one of
the components equal to zero.

The second step is the computation (by numerical integration) of
the two components of the displacement due to the inertia forces

7w22(ya2 + bu¢a9 and inertia torques 7w22(buya2 + b2r2¢a2) that are
associated with the assumed displacement. The result is termed the
intermediate derived mode, and the symbols ybl) and ¢£l) are used.

to designate its two components.

The third step is the determination of a sweeping function having
the shape of the first coupled mode (previously determined) and a magni-
tude such that the sum of the intermediate derived mode and the sweeping
function equals zero in the flexural component at station A. In
algebraic terms, the first-mode sweeping function is given by .

(1) b

(1)
< (1) I '
VAL o

The fourth step is the addition of the intermediate derived mode
and the first-mode sweeping function to give the derived transformed
second mode. Thus the two components of the derived transformed second
mode are

(1)

y
ygg) =y£l) - —;i— Y1 (13)
A
y(l)
2 1 b
R 9 (14)

The calculation of the ratios yég)A&) and ¢$) /ég) at all

stations completes the first cycle of iteration.
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Additional cycles are carried out until the ratios at all stations
in both the flexural and torsional components have values that are
reasonably the same. The true second natural frequency of the coupled
system is then obtained as described previously. .

Steady vibration of an airplane wing at zero airspeed is an example
of coupled natural vibration. The actual numerical calculations for
the transformed second mode as well as for the first mode and trans-
formed third mode of an airplane wing vibrating at zero airspeed are
discussed subsequently as a special case of flutter.

The more general equations of airplane flutter at nonzero airspeed

may be interpreted in such a way that they can be solved by a process
analogous to that just described for coupled natural vibration.

APPLICATION OF THE~ITERATIVE TRANSFORMAT ION
METHOD TO FLUTTER
- Flutter Equations

The differential equations of equilibrium for a wing executing
simple harmonic motion are

2 2,
d—2E1(1+1 )d—%=Py_y+P¢¢ (15)
dx dx
a af
- = GJ(l + 1 ) = + 16
These equations govérn a motion represented by

y(x)el®t (17)

Y(x,t)

o(x,t) = g(x)el®® (18)

The use.of the structural-damping coefficients gy and g¢ in equa-

tions'(lS) and (16) is discussed in appendix B. The expressions
Pyy + P¢¢ and ny + Q¢¢ are the intensities of applied force and

torque, respectively. For aerodynamic and inertis forces and torques
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due to air flow and distributed mass, the P and Q coefficients have
values given by the following formulas (rearranged from those in refer-
ence 4): For Py’

Py =Py - iPry - (19)
in which
b e 2G .
and-
: b 2 2F [y 2
Py = (53) T(J)o‘” (1)
For P¢,. /
P¢ = PR¢v- 1PI¢ : (22)
in which .
3 ,
- (2 YL G _2F A 2
Prg = <bo) KQ - a)k -G e p{l(u>obow (23)
and l
. 3 ,
= (Y|Lr,2, (L Fl(r 2
F1p - (bo)E B - )R () e (24)
For Qy,
Qy EQRy - iQIy 4 (25)
in which
ry = ()5 + o) - o+ | (2) ve? (26)
Ry = b/ | @ T % T & wa{p) P
and

e QT 0
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And for Qg,.
Qg = Qg - Qg (28)
in which
L
b 1 2\ 2G 1 2F 1 Y 22
QR¢ <bo) I}(E - a)_l? + (5 + a)k2 tgte + uri](—)obo (29)
and

o= 6 R-Go2- G- AER

For inertia forces and torques due to concentrated mass, the intensities
of force and torque are, respectively,

g e e o
and :

Qy& rog - m & - (32)

-

in which \

O[ENCE

TR RI RS o

and

- B b Al
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For a cantilever wing the bourndary conditions on the displacements
are

2
(¥)xeo = ($)yg = (%)po = |E1(1 + igy)g‘%

ax*= {x=L,
d Vo ag
+ EI (1 + igy) ;%LL EJ (L + ig¢) dl:L =0 (36)

The differential equations (15) and (16) are now written with the
eigenvalue " as an explicit factor. Thus equations (15) and (16)
become : : .

2 2 '
ié EI (1 + i )::% = of (Py'y + P¢’¢) (37).

and

d

S I T

in which the P' and Q' coefficients are equal, respectively, to
the P and Q coefficients divided by w2.

Formulation of Pseudoflutter Problem

Those solutions wg, (v,8) of equations (37) and (38) for
which is a real and positive (not complex) quantity represent the
steady harmonic motions of true flutter. However, because the P and
Q coefficients are in general complex and because of the presence of
structural damping, the solutions of equations (37) and (3&2 will, in
general, be complex and will include complex eigenvalues . As in
other methods of flutter analysis, the problem is made tractable by

assuming at the beginning a value of the parameter Kk = %?. This assump-

., tion fixes the values of the P and Q coefficients. A real value
of k- is assumed because v must be real and only real values of
can represent flutter. To avoid the inconsistence of assumed real
values of k and obtained complex values of f 1in the solutions, the
problem itself is altered by introducing an artificial damping so that the

w2

complex eigenvalue is given by ————, where g, 1is the coefficient
& Y T+ igy’ a
: a

of artificial damping. Thus the differential equations of what may be
termed the pseudoflutter problem become
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2 2 2 '
:x_2 EI(l + igy) jxg = l‘f iga(Py'y + P¢'¢) | (39)
) ‘
& “(1+ig¢)%=f%@;@y'“9¢'¢) (ko)

The value of ° can now be real for any assumed real value of k and
‘is therefore the square of the frequency of the steady harmonic motion
maintained by the artificial-damping forces and the naturally present
aerodynamic, inertia, structural, and structural-damping forces. True
flutter is possible for those special cases in which g5 is zero.

Equations (39) and (40) are similar in form to equations (7) and (8)
and can be sqlved by the iterative transformation procedure in a way
completely analogous to the solution of the ordinary problem. The com-
plications introduced by the presence of air forces require, however,
that a set of solutions be obtained for each of several assumed values
of k. The fact that most of the .functions involved are complex virtu-
ally quadruples the labor as compared with that required in the ordinary
coupled natural-vibration problem.

Steps in the Iteration as Applied to Flutter

The iteration procedure employs the basic differential equations (39)
and (40) in their integral forms which, for the cantilever wing under
consideration, are :

NN

X L
g = %fo -&Wl—l-;-i—gsé)j; @'y + Q¢'¢)(dx)2 (42)

1+ ig
in which C stands for the more convenient form ————§—E of the

o W
eigenvalue. The iteration of equations (41) and (42) follows the same
form as the iteration of equations (9) and (10). Briefly, the steps
are as follows:
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(1) A real value of 'k is assumed and the values of the complex P
and Q coefficients are computed.

(2) An assumption is made for the desired mode y,f. (In the first
cycle of iteration the assumed mode may be real but in the following
cycles it will be complex.)

(3) The complex loadings Pyy + P¢¢ and ny + Q¢¢ are computed.

(4) The integrations indicated in the equations are carried out
numerically to get the complex intermediate derived mode.

(5) The sweeping operations are performed by using the complex
lower-order transformed modes previously determined. For convenience
in numerical calculations, the flexural and torsional components of the
complex derived (swept) transformed mode are computed in the forms

L .
17 L , .
Cn 51 by (43)
o0 o0 )
and
17 LY EéIo b02 '
- — Kg (L4h)
C kg EgI, Ggdg 12

respectively, in which K& and K¢ are nondimensional complex functions

of the spanwise coordinate x.

(6) The derived and assumed modes are compared by computing their
ratios at the stations of the wing. If these ratios are not reasonably
the same, additional cycles of iteration are carried out until the ratios
are reasonably the same. In the limit (never obtained in practice) the
ratios will be identical and the proper value of C is that value which
makes them unity; that is)

)

2
17 L b 17 L4 EoIp b
Cugp Egly © C po Eoly Godp 1.2 K¢
¥ = ) =1 (45)

in which y and ¢ constitute the assumed mode of the limiting cycle
and the functions in the numerators constitute the derived mode of the
limiting cycle.
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Equation (45) may be stated in the form

+m)lelt s (46)

O 7070

Q-

in which D and H are nondimensional real numbers. Inasmuch as C
) 1l + iga -
is defined as ————, equation (46) may be written

w2

Yo LY 1+ igg
o Bolo w? (W7)

(D + iH)

from which the frequency and artificial-demping coefficient are
obtained as follows:

Eqlo Ho
NN
w = 5 (48)
. 4
g, =D (L49)

The relative air velocity corresponding. to the assumed value of k is
given through the definition of k, that is,

v=D | (50)

NUMERICAL EXAMPLES

Numerical computations presented in this section illustrate the
actual application of the iterative transformation procedure first to
the ordinary natural-vibration problem (vibration at zero airspeed) and
then to the flutter problem. All examples deal with the cantilever wing

shown in figure 3.

The geometric, structural, and mass properties of the wing are given
in figure 3. A station coordinate system 1is employed for the purposes
of the required numerical integrations. Four stations along the span
have been selected as indicated in the figure; one of these stations is
located at the spanwise position of the concentrated mass. The
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distributions of forces and displacements over the span are considered
to be adequately defined (through interpolation) by the forces and dis-
Placements at the four selected stations. The selection of a system of
stations in any problem is important because it greatly influences the
amount and accuracy of the work to follow. In problems, such as the
present one, that involve concentrated masses, a station must be placed
at each concentrated mass because displacements at the concentrated
masses must be known. (More generally, a station must be placed at each
discontinuity. Discontinuities may be present in the distribution of
the structural stiffness and in the plan form as well as in distribution
of mass.) The other stations should be equally spaced between the dis-
continuities, and for the system of parabolic interpolation used in the
numerical integrations in this paper there must be & minimum of one sta-
tion between each adjacent pair of discontinuities. The total number
of stations should be the smallest possible that is consistent with the
desired accuracy because the calculation effort increases rapidly with
an increasing number of stations. In coupled systems, the number of
degrees of freedom allowed 1s twice the number of stations selected;
that is, the number of degrees of freedom in either the flexural or
torsional component of displacement is equal to the number of stations
employed. Experience has indicated that with parabolic approximations
results accurate to at least two significant figures in the highest mode
computed can be obtained by employing numbers of stations as follows:
For uncoupled systems, the number of stations should be two greater than
‘the crder of the highest mode to be computed; for coupled systems, the
number of stations should be one greater than the order of the highest
mode to be computed, with a minimum of three stations. More than these
minimum numbers of stations may be required if their use is dictated by
sufficiently many discontinuities.

