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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2270

THEORETICAL DAMPING IN ROLL AND ROLLING EFFECTIVENESS
'OF SLENDER CRUCIFORM WINGS

By Gaynor J: Adams

SUMMARY

The theory of slender wings is applied to the determination of the
characteristics in roll of slender cruciform wings.  The analysis treats
the damping in roll and the rolling momefit supplied by differential inci-
dence of opposite wing panels. The methods employed in the solution can
be applied to slender—cruciform—wing problems having arbitrarily assigned
boundary conditions. It is found that the coefficient of damping in roll
(based on the horizontal~wing area) for the cruciform wing is 62 percent
greater than that of the plane -wing having the same aspect ratio, and that
the rolling effectiveness (wing—tip helix angle per unit of surface
deflettion) of the cruciform wing having four equally deflected panels is
6 percent less than that of the plane wing. '

INTRODUCTION

Little information is currently available which will permit an
evaluation of the stability and control problems associated with the use
of cruciform wings. In some instances the characteristics (e.g., the
important case of 1ift) of these wings may be estimated from known solu—
tions for planar—wing systems, but in other cases the effect of interfer-—
ence between components may be so large as to imvalidate such estimates.
Additional theoretical treatment is therefore required to establish the
magnitude of these interference effects. . :

The present analysis considers the case of a slender cruciform wing.
The problem will be treated by the well—known methods of slender—wving
theory, as introduced by Jones (reference 1), and extended by Ribner and
others to determine the aerodynamic characteristics-of plane slender vings.
Spreiter (reference 2) has used an extension of this method to treat the
case of a slender-cruciform-wing and body combination inclined at small
angles of pitch and yaw., In the present report: the method is.applied to
the estimation of the damping in roll and the rolling moment- due to dif-
ferential incidence of opposite wing panels of a slender cruciform wing.
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The use of slender-wing theory reduces the problem to that of find-
ing the velocity potential defining the two—dimensional flow of an ideal
fluid about a cruciform lamina; solutions satisfying the prescribed
boundary conditions may therefore be obtained by the methods of classical
hydrodynamics, in particular, the method of conformal transformation.

It has been brought to the author's attention, since the completion of
the present analysis, that Westwater (reference 3) has previously applied
a conformal transformation similar to that given herein to the case of a
multibladed, infinite pitch propeller (1i.e., a rotating two—dimensional
lamina). The surface velocity potential is obtailned as a Fourier series
which is summable in closed form in the case of a cruciform lamina,
Westwater's approach may also be used to find the potential satisfying
any assigned boundary conditions on the surfaces of a cruciform wing;

the present analysis differs in that the potential is determined in the
form of a definite Integral. .

In a recent paper (reference L) Bleviss has studied the case of a
cruciform triangular wing having supersonic leading edges. The analysis,
which was based on the linearized theory, included an approximation of
the rolling moment due to a small differential deflection of the hori-
zontal surfaces,

| B SYMBOLS -
C " b2
A aspect ratio <T>
b ‘ span of wing-
Co root chord of wing

. . N
Cy rolling—moment coefflcient agg
. : — Cq
CZP coefficient of damping in roll pb 2U
acZ
Cig coefficient of rolling-moment effectiveness
cn u) _ : _
Jacobian elliptic functions, argument u and modulus k

sn u : '

E(t,k) elliptic integral of the second kind, argument t and
modwlus k

E - complete elliptlc integral of the. second kind, modulus k
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F(t,k) elliptic integral of the first kind, argument -t and

modulus k
k - modulus of an elliptic integral or function
K complete elliptic integral of the first,kind, modulus k
L 1ift
L! rolling moment
m ‘strength of a point source or sink
M Mach number
P ~ rate of roll, radiéns per second (constant)
q . dynamic pressure < %pU2>
s local semispan
Sq maximum semispan
S wing area (area of ﬁorizontal sﬁrface)'
v veloecity component in the y direction
U | free—stream velocity |
W "~ velocity component in the 2z direction
o constant vélue of w

X,y,z Cartesian coordinates

X complex coordinate (y+iz)
a exterior angle of a rectilinear polygon, radians

o) angle of incidence of wing panel, radians (8&<<1)

local pressure difference

ml% g

Pressure coefficient:
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Ao P — Pu
€ semiver;ex angle of é plane triangular wing
¢ complex coordinate (n+i§) |
6o . angle between a source or sink radius vector and a coordinate
axis ' :
LT coordinates iﬁ tﬁe complex ¢ élane : ‘
o) . mass density of air
P . . velocity'potentialvin the X or ¢ planes
o> complex'poteﬁtial (p+iy) in the X or ¢ planes
@, complex ﬁotential due to a combination of point sourceé and
sinks _ ' B
¥ stream function '
Subscripts
- value for a plane wing
+ value for a cruciform wing
H horizontal wing
L.E. value at leading edge
l value on lower surface -
n duﬁmy index uégd in denoting points
T.E. value at trailing edge '
u value on upper surface
v vertical wing
| ' ANALYSTS
General

