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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


TECIrNICAL NOTE 2270 

THEORETICAL DAMPING IN ROLL AND ROLLING EFFECTIVENESS 


OF SLENDER CRUCIFORM WINGS 

By Gaynor J. Adams 

SUMMARY 

The theory of slender wings is applied to the determination of the 
characteristics in roll of slender cruciform wings. The analysis treats 
the damping in roll and. the rolling moment supplied by differential Inc i-
dence of opposite wing panels. The methods employed in the solution can 
be applied to slender-cruciform--wing problems having arbitrarily'assigned 
boundary conditions. It is found that the coefficient of damping in roll 
(based on the horizontal-wing area) for the cruciform wing is 62 percent 
greater than that of the plane wing having the same aspect ratio, and that 
the rolling effectiveness (wing-tip helix angle per unit of surface 
defleàtion) of the cruciform wing having four equally deflected panels is 
6 percent less than that of the plane wing. 

INTRODUCTION 

Little information is currently available which will pennit an 
evaluation of the stability and. control problems associated with the use 
of cruciform wings. In some instances the characteristics (e.g., the 
important case of lift) of these wings may be estimated from known solu-
tions for planar-wing systems, but in other cases the effect of interfer-
ence between components may be so iare as to invalidate such estimates. 
Additional theoretical treatment is therefore required to establish the 
magnitude of these interference effects. 

The present analysis considers the case of a slender cruciform wing. 
The problem will be treated by the well-known methods 'of slender-wing 
theory, as introduced by Jones (reference 1), and extended by Ribner and. 
dthers to determine the aerodynamic characteristics . of plane slender wings. 
Spreiter (reference 2) has used an extension of this method to treat the 
case of a slender-cruciform-wing and body combination inclined at small 
angles of pitch and yaw. In the present report the method is applied to 
the estimation of the damping in roll and the roiling moment due to dif-
ferential incidence of opposite wing panels of a slender cruciform wing.
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The use of slender-wing theory reduces the problem to that of find-
ing the velocity potential defining the two-dimensional flow of an ideal 
fluid about a cruciform lamina; solutions satisfying the prescribed 
boundary conditions may therefore be obtained by the methods of classical 
hydrodynamics, in particular, the method of conformal transformation. 
It has been brought to the author's attention, since the completion of 
the present analysis, that Westwater (reference 3) has previously applied 
a conformal transformation similar to that given herein to the case of a 
multibláded, infinite pitch propeller (i.e., a rotating two-dimensional 
lemma). The surface velocity potential is obtained as a Fourier series 
which is summable in closed form in the case of a cruciform lemma. 
Westwater's approach may also be used to find the potential satisfying 
any assigned boundary conditions on the surfaces of a cruciform wing; 
the present analysis differs in that the potential is determined in the 
form of a definite integral. 

In a recent paper (reference ) Bleviss has studied the case of a 
cruciform triangular wing having supersonic leading edges. The analysis, 
which was based on the linearized theory, included an approximation of 
the rolling moment due to a small differential deflection of the hori-
zontal surfaces.

SYMBOLS. 

aspect ratio () 

b	 span of wing 

root chord of wing 

C 1	 rolling-moment coefficient \qSb 

-	 /C1_\. 
C 1	 coefficient of damping in roll pb/2uJ

1 C1 
C j	 coefficient of rolling-ioment effectiveness 

en ul
Jacobian elliptic functions, argument u and modulus k 

snu 

E(t,k) elliptic integral of the second kind, argument t and 
modulus k 

E	 complete elliptic integral of the. second kind, modulus k
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F(t,k) elliptic integral of the first kind, argument t and 
modulus k 

k	 modulus of an elliptic integral or function 

K	 complete elliptic integral of the first kind, modulus k 

L	 lift 

L'	 rolling moment 

in	 strength of a point source or sink 

M	 Mach number 

p	 rate of roll, radians per second (constant) 

q	 dynamic pressure (pU2) 

s	 local semispan 

maximum semispan 

S	 wing area (area of horizontal surface) - 

V	 velocity component in the y direction 

U	 free—stream velocity 

w	 velocity component in the z direction 

constant value of w 

x,y,z Cartesian coordinates 

X	 complex coordinate (y+iz) 

exterior angle of a rectilinear polygon, radians 

6	 angle of incidence of wing panel, radians (6<<i) 