Ordinary Coupled Natural Modes and Frequencies

The calculations for the first, second, and third modes at zero
airspeed for the wing of figure 3 are shown in tables 1, 2, and 3,
respectively. In this case k = « and the only aerodynamic forces are
the apparent-mass forces. For simplicity, structural damping is dis-
regarded; therefore, all quantities entering the problem are real. The
numerical values of the aerodynamic-inertia force coefficients for k = =,
as well as for other values of k to be used subsequently, are given in
table k.

The first coupled mode is computed in table 1. Table 1 shows in
separate tabulations the flexural and torsional parts of the calculation.
The first cycle of iteration (part (a) of the table) is shown in full
detail. Two forms for the torsional part of the calculation are shown:
The first form may be used when the torsional stiffness GJ is constant
over each bay or over the whole length of the wing; the second form,
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which requires slightly more work, must be used when GJ is variable
. and may be used, as in this case, when GJ 1is constant. The second
and third cycles of iteration are summarized in parts (b) and (c) of
table 1. '

Details of the first cycle of iteration, if the procedure that
applies only for constant torsional stiffness GJ for the torsional
part of the calculation is used, are as follows: In columns 1 of

(1) )
J1

- 1
table 1(a) the two parts and ¢§ of the assumed first mode are

listed. The torsional component is assumed to be zero because it will
ultimately be small and is difficult to estimate. Columns 2 and 3 are
the appropriate products of the assumed mode and the distributed-force
coefficients. Columns 4, which are the sums of columns 2 and 3, give
the two components of the external load which correspond to the assumed
mode and the arbitrary frequency w. Columns 5 give the concentrated
loads (external forces and torques) that are equivalent to the distrib-
uted loads of columns 4, These equivalent concentrations are given in
columns 5 in terms of the pertinent distances between stations Aj; and
in columns 6 in terms of the reference distance Ao. Formulas used for
computing the equivalent concentrations from the distributed loads are
given in appendix C. Columns 7 and 8 are the appropriate products of
the assumed mode and the concentrated-force coefficients. Columns 9
are the total concentrated loads, the sums of columns 6, 7, and 8.

The flexural and torsional calculations must now be described
separately. In column 10'for flexure, the average shears in the bays
between stations are found by a successive summation of the concentrated
loads from the tip where the shear is zero inboard to the root. In
column 11 the increments of bending moment are computed by multiplying
the shears by the bay lengths in terms of Ao. The bending moments of
column 12 are found by a successive summation of the increments of
bending moment from the tip where the bending moment is zero inboard to
the root. Column 13 gives the distribution of curvature, which is
obtained by dividing each ordinate of the bending-moment curve by the
local value of EI (EI in this example is constant). Equivalent con-
centrated curvatures are now obtained by applying to the distributed
curvatures the previously used formulas for equivalent concentrations.
Column 1k gives these equivalent concentrations in terms of the dis-
tances. \j, and column 15 gives them in terms of the reference dis-
tance Ay. The average slopes in the bays are obtained in column 16 by
a successive summation of the concentrated curvatures from the root where
the slope is zero outboard to the tip. The increments of derived
flexural displacement are computed in column 17 by multiplying the aver-

.age slopes by the bay lengths in terms of Ao. The flexural compo-

nent y£2)' of the derived mode is obtained in column 18 by a successive

summation of the increments of displacement from the root where the
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displacement is zero outboard to the tip. Column 19 gives the ratios
at the selected stations of the derived flexural component to the
assumed flexural component.

Columns 10 to 15 for torsion are now considered. Column 10 gives
the average twisting moments in the bays of the wing and is obtained by
a successive summation of the concentrated torques of column 9 from the
,tip where the twisting moment is zero inboard to the root. The average
twists in the bays are computed in column 11 by dividing the average
twisting moment in each bay by the local value of GJ (GJ in this
example is constant over the whole span). The increments of derived
torsional displacement are obtained in column 12 by multiplying the
average twists by the bay lengths in terms of Agy. The torsional compo-
nent of the derived mode is computed in column 13 by a successive sum- '’
mation of the increments of displacement from the root where the dis-
placement is zero outboard to the tip. ' Inasmuch as the derived displace-
ment of column 13 is in terms of GJ, the displacement is converted
into terms of EI in column 14 so that it may be compared with the
assumed torsional displacement on the same basis as the assumed and
derived flexural displacements are compared and so that the next cycle
may be started with displacement components having the same dimensions
as the assumed mode of this first cycle. Column 15 normally would con-
tain the ratios at the selected stations of the derived torsional compo-~
nent to the assumed torsional component, but in the case of table 1(a)
these ratios are meaningless because the torsional component will ulti-
mately be different than was assumed in column 1.

Before the results of further cycles of iteration for the first
mode are described, the form that the numerical integration for the
torsional component must take when GJ is variable is described. 1In
the part of table 1(a) showing the calculation for variable GJ,
colums 1 to 4 are the same as in the calculation for constant GJ. The
form of the numerical integration changes at column 5. Column 5 consists
of increments of twisting moment over the bays. These increments are
obtained as increments of area beneath the curve of distributed torque
(column L4). Formulas used for computing these increments are given in
appendix C. In column 5 the increments of twisting moment are given in
‘terms of the distances Aj, and in column 6 they are given in terms of
the reference distance M\,. The twisting moments at the selected sta-
tions due to the distributed torsional loading are obtained in column 7
by a successive summation of the increments of twisting moment. The
components of external concentrated torque are -as for constant GJ and
are given in columns 8 and 9. The applied concentrated torque gives
twisting moments as shown in column 10. Column 11 is the sum of
columns 7 and 10 and gives the total twisting moments at the selected
stations. (Note that in columns 10 and 11 there 1s a discontinuity in
twisting moment at the station having the mass discontinuity.) Column 12
gives the distribution of twist found by dividing column 11 by the local
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value of GJ (GJ being in general not constant). The increments of
derived torsional displacement are computed in columns 13 and 14 by
applying to the values of column 12 the same formulas applied previously
to column 4, The torsional component of the derived mode (columns 15
and 16) is, except for small computational discrepancies, the same as

in the previous method, as it should be. '

Two additional cycles of iteration were found to be adequate for
the determination of the first mode and frequency. The results of
these iterations are shown in parts (b) and (c) of table 1. In table 1(b),
for example, columns 1 give the two components of the assumed mode of
the second cycle, which are obtained by normalizing the derived mode of
the first cycle to unity in the flexural component at the tip station.
This normalization is not essential but facilitates manipulations and
comparisons by keeping the numerical values in all cycles within the
same range of magnitude. Columns 2 give the derived mode obtained by
the numerical integration procedure just described. The ratios of
derived to assumed mode are.given in columns 3 for both components of
displacement. These ratios are seen to be fairly uniform. The ratios
obtained in the third cycle in table 1(c) are, for practical purposes,
identical. The averaging device shown in columns 4 of table 1(c) and
to the right of table 1(c) is adopted as a quick and generally quite
accurate way of smoothing out small discrepancies that remain in the
ratios after convergence is almost complete. This device, although
clearly not necessary in the case of table 1(c), is useful in other
cases throughout the numerical examples and is explained as follows:
The two ratios in columns 4 are obtained by considering the flexural and
torsional components of the displacement separately and then dividing
the sum of the station values of the derived displacement by the sum of
the station values of the assumed displacement. When a discrepancy
remains between two ratios of the type in columns h, the average of these
two is taken as the final value; the final value for this case is given
in the calculation to the right of table 1(c). This device gives greater
weight to the larger ordinates and is in that respect similar to other
weighting procedures such as the energy and least-squares methods but is
much simpler. If the assumed and derived displacements contain both
positive and negative ordinates, the negative ordinates should be changed
- to positive for the purpose of the summations. The remaining calculation
shown to the right of table 1(c) gives that value of the arbitrary fre-
quency « which makes the ratio just computed unity. As proved in
appendix A, this value of ® is the fundamental frequency wy.

Table 2 gives the main results of three cycles of iteration
required to obtain satisfactory approximations of the second frequency
and the transformed second mode at zero airspeed (k =), Columns 1 og
the first cycle (parts (a) of table 2) contain the two components yg%

and ¢§é) of the assumed transformed second mode. This mode must have
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one zero ordinate (excluding the root ordinates). Although this-zero
ordinate may theoretically be taken at any station, the numerical
accuracy of the results is greatest if the zero ordinate is placed at
the station and in the component where the preceding mode (the first)
has its maximum numerical value (since the numerical process is such
that the larger ordinates contain more significant figures than the
smaller ordinates). Therefore, the zero ordinate of the transformed
second mode is placed at the tip station in the flexural component, this
location being designated station A. In the numerical values of

columns 1, the flexural component yaé would normally be taken as zero.

