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TECHNICAL NOTE 2326 

TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOWS PAST 

ARBITRARY BODIES BY THE VARIATIONAL METHOD 

By Chi-Teh Wng 

Instead of solving the nonlinear differential equation which governs 
the compressible flow, an approximate method of solution by means of the 
variational method is used in this report. The general problem of steady 
irrotational flow past an arbitrary body is formulated. Two examples 
were carried out, 'namely, the flow past a circular cylinder and the flow 
past a thin curved surface. The variational method yields results of 
velocity and pressure distributions which compare exc'llently with those 
found by existing methOds. These results indicate that the variational 
method will yield good approximate solution for flOw past both thick and 
thin bodies, at both high and low Mach numbers. 

INTRODUCTION 

The advance in aerodynamics has been greatly accelerated by the 
interpretation of good experimental results in the light of theoretical 
predictions. When the flow velocity is small, the change in density of 
the fluid in the flow is so small that the fluid may be considered to be 
incompressible. Many useful theoretical results have been obtained from 
a consideration of the two-dimensional irrotational flow of an incom-
pressible perfect fluid. When the flow velocity becomes large, the 
change in density of the fluid in the flow can no longer be considered 
small and the flow must be considered to be compressible. While the two-
dimensional incompressible flow can be described by the well-known 
Laplace equation, the corresponding compressible flow can only be 
described by a complicated nonlinear differential equation. Except' for 
a few simple cases, the exact solution of this différentialequationis 
still unknown. 

In the case of two-dimensional irrotatlonal subsonic flow, there 
are at least three different methods of small perturbation or lineariza-
tion. The small-perturbation methods have been carried out by developing 
the velocity potential in terms of the Mach number or of a thickness 
parameter. Obviously, the development in terms of the Mach number limits
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the applicability of the method to flows at small velocities and the 
development in terms of the thickness parameter limits the applicability 
of the method only to flows about very thin bodies. Methods for calcu-
lating the second- and the third-order approximations in these methods 
have been carried out in some cases, but the increased mathematical 
difficulty with each approximation prevents their application to the 
higher orders of approximation. Another method of linearization is the 
so-called hodograph method wherein the nonlinear differential equation 
is transformed into an exact linear differential equation, thus removing 
the difficulty of the nonlinearity of the governing equation. However, 
in doing so, the fulfillment of the boundary conditions is made much 
more difficult. The application of this method to actual problems 
requires some simplifying assumptions which can be shown as being only 
approximately correct. 

The variational method, as carried out in this report, on the other 
hand, can be used to study the compressible flow without linearization 
and the computation can be made to obtain a solution of high accuracy 
without any mathematical difficulty. The variational method has also 
the advantage of being a direct method by means of which one may be able 
to calculate the flow passing a given airfoil at different Mach numbers. 
In the variational method, instead of solving the nonlinear differential 
equations of motion, a variational integral is first formulated and 
approximate solutIons are then calculated by the Rayleigh-Ritz procedure. 

Two numerical examples are carried out in this report to ascertain 
the applicability of this method. They are for the two-dimensional 
irrotational flows past a circular cylinder and a thin bump as proposed 
by Kaplan. (See reference l.) These examples are chosen because in the 
case of circular cylinders similar results by the Rayleigh-Janzen method 
are available, and in the . case of the Kaplan bump results by means of 
the perturbation method in terms of thickness parameter are available. 
A comparison of the results by the present method with those computed 
by the other methods shows excellent agreement. Since the Rayleigh -
Janzen method is known to give good results for thick bodies at a rela-
tively low Mach number and the perturbation method in terms of thickness 
parameter yields accurate results for thin bodies up to high Mach numbers,, 
the results of this report indicate that the variational , method gives 
good approximate solutions for both thick and thin bodies and at both 
high and low Mach numbers. 

This investigation was carried out at the Daniel Guggenheim School 
of Aeronautics, College of Engineering, New York University, under the 
sponsorship and with the financial assistance of the National Advisory 
Committee f or Aeronautics. The author wishes to acknowledge his indebt-
edness to Messrs. J. R. Knudsen and H. H. Hilton who carried out most of 
the numerical calculation. Grateful acknowledgment is hereby also made 
to Professor K. 0. Friedrichs for his kind encouragement and , inspiring 
discussions and to Professor F. K. Teicbmann for his understanding 
cooperation.-	 -
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SYMBOLS 

a	 velocity of sound 

Cp	 pressure coefficient 

• C .	 pressure coefficient for incompressible flow p,1 

I	 variational integral 

M	 Mach number (qJa)	 - 

n	 inward normal direction 

p	 pressure 

velocity vector 

q	 magnitude of velocity vector 

maximum possible velocity of flow 

r	 position radius in flow field 

u	 velocity component in x-direction 

U	 velocity of undisturbed stream 

v	 velocity comporfent ill y-direction 

x,y	 rectangular coordinates of a point in the fluid 

X,Y	 coordinates of curved surface divided by semichord of shape 

z = x + iy = re1 

t	 thickness parameter 

d	 constant defining thickness of Kaplan's bump 

• ratio of specific heats at constant pressure and constant 
volume 

C	 angular position 

0	 velocity potential
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p	 mass density of fluid 

rectangular coordinates in plane of curved surface 

ill 

1'	 strength of circulation 

Subscripts: 

x,y	 differentiation in corresponding direction 

o	 conditions of undisturbed stream 

THEORY 

For steady two-dimensional irrotational flows, there are four hydro .-
dynamical variables: The pressure p, the density p, and the two 
components of velocity u and v. All these are to be determined as 
functions of the coordinates x and y by the following four 
equations:

(1) The equation of continuity (one equation) 

	

div(p)=O	 . 

or

pu+pv_a	 (1) -	 --

where	 is the velocity vector. 

(2) The equations of motion (two equations) 

-1

	

u+v=-p	 -

(2) 

-1 D u+v=-p 

(3) The equation of state (one equation) 

p=A+Bp7 . ( 3) 

where A; B,. and y are constants and the significance of A and B 
will be discussed later.
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Most aerodynamic problems are concerned with either flow from rest 
or flow which is parallel and uniform at infinity. Both of these types 
are irrotational t.o begin with, and will remain so provided that fric-
tion and shock waves are neglected. Thus, irrotational flow is of great 
interest in aeronautical applications. 

The condition of irrotationality is 

rot •: = 0 

or

u	 V_O 

This condition can be satisfied by introducing a velocity potential 0 
such that

u=1
(1.) 

that is, q is a gradient of 0. 

• For the velocity field given by equations ( 1.i. ) to represent a physi-
cally possible field of flow, it is necessary that the continuity equa-
tion (1) be also satisfied. By means of equations (1), (2), and (3), p 
and. p are eliminated, and one obtains the following . fundamental dif-
ferential equation:	 . 

(
2	 2\	 2 
a - Ox )	0 + (a - Øy2) Oyy - 2OxOyOy = 0	 () 

in which

a2.= a02 + - l2 - Ox2 - 
Øy2 

where a is the velocity of sound in the fluid and the subscript o 
refers to quantities at infinity. Equation (5) is a nonlinear differ-
ential equation, and its exact solution is found.to be extremely diffi-
cult. Instead of solving the differential equation exactly, an approxi-
mate solution may be obtained by means of the variational' method. In 
this method the first step is to formulate a variational principle.
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A variational principle for the compressible fluid was first 
formulated by Hargreaves. (See reference 2.) A somewhat more detailed 
discussion of this variational principle was made later by Bateman. 
(See reference 3.) A simplified proof of the principle was given by 
Wang. (See reference 4-.) It seems, however, that the following formu-
lation is more complete from the mathematical point of view and is 
therefore included here. 

Consider the following variational integral 

cz	 i
(6) 

where the integration is taken over the given domain D. Varying p, 
u, v, arid 0 independently and setting the first variation equal to 
zero, one obtains	 - 

' =f	 - (u	 + v	 + (u2 +	 -	 - uu - 

=	 - v)öv +
	 +	

c dy + f p Øq dS 

where S is the boundary of the domain D and q' is the velocity 

	

component which is normal to the boundary S. 	 - 

The Euler t s equations of the integral I, according to the calculus 
of variations, are then 

f'(p) - "u	 + v	 1 2 
dx	 ) +(

u + v2)	 0	 (7) 

-	
(8) 

- V = 0
	

(9) 

pu + pv = 0	 (10)
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and the natural boundary condition must be such that 

fPöØqndS=0
	

(11) 

quation (10) is the continuity equation (1) and equations (8) and (9) 
are the same as equations ()), which implies that the condition of irro-
tationality is satisfied. If the pressure p is given by the equation 

p = ..pft(p) + f(p) (12) 

equation (7), when combined with equations (8), (9), and (10), indicates 
that equations (2) are satisfied. 

Thus the variational principle (6) leads to the fundamental equa-
tions of a two-dimensional compressible fluId if p is of -the form 
given by equation (12) and the condition (ii) is satisfied. Equa-
tion (12) is a differential equation of the Clairaut type and its solu-
tion, when p = A + Bp7, is 

	

f(p) = A + qç 2 p/2 - Bp7/(7 - 1)	 (13) 

2	 2	 2	 2	 2	 7-1 where 'a	 =	 a + q	 and a =	 = Byp . The condi-tmax	 y-1 0	 0	 '	 dp 
tion (11) is satisfied if the domain is finite because the boundary con-
ditions in fluid dynamics are either that. the boundary is a stream sur-
face, thus q = 0, or that the velocity is prescribed; that is, 60 = 0. 
For the domain which extends to infinity, since a part of the boundary S 
- is iriffnite, the integral may result in a finite value, although the 
integrand may approach zero at infinity. This case has already been dis-
cussed in detail by Wang (reference Ii-) and in such cases this finite 
value of integral (11) should be subtracted from integral (6). 

In applying the Rayleigh-Ritz method to the problem, it is more 
convenient to use only one variable in the variational integral, say the 
velocity potential 0 and to express the other variables u, v, 
and p in terms of 0 by means of equations (8), (9), and (10). In so 
doing, equations ('8), (9), and (10) are automatically satisfied and the 
first variation of equation (6) then leads to the fundamental differential 
equation (5). With equations (8), (9), (10), and (12) satisfied, it can 
be easily verified that the integrand of I is just the pressure p. 

The Rayleigh-Ritz method consists essentially of choosing a series 
of functions which satisfies the boundary conditions but has undetermined 
parameters, such as Au, i,j = 1, 2, . . ., in the functions. If the
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variational integral is denoted by I, then by substituting these 
functions into I and setting the first variation of I equal to zero, 
the following set of simultaneous algebraic equations is obtained: 

=. 0	 i,j	 1, 2,. 

The parameters	 can thus be determined by solving these simultaneous 

equations. The Rayleigh-Ritz procedure, therefore, gives a solution 
which satisfies the boundary áonditions exactly but satisfies the dif-
ferential equations only approximately. 