A number of methods, based on the linearized theory of supersonic
flow, have been developed for determining the aerodynamic characteristics
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of planar-wing systems of finite span. However, the application of these
methods to the calculation of the characteristics of a cruciform wing
(fig. 1) leads to considerable mathematical difficulties, since the
effects of interference between components cannot be neglected and it
is, in general, not practicable to construct solutions from the solutions
for planar systems. (A notable exception is the case of 1lift.) It is
therefore desirable to introduce simplifying assumptions which permit
estimation of the characteristics of cruciform wings within reasonable
limits of accuracy.

The linearized partial-differential equation for the perturbation
velocity potential ¢ in subsonic and supersonic flow is '

2 _ Yy
(1M )¢xx +1¢yy'+ ®, =0 ‘l)

where the free stream is directed parallel to the positive x axis, and
M 1is the free—stream Mach number. If the longitudinal velocity gradient
Qg x 1s sufficiently small, and the Mach number is not excessively high,
then the first term in equation (1) is small compared to the velocity

~ gradients in the y and 2z directions, and may be neglected. Equa—
tion (1) then reduces to - ‘ , .

Gy 0o | (2)

which is the familiar two—dimensional form of Laplace's equation. For
slender wings and bodies the velocity gradient ®@yx is small, so that a
satisfactory epproximation to the aerodynamic characteristics of slender
wings and wing-body configurations may be obtained by means of equation (2).
The results will be independent of Mach number and will be valid for both '
subsonic and supersonic Mach numbers, as was pointed out in reference 1. -

It was pointed out in reference 4, and discussed in greater detail
1in reference 5, that equation (1) is still valid if- M is replaced by
unity, in which case equation (1) again reduces to the two—dimensional
“form of Laplace's equation.

In the present application of the theory, no point on the trailing
edge may lie ahead of the most forward point of maximum span, If the
" latter condition is not:satisfied, 1ift is obtained off the surface of
the wing, which violates the boundary conditions. Furthermore, it should
be noted that the slender-wing theory and its extensions cannot be used
to solve thickness problems. For a more detailed discussion of slender
wing and wing-body theory, the reader is referred to references 1, 2, 4,
5, and 6.

The present problem is solved by finding a solution of equation (2)
which satisfies the following boundary conditions:

1. The velocity components gg and gizp vanish at infinity.
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2. At all points onthe y =0 .or 2z =0 Planes and not on the
wing surfaces, Ag = 0. : : ‘

3. At all poilnts on the y = 0 and i

0 planes A %?= 0 and
k. At all points on the y

respectively.

O and z =0 planes, within the

wing plan—form boundaries, <?E€> and <B , respectively,
are specifled. oy = -

If the reglon outside a symmetric cross (chosen symmetric for
simplicity) is mapped conformally on the region outside a circle, with
points on the circumference of the circle corresponding to points on the
arms of the cross, a potential function satisfying the boundary condi-—
tions stated above may be found by integrating a sultable combination of
infinitesimal sources and sinks over the circumference of the circle,

If the two—dimensional velocity potential for the flow in transverse
planes is given, the wing loading may be written

2 A@Q | (3)

which expresses Bernoulli's equatlon with the approximation of small
disturbances. It follows from equation (3) that the 1ift of one-half a

- plane slender wing is
8o T.E
pr dyf A gq’ ax -
. J L.E. X ‘

(o)

=
T

(%)

80 . ‘ .
p_Uf ~ (A9qE, —A9rg )y

o

Similarly, the rolling moment acting on one-half a plane slender wing is

In the following section a conformal transformation is derived which
maps the region outside a circle on the region outside a rotationally
symmetric cross. It is then shown that, by means of a-distribution of
infinitesimal sources and sinks on the circumference of the circle, a
velocity potential may be found having a normal derivative which satisfies
arbitrarily assigned values on the arms of the cross.
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In succeeding sections, the velocity potentials are determined for
the cases of a slender, rolling, cruciform wing and of a slender cruci-
form wing for 'which the horizontal surfaces are differentially deflected
through a small angle of incidence. The potential for the latter case,
together with the well-known potential for an infinite plate moving
normal to itself with constant velocity, may be superposed in various
ways to provide solutions to slender, equal-span, cruciform wing
problems, the boundary conditions of which involve constant normal velo—
city components on the surfaces of the wing. The 1ift and rolling moment,
respectively, may then be obtained from the 1lift formula for a plane
slender wing and the moment formula for the slender cruciform wing with ~
differential incidence of the horizontal surfaces.