(The values that are shown are estimated from flutter calculations that
had previously been made for this wing.) Columns 2 give the intermediate
derived mode obtained by numerical integration. Columns 3 constitute

the first-mode sweeping function. The shape of this sweeping function

is given by columns 2 of table 1l(c) and its magnitude is such as to be
equal and opposite to the intermediate derived mode at station A. Thus
the derived transformed second mode (columns 4), which is the sum of
columns 2 and 3, has zero ordinate in the flexural component at sta-

tion A and a shape comparable to the assumed mode, as indicated by the
ratios-in columns 5. The ratios in the next two cycles (parts (b) and
(c) of table 2) show marked improvement in uniformity. The final value
of the ratio computed below the table gives, as proved in appendix A, the
velue of the second frequency wp, as shown.

The main results of the iterations to obtain satisfactory approxi-
mations of the third frequency and the transformed third mode at zero
airspeed are stated in table 3. Typical operations required in a cycle
are outlined in table 3(a). Columns 1 §ive the assumed transformed third

1
mode made up of the two components yaé and ¢g3). The transformed

third mode is to have a zero ordinate in the flexural component at the
tip station as in the transformed second mode and a zero ordinate in

the torsional component at the tip station. The location of the second
zero ordinate is designated station B. To.obtain greatest numerical
accuracy, the selection of the second zero ordinate is governed by the
same rule that was used for selecting the first zero ordinate, namely,
that the new zero ordinate should be placed at the station and in the
component where the preceding mode (the transformed second) has its
maximum numerical value. The numerical values that are shown in

columns 1 are estimated from previous flutter calculations; the torsional

component ¢a§ would normally be taken as zero. Columns 2 give the

intermediate derived mode, and columns 3 give the first-mode sweeping
function which, as before, has a magnitude at station A that is equal
and opposite to the intermediate derived mode. Columns 4 constitute the
transformed-second-mode sweeping function which has a shape given by
columns 4 of table 2(c) and a magnitude at station B equal and opposite
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to the sum of the intermediate derived mode and the first-mode sweeping
function (the sum of columns 2 and 3). The derived transformed third
mode of the first cycle is the sum of columns 2, 3, and 4 and is given
in columns 5. The ratios in columns 6 are far from uniform. The ratios
in the second and third cycles (parts (b) and (c) of table 3) show
improvements in uniformity. The iteration is discontinued at the end of
the third cycle where the ratios are about as uniform as they can get
with the limited number of significant figures that are present. The
frequency obtained by the smoothing device is the third frequency w3
and has the value shown.

The patterns laid out in the foregoing examples establish the
general technique that can be used to obtain zero-airspeed modes’ and
frequencies higher than the third. Guiding rules for determining the
number of selected stations to be employed have been given previously.
These examples also set the basic pattern for the computation of the
modes and eigenvalues of pseudoflutter and of flutter.

Modes and Eigenvalues of Pseudoflutter and of Flutter

The operational solution in reference 5 gave for the wing under

- consideration (fig. 3) a reduced frequency at flutter of 0.1443. 1In
order to use this operational solution, this same value (k = 0,1L443) is
used in the flutter calculations that follow.

The calculations for the first, second, and third modes at
k = 0.1443 are shown in tables 5, 6, and 7, respectively. Aerodynemic-
inertia force coefficients have been computed by equations (19) to (35)
and their values are given in table 4. Structural damping is disregarded,
although a note on the method of incorporating structural damping in
the calculations is made subsequently.

Table 5(a) shows in detail the first cycle of iteration for the
first mode. The form of the computations is the same as that shown
previously for the determination of zero-airspeed modes. The amount of
computation, however, is between three and four times that required for
zero-airspeed modes because of the fact that the functions involved are
complex and thus must be described by two parts - a real part and an
imaginary part. Columns 1 and 2 are the real and imaginary parts,
respectively, of the assumed first mode. As a start, all parts of the
assumed mode except the real part of the flexural component are taken
“as zero. Columns 3 to 6 are the real parts of the products of
aerodynamic-inertia coefficients and the assumed mode, and thus their
sums (columns 7) are the real parts of the distributed load. If the
expressious for the distributed load are considered, this condition is
more evident. The distributed forces producing flexure are given by
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(PRy - iPIy) (yR + in) + (PR¢ - iPI¢) <¢R + 1¢I) = Bp Vg * Ppgfy +

Prgyr PI¢¢I * i<PRny + Ppgfy - Pr¥g - P I¢¢R) - (1)

The terms of the real part of equation (51) appear in columns 3 to 6 in
the flexural part of table 5(a); the terms of the imaginary part of
equation (51) appear in columns 22 to-25 in the flexural part of

table 5(a). This separation of real and imaginary parts allows the dis-
placement due to each part to be computed separately. A similar explans-
tion can be made for the quantities in columns 3 to 6 and columns 18

to 21 in the torsional part of table 5(a).

Real and imaginary parts of the concentrated loads that are equiva-
lent to the distributed loads are computed as explained previousiy by
the formulas of appendix C. These values are shown in columns 8, 9, 27,
and 28 in the flexural part and in columns 8, 9, 23, and 24 in the
torsional part. The real and imaginary parts of the loads due to the
concentrated mass follow next in order, and the total concentrated loads
are given in columns 12 and 31 in the flexural part and in columns 12
and 27 in the torsional part. The éverage shears, average twisting
moments, and bending moments are then computed as described previously.

The remaining parts of the computations in table 5(a) that are
associated with the real parts of the load are described as follows
(the remaining parts that are associated with the imaginary parts of the
load are similar): Column 16 in the flexural part gives the distributed
curvature due to the real part of the load. This curvature is obtained
by dividing the ordinates of the real part of the bending-moment curve
by the local values of the complex flexural stiffness EI(l + igy)(l + iga).

In these examples, any actual structural damping is disregarded; there-

fore is zero. The factor 1 + igg, containing the as yet unknown

artificlal -damping coefficient, combines with wgl to give the factor 1/C
. + i

in column 16, C being the arbitrary eigenvalue —————§2. If the actual

o2

structural damping is regarded as other than zero, the values in
column 16 would be computed as follows: The real and imaginary parts of
the bending moment would be combined into the complex bending moment

Mp + iMj. This complex bending-moment distribution would then be divided

: . Mp + iMy
by the local values of the complex stiffness to give EI(l " igy)(l n iga).
The factor 1 + ig, would be carried along in the arbitrary eigenvalue C,
Mg+ iMp

and the numerical values of the real part of the quotient -
' : EI(l + 1%A
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would be placed in column 16. The imaginary part of the quotient would
be similarly placed (in column 35) in the calculations associated with
the imaginary part of the load. The average twists due to the real part
of the load are computed in column 1k in the torsional part of table 5(a),
and those due to the imaginary part of the load must also be computed.
These calculations follow the same pattern as those just explained for

the curvatures. The complex torsional stiffness GJ(l + ig¢)(l + iga>

enters in place of the complex flexural stiffness. If GJ or g¢ is
variable over a bay length or .over the whole span, the numerical
integration for the torsional part of the calculations should be carried
out as explained in the part of table 1(a) that deals with variable GJ.

The numerical integrations are completed in the manner already

described, and the derived mode is thereby obtained in the form of four

components of displacement. The flexural components are ylg and yii)

4
of columns 21 and 40 in the flexural part. The torsional components

are ¢§§) and ¢§§) of columns 17 and 32 in the torsional part. How-

ever, these components are not actually the real and imaginary parts of
the flexural and torsional components of the derived mode, because each
one of them contains the complex factor 1 + igg. Nevertheless, the
(2) 2)

. . (2) , . (2) (
complex derived mode is given by le + 1le and ¢1R + i¢lI .

The complex ratios of the complex derived mode to the complex
assumed mode are computed in column 41 in the flexural part and
column 33 in the torsional part. Only two of these ratios have actually -
been computed but they are sufficient to indicate the need for further
cycles of iteration. '

A total of four cycles of iteration (the main results of the last
three are shown in parts (b), (c), and (d) of table 5) were required for
satisfactory convergence. In columns 6 of table 5(d) and immediately
below table 5(d), the smoothing device described previously is applied
to obtain the best single value of the ratios. The fundamental (first)
eigenvalue is that valﬂg of C which makes the ratio unity. Thus

Ae Y 1l + ig
Cy = (269.5 - 82.21) =2, and since C; 1is defined as — 2L tpe
T EIu w12

frequency and artificial damping of the first mode are obtained from
the real and imaginary parts of the equation

1+ ig 4

al _ Ao Y
, . —‘”12_ = (269.5 - 82.21)EIll

(52)
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The calculation of these quantities and the corresponding airspeed Vi
which is obtained from the relation Vv; = _El are shown at the bottom
of table 5.

Tables 6 and 7 show the main results of the iterations to obtain
the transformed second and third modes for k = 0.1443. Four cycles of
iteration for each mode gave satisfactory convergence. The assumed
modes of columns 1 and 2 of tables 6(a) and 7{a) were taken in the forms
recommended previously in connection with tables 2 and 3. In(tables ?

) n)
by YR T Vo1
and ¢bR + i¢bI ; the complex first-mode sweeping functions, by

(n) (n) (n) (n)
Yp1r * iyblI and ¢ + i¢blI with shapes corresponding to columns 3

“and 4 of table 5(d); and the complex transformed second-mode sweeping

(n) (n) (n)
functions, by y, tp + iy, 5; and ¢ + i¢b -
sponding to columns 7 and 8 of table 6(d) The results computed in and

below table 7(d) give for the third elgenvalue g = 0.030 and
> a3

3
V3

and 7, the com lex intermediate derived modes are given by

with shapes corre-

= 168 9 radians per second. The correspondlng airspeed is
= 390 feet per second.