local pressure difference 

pressure coefficient- 	 -	 -	 - --	 :. q.	 .-

3
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Lcp

sem.ivertex angle of a plane triangular wing 

complex coordinate (r+i) 

angle between a source or sink radius vector and a coordinate 
axis 

coordinates in the complex	 plane 

p	 mass density of air 

p	 velocity potential in the X or 	 planes 

complex potential (cp +ir) in the X or 	 planes 

complex potential due to a combination of point sources and 
sinks 

stream function

Subscripts 

-	 value for a plane wing 

+	 value for a cruciform wing 

H	 horizontal wing 

L.E.	 value at leading edge 

Z	 value on lower surface 

m	 dummy index used in denoting points 

T.E.	 value at trailing edge 

u	 value on upper surface 

V	 vertical wing

ANALYSIS 

General 

A number of methods, based on the linearized theory of supersonic 
flow, have been developed for determining the aerodynamic characteristics
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of planar-wing systems of finite span. Eowever, the application of these 
methods to the calculation of the characteristics of a cruciform wing 
(fig. 1) leads to considerable mathematical difficulties, since the 
effects of Interference between components cannot be neglected and it 
is, in general, not practicable to construct solutions from the solutions 
f or planar systems. (A notable exception Is the case of lift.) It Is 
therefore desirable to Introduce simplifying assumptions which permit 
estimation of the characteristics of cruciform wings within reasonable 
limits of accuracy. 

The linearized partIal-differential equation for the perturbation 
velocity potential p in subsonic and supersonic flow Is 

	

(1-M2 )p 	 +cp.+ zz = 0	 (1) 

where the free streafii is directed parallel to the positive x axis, and. 
M is the free-stream Mach number. If the longitudinal velocity gradient 

Cp	
is sufficiently small, and. the Mach number is not excessively high, 


then the first term in equation (1) is small compared to the velocity 
gradients in the y and z directions, and may be neglected. Equa-
tion (1) then reduces to

Pyy + cp = 0
	

(2) 

which is the familiar two-dimensional form of Laplace's equation. For 
slender wings and bodies the velocity gradient q 	 is small, so that a 

satisfactory approximation to the aerodynamic characteristics of slender 
wings and wing-body configurations may be obtained. by means of equation (.2). 
The results will be Independent of Mach number and will be valid for both 
subsonic and supersonic Mach numbers, as was pointed. out in reference 1. 

It was pointed out in reference 14., and discussed. in greater detail 
in reference 5, that equation (i) is still valid if M is replaced by 
unity, in which case equation (i) again reduces to the two-dimensional 
form of Laplace's equation. 

In the present application of the theory, no point on the trailing 
edge may lie ahead of the most forward point of mxImuin span. If the 
latter condition is not satisfied, lift Is obtained off the surface of 
the wing, which violates the boundary conditions. Furthermore, it should 
be noted that the slender-wing theory and its extensions cannot be used 
to solve thickness problems. For a more detailed discussion of slender 
wing and wingbody theory, the reader is referred to references 1, 2, 14., 

5, and 6. 

The present problem is solved by finding a solution of equation (2) 
which satisfies the following boundary conditions: 

	

1. The velocity components	 and	 vanish at infinity.
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2. At all points on the y = 0 or 
wing surfaces,	 q = 0. 

3. At all points on the y = 0 and. 

L	 = 0 respectively.

z = 0 planes and not on the 

z=0 planes t=o and 

i • At all point,e on the y = 0 and. z = 0 planes, within the 

wing plan-form boundaries, (") 	 and	 , respectively, 
are specified.	 \Y/y = 0	 \z,/z = 0 

If the region outside a symmetric cross (chosen symmetric for 
simplicity) is mapped conformally on the region outside a circle, with 
points on the circumference of the circle corresponding to points on the 
arms of the cross, a potential function satisfying the boundary condi-
tions stated above may be found by integrating a suitable combination of 
infinitesimal sources and sinks over the circumference of the circle. 

If the two-dimensional velocity potential for the flow in transverse 
planes is given, the wing loading may be rritten 

p2(q)'\	
() 

qU	 X) 
which expresses Bernoulli's equation with the approximation of small 
disturbances. It follows from equation (3) that the lift of one-half a 
plane slender wing is

fcp\ 

	

L=pU/	 dy/ 

	

J	 J	 \xJ 
o	 L.E.

(!) 