Conformal Transformation for the Cross Section.
of an Equal—Span Cruciform Wing

Consider the conformal mapping defined by the equation (see refer—
ence 7, P. 395, or reference 8)

ﬁ-A(l"‘)Wn <1—§“f>a2/“ . (1—3“—%’“ .<6)

’

where

A = a constant

| § - sefn for m = 1, 2, 3, . . . N (s constant)

E:am = 2%
N
;iaﬁxgm =
=1

It ¢éan be shown that the conformal mapping defined by equation (6)
transforms the region outside a closed rectilinear polygon of N gides
in the X plane into the reglon outside a circle of radius 8 1in the
£ plane (fig. 2). The last condition stated in equation (6) 1s necessary
in order that X be a single-valued function of ¢ .

By treating the cross of figure 3(a) as a closed polygon having eight
sides and exterior angles -n/2 and =n, it is found from equation (6)
that the required mapping function for a cruciform wing in which the
vertical and horizontal surfaces have equal semispans s 1is

_e2. 8 o
§2 '
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It can be easily verified that equation (7) maps conformally the
region outside the circle ¢ = sel® in the & plane on the region .out—
side the symmetrical cross of width 2s 1in the X plans. The circum—
ference of the circle is transformed into the cross; corresponding points

are shown in figure 3.

An evident genefalization of equation (7) is

2n ,

8
where n 1s a positive integer. Equation (8) maps conformally the
- region outside the.circle ¢ = sel® in the ¢ plane on the region out—
side a rotationally symmetric figure in the X plane, consisting of n
line segments of length 2s, the midpoints of which intersect at the \
origin. This transformation, together with the method of this report,
may be used to study the moment characteristics of a slender, rotation—
ally symmetric wing consisting of n plane wings having a common root
chord. A

It may be noted that Darwin (reference 9, p. 1) has derived a very
general conformal transformation of this type which transforms the
region outside a. circle into the region outside an arbitrary arrangement
of line segments intersecting at the origin. The lengths of the segments
and the angles between them are completely arbitrary. Darwin's general—
ized transformatlon, in conjunction with the method of this report, may be
used to investigate the moment characteristics of a slender multiform wing
consisting of any number of plane wing panels having arbitrary semispans
and angular spacing, and a common root chord.

Derivation of the Velocity Potential

If a two—dimensional sourée and sink of equal strengths m are
located on the circumference of a circle as shown in figure k4(b), then
the circle is a streamline of the resulting flow. If the flow is trans—
formed into the' X plane by means of’equation (7), the source and sink
will be transformed into a special doublet! located on the positive part
of the horizontal line segment. (See fig. 4(a).) As shown in figure U(a),
the speclal doublet is characterized by a flow normal to the segment at
the point Xo. At all other points on the segments the normal velocity
is zero and the segment surfaces are streamlines.. In the ¢ ©plane, the

) complex potential for the special doublet is »

_ ¢—selfo | s -
01 = = 5 108 ;_se—_i‘é:,‘) N 2

1The term is used to avoid confusion with the classical two—dimensional
doublet,




NACA TN 2270 : 9

The velocity function in the Z plane is

o, _dey at

From equations (7), (9), and (lO), it is seen that

‘a0 n X /32 -X7  x [ _.Xo‘t) |
ax on \X° - XN 8® —x% " x2_x2V¥st _x* / (1)

where the sign is minus on the upper surface and plus on the lower surface;

(10)

This equation gives the velocity function at the variable point - X
due to the special doublet located at the fixed point Xo,. If X is
taken very near to X, equation (9) is approximately ’

@ w1 ' (12)
daX B 2n \X - Xpo .

If equation (12) is integrated around two small semicircular regions
having a common center at Xy, 1t is seen that there is an inflow of
m/2 units per second above the resl axis and an .outflow of m/2 units
per second below the real axis. The flow from an infinitesimal source
of strength dm (located on the arc element sd9, in the £ plane) is
of course dm units per second.  In the X plane the flow across the
corresponding element dXo is |deo| units per second, where w isg
the vertical velocity component at the point Xy. By the principle of
continuity of flow, it is seen that ‘ .

wdXo =-%? ' (13)
vhere w may be any function of Xo and dXp is obtained from
equation (7). The velocity function corresponding to any assigned dis—
tribution of wp may then be found by integratlng equation (ll) over the

. proper range of values of Xp. Since the complex potential is desired,
however, it is simpler to comstruct a source—sink distribution which

. glves the complex potential by a single integration. This procedure will
be followed in the succeeding sections.