Computation of True Modes

Because the critical flutter velocities are given directly by the
eigenvalues, knowledge of the true modes in flutter problems is of no
value (at least of no value recognized at present). The same statement
applies to the transformed pseudoflutter modes, with the exception that
in the iterative method their determination is a necessary adjunct to
the determination of the eigenvalues. In ordinary problems of forced
vibration (at zero airspeed), however, the true modes are often used
with great advantage. For this reason and for the sake of completeness
of the presentation of the iterative transformation procedure, the
method of determining true modes from results of the iterative trans-
formation procedure is illustrated in tables 8 and 9. i

The computations in tables 8 and 9 pertain to the same wing analyzed
in the previous examples. The modes computed are for k = 0.1443. The
true third mode as computed in table 9 may therefore be compared with the
flutter mode computed for this wing by the operational method in
reference 5. .

In table 8, the true second mode is computed as follows from func-
tions appearing in the last cycle of iteration for the transformed
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second mode (table 6(d)): Preceding the table proper is the calculation

C
of ‘the eigenvalue factor F12 = Ei - 1 that is needed for computing the
: 2
true second mode. In the terminology of tables 6(d) and 8 and as shown
in appendix A, the true-second-mode -shape is given by

Yor * Wor =(le * ile) (ygﬁ * ly(g%) (53)
~and ‘
¢2R.+ i¢2I =(¢1R + i¢11)*(¢é2& + i¢;29 (54)
in which »
: | S ()
: _ JpiR b1l
. Vg * 1 ST oy (55)
=— -1
Co
and
L . '
fork * 9401
$ig * 181 = T (56)
- -1
Co
Columns 1 of table 8 show the key’ordinate ( (4) (4) f th
Ypig * 1), Of the
first-mode sweeping function y(h) (h) ¢(h) + 1¢(h) as given in
bIR * Yb1I’ blI

columns 5 and 6 of table 6(d). The key ordlnate is taken as the largest
ordinate (the ordinate at station A) for the reason of accuracy
cited previously. The key ordinate of the first-mode shape

Vg 1le ¢ + i¢ (equal to the first terms on the right-hand sides
of equations (53) (5#)) is shown as the boxed value in column 2 and is

obtained by dividing the value in column 1 by the eigenvalue factor Fio.

The other values in columns 2 are obtained by using the key ordinate in
conjunction with the first-mode shape given in columns 3 and 4 of
table 5(d). Columns 3 show the transformed-second-mode shape

(5) (5) ¢

Yaor * 1Va51s + l¢a2I (equal to the second terms on the right-hand
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sides of equations (53) and (54)) given by columns 7 and 8 of table 6(d).
‘The sum of columns 2 and 3 which is given in columns 4 gives the shape
of the true second mode y,p + inI,'¢ + ig (equal to the left-hand

2R 21
sides of equations (53) and (54)).

In table 9, the computation of the true third mode proceeds as

C C
follows: The necessary eigenvalue factors Fl3 = El -1 and F23 = ag -1

are computed. as shown. In the terminology of tables T7(d) and 9 and as
shown in appendix A, the true-third-mode shape is given by

. ) ' . (5) . .. (5)
Y3r + W3r =(Y11m * 117 *\V12r * W01 HVasr * Wep) +(ya3R * 1ya31)

(57)

and

N

+

1,00) +(93 + 93

(58)

Pap *+ 31 = Prap + i¢llI)+(¢12R * i¢121)+(¢a2R

in which

C1 ' . Co
(‘65 - l> (yllR ¥ 15'111) * (ég - 1> (ylER * 1_3’121>

yl(,l{% + iy&% (59)

cy _ C () ()
(@ - 1) (¢113 + 1¢111) * (é - 1) (¢12R * i525121) 1R * i1 (60)

(%) (4)

+ 1y

Yy ‘
Yaer * Wapr = aegg — (61)
s " 1
(L) (1)
4 g - Poacr * Ppaor (62)
a2R * Pa21 T T ¢,
£ .1



30 NACA TN 2346

and ¥iop + Wipp fiop * i¢121( ;S to (y?2R z ;yaEI’(¢?2R +1fpr oS
. . . 5 5 5 D)
Yig * ¢1R + 1¢lI is to y_op + 1¥,51s ¢a2R + 1¢a21 in table 8.

Tﬁe key ordinates Cygi%'+ iyéi%)A and (¢£:;R + i¢£ig B of the first

and second sweeping functions appear in columns 1 and 2 and are taken
from columns 5, 6, 7, and 8 of table 7(d). The key ordinate of the
functions F23(y12R + 1y121), F23(¢12R + i¢12I)’ which are equal to the -

second terms on the left-hand sides of equations (59) and (60), is com-
puted in columns 3 by using the key ordinate of columns 2 in conjunction
with ordinates at stations A and B in columns 2 and 3 of table B as
follows:

[%23CY123 + iylezﬁg] =
table 9

Yig * 1¥17) | -
| [ e

aor i¢a21 5 table 9
table 8

The key ordinate of the functions Fl3(yllR + iyllI)’ F13(¢11R + i¢llI)?

which are equal to the first terms on the left-hand sides of equations (59)
and (60), is given in columns 4 and, in accordance with equations (59)

and (60), is the difference between yﬁi& + iyét%, ¢£i§ + i¢£i% of

columns 1 and F23(3r12R + iylEI)’ F23(¢12R + i¢121) of columns 3. The

key ordinates of the first-mode shapes yyip + 1¥y;1, ¢11R + i¢llI and

Y1oR + i¥1o1» Bior + iff)pr are shown in columns 6 and 5 and are obtained
by dividing the values in columns 3 and 4 by the appropriate eigenvalue
factors. The sum of thé key ordinates of columns 5 and 6, shown as the
boxed value in column 7, is the key ordinate of the total-first-mode
shape -yig + iyy11, $1g *+ if;7 which is equal to the sums of the first

two terms on the right-hand sides of equations (57) and (58). The other
values in columns 7 are obtalned by using the key ordinate in conjunction
with the first-mode shape given in columns 3 and 4 of table 5(d). The
key ordinate of the transformed-second-mode shape Yaor * iyaQI’ ¢A2R

which is equal to the third terms on the right-hand sides of equa-
tions (57) and (58), is shown as the boxed value in columns 8 and

+ i¢a21’
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is obtained by dividing the value in columns 2 by the eigenvalue fac-
tor F23. The other values in columns 8 are computed by using the key

ordinate in conjunction with the transformed-second-mode shape given in
columns 7 and 8 of table 6(d). Columns 9 show the transformed-third-

mode shape yég% + iyé?%, ¢£2& + i¢£2% (equal to the fourth terms on

the right-hand sides of equations (57) and (58)) given by columns 9
and 10 of table 7(d). The sum of columns 7, 8, and 9 given in columns 10
gives the shape of the true third mode Y3R + iy3I, ¢3R + i¢3I (equal

to the left-hand sides of equations (57) and (58)).

DISCUSSION OF RESULTS

Trends and Comparisons of Numerical Results

Results of the computations shown in the preceding section of the
paper together with results of similar computations based on other
assumed values of k are given in figures 4 to 6. Figures 4 and 5 deal
with the wing to which the concentrated mass is attached. Figure 6
gives data of a similar nature for the same wing without the concentrated
mass. The computed results obtained by the Rayleigh-Ritz and operational
methods and the experimental results, all of which are given for this
wing in references 5 and 6, are also recorded in figures 4 to 6.

In part (a) of figure 4 the solid curves show the variation of the
artificial-damping coefficient 8y With airspeed in each of the first
three solutions. For each assumed value of k a dashed curve is drawn
through points that represent solutions for that value of k. Part (b)
of figure U4 shows in a similar way the variation of the frequency
with airspeed and the lines of constant values of k. The facts of
particular interest that are shown by these plots are as follows:

(1) The true flutter condition is given by the third solution for
a value of k between 0.1443 and 0.1590 at an airspeed almost equal to
that found in the experiment. Here the computed value of 8q 1s zero.
The computed frequency at true flutter is also in very close agreement
with the experimental value.

(2) The operational solution is in good agreement with the experi-
mental solution, but the solutions obtained by the Rayleigh-Ritz method
with three and four modes vary by 72 percent and 22 percent, respectively,
from the solution obtained by the operational method. The operational
solution is theoretically the most exact even though it involves summa-
tions of finite numbers of terms of infinite series. However, as pointed
out in reference 5, its use is limited in practice to wings of uniform
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section. In the present example the results obtained by the iterative
method would be expected to be better than the results obtained by the
Rayleigh-Ritz method because the eight degrees of freedom used in the
iterative method are much less restrictive than the three or four used
in the Rayleigh-Ritz method. Although exact agreement of the results of
any of the computational methods with the experimental results is not to
be expected, the better agreement of the iterative solution as compared
with .the operational solution is at first surprising. On further
observation, however, this agreement must be credited to a fortunate
disposition of the errors involved in the iterative method because, in
the case of figure 6, the relative order of agreement of the operational
and iterative results with the experimental result is opposite to that
in figure 4.

(3) The trends of the solid curves representing the first and
second solutions in figure 4(a) indicate that both may cross the zero
artificial ~damping axis at very large airspeeds. But this conjecture
is of no practical interest so long as a curve (the third solution) that .
crosses at a lower airspeed exists. However, the question of whether
the curve for some solution higher than the third could cross the zero
artificial-damping axis at an airspeed lower than that at which the
third solution crosses demands an answer.