Consider thecase of a compressible-fluid flow past a circular 
cylinder with unit radius. The velocity potential 0 in this case may 
be assumed to be

0=0l02	 (l1.) 
with	 .

O1=u(r+)cose+je	 .	 (i) 

=	 l	 (m + 2)2)	
cos ne +	 sn ne)	 (16) 

where r is the strength of circulation, A 	 and	 are undetermined 

paranieters, and r and 6 are the polar coordinates. It Is evident 
that for the assumed value of 0 the boundary conditions are satisfied; 
that is, at r =. and q = U, U being the velocity of the undisturbed 
flow at infinity and on the surface of the body, Ø/n = 0 or the 
normal component of the velocity is zero, n being the inward normal 
direction.	 . 

The circular cylinder in the complex z-plane may be mapped into 
cylindrical bodies of arbitrary shape in the complex -plane by the 
mapping function	 = f(z). When the mapping is conformal, it was proved 
in reference 1 that Ø() still satisfies the boundary conditions. 
With 0 as assumed in equations ( 15) and (16), the final variational 
principle (reference !4.) may be written as follows:
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' I '-: 2	 q(z) 2 1	 Idt2 
I-I rdrd+ = J	 max - I d I 2 I 	 IdZi 

L	 ILJ 
Z-plane

l/(y-1) 

	

2y (2 - u2)	 UgA11 -	 (17) 

where the last term is due to the fact that the integral (ii) is not 
zero and

	

q(z)2	
( Ø )2 + ()2	

(18) 

The final velocity in the plane of this arbitrary body is 

2	 2 dz2 q() = q(z)	 (19) 

The integral equation (17) can render itself into analytical inte-
gration only when y/(y - 1) is an integer. For different values of 

- 1), the corresponding values of y are as follows: 

7/(7-l)	 y 

1 
2 

-	 2	 2 

	

3	 1.5 

	

It	 1.333 

The isentropic value of y for air is l.It05, which is between the 
values of 1.5 and 1.333. Among these values of y,. ' = 1.333 gives 
the closest approximation to the isentropic value. However, in this 
case the integrand contains an expression which is raised to the fourth 
power and the labor in carrying out the integration becomes excessive. 
In order to simplify the numerical work, 	 = 2 is used in the subse-
quent calculation. Chaplygin and Von Ka'rman and Tsien used y = -1 in 
their solution by the hodograph method. The justification of taking - 
= -1 has also been disëussed by the latter two-authors. The idea is
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that the velocity in the flow field does not differ too much from the 
undisturbed velocity and therefore only a small portion of the p - p 
curve will be used. If one makes the curve with y = -1 tangent to the 
curve with y = li05 at the point that represents the. conditions at 
infinity (p0 , p0 ) and uses the curve with y = -1, the error will not be 
too large. The use of y = 2 instead of y = -1 gives even better 
approximation as can be readily seen from figure 1. Although the curves 
with y = -1 and y = 1.1 4.05 may be made tangent to each other at 
(p ,p0 ), their second derivatives have opposite signs. When the curves 
wih y = 2 and' y = 1.14-05 are made tangent to each other at (p0,p0), 

however, a small portion of the curves is very close together, and thus 
a much better approximation is provided. 

The isentropic pressure-density relationship is as follows: 

pt _t(t)l.05/(I)1.405	 (20) 

According to the previous discussion, the constants A and B in 
equation (3) can be determined from the conditionthat the curve given 
by equation (20) and that by equation (3) are tangent to each other at 

- (p0 , p0 ). This yields two conditions; namely, 

po=pot
(21) 

po=Pot _j 

and

(a).	 = ( 4) 0,0 = a02 	 (22) 

Thus in the case of 7 = 2, the cnstants A and B are found to be 
A = O.2975p and B = 0. 7025P0/P0 and equation (20) becomes 

0.7025pp2 
p = O.2975p0 +	 2	 (23) 

p0 

For -y = -1, the corresponding pressure-density relationship results in 

- l.405pp0 
= 2.l4-05p	 (214-) 0	 p
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For flow past the circular cylinder, the range of variation of p/ps-
is approximately from 0.2 to 1.2. In this region, it can be easily 
seen from figure 1 that equation (23) does indeed give a very good 
approximation of equation (20). 

FLOW PAST A CIRCULAR CYLINDER 

The problem of determining the flow past a circular cylinder with-
out circulation has been carried out by Wang and reported in reference !.. 
A detailed discussion has been made there for the flow at M0 = O.k. 
Because of the symmetry of the problem, 0 may be assumed as follows: 

= r+–)cos6+A –--cos0+A --U(	
\	 .l\	 1 

	

r,	 r 
3r3J	

13(r	
3r /

30 + 

A31( 	 - 	 )cos 0+ A3 - - —Icos 30 +

	

1	 3(13

	

\3r	 5r /	 3r	 5rJ 

(1	 1 

3r3) 
Al5t_ - - cos 50 + A51(J - .- - cos 0	 (25)

7r1 

In expression (25), six unknown parameters are taken. The variational 
integral is 

	

I = ::f2	 2 - (?2 -
	

2 r dr d6 + (2 - u2)uA11 

(26) 

where y is taken as 2. 

Substituting 0 as given by equation (25) into equation (26) and 
differentiating the resulting integral with respect to the parameters, 
one obtains

= 0
	

I/A13 = 0
	

I/A31 = o 

I/A33 = 0
	

I/A15 =	 = 0
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Integrating these equations, there results 

(2 . 0 07 2 - 7 . 31852u2)A11 .+7 . o666 2A13 + (o . 325926 2 - 

l . O37O1U2)A31 + O.915555U2A33 + (O.l1286 2 - O.31Ol36U2)A1 = K1 

7.06667U2A11 + (l3.3333q2 - 1.266TU2)A13 + 1.20000u 2A31 + 

(l . 6OOOO 2 - 5.9733U2)A33 + 32. t i114U2A15 + oio8l6u2A51 = K 

(O.325926 2 - 1.0370)4.U2)A11 + 1.20000U2A13 + (O.O9OO7l 2 - 

O.2O7 1 O71J2 )A31 + O.19225 1 U2A33 + (o.oll282 - o.o8lo885u2)A51 = K3

(27) 

O.915555U2A11 + (1.6OOOO 2 - 59733J2)A + O.192251 U2A31 + 

(o.277333q x2 - 1.01181U2 )A33 + ! .92414U2A15 + O.0813062U2A51 = K 

32. 1 U2A13 + .92U2A33 + (35.85192 - 120.94802 )A15 = 

(o.li286q 2 - O.3136U2)A11 + o.4o8i6u2 3 + (o.o118q 2 - 

o.o81o885u2)A31 + o.o813o62u 2A33 + (o . o2183o9' 2 - 

O.0360739U2)A51 = K6 

where K1, 2' K3, K, K5, and K6 are sums of nonlinear terms in 
A11 , A13 , A31 , A33 , A15 , and A51 and their complete exressions 
are given in reference Ii., except that.the first terrn'in K1 should 
be 4.222221J 3 and the first term in K3 should be -6.66666iJ3 ; the 
corresponding values given in reference 11- are due to misprints.. These 
equations can be solved as follows: First, assume the values of the A's 
to be zero in the K's. Equation (27) then becomes a system of linear 
simultaneous equations which can be solved by the method of solving
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linear simultaneous equations suggested by Crout (reference 5). The 
values of A11 , A13 , A31 , A33 , A15 , and	 i so computed may be 

taken as the first approximation. Use the values of the A's so deter-
mined to compute the K's and solve for these parameters again. This 
gives the second approximation. Repeat the cycle until the desired 
accuracy is obtained. To make the convergence more rapid, after the 
third approximation, instead of following the above-outlined method 
rigidly, one may extrapolate the results and use the values of the A's 
so determined to repeat the process. This alternative method is found 
to be especially time saving in the computatlon for the cases where the 
Mach number is relatively high. A detailed example of the computation 
may be found in reference 14 

The parameters A jj fao for flows at various undisturbed-stream 

Mach numbers are computed and are tabulated in table I. In order to 
see the convergence of the series, these parameters are computed by 
taking one parameter only, two parameters, three parameters, and so 
forth, up to six parameters. The maximum velocities at various Mach 
numbers are tabulated in table II for all the six cases. The convergence 
of the series is seen to be satisfactory except at M 0 = 0.5 where the 
series is apparently divergent, and with four terms the maximum velocity 
is already greater tha.n the maximum allowable velocity 	 For y = 2, 

() = 2 + MO2 . The velocity distribution over the .cy1ii.der at a

= 0.4 computed by the variational method is plotted in figure 2 as 
are the results by the Rayleigh-Janzen method to the third approximation 
as computed by Imai (see reference 6). At. various Mach numbers of the 
undisturbed flow, the maximum local Mach number is plotted in figure 3 
and the local Mach number over the surface of the cylinder is plotted 
in figure 4. The velocities computed by the Rayleigh-Janzen and the 
present method show excellent agreement. 

In order to study the effect on the velocity of using y = 2, the 
next value closer to the isentropic one, that is, y = 1.5, is now taken 
to compute the velocity. Taking only the first term in the velocity-
potential series, the equation I/A 11 = 0 is obtained as follows: 

(2. ll1llq 2U3 - 3. 28889U5 ) - (o. 5l85l8q	 - 3. 65926q 2U2 + 

5.92804U4)A11_ (3.2loosu2 - 0 . 82222Q. 2)UA112 - (1 .o5766u - 

0.l0l59q2)A113 - 0.l690UA
114 - 0.0l0564A115 = 0	 (28)
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The maximum velocity with y = 1.5 is alsQ included in table II for 
comparison. It is seen that these velocities are smaller than the cor-
responding ones computed by taking y = 2. However, the velocities also 
increase with increased number of terms in the 0 series. Since only a 
finite number of terms can be taken in the numerical calculation, the 
velocities computed will always be smaller than the corresponding exact 
values. In such cases, the effect of taking y = 2 is to increase the 
velocity, which compensates to some extent the effect of taking only a 
finite number of terms. 

The pressure coefficient at a point whose pressure is p may be 
defined as follows:

7 

	

p-p0 2	 ___ 

	

P1 u2
	 YMO2f+2(1	

l}	 (29) 
u2j po 

For y = 2,

2 

cp=E+(i	 -1	 (30) u2)J 

The pressure coefficient is computed from the above formula and is 
plotted in figure 5. Results by the Rayleigh-Janzen method and the 
variational method compare very well; with the former yielding slightly 
lower results at small angles. The pressure coefficient by the Rayleigh-
Janzen method was computed by taking 7 = l.li.05 in equation (29), which 
becomes upon substitution:

	

(	 '3.69 
=	 1	 0.20252(l -	 - l	 (31) 

	

' 0.7025M2 L	 U2 

Both the variational and Rayleigh-Je.nzen prssure-coefficient values are 
lower than those obtained by the Von Krmn-Tsien method and generally 
higher than the Prandtl-Glauert approximation. For further comparison, 
the pressure-coefficient ratio CD /CD i is plotted in figure 6 where 
C . is the pressure coefficient of the corresponding incompressible p,1 
flow.
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FLOW PAST A CURVED SURFACE 

In order to obtain further evidence of the applicability of the 
method, the compressible flow past a thin curved surface will next be 
considered. This example is carried out for two purposes. First, from 
the previous example, the variatiqnal method is seen to give very good 
results for flow past a thick body where the Mach number is relatively 
low; it is to be ascertained now whether the method will also give good 
results for flow past a thin body at high Mach numbers. Second, there 
may be some difficulty in carrying out the method when an arbitrary 
mapping function is used. If this Is so, a study should be made to 
remove such difficulty. 