, 
= UJ

0 

- Similarly, the rolling moment acting on one-half a plane slender wing is 

L' =-pUJ

0 

PS0	
(5) 

In the following section a conformal transformation is derived which 
maps the region outside a circle on the region outside a rotationally 
symmetric cross. It is then shown that, by means of a-distribution of 
infinitesimal sources and sinks on the circumference of the circle, a 
velocity potential may be found having a normal derivative which satisfies 
arbitrarily assigned values on the arms of the cross.
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In succeeding sections, the velocity potentials are determined for 
the cases of a slender, rolling, cruci'oriin wing and of a slender crud—
form wing for which the horizontal surfaces are differentially deflected 
through a small angle of incidence. The 'potential for the latter case, 
together with the well—known potential for an infinite plate nioving 
normal to itself with constant velocity, may be superposed in various 
ways to provide solutions to slender, equal—span, cruciform wing 
problems, the boundary conditions of which involve constant normal velo-
city components on the surfaces of the wing. The lift and rolling moment, 
respectively, may then be obtained from the lift formula for a plane 
slender wing and the moment formula for the slender cruciform wing with - 
differential incidence of the horizontal surfaces. 

Conformal Transformation for the Cross Section 

of an Equal—Bpan Cruciform Wing 

Consider the conformal mapping defined by the equation (see ref er-
ence 7, p. 395, or reference 8)	 - 

= A (1 -	
-	 . . . (i -	

(6) 


where 

A = a constant 

m= seiem for in = 1, 2, 3, . . . N (s constant) 

It ôan be shown that the conformal mapping defined by equation (6) 
transforms the region outside a closed rectilinear polygon of N sides 
in the X . plane into the region outside a circle of radius s In the 

plane (fig. 2). The last condition stated in equation (6)' Is necessary 
in order that X be a single—valued function of 

By treating the cross of fIgure 3(a) as a closed polygon having eight 
sides and. exterior angles —i/2 and it, it is found. from equation (6) 
that the required mapping function for a cruciform wing in which the 
vertical and horizontal surfaces have equal semisparis s Is

(i)
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It can be easily verified that equation (7) maps conformally the 
region outside the circle	 = se 10 in the	 plane on the region out-




sidethe symmetrical cross of width 2s in the X plane. The circum-
ference of the circle Is transformed into the cross; corresponding points 
are shown in figure 3. 

An evident generalization of equation (7) is

(8) 

where n is a positive integer. Equation (8) maps con±'orniafly the 
region outside the circle 	 = se 6 in the	 p1ane on the region out-




side a rotationally symmetric figure In the X plane, consisting of n 
line segments of length 2s, the midpoints of which intersect at the 
origin. This transformation, together with the method of this report, 
may be used to study the moment characteristics of a slender, rotation-
ally syimnetrlc wing consisting of n plane wings having a common root 
chord. 

It may be noted that Darwin (reference 9, p. i) has derived a very 
general conformal transformation of this type which transforms the 
region outside a circle into the region outside an arbitrary arrangement 
of line segments Intersecting at the origin. The lengths of the segments 
and. the angles between them are completely arbitrary. Darwin' s general-
ized transformation, in conjunction with the method of this report,.may be 
used to' investigate the moment characteristics of a slender multiform wing 
consisting of any number of plane wing panels having arbitrary semispans 
and angular spacing, and a common root chord. 

Derivation of the Velocity Potential 

If a two-dimensional sourée and sink of equal strengths m are 
located on the cIrcumference of a circle as shon in figure l -(b) then 
the circle is a streamline of the- resulting flow. If the flow is trans-
formed into the X plane by means of"equation (7'), the source and sink 
will be transformed into a special doublet1 located on the positive part 
of the horizontal line segment. (See fig. ll. (a).) As shown in figure 14.(a), 
the special doublet Is characterized by a flow normal to the segment at 
the point Xo. At all other points on the segments the normal velocity 
is zero and the segment surfaces are streamlines.. In the 	 plane, the

complex potential for the special doublet is 

m	 R-se160 \, 

	

- - log Lse_
10o)	 -	 S 

The term is used to avoid confusion with the classical two-dimensional 
doublet.

D 

roi
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The velocity function in the Z plane is 

d 1 d 
= v—lw = 

jj—	
(10) 

From equations (7), (9), and. (io), It Is seen that 

•	 - + --	
2 

-:• Xo2 ______ /s4 - X04'\ 
dX - - 2t	 - X024 a - x2 + x2 -	 - x4 )	

( 11) 

where the sign is minus on the upper surface and plus on the lower surface. 