(4) Reasonable assurance that, among all possible solutions, the
curve of third solutions in figure 4(a) crosses the zero artificial-
damping axis at a lower airspeed .than any other is provided by the
trends of the curves for constant values of k in parts (a) and,(b) of
figure 4. The curves of k show that the curves representing the fourth
solution will most assuredly lie above and to the right of the solid
curves in figure 4(b) and probably below and to the right of the solid
curve for the third solution in figure 4(a). The curves of k in fig-
ure 4(b) are straight lines by definition (k = %?). Prediction of the
courses of the curves of k in figure 4(a) cannot be made with much
certainty. They have a strong tendency to proceed to the right, but it
is easy to believe that upward or downward changes in their directions
could take place. The curve for the fourth solution, however, would
probably cross the zero damping axis at a value of v Dbetween 500 and
600 feet per second in figure k4(a). -

Figure 5 shows and compares the amplitude and phase distributions of
modes computed by the iterative transformation procedure and by the
operational method for the wing with a concentrated mass. The first and
second modes as well as the more important third mode from the iterative
solution for k = 0.1443 are plotted, and the third mode from the
iterative solution for k = 0.1590 1is also plotted. The third modes
from the iterative solutions for the two values of k  agree very well
in shape with the flutter mode obtained in reference 5 by the operational
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method, and the operational mode lies between the two iterative modes.
Thus the agreement of the iterative and the operational methods is
again evidenced. :

Figure 6 is a plot similar to figure U4 but relates to the behavior
of the wing analyzed in figure 4 if the concentrated mass is not present.
There is very little similarity in the data of the two figures. The
most notable difference is that in figure 6 the true flutter mode appears
in the second solution instead of the third as before and that the
flutter speed is lower than before. Of interest is the occurrence of
almost equal eigenvalues in the second and third solutions for k = 0.50.
The flutter speeds given in figure 6 by all methods of solution,
including the Rayleigh-Ritz method, are seen to be in substantial
agreement.

CONCLUDING REMARKS

The paper has described the iterative transformation method sug-
gested by H. Wielandt and has demonstrated the use of the method in an
orderly computation of critical flutter speeds. Numerical comparisons
with solutions obtained by other methods and with experimental values
have been made. The applications made in this paper show promise for
future practical use of the method.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., January 17, 1951
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APPENDIX A

ON fHE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE

Intrdduction

The extensive existing literature on the eigenvalue problems is
concerned almost exclusively with the class known as self-adjoint prob-
lems, in which the eigenfunctions and eigenvalues are real. In recent
years, non-self-adjoint eigenvalue problems have received increasing
attention. This class includes the flutter problem in which the eigen-
functions and eigenvalues are generally complex. The literature
referred to by Wielandt in reference 3 reveals that the non-self-adjoint
eigenvalue problem and the transformation method for its solution have
been given some attention since at least 1928. Wielandt's own work
constitutes probably the most extensive contribution on the subject.

The discussion on convergence given herein is not contained in
Wielandt's work and may be considered a rigorous proof if the following
assumption is valid: that the equations (equations (41) and (42)) for
the system (the wing) under consideration have an infinite number of
solutions’ that form a complete set for any value of the reduced fre-
quency k. In the subsequent demonstrations, the validity of expanding
arbitrary displacement functions in infinite series of eigenfunctions
depends upon the validity of the assumption. That complete sets of
eigenfunctions do exist seems plausible enough to Justify reliance in
the conclusions.

Basic Relations

For any‘one of the true solutions of the eigenvalue problem, for -
example, the eigenvalue C, end eigenfunction ym’¢m’ equations (41)

and (42) may be written as

walo Jo mrmy) S et

and

X L
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To make the notation more concise, let the coupled mode ym,¢m be

represented by wp. Then if ym,¢m is substituted into the right-hand

sides of equations (Al) and (A2), the left-hand sides may be represented
by CpWy. Furthermore, because of the linear character of the equations
of the problem, substitution of the function series

Z aivy (A3)
=1

into the right-hand sides of equations (Al) and (A2) gives for the left-
hand sides the function series

_EE: Ciaqwy (AL)
1=1 . ‘

The coefficients ay are, in general, complex. The complex eigen-
values Ci are assumed in the subsequent proofs, except where stated
otherwise, to be different from each other, and the eigenvalue having
the largest modulus is defined as Cj, the second largest, as Co, and
so forth, so that :

\cl\ > |02| > |c3| > ... (A5)

Expressions (A3) and (A4) are the expansions, in terms of the
eigenfunctions and the eigenvalues, of the functions previously referred
-to as the assumed and intermediate derived modes, respectively. The
subsequent proofs of convergence are based upon the fundamental relation-
ship that exists between expressions (A3) and (Ak4).

Fundamental Mode

The fundamental mode and eigenvalue are found by iteration
according to the original Stodola procedure. In the present terminology
and-notation, this procedure and its proof of convergence are as
follows: The coupled mode assumed at the beginning of the first cycle
. of iteration in general contains some component of each of the eigen-
functions; therefore its most general expression is

wil) = Zaiwi (A6)



36 NACA TN 2346

The intermediate derived mode (which in this case is also the final
derived mode inasmuch as no sweeping operation is required to obtain
the first mode) is for this first cycle of iteration

{

o]

wél) = wge) = Z:; Cija;wy | (AT)

The second and following cycles are begun with the final derived mode
of each preceding cycle, and thus the assumed and derived modes of the
nth cycle are '

"’gn) = Z cin-laiwi _ (a8)
o i=1

w§n+l) = i Cinza.iwi 4 (A9)
i=1

In accordance with the definitions given in equation (A5), all
terms on the right-hand sides of equations (A8) and (A9) except the
first are negligibly small in comparison with the first for large values
of n. 1In the limit the fundamental mode is obtained as

(n+1)

lim W = lim Clnalwl ‘ (A10)
n—yw n—ow

and the fundamental eigenvalue is obtained from
(n+1) _
e (a11)
lim =C All

1 .
nN—> Wln '

Transformed Second Mode

The initial assumption of the transformed second mode in general
is of the form

(1) §° AR
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°

in which the arbitrary coefficients bj are in general complex and

the subscript A refers to values of either the flexural or torsional
components of the eigenfunctions at station A. More specifically, if,
for example, the nodal (zero) point of Wgo 1s selected to be at sta-

tion A in the flexural component, then the subscript A refers only to
the flexural components of wy, Wwp, W3, . . . and not to their tor-

sional components. Thus each term of the series in equation (A12) sat-
isfies the requirement that either the flexural or torsional component
of the assumed mode be zero at station A.

To simplify the subsequent work as much as possible, the eigen-

functions are henceforth assumed to be normalized to unity at station Aj;
thus

(Vi)A =1 (1 =1, '2) 3, - ) | (Al3)

Equation (Al2) now takes the simpler form

w;é) = zz: bi(wi - wl) | (A1k)

1=

) The assumed mode given by equation (Alk) leads, according to equa-
tions (A3) and (A4), to the following intermediate derived mode:

W-l()l) = z bi (Ciwi - Clwl) | (A-15) '

i=2

Sweeping of this intermediate derived mode with the first-mode shape
(previously determined) leads to the derived transformed second mode of
the first cycle as follows:

(2) (1 .
Wa2 = Wb ) - —:T W = Zcibi - Wl) (Al6)

When each succeeding cycle is begun with the derived transformed
second mode of its preceding cycle, the various functions for the nth
cycle are

Ws(xrzl) = Zcin-lbi(wi - W) (ALT)
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w{,n) - ; ¢s" by oy - Cywy) (A18)
We(arel+l) = Z; Cinbi(wi - ) (A19)

The limits as n approaches infinity are

. +1 .
lim wgg ) = 1im Cobp (wp - W) (A20)
n—ew n—pow
and
, (n+1)
1im Ty_"az =C : (A21)
nN-—»o0 - Wa; e

Equations (A20) and (A21) show that convergence to the exact-transformed-
second-mode shape Wy - wp and to the exact second eigenvalue Cr can

be obtained theoretically.

True Second Mode

The key to computation of the true second mode is readily found in
the simple case illustrated in figure 1. In this case the sweeping

function of the final cycle of iteration would be the displacement

2 2
produced by the forcing load 7Qm2 - W )y, in which Y1 1is the

first-mode component of the transformed second mode Yao: The sweeping
function is designated by Yp1 Which has a well-defined numerical

value in the iteration. Thus the value of Y1 could be found from the
equation '

2 A
Yp1 = 5 ==z -1 | A22)

that is, -
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(A23)

The sum of Yao given in the iteration and ¥ given by equation (A23)

gives y,, the true second mode; that is,
y&2 + yl = yE - 'yl + yl = y2 (A2)+)

By analogy, the true-second-mode shape in the general (complex)
problem under consideration is found as follows: The limiting value of
the sweeping function is, from equation (A18),

-W C
vim v o 1w (22w o 1w o B2 - 1o (A25)
b1 v /1 2 \C 2"
n—jyeo n—pe A n—o 2
The expression analogous to equation (A23) is
lim véi)
n—y : n. :
- - 1 nN—>c
Co
The expression analogous to equation (A24) is
lim w(n)
bl
n+l n:
lim wée ) |, pe = lim Cp bowp (A27)
C f
n-—)w L 1 n—y®
€2

which gives the exact shape of the true second mode.

Transformed Third Mode

The first cycle of iteration for the transformed third mode begins
with an assumed mode that has two zero values, one of these being in the
same (flexural or torsional) component and at the same station (sta-
tion A) as previously employed for the transformed second mode. The
other zero value mey be taken in the same component as was the first
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zero value and at a different station (station B), or it may be taken
in the other component at any station, including station A. Either of
these possible selections for the location of the second zero value is
indicated in the following equations by use of the subscript B. The
initially assumed transformed third mode may be written as

(1) _§ vi - W] o
a3 ~ ; diEi B (w; - wl)B("’e i Q:l (428)

in which the arbitrary coefficients d; are complex. Each term of the
. series in equation (A28) is zero at station A by reason of the normaliza-
tions stated in equation (Al3), and each term is also zero at station B.