The compressible flow past a thin bump has been carried out by 
Kaplan (reference 1) by the perturbation method in terms of a thickness 
parameter. Results are given for flow past a series of bumps of various 
thicknesses. Kaplan's bump may be obtained by mapping conformally a 
circle of unit radius in the complex z-plane into the complex c-plane by 
the mapping function

= + 1 - d2 + 
z	 3	 (32)

3z 

Again take six parameters in 0 as in the pevious example, noting 
that z = reie. The equations I/ Aij = 0 may now be written in the 
following form: 

- i 2t 
q 2J (J	 2/ 

maxj1 max 1\O 

I

2ic	 3	 ooI	 2t

1 L°	 I	 LO 
if	 )	 dO r dr	

()2	
di 

2ic 

c:[i	

\()2•()id 

?Aij r ] r	 ()3 A j () d	 - 

- u2)u = 0	 (33)
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where

1 

d 2 
dz 

= 16d2[s2e	 (i+ )ros2e ±A(l 
obtained from the mapping function (32). The quantity 6ij = 1 when 

I = j = 1 and	 0 for other values of i and j. 

Substituting into the integrals (33) the expressions (25) and 
carrying out the integration first with respect to the angle e, the 
resulting integrals are of the type 

p2it 

	

I 
=J	

Xf(sin e cos e)de 
-	 0 

This integration can be somewhat simplified by the use of the theory 0±' 

residue. Let Z = ele and express the integrand of I as a function 
of Z. Each I then consists of a sum of integrals of the two 
following types:

ZdZ 

(z2	 (z2 +	 (z2 - r2)(z2+ ) 
rJ\	 r21	 a2 

- 
d24Ll)2 d	 -r - Ll ) 2 d 

-	 (1 + d2)(r + d2)(r - d)(r - i) 

and'

=	 (z2 - r_2 ) (z2 + d2r 2 ) (z2 - r2 ) (z2 + r2d_2) 

	

Ir n+1	 T	 I-- n+1 

d2rl_ntk_l ) 2 d' 5 _ jr - (j_i) 2 d 5 - dj 

-	 (1 + d2 )(r + d2)(r - d)(r h1 -
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There are altogether 66 In integrals encountered in the calcula-
tion, and they are, given in appendix A. With these expressions of I 
substituted into the integrals, the resulting integrands are rational 
functions of r with coefficients in d. It is observed that the final 
coefficients of the unknown parameters Ajj are sums of the following 
functions:

n 

(r + d2)(	 d)(r - 

where n may be eit1er positive or negative. There are altogether 20 
such Y expressions encountered in the calculation, and they are 

given in appendix B. It may be noted that terms like	 oge (i - r2r 

and (loge r)roo appear after the integration. These terms however 

will be canceled by each other in the final summation. This fact may 
conveniently be regarded as a check to the correctness of the computati 

The numerical values of d2 may be substituted at this stage befo: 
the final integration with respect to r is carried out; otherwise the 
computation will be extremely laborious. The integrands now may be tak 
as the products of r expressions and I and then the final answers 
can be immediately written down from the known Y values. There are 
eight r expressions involved, and they are 

1	 1	 1 
P=r+—

r	 r	 3 3r 

1'	 1.	 .1 

R - 3r3 - 5r5	 - 5r5 7r7 

L=_-+4 

M=--+ 

As a numerica1exaniple, d2 = 0.075 is taken, which corresponds to 
a bump with a maximum thickness of 7.13 percent of the chord. The shape 
of the bump is shown in figure 7. For d 2 = 0.075, the values of Y 
are calculated and included in appendix B. After dropping a common 
factor of , integrals (33), which are equivalent to 

= 0	 I/A3 = 0	 /3l = 0 

I/A33 = 0	 I/A1, = 0	 /5l 
= 0
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become 

(o .518519 2 - 1.193255U2)A11.+ o.554586u23 + (o . o8115 2 - 

o.169149u2)A31 + O.0285596U2A33 + O.216663U2A15 + (o . O285711k 2 - 

O.0546889U2)A51 = K1 

O.554586U2A1, + (33333332 - 8.188o314u2)A3 + O.112085U 2A31 + 

(o.400000q2 - 1.012468U2)A33 + 2.347577U2A15 + O.O47158U2A51 = K. 

(o . o81 815 2 - o.169149u2)All + o.112085u2A13 + (o . o225185 2 - 

O.0420399U2)A31 + O.00795193U2A33 + o.o7o6980u2A15 + 

(o.o1o28582 - o.o178331u2) 1 = K3	 34) 

O.0285596U2A11 + (o.400000q2 - 1.012468U2)A13 + O.00795193U2A31 + 

(oo693333 2 - O.167616U2)A33 + O .319818U2A15 + O . 003973 I 6U2A51 = K4 

O.216663U2A11 + 2.347577U2A13 + O.0706980U2A31 + O.319818U2A33 + 

(8 . 962963 2 - 22.05199U2)A15 + O.0356363U2A51 = 1(5 

(o.O285712 - o . o546889u2 ) 1 + o.o45T18u2 3 + 

(o . o1o2857 2 - O.O178331U2)A31 + O.00397346U2A33 + 

O.0356363U2A17 + (O.0054777q 2 - O.00887571U2)A,1 = K6 

The K expressions are found . in appendix C. 

1!
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These equations (314.) are solved again by the method of successive 
approximation as outlined in the previous section. At relatively high 
Mach numbers, however, the method as outlined before becomes oscilla-
tively divergent. In such cases the average values of A1 between two 
consecutive cycles of computations may be used for the next approxima-
tion. The process is then again convergent. Such a method was also 
found necessary by Wang in a different problem where another set of 
cubic simultaneous equations was involved (reference 7). 

At M0 = 0 .9, the method described above again failed when six 
parameters were used. Many schemes of computation were tried and it 
was not possible to calculate the values of the parameters by methods 
of successive approximation. It was possible, however, to calculate 
these values when up to four parameters were taken. This indicates that 
at this Mach number irrotational solution may not exist (reference 8) 
and shock waves have possibly occurred. It can also be seen that the 
velocity computed by Kaplan begins to diverge at about N0 = 0 .9. The 
velocity series computed by Kaplan becomes in this case 

=1+a1t+a2t2+a3t3+ 

= 1 + 0.17614.72 + 0.050675 + 0.059108 + . -. 

where t is the maximum thickness ratio aM is equal to 0.051282 in 
this case. 

The values of Ajj/ao are given in table III at M0 = 0.5, 0.75, 

0 .83, and. 0.90. The velocity distribution over the surface of the 
bump is given in table IV and plotted in figure 7 to compare that found 
by the variational method with the results by Kaplan. The agreement is 
very good. At M0 = 0 .9, the maximum velocities q/U with one, two, 
three, aM four parameters are 1.1179, 1.2628, 1.2716, and 1.2630, 
respectively. The successive values of the velocity do not show a sign 
of divergence in this, case. The velocities at various points on the 
surface of the bump are obtained as follows. For the mapping func-
tion (32), the shape of ihe bump in the c-plane is given by the following 
parametric equations.

= 2 cos e - -(3 cos'9 - cos 3e)

()
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The length of chord is given by (2 )eo or (2 -
	 and the inaxi-

mum thickness is given by (2)e/2 or 	 2/3• The thickness ratio t 
is then equal to 2d 2/(3 - .d2 ). If the unit length is taken as the 
semichord of the shape, equation (35) becomes 

t 
X = cos 0 - (cos 0 - cos 3e)

(36) 
Y = ( 3 sin 9 - sin 38) 

For different values of X, 0 may be found from equations (36). On 
the surface of the bump, 

=	
- (i - d2 )cos 20 - d2 cos 12 Ei - d2 )sin 20 + 

d2 sin e1j2	 () 
The velocity is then given by the following expression: 

- \r )r-1 
U-

dz 

1 o.66667A11 0.133333A31 O.O571l2.A5f = +	 + 

aM a0M0 e + 
a0M,	 J dz

l3 O.A33\ 3.33333A15 1 + \ a0M0 )sin 30 + a0M0 ,' sin 501 a0M0 (38) 

For different values of 	 X,	 the corresponding values of	 sin 0,	 sin 30, 

sin 58,	 and d
- are given in table V.

The pressure coefficients at various Mach numbers are given in 
table VI and are plotted in figure 8. The pressure coefficients com-
puted by the variational, the perturbation; the Von Karmn-Tsien, and 
the Prandtl-Glauert methods are given in table VII and are plotted in 
figure 9 for comparison. 
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RESULTS AND DISCUSSION 

Compressible flows past a circular cylinder and a thin ôurved sur-
face have been computed by the variational method. In the case of flow 
past a circular cylinder, the velocities and pressure coefficients com-
puted are compared with the results obtained by Imai who used the 
Rayleigh-Janzen method up to the third approximation. In the case of 
flow.past.a thin curved surface, the velocities and pressure coeffi-
cients are compared with the results obtained by Kaplan who used the 
perturbation methodin terms of a thickness parameter up to •the third 
approximation. The agreement of the results between the present method 
and the existing methods is very good. It thus shows that the varia-
tional method will give good approximate solution both for thick and 
thin bodies and both at low and high Mach numbers. 

In carrying out the variational method, y is taken to be 2 instead 
of the isentropic value which for air is l. 1.O5. A study is made by 
taking 7 = 1.5 in the case of flow past a circular cylinder. The 
results show that the effect of using alarger value of y is to 
increase the maximum velocity slightly. The same conclusion may be 
obtained by a study of the results of the Rayleigh-Janzen method. 
Theoretically, if one can take a complete set of functions in the 
velocity-potential series, exact solution . may be obtained. In actually 
carrying out the method, however, only a finite number of terms can be 
taken. Although the introduction of more terms into the solution does - 
not involve any additional mathematical difficulties, each new term 
appreciably increases the computational labor. With six terms, it is 
observed that the maximum velocities increase with an increased number 
of terms. Thus the slightly higher values for maximum velocities are 
increments in the right direction. By using a modified pressure-density 
relationship instead of the isentropic one, the pressure coefficients 
are hardly affected by an increase in . 