This equation gives the velocity function at the variable point X 
due to the special doublet located at the fixed point Xo. If X is 
taken very near to L, equatIon (9) is approximately 

d i rn( 1	 (12) 

dX	 2it'X—Xo) 

If equation (12) Is inte'ated around two small semicircular regions 
having a common center at X0, It Is seen that there is an inflow of 
m/2 wilts per second above the real axis and an outf low of ni/2 units 
per second below the real axis. The flow from. an  infinitsimal source 
of strength din (located on the arc element sd9 0 in the	 plane) Is

of course din units per second. In the X plane the flow across the 
corresponding element dX0	 IwoI units per second, where w 
the vertical velocity component at the point X 0 . By the principle of 
continuity of flow, It Is seen that

din	
('3) 

where w may be any function of X0 and dX0 is obtained from 
equatIon (7). The velocity functIon correspondIng to any assigned dis-
tribution of w0 may then be found by integrating equation (ii) over the 
proper range of values of X0. Since the complex potential is desired, 
however, it Is simpler to construct a source—sink distribution which 
gives the complex potential by a single Integration. This procedure will 
be followed in the succeeding sections. 

Rolling Morent Due to Rolling	 - 

The case of a slender equal—span, cruciform wing rolling about- its 
longitudinal axis with constant angular velocity p is considered. The 
complex potential in the 	 plane for the source—sink combination shown 

- in figure 5(b) is
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m	 4_'s4e00 
= —	 log	

4_s4e_4j00) 

Replacing m by din = 2pydy = 2ps2 sin 200d0o, and integrating 
from e0-o to Oo=it/ lI-, the complex potential In the plane for the 
rolling cruciform triangular wing is given by 

/ 4_64e41e0 - ips2 r' sin 20c log (4 -	 •11 J0	 \t _s4eieo)° 

Substituting tz 2e0 , and. integrating once by parts, 

	

lr/2	 t

	

dt	 (11i.) - 1pS2 (s8_9)	
cos 2t 

where an Imaginary constant has been omitted. Substituting equation (7) 
into equation (i4) ., the complex potential in the X plane is seen to be 

= i2 
x JX_s	 dt 

Jo x4-s 4 cos 2 t 

= x2 [secii_' (x)2 ± 

On the part of the real axis correponding to the wing the sur±ace 
velocity potential is therefore 

= ± y2 sech	 (15)


From equations (15) and. (3) It follows that the spanwlse load. dis-
tribution for a slender, rolling, cruciform wing Is 

, , 2 
= + 2psA I	 %y/s) 
- itU LIT-_(y/s)	

(16) 

This load distribution is shown in figure 6. 

Substituting equation (15) into equation (5), the total rolling 
moment due to roll is 

(L' ).. = -8pTJp r 5° y 3 sech1 
(L\\2 

dy 
Jo	 \.so) 

= -;- pUps
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The coefficient of damping in roll for the slender cruciform wing is 
therefore sinply

—2 tan € (c 1 ) = _____ 

p +	 it 

A 
2it 

where the coefficient is based on the area of the hor1ontal wing only. 

For a slender planar wing it is known (reference 10) that the 
rolling moment due to roll is 

L')_ =	 pUps4 

and the coefficient of damping In roll is 

(c 1 ) =	 tan 

32 

The ratio of the damping moments for the rolling cruciform wing and 
the rolling planar Lng is therefore 

(L')^	 i6 
(L')_ 

and the ratio of the damping—in—roll coefficients for the rolling crud—
form wing and the rolling planar 'wing Is 

= - = 1.62 (cz) 

if the aspect ratios are the same. 

The damping—in—roll coefficient for the slender cruciform wing is 
therefore seen to be only 62 percent greater than that for a plane wing 
having the same aspect ratio. 

If the velocity potential for a slender, plane, rolling wing (refer-
ence 10) is substituted into equation (3), it Is found that the spanwise 
load distribution for this case is 

= +	 [	 .1	 (17) 
q L - 2U [a/i - (y/s)2j
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Figure 6, which presents the load, distribution over a spanwise section of 
a plane rolling wing and that over the horizontal and. vertical wings of 
the cruciform arrangement, shows the effect of the wing interference in 
reducing the load, distribution which opposes the rolling motion. 