The various displacement functions for the genefal (nth) cycle of
iteration may be expressed as follows: The assumed mode is

(n) _ Y . n-1. LA
Va3 = Z S LI <w2 ) ("’g - 1) (A29)
i=3 7. B

. The intermediate derived mode is

(n) = n-1 Wi - W1
wp o= Z Ci d43(C3wy - Cwy - (= (Ce"e - Cl"]) (A30)
i=3 2 /g
The result after sweeping the intermediate derived mode with a first-
mode shape such as to make the sum zero at station A is as follows:

O ) . |
A+ (B - 5 emtanfo o m) - (2532) cefe - )
1 /5 i=3 2 Ve

Sweeping of the mode given by equatica (A3l) with a transformed-second-
mode shape such as to make the sum zero in the flexural or torsional
component (as the case may be) at station B gives the derived transformed
third mode as follows: ’
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- _
(n)
() [ |
(e1)  (n). [ ° FWAS
a3 = Wb - \S - | To T (2 - )

B

i=3

> eafu - - (R (s - ]ﬂ (432)

The limits as n approaches infinity are

14 (n+1) 1 n LETR ] ‘
im w3 = lim C3dg|w3 - W - |\=—0" (w2 = “1) (A33)
n—yow n—y oo 2 1 B
and .
w(n+l)
lim —7—)—&3 e (A3k)
n—pw wag 3

As shown by equations (A33) and (A34), convergence to the exact-

Wy - W
transformed-third-mode shape w; - wy - 237 Wo - W and to the
3 1 Vo - W] 2 1
: B

exact third eigenvalue C3 can be obtained theoretically.

True Third Mode

Computation of the true third mode is explained by referring again
to the simple problem of pure flexural vibration in which air forces
are excluded. The transformed third mode in this simple problem would
be given by 1

_ y3 - 91
Va3 =¥3 - ¥ - (———y2 - yl)B (y2 - yl) (A35)
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The total load required to hold the beam in equilibrium in the

shape ya3 is
| 2 2 y3 - 71! 2(¥3 - N1
Y3 y3 - ywy (1l - -3-—y y1 - 7@ },3—_7 Yo (A36)
| Y2 T Y1l 2 ")y

If the beam is vibrating with shape Ya3 at frequency w3, the inertia
load is given by '

2 2 y3 =¥
B

The forcing load required is the difference between the total load
(expression (A36)) and the inertia load (equation (A37)), that is,

2 2 y3 -0 2 B y3 =¥
(EREY N e R IR e R
B B

The displacement produced by this forcing load is

2 2
w y3 - y1 @ y3 - ¥1 '
—3‘§ - 1 - (y_3—-_y) yp + '3—2 -1 <y—37> Yo (A39)

and this displacement must be eqdal to the sum of the sweeping functions
in the last cycle of iteration (if the iteration has been carried to com-
plete convergence). The first sweeping function is of the first-mode
shape and the second sweeping function is of the transformed-second-mode
shape. If the expression (A39) is written in the form

2 2
w . Y3 = V1 NASCEE y3 - N1
_35‘1 1<ﬁ) Yy + —35'1<%_—y>3’1+

o :
w3 y3 -1

nt IS VEA Tl 21 RV (ko)
mee <;2 - B( 2 ﬁ '
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each of the sweeping functions contained in the displacement produced
by the forcing load is obvious. Thus

2 | 2
@ y3 - Y1 @3 y3 - Y
Yol 32 -t <y3 - Y> 173" <y3 yl> 1 (Ab1)
uy 2 1 B Wo 2 1 B
and
5 .
W -
3 Y3 J1
y :—-1————(y.-y (ak2)
ba2 w22 <y2 - yl>B 2 ﬁ

in which Yp1 and Ypa2 designate the first and second sweeping func-

tions, respectively. Both of these functions have well-defined
numerical values in the iteration.

If now a simpler notation is adopted, equations (Akl) and (A42)
can be written as

2 2
T Yp1 = <f3_2 . l> i1t <C"°;§ - 1>y12 (Ak3)
o | ’ Wo
and.
2
,— w3
Va2 = |77 7 Ve (Akt)
Lo
in which
Y3 - yl)' .
y.. = |1 - (=2——=] |y (ALkS)
11 (ye - ¥, 5 1
y3 - N1
= (2= AL6
Y10 <y2 - yl) ¥y (Ak6)
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and

y3 - Y1 ) .
Yop = (—y2 - y])B(yg - ¥y) | (ALT)

The true third mode is clearly given by the sum of equations (A35),
(Ak5), (A46), and (ANT); thus

Y37 Ya3 t V11 V10 Vg (448)
The transformed third mode ya3 is given directly in the iteration.

The procedure for finding the other components on the right-hand side of
equation (AL8) is as follows: Component Y 0s DY equation (ALL), is

- —_bac ‘ } (Ak9)
w3® N |

Component Y12 1is known when Ygo 1s known because its relation to Yao

was established previously in connection with the transformed-second-
mode calculations (see equatidn (A24)). Component ¥y1. is then found

by equation (A43) as

R4S T -y AT
02
2

(A50)

By analogy with the foregoing case, the true third mode in the
complex-eigenvalue problem is found as follows: The limiting value of
the second sweeping function is (see equations (A31) and (A32))
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(n)

w(n) - L w
b Wl 1
lim w}()g% = - 1lim Erp— A (w2 - wl)
N—) n—y oo 2 1 B
C Wq - W
- 14 nfx2 _ 3" -
e w

n—yo

The limiting value of the first sweeping function is (see equations (A30)
and (A31))

[ ()
lim w(n) = - 1im o w.
bl AV 1
n—oo n—>c A
C C C Wy -~ W A
= 1lim C3nd3 Ei -1 - El - Eg ;i—-;i vy (A52)
nN—)x 3 3 3 2 - lB R

The quantities analogous to y), and yg, of equations (A43) and (ALL)

are, for the present case, 1lim w(n) and 1lim w(g). The latter

, n-—3 e n—eo 2
quantity is obtained from the relation analogous to equation (A49) as
follows:

ba2 Wy - W 4
lim w(2) - =2 = lim C3nd3(w3 - l) (2 - "J.) (A53)
Il—>00 _2 -1 n--—»ow 2 wl
C
3

The relationship of 1lim wig) and lim wég) is obtained from
n-—w , N-—pow
equations (A26) and (A20) of the section dealing with the transformed

second mode. Thus,
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(n)i:] ( )
w . n
n) K ) Eq. (A53) H e

. ( ——)oo
Hn g = (n+l Cy
nN-—>»ow n—c —_ - ]
!: ] C2 Eq. (A26)
Eq.(A20)
W - W
_ 1m ofa <_3_1) v (45%)
B e 373 Wo = Wy, 1

The quantity analogous to Y11 of equation (A43) is, for the present
n
" case, lim w11 and is obtained by an equation analogous to equa-

n-—poo
tion (A50) as follows:

c
lim w(n) - (—g - l) lim w(n)

11 ﬁﬂ _ D—x bl C3 N —>c0 12
1lm Wll = Cl
n—> oo 6_ -1
3
n W3 - W)
= lim C3d3|l - (=——| |W (A55)
Nn—>ow0 2 1 B

The exact shape of the true third mode w3 1is given by the sum of
equations (A33), (A53), (A5k4), and (A55), which is

lim (wééﬁl) + Vég) + wg_;_l) + wirgl)> = lim C3nd3w3 (A56)
n—o Il —Poo

Fourth and Higher Modes

Extensions of the proofs to modes higher than the third can be made
in a manner similar to the foregoing proofs. By this means, the itera-
tive transformation procedure can be proved, under the assumptions
stated at the beginning of this appendix, to be convergent for all modes
and eigenvalues.
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Cases of Eigenvalues Having Equal or
Nearly Equal Moduli

For a representative case, suppose that

lc1] > |cz s |c3| > Icul >. .. (A57)
and that |
co| = |cg (458)
“or that
Co|® [Cq ‘ (459)

Under conditions (A57) and either (A58) or (A59), the assumed and
derived modes after a few cycles of iteration will be virtually as
follows (see equations (Al7) and (A19)):

D) ) e
| wgg+l) =4¢2nb2(w2 - l) + C3nb3(w3 - yﬁ (A61)

If |C2, is only slightly greater than IC3|, the second terms on the

right-hand sides of equations (A60) and (A6l) become negligibly small
very slowly as n increases, even though they do become negligibly small
as n approaches infinity. If |02| and |C3| are equal, these terms

never become negligibly small. Thus, the problem of circumventing this
slow convergence or apparent lack of convergence arises.

A satisfactory method for coping with these conditions is to
combine linearly the results of the last two cycles of the series of
iteration cycles that have been performed. For best results in an
actual problem, not less than the third and fourth cycles should be used
for this purpose in order to reduce as much as practicable the effects
of all higher-order components.
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\

The following formulas for combining the results of the last two
cycles are based on the assumption that the assumed and derived modes
in each of the cycles contain only components of the types in equa-
tions (A60) and (A61).

The two components (with shapes Wo - W; and w3 - wl) clearly

appear in the last cycle 'in proportions different than in the preceding
cycle. (The proportion in each cycle 1s a complex function of the
spanwise coordinate.) Because of this differing proportionality the
results of cycles n -1 and n can be linearly combined so that the
combined functions contain only one of the components WO -~ W]

and* w3 - wi. Accordingly, the ratios of both the flexural and tor-
sional components of the combined functions at all stations should be
equal to each other. 1In algebraic terms, this statement means that

rw( n) + W( o+l )
o) F (a62)
rwa2 + Wag

S
in which r and R are (complex) constants, and the subscript S
designates that the ratio may be evaluated at any station S, that is,
that R has the 'same value for all stations. All w functions must
be the same type of component, either flexural or torsional.