When the undisturbed velocity increases to a value at which shock 
waves will probably occur, the nonlinear terms of the undetermined 
parameters are no longer small compared with the linear terms. The 
method of successi've approximation in solving these simultaneous equa-
tions suddenly fails.' None of the many schemes tried worked when more 
than four parameters were taken. An investigation has been carried' 
out to study the reason why it is so. It was found (reference 8) that 
the irrotational flow solution fails to exist when the Mach number is 
increased beyond a certain limiting value. For the cases computed, 
it appears that this limiting value decreases as the number of terms 
increases. This explains why the method of successive approximation
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fails to work with more parameters while it was still possible to 
obtain a solution with fewer parameters. 

New York University 
New York, N. Y., June 17, 19I.9
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APPENDIX A 

-	 T	 EXPRESSIONS 

The I expressions encountered in the calculation of flow past a 
curved surface by the variational method are as follows: 

Ii	 cose de

+ d2 )r8 +	 - d).r6 + 

(1 + d2 )(1 - £ d2 + d4 )r - d(l + d2j 

p2it 

12 =J
X cos3e cos3e dO 

0

2 nr

	

	
[(IL + 2)r10 + 3(1 - d)r 8 +
L 

(1 + d2X3 -	 2 + 3d)r6 + .( l - d8)r,- 3d(l + d2)r2 - d(l - 

13 =f	 cos3O cos9 dO 

= (l + d2)(r + d2)(r4 - d)(r - i)	
d)r10 + 3(1 + d6) r8 + 

3(1 - d8 )r6 + ( i	 3d - 3d6 + d10 )r - 3d(l - d)r2	 d(l + d6
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=10	
cos2e cos23O de	 .	 - 

c(1 + d2 )r12 + 2(1 - d4 )r10 + 
= 1 + d)(r + d2)(r - d)(r - i) L 

(1+ d2 )(1 - 3d2 + d)r8 + 2(1 - d8 )r6 + (i -	 - d6 )r4 - 

2d(1 - d)r2 - d(1 + d6 

15 f2 X cos2O co 3e cos 

= (1 +
	 + d2)(r -	 - 1)r	

+ d2)r1 + 2(1 - d)r12 + 

(1 + d2) (
	

2 2 10	 (	 8" 8. 1 - d ) r + 1 - d )r + (2 - d - d + 2d 10)r6 + 

(1 - d)(1 + d8)r - 2d(1 + d6)r2 - d(1 - d8 

16	 cos29 cos25O dG 

-	 = (1 + d
2 )(r + d2)(r -	 - 1)r	

+ d2)r16 +2(1 - d4)r1 - 

2d2(1

	

	 2'12	 (i + d10)r8 + 2(1 - d12)r6 ++djr + 

(1 - d)(1 - d10)r - 2d(1

	

	 8 2	 + d10 -d)r -d
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i7 
=f2 

X cos e cos336 d6	 - 

= (i + d2 )(r + d2)(r4 -	 - i)r2	
-	 + 3(1 + d6)r10 + 

6	 io6 (1 - 3d - 3d + d	 + (i -. d12)r -	 + d6)r2 d 1 d 

p2t 

18 =J
X cos U cos23U cos 56 dO 

0 

= (i + d2)(r + d2)(r - d(r - i)r4	
+ ã2)r16+ (1 - d4)r1 + 

(2 - d2 -	 ± 2d6)r12 + 2(1 - d8)r10 - 2d1 + ã2)r8+ 

(i - 2d + 2d8 - d12)r6 + (1 + d1)r - d(1 - d8)r2 - d(1 + d1 

19 = f2	
U	 36 cos25O dU 

=	 -	 - d)r16 + 2(1 + d6 )r14 + 

(i - d8 )r12 + ( - 2d - 2d6 + d10)r10 - d(1 - d)r8 + 

( - d4 )(1 - d10 )r6 ;(1 - d16)r -	 + d10)r2 - d(1 - d12

25 



26	 NACA TN 2326 

110 = f2 X cos e cos35e d9

dr - 
= 4(1 + d2 )r4 + d2 )(r4 - d4 )r4 - i)r8	

+ d6)r16 + 3(1 - 8) 

3d4(1 + 2)r12 - 3d4(1 - ã4)r10 + ( - d16)r6 + ( + d18)r4 - 

d4 (1 - d12)r2 - d4 (1 + d14 

=	 x siñ2e cos2 & d9 

= 4(1 + d2 )(r4 + d2)(r4 - d4)(r4 - )	

+ d2)r8 - 

(1 + d2)(1 +	 + d4 (1 + 

112 
= f2	

s1nO cos23e de 

= (i + ã2 )(r4 + d2 )(r4 -	
-. i) [2(1 + d2)r2 - 2(1 - ã4)r10 - 

(1 + d2)(1 + d2 + d4)r8 + 2(1 - d8)r6. - (1 - d)(1 - d6)r4 - 

2d4(1 - 4)r2 + ã4(i + d6
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113	 singe cos25e dO

+ d2 )r16 . - 2(1 - d)r1 - 
=	 + d2 )(r + d2)(r - d)(r - 1)r L 

2d2 (1 + d2)r12 - ( ^d10)r8 + 2(1 - d12)r6 - ( - d)(1 - d 10)r - 

Ii.!	 82	 1. 2d 1 - d )r + d (1 + d10 

I1 
=	

sin2e cos e cos 30 dO 

nr2	
1 + d)r 0 - ( - d)r8 -

= - (i + d2 )(r4 + d2)(r - d)(r - 1) 

(1 d2)(	 6	 8)	
(1 

+ d2)r2 - d1 - d 1 + d Jr + 1 - d r + d 

115	 x sin2O	 e	 e dO

- d)r10 - ( + d6)r8 
- (i + )(	 + d2)(r - d)(r - 1) L 

- d8)r6 + (1 + d)(1 + d6)r + d1 - ã)r2 - d(1 + d6
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116	 X sin20 cos 3 cos 50 dO

1+d2)r14_ 

4(1 d2 )(r4 + d2)(r4 - d4 )(r4 - i)r2 L 

2(1 - d4)r12 + ( + d2)(1_ d2) r'0 + ( - d8)r8 - (2 + 	 + d6 + 

2d10)r6 + ( - d4)(1 + d8)r4 + 2d4 (1 + d6)r2 - d 4 (1 - d8 

117	 x sin 0 sin 30 cos20 dO 

2
[+d2)10	 /	 48 

4(1+d2)(r4+d2)(r4d4)(r41)	
r +1-d ) r - 

(1 + d2 )(1 + d)r6 - ( - d8)r4 + d(1 + d2)r2 + d4 (1 - 

2ir 
118 =J	 A. 'sin 0 sin 30 cos 23e dO 0

- d4)r12 - (i + d6)r10 + 
= 4(1 + d2 )(r4 + d2)(r4 - d4 )(r4 - i)r2 L 

(i + d4) (1 + d6)r6 - (
	

12 4	 4 -d )r -d (1+d6)r2d4(1d8

28
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119 =1 Xsin e sin 3 cos25e de 

= (1 + d)(r + d2)(r - d) (r - i)r6	
- d)r16 

2(1 + d6)r1 - ( - d8 r12 + ( + 2d + 2d6 + d10)r10 + 

d(1 - d)r8 + (i -	 ) ( - ã10)r6 -. ( - d16)r - d(1 + d10)r2 + 

- d12 

120	 X sin 0 sin 3 cos 0 cos 30 dO

r(1+d6)r8 

(1 + d)(	 6	
(1 + d6)1 1+d)r +d 

121	 X sin 0 sin 30 cosO cos 50 dO 

= - (1 + d2) (r + d2) ( - d).(r - 4r2 L(i + d2)r	 - 

( + d2)(1 + dr0 - (1 - d8)r8 +	 ± d2)r + 

( - d)(1 + d)2r - d(1 - d8
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122	 x sin 636 cos 36 cos 56 d6 
0 

= (i + d2) (r + d2)(r -	
- i)r [(i + d2)r16 -	 - d)r14 

d2 (1 + d2)r12 + (i - d12)r6 - (i + d1)r - d(1 - d 8)r2 + 

d(1 +. d10 

123	 sin ü sn 56 cos 2O dO

- d)r10 + (i + d6)r8 

(1 - d8) r6 - (1 + d) (1 + d6) r + d(1 - d)r2 ± d (1 + d6 

I2	 sin 6 sin 59 cos23 6 

=	
+ d2)(r cd2)(r - d)(r	 [('	 2)n16 - (1 - d)r' - 

(1 ± d2)(2 - d2 + 2d)r12 + 2(1 - d8)r10 ± 2d(1 ± d2)r8 - 

(1 - d)(1 + 3d + d8)r6 + ( + d)r + d(1 - d8)r2 - d(1 +
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r21t 
125 = /	 X sin 6 sin e cos259 d6 

tJO

[(1 + d6)r16 - (1 - d8)r14 - 
+ d2 )(r +	 -	 - i)r8 

I 

d(1 + d2)r12 + d(1 - d4)r10 +	 - d16) r6 -	 + d18)r - 

d(1 - d12) r2 + d(1 + d1 

126 - =f	 sin 6 sin 56 cos 6 cos 36 d6 

____________________	 21!i-

	

= (i + d2 )(r + d2 )(r -	 - i)r2 L + d)r 

(1 d2) (i + d)r10 + (i - d8)r8 + d(1 + d2)r6 - 

(1 - d)(1 + d)2r + d(1 - d8 

127 
= J	 X sin 6 sin 56 cos 0 cos 59 dO 

0

It	 108 1^d r-

(1 + d)(1 + d10)r + d(1 + d10)f
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128 =
	

X sin 0 sin 50 cos 30 cos 50 dO

- (i + d)r10 - 
= (i + d2 )(r + d2)(r4 - d)(r - i)r6 L 

d(1 d)r8 + (i + d)(1 + d10)r6 - ( - 16 d )r - 

a4 (i + d1 r2 + d(1 - d12 

129 = f2
	

sin23O cos20 dO

+ d)r + 2(1 - ã)r10 - 
= (i + d2 )(r + d2 )(r - d)(r - 1) L 

(1 + d2)(1 + d2 + d)r8 - 2(1 d8)r6 - (1 - d)(1 - d6)r + 

2d'(1 - d1 )r2	 d'(1 + d6 

13Q =f	 sin25e cos2 0 dO 

=

	

	 + d2)r16 + 2(1 - d)r1 - 
+ d2 )(r + d2 )(r - d)(r - 1)r L 

2d2 (i + d2) r12 - (i + d10)r8 - 2 (i - d12)r6 - (i -	 )
- d10)r	 + 

2d(1_ d8)r2 + d(1 + d1
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131 =1	 sin 30 sin 50 cos20 dO 