Rolling Moment Due to Differential Wing Incidence 

The case considered here consists of a slender, equal-span, cruci-
form wing in which each half of the horizontal wing is differentially 
deflected through a small angle 	 . (See fig. '1(a).) The vertical 
-velocity component on the surface of each half of the horizontal wing 
is constant, and is	 = ± U; on the surface of the vertical wing in 
the lateral velocity component must be zero. 

*

	

	 The complex potential for the source-sink combination shown in 
figure 7(c) is

	

in	 ,'262e20 \ 
1 =	 log	

2 2 -2100 / 

A distribution of such sources and sinks over the circular arcs corre-
spondihg to _(t/1l.) < 0 < ( 1T/)4*) and (3t/l ) < e < (5t/ll.), with in 
replaced.by	 -	 - 

din = -2w0 dy 
= 2w0s Sin 0o do0 

J cos 20 
satisfies the boundary conditions shown in figure 7(b). The complex 
potential satisfying these boundary conditions is therefore 

,2 2216	 ______ w0s pOO=1t/4 [	 -s e 0 
I log i 

1e0=o	 2 2 aleo) 
d J cos 20 

Substituting t=200, and integrating once by parts, 

= - iw0s (s4-') [lr/2	 Jcos t	
dt	 (18) 

iT	 J0	 4+s4-2s22 cos t	 - 

If equation (7) . is substituted. into equatIon (18), it is found that 
the complex potential in the X plane is given by	 - 

= iws	 f7q2	 Icos	 dt	 (19) 
22 0	 X-s cost
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The integral, in equation (19) is a complete elliptic integral of the 
third kind with modulus k = i/f. Substituting 

cn2u=cost 

in equation (19), the complex potential may be written 

	

K 'cn2u d.0
	 (20) 

= iWs/ Jx_s4
	

X2.62cn2u 

For the evaluation of this and the succeeding moment integrals, and 
the values of the surface velocity potential on the horizontal and verti-
cal surfaces, see the appendix. 

If the surface velocity potentials as given in the appendix for the 
horizontal and vertical surfaces are substituted in equation (3), it is 
found that the spanwise load distribution on the horizontal surface is 

= ±	 [K+(2E_c)(y/s)2	
(21) \ q /g	 '	 L #[l —(y/s)4 

and that the load distribution on the vertical surface is 

	

rK_(2—)(z/s)21	 (22) \q,Jv	 Li	 4	 J 'v' 1 (z/s) 

where k =	 in both equations. These load distributions are shom 
in figure 8. 

If the surface velocity potential for the horizontal surface (see 
appendix) is substituted into equation (5) and integrated, the rolling 
moment due to the horizontal surfaces is seen to be 

L' 11 = —	
[ ( -
	 + E ] ptso3; k =

(23) 
= — 1.128 pU5so3 

Similarly, the rolling moment due to the vertical surface is 

WV = +
	

+ 1 — E] pU23s0 3; k = l/J•

(211W) 
S	

+ 0.626 pUs03

J

\
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The total rolling moment is therefore 

(L' ) + =	 (2-c) pU	 k = 1/
3t 

= - 0.508 pU2s03 

sand the coefficient of rol11ng-noment effectiveness is 

(C1)	 = A'12 (2E-K); k = 

= - 0.127A 

based on the horizontal wing area. If the vertical surfaces are also 
deflected differentially through a small angle S, the preceding value 
would be doubled, or

(C, ) = - 0.25A 
'.5+ 

From reference 11, the rolling moment for a slender plane wing 
having the panels differentially deflected is 

(L') =	 pU%s03 

and the coefficient of rolling-moment effectiveness is 

(c) =-

The ratio of the rolling moments produced by the horizontal panels of the 
slender cruciform wing and the slender plane wing is 

= 2() = 0.762 
(L') 

It is seen that, although the rolling moment supplied by the hori-
zontal surfaces of the cruciform wing is larger than for the plane wing. 
the counter rolling moment induced on the vertical surface is so large 
that the total rolling moment is 2 1t- percent less than for the plane wing. 

If the velocity potential 2 for a slender plane wing with differen-
tial incidence of the horizontal surfaces is substituted into equation (3), 
it is found that the spanwise loadin g is 

(Ap = 25A [_Y/S	 1	 (25) 

Li' - (y/s)2 j 

2The velocity potential for this case may be easily derived by applying 
the Joukowsky transformation with the method of this report.
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Figure 8 shows the pressure distrlbutioh over the vertical and. horizontal 
surfaces of the cruciform wing and, for comparison, the pressure distri-
bution over a plane wing. 