Since S can be any station, the equality

(n)  (n+1) (n)  (n+1)

rw + W TW + W.n
al az? a’ az
= (A63)
rt2-l) () T (n-1) ()

exists, in which stations 1 and 2 must be different or may be the same,
depending on whether the w functions on the left-hand side are the
same or different types of components than those on the right-hand side.
The two values of r that satisfy equation (A63) are

p(0-1),(041) (01, (e0)\® (), (ne1)

R ORI CE R O B cavR Y | (6k)
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in which

A(n‘l))(n) -

A(n),(n+l)

A(n-l),(n+l) _

(wa2

(n-1)

((n))
W
a2

1

) e

&

2

(n) (n)
6%2 )1 6%;.>2
) (w( n+l ))

1 a2 2

[

6ﬁn-l)
{{ a2

W
(a2

- The corresponding values of R are

(n+l)

(n+l )) <w(n+l)
) ‘

(n-1)
)1 [ a2

a2

)

).
)

(n),(n+1)
A

(n-1),(n+1) (n-1),(n+1)\°
R=4 +\[12
A(n-l),(n) A(n~l),(ﬂ77

These values of R are equal to 02 and C

p(2),(41)/ (n-1) ,(n)
r

3’

values of r, when placed in the expression

rw(n) 4 (n+1)
a2

TG, (@)

k9

- (A65)

(A66)

(A6T)

(A68)

and the corresponding

(A69).
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give modes of the shapes w, - w; and W3 = W. When |02| is nearly
equal to |C3|, the appropriate set of R and r to give the lower
transformed mode w, - w; is evident. When IC2| and |C3| are equal,

the mode obtained by equation (A69) with either value of r may be used
as the transformed second mode, but the trends of the eigenvalues that
have been or will be determined at other values of the reduced fre-
quency k may be used as a guide in meking the selection that fits the
trend.

In actual computations, one further cycle of iteration beginning
with an assumed mode given by expression (A69) should be carried out to

(n-1)  _(n) (n+1)
assess the extent to which the functions Voo 0 Vo' and Voo

are free of all except the two components of the types asppearing in .
equations (A60) and (A6l). If the ratios of this cycle are not reason-
ably constant, the unwanted components still present have to be removed
by carrying out another cycle of iteration and again applying equa-
tions (A64) and (A68).

The method Jjust described is clearly applicable in the general
cases lCn, = lcn+l| or ICn| ~ Icn+l|'

Eigenvalues having equal moduli include the sbecial case of
identical eigenvalues. As a basis for discussion let it be assumed that

Icl| > lcgl - lc3| > Icul > ... (A70)
and that

C,=C,=¢C ‘ ~ (ATL)

The significance of the occurrence of these two identical eigenvalues

is that the wing system may oscillate with the same frequency and arti-
ficial damping in any of an infinite number of modes, any two of which
are linearly independent of each other and of the first, fourth, and
higher modes. This infinite number of possible modes (all corresponding
to C23) are the infinitely many linear combinations of two basic

linearly independent-modes that arelnecessary and sufficient in combi-
nation with the first, fourth, and higher modes to describe an arbitrary
displacement of the wing system. Clearly, only two linearly independent
modes corresponding to the double eigenvalue 023 are required for
analytical purposes. These two are designated w, and w, as before

2 3
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but with the reservation that. L) and w3 must be derivable as two

differing linear combinations of a single basic pair of linearly inde-
pendent modes that also correspond to C23.

Equations (A20) and (A21) are replaced in the present case by

lim w;gﬂ') = lim CQ3HE2<W'2 - wi) + b3<w3 - wlD (AT72)

n—y o n—o
and
(n+1)
Yoo ‘ .
lim 7;)—— = C23 (A73)
n—>>0 W .
a2
Equation (A27) is replaced by
» lim w(n)
(n+l) n—»c bl ; n L
lim w_, ey = lim Cpq (b2w2 + b3w3) (ATh)
‘N—~—3c0 —_— _ 1 n—-ypoo
C23

The transformed second mode (equation (A72)) is in this case a
linear combination of the first three eigenfunctions, and the so-called
true second mode is actually a linear combination of the second and
third eigenfunctions. »

If the iterative transformation procedure is now epplied in the
regular way to determine the transformed third mode, the third eigen-
value, and the true third mode, the results will be as follows: The
transformed third mode will be, like the transformed second mode, a
linear combination of the first three eigenfunctions but will.be linearly
independent of the transformed second mode. The so-called true third
mode will be, like the so-called true second mode, a linear combination
of the second and third eigenfunctions and will be linearly independent
of the so-called true second mode. The results will also include a
second determination of the double eigenvalue C23. It may therefore

be concluded that the iterative transformation procedure is valid and
sufficient in all cases of eigenvalue multiplicity.
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APPENDIX B
THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The familiar concept of a complex force K(1 + ig)s in simple (one-
degree-of -freedom) vibrating systems having structural damping may be
easily extended to continuous vibrating systems such as beams and air-
plane wings. The quantity X is the elastic-spring constant, s 1is the
displacement, Ks is the elastic-spring force, and Kgs is the
structural-damping force.

For a beam in flexure, the stiffness of the fibers is given by the
modulus of elasticity E, which is analogous to the quantity K for the
spring. The elastic stress at any point of the cross section is given
by €E where € 1is the strain which is analogous to the displacement s.
Then the complex stress at any point of the cross section of a beam with
structural damping is E(1 + ig)e. The complex bending moment corre-
sponding to this stress, obtained in the usual way by ingegration of the

moment of the stresses over the section, is 'EI(l + ig)g—%. This result
: dx

leads to the concept of a complex stiffness EI(1 + ig,) for beams in
flexural vibration with structural damping. Similarly, the complex
stiffness of beams in torsional vibration with structural damping

is GJ(1 + igy). The subscripts y and ¢ indicate that the structural-
damping coeffgcient g may have a different value for torsional |
vibrations than it has for flexural vibrations. Both gy and g¢ may

be functions of the spanwise position x.



NACA TN 23&6 53

APPENDIX C

FORMULAS FOR EQUIVALENT CONCENTRATIONS
AND INCREMENTS OF TORQUE:
The formulas used in the numerical examples for computing equiva-
lent concentrated loads and curvatures are those that have been derived

in references 7 and 8. For the concentration at an end station the
formula is ’

— A
= . + 6 C - Cl
P, 'TQF(TP]_ P, Pz) (c1)
At an intermediate station

= _ M '
B, = 15(2 + 108, + 23) (ce)

Al

The significance of the quantities used in formulas (Cl) and (C2) is
shown in the following sketch:

T

Distributed-load curve

| »

.

el

Y
Py 2

These formulas are based on the assumption that the distributed-load
(or curvature) curve is a series of second-degree parabolic arcs. When
applied to distributed flexural loads, the formulas give concentrations
which produce the same bending moments in the wing at all the selected
stations as the distributed load. The formulas may be correctly applied
to distributed torsional loads only if GJ 1is constant over each bay.
In this case the formulas give concentrations which produce the same
torsional displacement at all the selected stations as the distributed
load. For a station placed at a'discontinuity in ordinate or slope,
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formula (Cl) must be applied to both the left and the right of the
station and the results added.

The formulas for obtaining increments of area beneath a curve of
distributed torques are derived in reference 8. These formulas are
based as before on approximating second-degree parabolas. They are .
given here in a slightly different form which is better adapted to
present uses. Thus

Al = %(ql + ll»qQ + q3) + T):.(ql - q3) (c3)
A, = %(ql + hg, + q3) - %(ql - q3) | (Ch)

where the ?1gn1f1cance of Al and A2 and of % and q3 is
shown by the following sketch: ‘

Increments of
tor'que

Distributed-load
curve

The ordinate at a discontinuity should not be used as the middle one

of the three ordinates selected for use in formulas (C3) and (Ck). The
formulas are valid only where the three ordinates are connected by a
continuous curve.
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TABLE 2.- ITERATION TO OBTAIN TRANSFORMED SECOND MODE FOR Kk = w.

HACA TN 2346

WING WITH CONCENTRATED MASS.