+ d2 )(r + d2 )r - d)(r - i)r2' +d
2)r1 +2(1 - d)r12+ 

(i + d2 )(	 d2) r1° - ( - d8)r8 - (2 + d + d6 + 2d 10)r6 - 

(i - d)(1 +	 + 2d(1 + d6)2 +	 - d8 

132 = f X sin23e cos 0 cos 30 dO 

=	 + ã2 )(r + d2 )(r -	
- i)r2 [(i - d)r12 + (i + d6 )r10 - 

(1 + d)(1 + d)r6 - (i - d12)r + d(1 + d6)r2 + d(1 d8 

133 
12n 

sin25O cos 0 cos 30 dO 

= (i + d2)(r + d2)(r -	 -	 L 
- d)r16 + 

2(1 + d6)r1 - ( - d8)r12 - (+ 2d + 2d6 + d10)r10 + 

d(1 d)r8 - ( -	 - d10)r6	
(1 dl6)r + 

d(1 ± d10)r2 + d(1 _d12
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p2t 

I3 =J
X sin 30 sin.59 cos0 cos 30 dO 

0 

=	
+ d)(r + d2)(r	 d)(r	 1)r	

+ d2)r16 + (i -	 - 

d2 (1 ã2)r12	 (i _ ft12)r6 - (i + d1 )r + d(1 - d8)r2 + 

d(1 + d1 

137	 x sin23O cos 0 cos 50 dO - 

+ d2 )(r + d2 )(r	 d)(r - i)r4	
+ d2)r16 ± (1 - d)r1 - 

+ d2 )(2 - d2 + 2d)r12 - 2(1 - d8)r10 + 2d(1+ d2)r8 + 

d)(1 + 3d + d8)r6 + (1 + d 1 )r - d(1 ã8)r2	 d 

136	 sin25e cos 0 cos58 dO 

= (1 + d2 )(r4 + d2)(r -	 -. i)r8	
+ d6)r16 + (1 - d8)r1 - 

	

d(1 + 2)r12 - d(1 - d)r10	 (i. d16)r6, - (i +d18)r4 + 

d(1 d12)r2 + d(1 + d1
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137	 sin 36 sin 56	 dO 

	

+ d2 )(r+ d2 )(r	 d)(r - i)r6	
- d8)r12 +	 + d10)r10 -. 

d'(1 - d)r8 - (1 +	 + d10)r6 - ( - d16)	 + 

+ d10)r2 + d(1 - d12 

138 = J - X sin6 dO 

= (i + d2 )(r + d2)(r - d)(r - 1)	
+ d2)r8 - 4(1 - 	 + 

139 = f2 X sin36 sin 30 dO 

___________________ P 2\1O / 
-	 + d2)(r1 + d2)(r1 - d)(r4 - ) L + 

d	 - 3 1 - d )r + 

(1 + d) (3 - 4d2 + 3d) r6 - ( - d8) r - 3d4 (1 + d2) r2 + d4 ( -
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sin3e sin 50 dO

1	 - 3(1 + d6)r8 + 
= - 4(1 + d2 )(r4 + d2 )(r4 - d4)(r4 - 1) L 

3(1 - d86 - (i - 3d4 - 3d6 + d10)r4 - 3d4 (i - d4)r2 + d4(1 + 

2it 

Ij =J
singe s1n230 dO 

0

+ d2)r12 - 2(1 - d4)r10 + 
4(1 + d2 )(r4 + d2)(r4 - d4)(r4 - i) L 

(1 + d)(1 - 3d2 .+ d4)r8 - 21 - d8 )r6 + (1 - d4 )(1 - d6)r4 + 

2d4(1 - d4)r2 - d(1 + d6 

142 = ]
	

sin26 sin 30 sin 50 dO 

= - 41+ d2 )r4 + d2)(r4 ã4 )(r4 - i)r2	
+ d2)r14 - 

2(1 - d4)r12 + (i + d2)(1_ d2) r1° -
	

- d8)r8+ 

(2 - d4 - d6 + 2d10)r6 - (1 - d 4 )(1 + d8)r4 - 2d4(1 + d6)r2 + 

d4(1 -, d8)
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I 3	 sin2e s1n250 dO 

+ d2)(r + d2)(r - d)(r - 1)r	
d)r	 - 

2(1 - d)r1 - 2d2 (1 + d2)r12 + ( + 1O)r8 - 2(1 - d12)r6 + 

(i - d) (i - d10)r + 2d(1 - d8) r2 - d4 ( + d1 

I = J	 X sin 0 sin3 3O dO

4\12

	

-	 - 

3(1 + d6)r10 - (i - 3d - 3d6 + d10)r6	 - d12)r4 + 

d(1 + d6)r2 - d(1 - 

I =	 X sin 0 sin23O sin 50 dO 

-=

	

	 r(1 + d2)r16	 (i - d)r14 +
+ d2 )(r + d2)(r - d)(r - i)r L 

(1 + d2 )(2 - 3d2 + 2d)r12 2(1 - d)r10 - 2d4 (1 + d2)r8 

- d)(1	 d	 + d8)r6 + (1 + d1 )r	 + d(1 - d8)r2 - d4 (1 + d'
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I).6 =	 X sin 0 sin 3 s1n250 dO 
LJQ

+ ã2 )(r + ã2 )(r - d)(r - i)r6 [?(1 - d)r
16 - 

2 (i + d6)r1 + (i - d8)r12 - (1 - 2d - 2d6 + d1 )r1 - 

- d)r8 -	 - d)(1 - d10)r6 + ( - d16)r4 + d(1 + d10)r2 - 

d(i - d1 

I7 =
	

sin e s1n350 de 

=	 + d2 )(r4 + d2 )(r4 - d)(r - i)r8	
+ d6)r16 - 3(1 - d8 )r1 - 

3d(1 + d2)r12 + 3d(1 - d)r10 - (± - d16)r6 + .(1 + d 8)rk + 

d(1 - d12)r2 - d(1 + 

I 8	 X sin23O cos23O dO 

= 4(1 + d2)(r4 +d2)(r4 d4)(r4 - 1)r	
+ d2)16 

	

- 1 + d	 + d ( + d1 d2(1 + d2 12	 /	 i4 I.	 14.
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sn2 e cos 30 cos 50 dO 

+ d2)(r+.d2)(r	 d)(r - 1)r6	
- d)r16 - (1+ ã6)r1+ 

(1 + d)(1 + ã6)r10 - d(1 + d6)r6 - (i - d16)r + d(1 - d12 

sin39 cos2SO dO 

= (i + d2)(r + d2)(r - d)(r	 i)r8	
+ d2)r20 - 

(i + d2 )(1 + d + d)r1 - 2(1 - d8)r14 + d(1 .+ d2 )r12 + 

2(1 - d) (i + d4) r1° - 2d4 (1 - d8)r6 - (i + d18)r + d(1 + d1 

151 = J.	 X sin 30 sin 50 cos 30 cos 59 dO

6)16

	

+ d2 )r + d?)(r - dr - i)r8 	
dr 

d(1 + d2)r12 - (.i + d18)r + d(1 + d1 

152 f2 x sin 30 sin 50 cos 23O dO 

= (i + d2 )(r + d2 Xr - d)(r - i)r6	
d)r16.+ ( + d6 )r1 - 

(i + d)(1 ± d6)r10 + d(1 + d)r6 - (i - d16)r + d(1 - d1
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153	 X sin 30 sin 50 cos25e d0 

= (1 +
	 + d2)(r -	 - 1)r1O	

- d)r20 - 

(1 + d10)r1 + (i +	 + •dlO)rlO - d(I + d10)r6 - 

(1 - d20)r + d(1 - d16 

x sin2SOcos2 3O dO

+ d2)r20 -. 
= (i + d2 )(r + d2 )(r - d)(r - i)r8 

(i + d2)(1 + d2 +d)r16 + 2(1 - d8r1 + d(1 + ã2 )r12 - 

i8')	 ii 2(1 d(	 2 10	 - d8)r6 - (1 + d )r + d 1 + d -	 1+d)r +2d 

155 
=f2 

x s1n250 cos 39 cos 50 dO 

= (i + d2 )(r + d2)(r - d)(r - 11O	
- d)r20 + ( +d1°r1 - 

(i + d4) (i + d10)r10 + d (i + dbo) r6 - (i - d20) r + d 4 ( - d16



NACA TN 2326 

156 =J	 sin56 cos259 d9 

	

= 4(1 + d2 )(r4 + d2)(4 -	 - i)r12	
+ d)r24 - 

+ d2)r20 - (i ± d22)r4 + d4 (1 d18 

- 2i 

'57 =J	 X cos43& dO 

= 4(1 + d2 )(r4 + d2)r4 - d4)(r4 T i)r 
Ei ±.d2)r16 

3d2(1 + d2)r12 + 4(1 - d8)r10 - 4d4(1 - d4)r6 + 	 + d14)r4 - 

d'(1 + d1J 

r2 
158 = J	 cos 30 cos 50 de

LO 

= 4(1 + d2)(r4 + d2)(r4 - d4)(r4 - i)r6	
- d4)r16 + 

(i d6)r14 + (3 - d4 - d6 + 3d10)r10 3d(1 + d6)r6 + 

(i - d16)r4 - d(1 - d12

41
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159	 x cos236 cos256 dO 

= °(1 + d-)(r + d2.)(r - d)(r - i)r8	
+ d2) r20 + 

(1 + d2 )(1 - 3d2	 d)r1 + 2 (i - d8)r - d(1 + d2)r12 + 

2(1 - d)(1^ d8)r10 - 2d.(1 - d8)r6' + (	 + d18)r - d1 + d1

160 
=	

cos' 30 cos 35O dO 

	

= 
(1 

+ d2)(r + d2)(r - d)(r - i)r10	
- d)r20 + 

io\i	 /	 3d -3d +d )r	 -d 1+d )r + 10	 10	 io 6 3(1+d )r +1-

(1 - d20)r -
	

- d1	 S	 - 

I1 =[02 x cos59 dO 

	

= (1 + d2 )(r + d2)(r - d)(r - i)r12	
+d2)r2 - 

12 \ il-i-	 4d(1	 8' 10 3d2(1+d2)r20+(1_d )r	 -	 -dr + 

22\ 14	 ). 1+d 1r _d(1+d18 
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162	 X sin43O dO 

= 4(1 + d2 )(r4 +d2)(r4 - d4)(r4 i)r4	 (' +d
2)r16 - 

3d2 (1 + d2)r12 - 4(1 - d810 +(	 - d4)r6 +(	
+ d14)r4 - 

d4(1+d10J

163 =
	

X sin33O sin 50 de

- d)r' - (i + 6)r14 - 
= 4(1 + d2)(r4 + d2 )(r4 - d4)(r4 - i)r6 

(3 - d4	 6 + d10)r10	 + 3d4 (1 + d6)r + 1 - ã16)r4 - d4 (1 - d1 

164	 sin23O s1n256 dO 

4(1 + 2 )(r4 + d2 )(r4 - d4 ) ( 4 - i)r8	
+ d2)20 t 

('+ d2)(1 - 3d2 + d4)r16 - 2(1 - d8)r14 - d4 (1 + d2 )r12 - 

2(1 d)(	
8\io	 4(1d8)r6+(1+d )r -d 1+d i8\ 4 1+d)r +2d 
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165 f2
	

sin 3 sin35ede 

	