Rolling Effectiveness of a Slender Cruciform Wing With Differential 
Incidence of the Udrizontal and Vertical Surfaces 

A parameter often used in evaluating the iolling effectiveness of a 
lateral-control system is the rate of change of the wing-tip helix angle 
pb/2U with differential control surface deflection. This parameter is 
obtained. from the relationship 

d (pb\ - 
dB\.2U)	 C, 

p 

From the results of the previous sections, the rolling effectiveness of 
the cruciform wing having four panels equally-deflected is 

----'\ =	
(2E-K); k = 

3 

= 1.59).i. 

Similarly, the rolling effectiveness of a plane wing (or of -a cruciform 
wing with zero interference) is 

The ratio of the rolling effectiveness of a cruciform wing to that for 
a plane wing is therefore

= 0.9k 
(Ci/Ci) 

I1 is seen that the rolling effectiveness of a plane wing is reduced 
6 percent by the Insertion of a wing with similar plan form and. surface 
Incidence in the vertical plane of synunetry. If no interference effects 
existed between the horizontal and vertical surfaces of the cruciform 
wing, this reduction would be zero. Although the coefficient of daning 
in roll i 81 percent, and. the coefficient of rolling-moment effective-
ness Is 6 percent of their respective values with zero interference, 
the combined effect of these reductions is to decrease the rolling 
effectiveness only 6 percent.
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CONCLUDING REMARKS 

The rolling_moment characteristics of slender cruciform wings have 
been investigated by a method based on 1ow-spect-ratio wing theory. 
It was found that the coefficient of damping in roll (based on the area 
of the horizontal wing) of a slender cruciform wing is 62 percent 
greater than that for a slender plane wing having the same aspect ratio, 
and that the rolling moment supplied by differential deflection of the 
opposite. panels of the horizontal and vertical surfaces of a slender 
cruciform wing is only 52 percent greater than that for a slender plane 
wing in which the panels are similarly deflected. The rolling effec-
tiveness d(pb/2U)/d5 of the cruciform wing having four panels deflected 
was found to be 6 percent less than that of the plane wing. 

The method may be applied to the investigation of the characteris-
tics of slnder, equal-span, cruciform wings which Shave any specified 
distribution of normal velocities in the planes of the horizontal and 
vertical surfaceTs. 

• A conformal transformation is given which may be used to investi-
gate the moment characteristic of a rotationally symmetric slender-
wing configuration consisting of any number of plane wings having a 
common root chord. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Sept. 29,.l95O.
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APPENDIX 

ThTEGRATION FOR ROLUNG . MOMENT DUE TO DITERENTIAL INCIDENCE 

•	 OF T	 HORIZONTAL SURFACE OF A SLETJDER, - 

•	 CRUCIFORM, TRIANGUlAR WING 

The complex potential for the cruciform triangular wing is 

iws	 f•4	 K	 cn2u =

X—s2cn2u

(Ai) 

= — iw0K 'i/	 + 1w0 ,,/	 2

LI	 2 Xs2cn2u
j 

Let

-	 ________ -	 1	 du I	 Xd_s2cn2u	 X2._82J	 l_[s2/(82_X2)]8fl2U	 •.
(A 2 

On the i'eal axis 

•	 " =	 I	 _fs2/(sy2)jsn2u	 • (A3) 

The integral 1s of the form 

J	 l-a12sn2u 0 
where	 •	 •	 .) (1i.) 

a2 =
	

(laj2oo)

j 

This is- the standard form for the complete elliptic integral of the 
•	 third kind, with parameter	 a1 .	 It can be expressed in terms of Incomplete
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elliptic integrals of the first and second. kinds, by use of Jacobi's 
Zeta and Theta functions (see reference 12, ch. 22). The result for the 
stated. range of values of a 1 is 

______ =	 a	
[	

- (,)] () J	 l—a12sn2u */(a12_l)(a12_k2)	 a1	 a1 

From equations (Al), (A u-),, and (A5) it is found that the surface 
velocity potential for the horizontal wing (z=0, —eys) is 

=±	 1s—y +2y [(ici:,*) KE( J2'	 )1 } (A6) 

Substituting equation (A6) into equatlon (5), the rolling moment for 
the horizontal surfaces is then 