Elommon factors for each column are given under the column headingsZI

g i @7 : —
; 5 L 3 2 1
| Station
Flexure: (a) First cycle. (b) Second cycle. (c) Third cycle.
1 2 3 i 5 1 2 3 L 5 1 2 3 L 5 6
.y(2) y(3) y(‘*) Zy(‘*)
() | (1) ()| (2)f Ta2 (2) | (@) | (2) | (3) | a2 (3) | (3) |.(3) | (%) [Ta2 a2
Statfon oo [ Yo [ Ve Y2 | TV H|¥a2 | [er |Te2 | B |12 | Yo o1 [Yeo ;ﬁff}ﬁ
Yaz Ta2 : a2 a2
Aoty ro'ty 3 Ao by Aoty 2 ro'*by \o%’ 2
b Em LDZ E_Iu w b -Wwe E_Iu—m b EIu wa W(J&
1(A)] {0 17k 11171 | O o -k1.0|k1.0| o 0 |-u65.81465.8] o
| 2 -.281(-107.7} 99.2 |-8.5| 30.2 -.692{-252.5|234.2]-18.3] 26.4 -.820]-285.41265.4 |-20.0{24 .4
3 -.252| -43.1] 33.8 |-9.3| 36.9 -.757| -99.7| 80.0]-19.7| 26.0 -.882(-112.0f 90.6|-21.4|24.2] 24.3
4 -.094] -13.1| 9.48(-3.6] 38.3 ||-.293| -30.2| 22.4| -7.8] 26.6 |[|-.349| -33.8] 25.4| -8.4|24.1
5 (] ) 0 0 0 0 o} 0 0 0 0 0
Torsion: (a) First cycle. (b) Second cycle. (c) Third cycle.
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6
(2) (3) (%) (%)
@ [ Lo @ Pe L@ @ [ ] .3 |%e L@ [ [0 ] b 1Y %o
station |Pa2 |Po [P {Pa2 (1) Pz [P0 [Po1 (% ;1727 22 |*b bl [Pa2 ;(37 Eﬁ)
¢a2 a2 a2 - a2
h 4 4
Ao 7 M7 o Ao Y 2
EIp B Em @ Eln @
1 1.000{ 13.38|-1.10|12.28|12.28 | [1.000|24.9k|-2.60]22.34} 22.34] 11.000| 26.22 -2.95|23.27| 23.27
2 .901 13.38(-1.15[12.2313.58 || .997|2k.95]-2.72{22.23[22.3 .995| 26.24] -3.08(23.16] 23.3
3 L6241 13.40(-1.28}12.1219. 44 | | .988]25.05(-3.00|22.05]22.3 .9881 26.4%0] -3.40|23.00}23.3 | 23.3
‘ L .322] 6.70] -.63] 6.07(18.85]|] .495|12.51}-1.50{11.01]|22.2 .493{13.20] -1.70{11.50] 23.3 )
5 0 0 0 0 o 0 o |0 0 0 0 0
Va2 Pa2 gro? 2 -1 adi nd
F.—(ﬂ*mzw = 23. B¢ @ 33.3 radians per seco;
y
a2 a2
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TABLE 3.- ITERATION TO OBTAIN TRANSFORMED THIRD MODE FOR k = =. WING WITH CONCERTRATED MASS.
[Commn factors for each column are given under each column hea.di.ng]
3 N & N )
5 4 3 2 1
Station
Flexure: (a) First cycle. {b) Second cycle. {c) Third cycle.
1 2 3 P 6 1| 2 3 {u}]s 6 |{ 1| 2 3 | ]| s]| 6 7
y(2) y(3) (%) y('*)
(1) | 1) | (1) | (1) | (2)] Za3 (2) | (2) | (2) | (2)] (3)] a3 (3) | ,03) | (3) [, (3)], ()] “a3 a3
station] [Ya3 (b | Y1 [Yva2 [Ye3 | LY [[Ye3 [ | o1 [Yve2|¥e3| T2y [Pe3 | | Y1 |Yva2|Ya3| T3 Z (3)
Ya3 Ya3 Ya3 Va3
4 4 b, b &, 4
do by Aoy Aoty 5 Aoy Moy o Aoy
b ETn m2 E—Iu u)a b T m e “)2‘ b M [ - E—Iu u)2
1(A)fo L48.1|-84C.1 o (o 0 405.5]-%05.5] 0 |o 0 Lok.o|-kok.0] 0 |0
2 .9521271.5| -254.8} -11.1{5.6 5.9 1.000| 243.7(-230.6}-5.9| 7.2 7.2 1.000|242.8|-230.0] -5.9]6.9 | 6.9
3 1.000|104.0} -87.0|-11.9{5.1 5.1 .911| 91.6| -78.8]-6.3|6.5 7.2 .903| 91.3| -78.5}-6.3[6.5 7.2 | 7.07
4 .390{ 31.0| -2k.4| -4.7]|1.9 4.9 .339] 27.0] -22.1|-2.5|2.4 7.1 .333| 26.9| -22.0|-2.5[2.4 (7.1
5 0 0 0 [ (] 0 0 0 o |o 0 0 0 o |0
Torsion: {a) First cycle. (b) Second cycle. {c) Third cycle.
1 2 3 5 5 6 1 2 3 3 5 6 1 2 3 5 5 [ i

a3

%3 Pas %o

o | ol ol ()¢(2) @) | (2 | (2| (2] (3) 5y (3) | 3] (3] (3] ) o > gy

( 2 3 2 3 3 ) 3 3

Station | 4 By %1 |Poa2 (%a3 %3 %o {%1 |%oaz [P B | %3 [ [%on [Poa2|?es % Z—(-¢B35
a

3
hohr 2 Xoh7 2 Xoh7 2
E Elp ® El ©
1(B)|| 0 -15.79[2.84|12.95|0 0 -9.46)2.57]6.89 10 ] -9.46 2.566.90{0
2 -.083{-15.81)2.96/12.88} .13[-1.6| | .0232| -9.50(2.68]6.85| .03[1.3 .o00k2| -9.50( 2.68|6.86( .0k4{10.0
3 -.304| -16.03| 3.26|12.80| .03| -.1{ | .0054 -9.72|2.96(6.80| .ou|T .0056 -9.72{ 2.94]6.81] .03| 5 | 7.15
4. || -.150| -8.00[1.63| 6.%0| .03] -.2{ | .0054 -4.85|1.48|3.40] .03]|6 .o00k2| -4.85] 1.%7|3.81| 03| 7
5 ("} o |o o Jo 0 o o |o jo 0 o |o o o
(%) (4)
ya3 Z¢a3 xok7 2
=061t =J13 -7.umm;m3 = 244 redians per second
ya3 Z¢53
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TABLE 4.- AERODYNAMIC-INERTIA FORCE COEFFICIENTS FOR

VARIOUS VALUES OF k FOR EXAMPLE WING

[?ommon factors for each column are given under the column headings;]

Flexure
k Pry Prg Pry Prg ?ﬁy §§¢
2 o %1 o2 L 4P Pul 02 }3_7 02 lo:l 2
0.036 | 27.5 | -1buy 51.9 | -108.3 92.5 -75.6
12 30.6 -112.5 13. 44 -8.27 92.5 -75.6
.1443 31.0 -75.2 .10.82 -4k 92.5 -75.6
1590 | 31.2 -60.7 9.61 -2.53 92.5 -75.6
2k 32.0 -23.8 5.82 '1.35 92.5 -75.6
.50-. 33.0 -3.76 2.39 '2.29 92.5 -75.6
w 33.6 1.397 0 0 92.5 -75.6
‘ Torsion
k Ry g Uy “1g SRy Org
| e | | B |2 A 2 .
K H M H H M
0.036 3.67 5k9 -19.40 68.3 -75.6 11k.7
.12 2.52 51.4 -5.03 11.k42 -75.6 11k.7
L1443 2.36 37.5 -4.05 8.&8‘ -75.6 114.7
1590 | 2.28 32.0 -3.60 7.24 -75.6 11k.7
.2k 1.98 18.24 -2,18 3.67 -75.6 114.7
.50 1.623 10.7% -.895 1.143 -75.6 114.7
w 1.397 ~ .1k09 0 0 -75.6 11%.7
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TABLE 8.- COMPUTATION OF TRUE SECOND MODE FOR k = 0.1443,

WING WITH CONCENTRATED MASS.

E‘lexura.l functions are in terms of b; torsional functions are in

radians,

1="Fp=28.65- 1.60012]

Co
- S
5 k3 2 1
Station
Flexure
1 2 3 b
Statioq y]f_‘l*; R 1%‘3 ] 5 . (5)
| Yir * 1¥yg Yaor * oo | Yor * 1Yo
Fio(¥1r *+ Ny

1(A)[|941.0 - 165.581 | [108.8 + 0.964] 0 108.8 + 0.961
P | 6i.7 +0.851 [-8.4+6.31 | 53.3 + 7.151
 JR [ [P 21.06 + 0.491 [-6.9 + 6.321 | 14.2 + 6.811
T [ [T 5.90 + 0.181 [-2.7 + 2.491 3.2 + 2,674

5 | ]ecccmmmmeaaaa o] 0 0]

Torsion
1 2 3 4
i e
Statio4 ¢1(>111 + _1¢1()l; = bin + 19 ¢g s ¢g% Gom + 1o
F;2(¢1R + 1659

31¢:)] | -0.772 + 0.4011 [27.13 - 4.0T1{ 26.36 - 3.671.
=R [ -0.786 + 0.2944 |24,37 - 4.351] 23.58 - 4.061
;TN | [, -0.816 + 0.0481 [16.94 - L.571] 16.12 - 4.521
ST P -0.409 + 0.0261 | 8.71 - 2.361| 8.30 - 2.331

I § P 0 0 | 0
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T
) B A

Transformed second mode:
Ya2 = ¥2 = V1

W

,frrfTTTTTTTr}s

Inertia load: 7@22(3'2 - Y1)

o ‘“““““MJ

“‘ﬂ"!"

Figure 1.- Illustration of physical basis of iterative transformation
. procedure.
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(a) Assumed transformed second mode,

le

]
L

WY

Y

(b) Intermediate derived mode.

4. . N 4
y§,| 'ai T ¢bl 1
(YS))A
.

(c) First-mode sweeping function,

e T 2) 4
¢()

\
a2
(d) Derived transformed-second mode. I!

Figure 2.- Illustration of steps in the iterative transformation procedure
for determining coupled modes. *
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Elastic axis

0989 sl 0270 slug/ft— Gravity axis
sug\ Su \ %Midchord axis

b P ) 039b
b 7 818 b | 1930
I s s i e
T i
b=.333 ft 3 oL
{ g ]
' ! .548Xo 0 o~ -
- L=4 ft _
p = 0.002378 s]_ug/ft3 - )
b= 32.6 % 423,000 (radigns/sec)
EI = 977.1 1b-£t2 e
o e
G = 480.6 1b-£t2 GJ

Figure 3.- Properties of cantilever wing used in numerical examples.
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o Experiment (reference 5)

o Operational solution (reference 5)

» Rayleigh-Ritz: 3 modes (reference 6)
v Rayleigh-Ritz: 4 modes (reference 6)
o lteration: 4 stations

Z 3d solutions

~—2 §

7

/

/

2d solution> \55

1
/
/
/
/

1
Ist solutions —)\ .03¥\/’,

200 400 600 800
v, ft/sec

O

(a) Variation of artificial damping with airspeed.

300 F :
3d solutions P
-Ll\ﬂ,/
"
200 >
F ﬁﬁ-—,g&.méz" soutions

100 1" 0% fot+
1257 IR ey S S NACA "
Ist solutlons—/ " T A {

’ 0] .
0 200 400 600 800
v, ft/sec

rodlons/sec

(v) Variation of frequency with airspeed.

Figure 4.- Variation of artificial damping and frequency with airspeed in
first three solutions. Wing with concentrated mass.
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Figure 5.- Amplitudes and phases of modes.

Wing with concentrated mass.
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Figure 6.- Variation of artificial damping and frequency in first three
solutions. Wing without concentrated mass.
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