__________________________________ 	 20 

= (i + d2 )(r + d2) (r - d) (r	 )io	 - d Jr 
3(1 + d10 )r14 - (i - 3d - 3d1° + 1 )r10 + d(1 + d10)r6 + 

(1 - d20)r - d(1 d16 

27t 166 J	 X in 5e ae 
0 

=	
+ d2 )(r + d2)(r - d)(r - i)r12	

+ d2)r2 - 

3d2(1	
2\ 20	 12\ 1	 8 10 

	

-	 -d ,r	 +	 -d1r	 + 

(1 + d22)r - d(1 + d1
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APPENDIX B 

TEE Y EXPRESSIONS 

After integration the functions Y can be put into closed forms 

1 1	 1 d2 in terms of tan d	 and loge - , where loge indicates natural 
l+d2 

logarithms. However, for small values of d, the computation 
eventually involves the differences of values of the same order of mag-
nitude. It is therefore necessary to expand these functions into iafi-
nite series in terms of d. In such forms, the functions Y are as 
follows: 

	

1 = - 2(1 + d2) 2 (l - d2 )	 -	
1og 2 + 1.333333333 - O.200000000d 2 + 

O.32857l 1 2d - O.053968273d6 + O.2O2O2O2O2d8 - O.O2977O25& 0 + 

O.l4.35897I 3d12 - O.Oi4379O87&- + O.11l 14.55lO7d-6 + 

= -	 1	
(D + loge 2 + 1.000000000 - O. 500000000d2 + 

+ d2)2(l - d2) 

o.833333333d - O.08333.3333d 6 + O. 7OOOOOOOd8 - O.O33333333d1° + 

O. 309723809d12 - O.Ol78571!2d + O . 236111l11d16 + . . 

= -

	

	
2 2	 2	 - loge 2 + 1.000000000 - O. 333333333d2 + 

2(l+d) (l-d)\ 

	

O. 533333333 d	 O.009523809d6 + O.273968253d 8 - O.002020202d1° + 

o.167832l67d12 - O.00O7326Old + O . l279Ol96d16 + . . 

/
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=

	

	 2	 2 (	 1°e + d
2 - 1. 5O0000000d - o.166666661d 6 - 

(i+ d2) (i - 

O. 583333333d8 - O.050000000d1° - o.66666667d12 - ,O.O238O9525d 	 - 

O. 267857l2d6 + . . .). 

=	 + 1°e 2 + d2 - 1. 333333333d - 
2(1 + d2 ) (i - d2 )	 - 

o.166666667d6 o. 31285TlI2d8 - O.079365o80d10 - O.202o2o202d12 - 

O.O32167833d1 - O.1358973d 6 + . . 

=E -

	

	 (D + loge 2 +	 - 1.500000000d6 + 
(1+d2) (1_d2) 

o.833333333d8 + o.16666667d10 + O .5OOOOOOOd12 .+ 

O.133333333d ± O.309523809d16 + 	
. ) 

y l = -.	 (D + log 2 + 1.700000000 - 0. 333333333d2 + -	
(1+d2(1_d2)	 e 

0. 783333333d - O.116666667d6 + 0.366666667d8 - Q.059523809d10 + 

O.267857l 1 2d12 - 0.O3611l111d1 + 0.211111111d16 + . . 

= -	
( - log

e 2 + 1 .533333333 - O.l285712d2 + 

	

2(1 + d2) (i - d2 )	 -. - 

O.253968253d - o .o59163o6od6 + o.16783216Td 8 - O.O321 78632d -0 + 

O.125 1 9O196d12 - O . O20516O16d1 + 0 100250627d16 
+ . . .)
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Y =

	

	 (D + loge 2 + 1.833333333- O.250000000d 2 + 
(1+d2) (1_d2) 

0 i50O0O000d - o.116666667d6 + 0 .309523809d8 - o.o678571 1 2d10 + 

-	 O.236111111d12 -. O.0	 11J4J4.14.d1J4 + 0.190909091d16 + 	
) 

- 2(1 + d2) 2 (1 - d2)(2 -	
2 + 1.67619O75.- O.illllllfld 2 + 

O.202O2O202d - O.056721056d 6 + O.11 358971 3d8 - 003581105d10 

O.1111551O7d12 - 0 . O2332159dhJ + O . 091097307d16 + . . 

9 = -

	

	 2	 (D +	 2 + 2.083333333 - 0.200000000d2 + 
+ d2) (i - d2) 

0.366666667d - 0 . i095238o9d + O.2678571I2d8 - O.O69'a44a'° + 

0.2111flfl1d12 - 0.o48o51919d1 + 0.172212d16 
+ . . ) 

1	 /D 1 

2(1 + d2 ) 2 (1 - d2) 2 - .
	 2 + 1.781301787 - O.090909091d2 + 

o.167832167d - O.052680652d6 + 0.1251 9O196d8 - O . O31 532031d1° + 

O.100250625d12 - O . 0243O640d14 + O.O8311826Od16 + . . 

1	
(D + log 2 + 2.283333333 - 0.166666667d2 + 

- (i + d2) 2 (1 - d2)	 e 

0. 309523809d - 0.f0119075d6 + 0.2361l1111d8 - o.o68253969d10 + 

0.190909091d12 - 0 . 092242 d1 .^ o . l6o256o9d16 + . .
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1	 /D - log 2 + 1.878210678 - O.076923o76d2 + .2	 e 

0 . 143589743d4 - 0.048567120d6 + O.111455l07d8 - 0 .033583958d10 + 

O.091097307d12 - O . 024654731d14 + 0 . 077037037d16
 + . . .) 

1	
(D +log 2 + 2.450000000 - o.142857142d2 + = - __________________ 

4(1 + d2 )(1 - d2) 

O.267857142d4 - o. o93253969d6 + O.2111111nd8 - o.o659b9o9ld10 + 

O.174242424d12 - O . 049145298d14 + O . 148351647d16 + . . 

	

= - 2(1 + d2) ,2 (1 - d2 )	 -	
2 + 1.955133754 - o.o66666667d2 + 

0.125490196d4 - 0.044788440d6 + 0.100250625d8 - 0 . 032273778d10 + 

o.o8347826od12 - 0.024405459d14 + 0.0715l9795d 6 + . . 

Y 2l =	 2	 (D + loge 2 + 2.592857142 - 0.125000000d2 + 

	

4(1+d2)(1_d2 )	 . 

0.236111111d4 - o.o86111111d6 + 0.190909091d8 - o.o63131313d10 + 

o.16o2564o9d12 - o . o48351647d14 + 0 . 1380952 38d16
 ± . . .) 

1	 ID	 log 2 + 2.021800421 - 0.058823529d2 + 2	 e 

o . n14551o7d4 - 0.041427096d6 + 0 . 091097307d8. - 0.030846682d10 + 

0.077037037d12 - 0 . 023900748d14 + o.o6671 822d 6 + . .
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= -	 (D + log 2 + 2.717857142 - 0.11llllllld 2 + -25	
4(1 + d2 ) 2 (1 - d2)	 e 

0.2111l1111d4 - 0.079797980d6 - 0.174242424d8 - 0.060256409d10 + 

0.148351647d12 - o.o47l86l47d + 0.l29l66667d6 +	
. .) 

1	 ID 1 

= - 2(1 + d2) 2 (l - d2) 2 - log
e 2 + 2 . 080623951 - O.052631578d2 + 

0.lOO25O625d - O.038465729d 6 + o.o8347826od8 - O.029417990d10 + 

O.071519795d12 - 0.O23262562d 4 + O.O6256O94d16
 + . . .) 

where

D = og(l - r2 r=1 

E = (1og). 

For	 = 0.075, the val es of Y are as follows: 

Yll = -o.1632828 !i-o - D' + E 

Y9 = 0.193584561 - 

Y7	 -0.146562469 - D' 

= -0.295349926 - 

Y3 = -0.388303682 - Dt 

r -0.455432461 - 

Y-1 = -0. 507831136 - Dt 

Y3 = -0 .550751149 - Dt 

Y_5 = -0. 587074905 - D! 

Y_7 =-Q.6l8549324 -
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= -o.6 1f6311118 - D' 

= -o.6711 1io539 - D' 

= -0.693595951 - D' 

= O .71!4.09O ) 90 - 

Y_17 = -0.73293831 1i. - D' 

= -0.750383821 - D' 

= -0.766620856 - D' 

= -0.781805725 - 

= -0.796066296 - D' 

y 7 = -o.8o95o8)89 -

where D' = 0.233873678og(1 - r2)1 
Jr=i 
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APPENDIX C 

THE	 EXPRESSIONS 

The K expressions encountered in the calculation of flow past a 
curved surface by the variational method are as follows: 

K1 = o.o9999539U3 + O.18291 Ii.9OUA112 - O.2890211-707UA11A13 - O.O992117UA11A1 ^ 

O.0395492 11 141JA11A31 - O.O551I 59 l4OUA11A33 + o.0116870I 4JgJA11A51 + I. 5219711JtO7UA132 - 

1.7O8l 3568UA13A15 - O.O39O322 1i2UA13A31 + O. 1t623181731JA13A33 - O.0105 11T163uA13A51 + 

1. o62796976uA	 - 0. 0OO252462UA1A31 - 0. 203909165UA1,A33 + 0. 000978600UA1,A,1 - 

o.000387406UA312 .- O.015012518UA31A33 + O.0038O236oUA31A51 + 0.037o 3721UA332 - 

o.008134189uA33A51 - O . 00o71 9U1UA l2 + o.033220706A113 + 0.022268910A112A13 + 

o.o16688o92A112A15 + O.023629862A112A31 - 0.004191711.6A112A33 + o.O1O26835A112A 1 + 

0.58659872A11A132 - o.o299278A11A13A1 + o . O30572932A11A13A31 + 

0.i9666992A11A13A33 + o.017816638A11A13A.51 + 1.59o32o68A11A152 + 

0.O278332oA11A1 A31 + O.O263 l 8061A11A15A33 + O.O16797314Jl.A11A15A 1 + 

O .O07609781A11A312 + o.0081184o6A11A31A33 + O.007721948A11A31A51 + 

o.O194O1931A11A332 + O.0O5O37201A11A33A51 + 0.oO21i4?T61l.1 A11A512 + 0.35531t8460A133+ 

1.998793077A132A15 + 0.126029525A132A31 + O.192711803A132A33 + O.051 551i2O4A132A51 + 

2.511-67It37OA13A152 + O.093686139A13A1 A31 + 0.725826526A13A15A33 + 

o.o6616622A13A1 A51 + o.007521368A13A312 + 0.049606014A13A31A33 + 

o.00886o88A 3A31A51 + o.038O261 76A13A332 + O.O21958499A13A33A 1 + 

O.0027 1t729OA13A512 + 1.18253589A15 3 + o.354628107A152A31 + O.1193373O00A1 A33 + 

o.1888I 18A152A51 + o.00693000A1 A312 + O.026235560A 15A31A33 ^ 

0. 0o8096717A1 A31A,1 + 0. o683o7146A15A332 + 0. 01T53086A15A33A51 + 

O.0O29711-63A1 A512 + o.001o63o6oA31 3 + 0.O02385806A312A33. + o.00181661oA312A51 + 