L' = u-pw0 f O	
+ 2Ey2F(	 *) - 0 

2KY2E(Jci, Lb)] dy	 (A') 

The integrals in equation (A7) may be easily evaluated by integration by 
parts. The result is 

L'11 = -
	 [( - 

1) + E] pU28s0	 (A8) 

with

k	 1 

On the imaginary axis (—s z ^ s) the integral in equation (Al) is
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K 

	

12=- p	 du 
J	 z2+s2cn2u

(A9) 

	

1	 _____________________ _____	 d.0 

= - s2+z	 l-[s2/(s2+z2))sn2u 0 

Let

2 
a22 =
	

(	 a2 < 1) 
s2+z2	 \2

(Alo) 

By applying the Jacobian Zeta and. Theta functions as previously noted, 
it can be shown that3 

rK du	 _______ __________	 a2 

J	 1-a22sn2u	 A/(l_a22)(a22_ic2) [(Fs-K)F(a3,k') +KE(a3,k')] 

where

- 1 fa22_k2	
(All)


a3--1 1k2 

k2 a22l	 k2 -i-k' 2 = 1 

roni equations (Al), (A9), (AlO), aM (All), the surface velocity 
potential in the plane of the vertical wing is - 

= ± 2{K	 Js4-z4 2z .[()F ( 
j	 )] 

(Al2) 

3This integral was obtained from a comprehensive table of complete 
elliptic integrals of the third kind, calculated by Paul Byrd, Ames 
laboratory, NACA.
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Substituting equation (Al2) into equation (5), wiih y replaced by 
z, and. evaluating the integrals by parts, the rolling moment for the 
vertical wing is

LtV =	 + i "	 E] pUs03	 (A13) 
3 g .[2'\2	 I 

with

=
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Figure 7- Cruciform wing with differential incidence 
of the horizon/cl surfaces.
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Abstract 

The coefficient of damping in roll and the rolling 
effectiveness (with differential incidence of the hori-
zontal surfaces) are determined for a slender, equal-span, 
cruciform wing. It is found that the coefficient of 
damping in roll is 62 percent greater than for a plane 
slender 'wing of equal aspect ratio, and that the rolling 
effectiveness is 53 percent less than for a plane slender 
wing of equal aspect ratio. The analysis is based on the 
slender-wing theory. The method of analysis can be used 
In the estimation of the characteristics of a slender, 
equal-span, cruciform wing having any specified distri-
bution of normal velocity components on the horizontal 
and vertical surfaces.

Abstract 

The coefficient of damping In roll and the rolling 
effectiveness (with differential incidence of the hori-
zontal surfaces) are determined for a slender, equal-span, 
cruciform wing. It Is found that the coefficient of 
damping in roll is 62 percent greater than for a plane 
slender wing of equal aspect ratio, and that the rolling 
effectiveness is 53 percent less than for a plane slender 
wing of equal aspect ratio. The analysis is based on the 
slender_wing theory. The method of analysis can be used 
in the estimation of the characteristics of a slender, 
equal-span, cruciform wing having any specified distri-
bution of normal velocity components on the horizontal 
and vertical surfaces. 

Abstract 

The coefficient of damping in roll and the rolling 
effectiveness (with differential incidence of the hori-
zontal surfaces) are determined for a slender, equal-span, 
cruciform wing. It is found that the coefficient of 
damping in roll is 62 percent greater than for a plane 
slender wing of equal aspect ratio, and that the rolling 
effectiveness is 53 percent less than for a plane slender 
wing of equal aspect ratio. The analysis Is based on the 
slender-wing theory. The method of analysis can be used 
in the estimation of the characteristics of a slender, 
equal-span, cruciform wing having any specified distri-
bution of normal velocity components on the horizontal 
and' vertical surfaces.

Abstract 

The coefficient of damping in roll and the rolling 
effectiveness (with differential incidence of the hori-
zontal surfaces) are determined for a slender, equal-span, 
cruciform wing. It is found that the coefficient of 
damping in roll is 62 percent greater than for a plane 
slender wing of equal aspect ratio, and that the rolling 
effectiveness Is ' 53 percent less than for a plane slender 
wing of equal aspect ratio. The analysis is based on the 
slender-wing theory. The method of analysis can be used 
in the estimation of the characteristics of a slender, 
equal-span, cruciform wing having any specified distri-
bution of normal velocity components on the horizontal 
and vertical surfaces.
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