0.00 149191A31A332 + 0.003O06o6A31A33A 1 + o.00uo698oA31A,12 + O.Oo267o25A333 + 

o.00281677A332A51 + O.000987380A33A512 + 0.000237O98A513
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K2 = - O.130908999U3 - O.14512354UA112 + 3.O l 39 )1.881 ltiJA11A13 - 1.7O84356JA 1A15 - 

O.O39O322I2UA11A31 + O. 1t62318173UA11A33 - O.O1OWT763UA11A51 + 3.21377fl8UA132 + 

u.85794o32uA13A15 + O.3 Ii-61i-76O61 JA13A31 1 .O312797O1gJA13A33 + 

O.O917699l 6iJA13A,1 + 7.T3127311.21UAl 2 - O.31 98O8O8UA15A31 + 1.726Oi 3683UA15A33 - 

o.1lt6o9989uA1 A 1 + o.00069282uA312 + O.O58OO453UA31A33 + O . 002368O92UA31A 1 + 

o.o87200038uA332 + O.060930600UA33A51 + O.001909217UA512 + O.007422970A113 + 

O. 586559872A112A13 - O.O261 96392A112A1 + O.915286 1 66A112A31 + 

O.O98283 1i 96A112A33 + o . 0089o8319A,112A51 + 1.o66o 1 38oA11A 2 + 

3.997861 l1-A11A13A1 + O.252O9OOA11A13A31 + O.38 l 236O6A11A13A33 + 

O.109109680A11A13A51 + 2.61 7I 357OA11A152 + O.O93686139A11A15A + 

O.725826526A11AA33 + o.o66165622A11A1 A51 + O.00721368A11A312 + 

O.O496o6o1l A11A31A33 + o.00886o88A11A31A51 + O.O38O26I 76A11A332 + 

O.O21958l99A11A33A 1 + O.0027'729OA11A l2 + 3.6o928926oA13 3 + 8. 7196391IoA132A15 + 

O.208214.8666A132A31 + 1.811741922A132A33 + o.o8998' .86A132A 1 + 

25. 11.i i 218O I1.9A13A152 + O.920228170A13A1,A31 - 3.00O98OO28AjA15A33 + 

O.1O9l A13AA 1 + O.O397I 6167A13A312 + o.o8699326A13A31A33 + 

O.o l 226162A13A31A51 + O .3211078519A13A332 + O.O1 O1621l 6A13A33A51 + 

O.O12O6O92A13A512 + 1o.8711 6o115A1,3 + O.O1 85238A152A31 + Il. .31 4O1 733Al 2A33 + 

O.210736557A152A51 + O .0314J1211058A15A312 + o.1682u6A1 A31A33 + 

O.O'551461A15A31A 1 + O.289894836A1 A332 + O.O'4O3'l-4O11A1 A33A51 + 

0.o164561A1 A512 + o.001o355A313 ^ o.008085122A312A33 + O.00192731A312A 1 + 

O.0096872A31A332 + O .009037828A31A33A51 +O.001182158A31A512 + O.020369802A333 + 

O.001917O98A332A51 + O.002761734A33A512 + O.00O247231A513	 0
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K3 = O.0093872261J 3 + O.O19771 622UA112 - O.039032214 2UA11A13 - O.00025214.62UA11A15 - 

O.00O77l 812UA11A31 - O.015012518UA11A33 + O.003802360UA11A51 + O.173238032UA132 - 

O. 3 149808085UA13A15 + O.001385705UA13A31 + o.o5800l 535uA13A33 + O .002368092UA13A51 + 

O. 11278738614TJA152 + O.O2O2'85O2UA15A31 - O.O359 472O3UA15A33 + O.007519578UA15A51 - 

O.0025318 1 OUA312 - o.00lI 278uA31A33 - o.000566987uA31A51 + O.0037I 9OO7UA332 - 

O.002O9O7l 9UA33A51 - O.001O789 1 1UA512 + O. 007876620A11 3 + O.015286466A112A13 + 

O.013791660A112A15 + o.007609784A112A31 + O.004059203A112A33 + O.003860974A112A51 + 

O.126029525A11A132 + O.093686139A11A13A15 ^ O.015042736A11A13A31 + 

O.O96O6Q1l A11A13A33 + o.008865o88A11A13A51 + O.3516281O7A11k 52 + 

O.013186000A11A15A31 + O.026235560A11A15A33 + o.008o96717A11A15A51 + 

O.003189180A11A312 + O.00I1-771612A11A31A33 + O.003633220A11A31A51 + 

O.005491591A11A332 + O.003005606A11A33A51 + o.00uo698oA11A512 + o.o69 1a6222A, 33 + 

o. 1 6o11 1iO85A 2A + O.039711-6167A132A31 + O.O I 3 1 7-9663A132A33 + O.021128081A132A51 + 

O.5O4585238A A 2 + o.o688l 8115A A A + O.168542fl6A A A +	 - 13 15	 13 15 31	 13 1533 

O.O1 5551461A13A15A51 - O;003100365A13A312 + O.O1617O2 1 5A13A31A33 + 

O.00335l 7O3A13A31A51 + O.009687255A13A332 + O.009037828A13A33A51 + 

o.00fl82158A13A512 + O.23O I1J 716A153 + O.12O6OO559A 52A31 - O.260365077A152A33 + 

o.o673 14o386Al 2A51 + O.002708871A15A312 + O.015381835A15A31A33 + 

O.003297761A15A31A51 + O.017641290A15A332 + O.O1OO7l4i 15A15A3 A51 + 

O.001O2 I 91A15A512 + O.00O5511 5OA31 3 + O.001323 I1aOA312A33 + O.001028092A312A51 + 

O.002235226A31A332 + O.0017O6l 61A31A3 A51 + O.000672957A31A512 + O.00081t5763A333 + 

,, O.0013168 332A51 + O.000569815A33A51 ^ O.00O15312O



5 1i.	 NACA TN 2326 

Kj = -o.o16o2319 u3 - O.027572970UA112 + O. 1162318173UA11A13 - O.2O39O91651JA11A1 - 

O.O15O12i8UA11A31 + O.0711-1O714112UA11A33 - o.008134189uA11A51 + O. 51 71382UA132 + 

1. 726O l 3683UA 3A + o o5800l 535uA13A31 + 0. 174l0oo76uA13A33 + 0. o6o93o600uA13A 1 + 

1.2173277O9UAl 2 - O.O39l 72O3UA1 A31 + 0.235751t137tJA15A33 -0.O2122O641UA15A 1 - 

0.002222139UA312 + O.00714 9801141JA31A33 - O.O020907'9UA31A 1 + O.O1I1 J1.19153UA332 + 

o.001269098UA33A51 - O . 00O5093814UAl2 - 0.001397211.9A113 + 0.09828311.96A112A13 + 

0.013174031A112A15 + 0 . 0011.O59203k 12A31 + 0.01911-04931A112A33 +, O.002518601A112A51 + 

0.192711803A11A132 + o.7282626 1A135 -4- 0.0l49606O1l A11A13A31 + 

0.0760529 2A11A13A33 + O.021958l 99A11k13A,1 + 0.i9337300OAAl 2 + 

O.0262360A11A15A31 + 0.136614292A11A15A33 + O.0173086A11A15A 1 + 

0.002385806A11A312 + 0.010983182A,11A31A33 + 0.003005606A11A31A51 + 

o.Oo8o1o765A11A332 + o.0056335 It8A11A33A51 + 0.000987380A11A512 + o.6o3793974A133 - 

1. 5001 90011A 32A1, + 0.O1t3479663A 32A31 + O. 321O78519A132A33 + 0.020O81073A. 32A 1 + 

+ o.1685 li-2116A13A1 A31 + O. 579789672A13A 5A33 + 

o.O4o3l 4o11A13A15A,1 + o.008o85122A 3A312 + O.01937lt10A13A31A33 + 

O.009037828A13A31A51 + o.o6n091to6A13A332 + o.0o983l196A13A33A,1 + 

0.00276I 731 A13A512 + 1 .9323938A1 3 - O.26O 36O93A2A31 + o.8o62213A152A33 + 

o.o6o27562Al2A51 + 0.007690918A A312 + o.O32828oA15A31A33 + 

0.Oi0O7l 15A15A31A 1 + 0.056866015A15A332 + o.o189l 59I 2A15A33A.51 + 

O.O0314O76I 9A15A l2 + 0.000 1t11.1137A313 + 0.00223226A312A33 + o.0008 3231A312A51 + 

0.002537239A31A332 + 0.002683362A31A33A51 + o.0006981A31A512 + 0.0o'a1525oA333 + 

0.0011 35584A332A 1 + o.000864839A33A512 + 0.000129993A513
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K5 = O.O092111i.31U3 - O.049607758uA112 - 1.708453568TJA11A13 + 8.125593952uA11A15 - 

0. 0OO252l 62UA 1A31 - 0. 203909165UA11A33 + 0. 000978600UA11A51 + 5. 928619918UA1 + 

15. I4.625I68l42UA13A 5 - 0. 3l 9808085UA13A 1 + 1. 726Ol 3683UA13A33 - 

0. 1l6o59989uAA51 + 10. 786166O 1 8UA15 + 0. 85571q728uA15A31 + 2. l 3 lI.6551i.18UA15A33 + 

0.190818970UA15A51 + 0.01012 11251UA312 - 0.0359 l 7203UA31A33 + 0.007519578UA31A51 + 

0.117877051 JA332 - 0.02122061t1UA33A51 + 0.003141 981UA512 + 0.00556269p113 - 

0.026496392A112A13 + 1.590352068A112A + 0.013791660A112A31 + 0.013174031A112A33 + 

0. oo8398672A112A51 + 1. 9987930T1A11A132 + 5. 129l 871lt0A11A13A15 + 

0.093686139A11A13A31 + o.725826526A11A13A33 + o.066165622A11A13.A51 + 

3 . 51 76O7577A11A152 + 0.709256214A11A15A31 + 0.986746000A11A15A33 + 

0.317769036A11A51A51 + o.006593000A11A312 + 0.026235560AA31A33 + 

o.008096717A11A31A51 + o.o683o7146A11A332 + 0.017553086A11A33A51 + 

0. 002597 I 63A11A512 + 2. 9Q651i-6380A. 3 3 + 25. 411 218049A132A + 0. 1.6011 J3O8A132A31 - 

1.5004900114A132A33 + 0.227552 1 72A132A51 + 32.6143812 i 5A13A152 + 

1. 009170l 76AA15A31 + 8. 688c9467oAA15A33 + 0. I 211 7311l A13A15A51 + 

0.03' 24O58A A 2 + o . 1685l 2u6A A A + 0.0l1.555il61A A A + 
1331	 133133	 13 31 51 

0.28989I 836AA 2 + 0.0403 !tIIO11AAA + 0.01561 5650AA 2 + 

36. 1113233786A153 + O.691311.1588A152A31 + 5.797181565A 52A33 + 0.287053533A152A51 + 

0.120600559A15A312 - 0 .52073O154AA31A33 + 0.13 1 680772A15A31A51 + 

o.8a622151 3A15A332 + 0.12105124A15A33A51 + 0.01 17814273A15A512 + 0.000902957A313 + 

0.007690918A312A33 + o.001648881A312A51 + 0.O1T641290A31A332 + 

0. 01007l -415A31A33A51 + 0. 001021491A31A512 + 0. o1895533a33 3 + 0. 009472971.k332A51 + 

0.003i076149A33A512 + 0.0O0211L3I7A513
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= O.003281673U3 +. O.005843522UA11 - o.O1O,wr763UA11A13 + O.000978600UA11A15 + 

O.003802360T3A11A31 O.008131 189UA11A33 - O.001l 98222UA11A51 + OO1 5881 973UA132 - 

0. O1t6O59989UA13A15 + 0. 002368092UA13A31 + 0. o6o93o600uAit33 + 0. 0O38i8433UA 3A51 + 

O.O954O9185UA,152 + O.007519578UA15A31 - O.O2122O6l1UA,A33 + o.006289961uA.A51 - 

O . 000283)4914UA312 - 0 .0O2O9O71i9UA31A33 - 0. 002157882UA31A51 + 0. OOO634549UA 	 - 

o.00iô18767uA33A51 - O.00075231481JA512 + O.O031i22785A11 + O.0O8908319A, 12A13 + 

0. oo8398672Aj 2A15 + 0. 003860974A112A31 + 0. 002518601A112A33 + 0. OO211tT611-1 A l2A51 + 

O.O51.55J484OA A 2 + o.o66165622A A A + o.008865o88A A A + 1113	 111315	 111331 

O.O21958lt99AuAt33 + O.005l49 l1 58OA11A13A,1 + O.158881 518k11A 52 + 

0. 008096717A11A,15A31 + 0. 017553086A11A15A33 + 0. O0519li-926A,. A15A51 + 

o.00181661oA11A312 + 0.003O0,6)6A, 1A31A33 + O.002213960A11A31A51 + 

O . 0028167711A11A332 + O . 0O197l 76OA11A33A51 + O . 00O7U29 i A11A512 + 0.028666162.A133 + 

o . 2275521t72A132A + 0. 021128081A132A31 + 0. 020081073A132A33 + 0. O125O6O92A 32A51 + 

o . 210736557A13A152 + 0. 0 l 5551461A13A 5A31 + 0. 04031 011A, 3AA33 + 

O.O312913O1A 3A15A51 + O . 001927352A13A312 + O.009037828A13A31A33 + 

O .002364316A13A31A51 + O.0014917098A 3A332 + O . O05 2914.68A 3A33A51 + 

0.00O7417O1kA512 + o o9568i 5u 53 + o.o6731io386A. 52A31 + O.060527562A152A33 + 

0. O1a784273A152A51 + 0. oo1648881A, 5A312 + 0. 01007l1.41.5A15A31A33 + 

O . 002048982A15A31A51 + 0. OO9 1 72971A1,A332 + 0. 0o68152?9A15A33A51 + 

o.000611.3a1 2A1 A512 + O.QO0312697A313 + O.000853231A31 A33 + o.000672957A312A51 + 

-	 o.0013416831A332 + O.00113963OA3 A33A51 + O.00011.591360A31A512 + 

0.00O1 78528A33 3 + 0.000861t839A332A51 + O.00038 980A33A512 + o.000lo82T2A,13
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TABLE I

PARAMETERS Ajj/ao FOR FLOW. PAST A CIRCULAR CYLINDER 

AT VARIOUS UNDISTURBED-STREAM MACH NUMBERS 

[i=2j 

M A11/a A13/a A31/a A33/a A15/a A51/a 

0.1 0.001031 
.001035 -0.0002557 
.Q01103 -.0002557 -0.0004301 
.001103 - .0002541 -.0004301 -0.00001330 
.001103 -.0002542 -.0004301 -.00001331 0.000001180 
.001105 -.0002541 - .0004378 -. 00001337 .000001180 0.00001300 

0.2 0.008605 . 
.008747 -0.002199 
.009347 - .002198 -0.003790 
.009350 - .0021140 - .003780 -0.0004862 
.009346 - .002141 -.003780 - .0004979 0.00004361 
.009568 - .002135 - .004123 -.0004981 .00004361 0.0005734 

0.3 0.03114 . 
.03278 -o.0085o6 
.03520 -.008503 -0.01514 
. 03518 - .007949 - .01491 -0.004733 
.03519 -. 007973 -.01489 - .005045 0.0004367 
. 03540 - .007972 - .01803 - .005051 .0004361 .0.005229 

0.4 0.08307 - 
.09430 -0.02580 - 
.1026 -.02581 -0.04693 
.1018 -.02225 -.04381 -0.03156 
.1025 -.02265 - .04297 -.03722 0.003155 
.1038 - .02264 - .06157 -.03727 .003156 0.03036 

0.5 0.1979 
.3242 -0.09897 
.3541 -.09980 -0.1657 
.3431 -.06491 .05611 -0.4292
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TABLE II 

MAXIMUM VELOCITIES qJU OVER A CIRCULAR CYLINDER COMPUTED BY 

VARIATIONAL AND RAYLEIGII-JANZEN METHODS AT VARIOUS 

UNDISTURBED-STHEAM MACH NUMBERS 

-	 Variational method Rayleigh-Janzen 
\ U metho	 (third 

7 = 2 7=1.5 approximation) 

\ One Two Three Four Five Six One - - 1.	 5
- y - 2 term terms terms terms terms terms term 

0.1 2.0069 2.0120 2.0119 2.0119 2.0120 2.0120 2.0069 2.0119 2.0120 

.2 2.0287 2 .05115 2 .0506 2 .0510 2.0518 2.O52i4 2.0284 2 .051 3 2.0520 

.3 2.0692 2.1296 2.1282 2.1309 2.1363. 2.1364 2O68i 2.l3l4 2.1360 

.4 2.1385 2.2862 2.2844 2.2979 2.3333 2.3336 2.1040 2.2836 2.3027 

5a2 2639 a28281 a28271
3.O754-2.2494 2.5707 2.6312

= 3.0. 



NACA TN 2326 

TABLE III 

PARAMETERS	 a0 FOR FLOW PAST A KAPLAN BUMP AT VARIOUS 

UIcDISTURBID—ST1EAM MACH NUMBERS 

E=2I 

M0 AuJao A13 /ao A31/ao A33/a0 A15/a0 A,i/a0 - 

0.5 0.009 14.59 -0.003325 -0.001799 0.000558 0.000180 o.000i56 

0.75 0.05289 -0.02119 -0.01607 0.01662 0.0214.90 -0.01327 

0.83 0.10501 0.014.533 _O.0262 11. 0.014.201 0.00799 -0.07114.1 

0.90 0.092073 
. 20799 
.25514. 
.2736

-0.081914.3 
-.08626 
- .10614.

-0.1917 
- .2256 0.1558
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TABLE V 

VALUES OF SIN 0, SIN 30, SIN 50, A1D I dz I 
FOR VARIOUS VALUES OP X 

X sin 0 sin 30 sin 59 

0 1.00 -1.000 1.000 1.8500 

.1 •9914J. -.950 .8628 1.811.314. 

.2 .9777 -.8053 .11.909 1.8226 

.3 .91192 -.5732 -.0300 1.7953 

.4 .9086 -.2714.6 -.5518 1.7318 

.5 .8544 .o681i. -.9172 1.6537 

.6 .7850 . 4202 . - .97914. 1. 511.69 

.7 .6963 .7385 -.6513 1.3997 

.8 .5807 .9589 .0435 i.1926 

.9 .4i86 .9626 .8326 .87926 

.975 .2119 .6156 .9609 .452911. 

1.00 0 0 0 .0.
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TABLE VI 

PRESSURE COEFFIC]'TS COMPU'ITD BY VARIATIONAL METHOD 

FOR VARIOUS UNDISTURBED-STREAM MACH NUMBERS AT 

VARIOUS VALUES. OF X ON BUMP 

=0 M0 = 0.5 M0 = 0.75 M0 = 0.83. 

0 -0.168777 -0.196976 -0.278837 -0.380572 

.1 -.164025. -.191!i.28 -.270078 -.366493 

.2 _.151114 - .176112 - .2145300 - . 327481 

.3 -.130820 -.151796 -.206697 -.266558 

.4 -.101030 - .117012 - .148537 - .187512 

.5 - .067.709 - . 077888 - .095925 - .102108 

.6 - .030022 -.033808 - .033924 - .017223 

.7 .010174 .012772 .027712 .058712 

.8 .051714 .060936 .085342 .118537 

.9 .093315 .107692 .135733 .175920 

.975 .124466 .143040 .167266 .161538
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TABLE VII 

PRESSURE COEFFICIENTS COMPUTED BY VARIOUS METHODS 

FOR M0 = 0.83 AT VARIOUS VALUES OF X ON BUMP

Prandtl-Glauert 

method.

Von K.rinn-Tsien 
method

Perturbation 
method

Variational 
method 

0 _O.3O214.5 -0.324138 -0.35564 -0.380572 

.1 - .294033 - .314480 -. 34310 . - .366493 

.2 - .270905 - .288167 -.30771 -. 327481 

.3 - .234545 - .247375 -.25271 - .266558 

.4 - .181081 -.188634 - .18424 -.187512 

.5 - .121378 - .124726 - .10861 - .102108 

.6 - .053787 - .054434 -.03270 - .017223 

.7 .018234 .018160 .03827 .058712 

.8 .092715 .090853 .10222 .118537 

.9 .167303 .161335 .16275 .155920 

.975 .223151 .212658 .21232 .161538

77 
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Density ratio, P/PQ 

Figure 1.- Plot of pressure ratio against density ratio for various values 
of , for circular cylinder.
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Figure 2.- Velocity distribution over a circular cylinder at 	 = 0.4 
computed by variational, Rayleigh-Janzén, and incompressible -flow 
methods.
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Figure 3.- Maximum local Mach number at various undisturbed-stream Mach 
numbers computed by variational and Rayleigh-Janzen methods. 
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Figure 4.- Local Mach number over surface of cylinder computed by 
variational and .Rayleigh-Janzen methods for various undisturbed-
stream Mach numbers.	 -
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Figure 5.- Pressure coefficient at surface of circular cylinder computed by
various methods. 
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Figure 6.- Pressure-coefficientratio for circular cylinderat various 
undisturbed-stream Mach numbers computed by various methods. 
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