* Rolling Moment Due to Rolling

The case of a slender equal-span, cruciform wing rolling about-its
longitudinal axis with constant angular velocity p is considered. The
complex potential in the ¢ plane for the source—sink combination shown

_ in figure 5(b) is
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_44160
01=—-—log <§ s >

84 —4 ieo

Replacing m by dm = — 2pydy = 2ps® sin 200dfp, and integrating -
from 60=0 to 90=1t/ 4 , the complex potential in the § plane for the
rolling cruciform triangular wing is given by

2 4.416¢
o< 1282 a4 oo, log g_L 6o
T Jo £4_gte—2 160

<

Substituting t=20p, and integrating once by parts,

. /2 .
o = — .11';“53 (s8_t8) f / cos t at (1k)
: 3

BrsBpste ¢ cos 2t

where an imaginary constant has been omitted. Substituting equation (7)
into equation (14), the complex potential in the X plane is seen to be

a2 2
o = 11:(s x2 /X4_s4 cos t at

0 X*=s%cos?t

R .
x2 [sech—l_ («&) + i_:r] !
. s 2 -

On the part of the real ax is corresponding to the wing the surface
velocity potentlal is therefore

. - ‘

From équations (15) and (3) it follows that the sparwise load dis—
tribution for a slender, rolling,» cruciform wing 1s

<Ap> . 2psA [7?% ] | | (16)

This load distribution is shown in figﬁre 6.

=Y e}

Substituting equation (15) into equation . (5), the total rolling
moment due to roll is

- 2
('), = —§-;(ﬂfso y2 sech™ <§L> dy
(3

(o)
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The coefficient of damping in roll for the slender cruciform wing is
therefore simply '

—2 tan €
¢
._Ji
A 2x :
where the coefficient is based on the area of the horizontal wing only.

(Czp)+

For a slender planar wing it is known (reference lO) that the
rolllng moment due to roll is

(L) = DUPSo
and the coefficient of damping in roll ié

'(Czp)_

—q(
) tan ¢
_TA
-3

The ratio of the damping moments for the rolling cruciform wing and
the rolling planar wing is therefore

L)+ _ 16
(L)_ =2

and the ratio of the damping—in—roll coefficients for the rolllng cruci-
form wing and the rolling planar wing is '

-

(Cip)y ¢ (
——=—-—=1.62
(Czp) S

if the aspect ratios are the same.

The damping—in—roll coefficient for the slender cruciform wing is
therefore seen to be only 62 percent greater than that for a plane wing
having the same aspect ratio.

If the velocity potential for a slender, plane, rolling wing (refer—
ence 10) is substituted into equation (3), it is found that the spanwise
load distributlon for this case is

@-w ] o
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Figure 6, which presents the load distribution over a spanwise section of
| a plane rolling wing and that over the horizontal and vertical wings of
- the cruciform arrangement, shows the effect of the wing interference in

reducing the load distribution which opposes the rolling motion.

Rolling Moment Due to Differential Wing Incidence

The case considered here consists of a slender, equal-span, cruci-
form wing in which each half of the horizontal wing 1s differentially
deflected through a small angle ®. (See fig. T(a).) The vertical
‘velocity component on the surface of each half of the horizontal wing
18 constant, and is wy = * UB; on the surface of the vertical wing in
the lateral velocity compon.ent must be zero.

The complex potential for the source-sink combination shown in
figure 7(c) is

£2_6%e2160

o, = log

1 2“ g2_ 2 ~2160
—s%e

A distribution of such sources and sinks over the circular a.rcs' corre—
| spondingto —(n/k) € 6, < («/4) and (3n/b) < 6o < (5n/H), with m
replaced.by - 4 ‘

dm

—2wo 4y -
2‘WQS sin 260 d9p

,/ cos 20,

, satisfies the boundary conditions shown in flgure 7(b). The complex
potential satlsfylng these boundary conditions is therefore

WoS 90=n/4 l’ §2 2, 219 ' J—_
o) == log < = 2 219°>:J d cos 2‘90

o1 Jg=0

Substituting t=26,, and integrating once by parts,

g4+s4-252§2 cos t

0 = - % (gt f"’ 2 Jcos * at (18)
' o}

If equation (7) is substituted into equation (18), it is found that
the complex potential in the X plane is given by’

iwas T, t.
0 = ﬂo Jx4_s4f/2 cos dt | o (19)

2 2
o} X = cos t




NACA TN 2270 ‘ : , 13

: The integral in equation (19) is a complete ellipfic integral of the
third kind with modulus k = 1/,/ 2. Substituting

cn2u = cos t
in equation (19) » the complex potential may be wriften‘
1w,s /2. . K - , .
0= —— Jxtst f - o P (20)
fo) X262n2y ,

For the evaluation of this and the succeeding moment integrals, and
the values of the surface velocity potential on the horizontal and verti—
cal surfaces, see the appendix. C ‘

If the surface velocity pptentials as given in the appendix for the
horizontal and vertical surfaces are substituted in equation (3), it is
found thal the spanwise load distribution on the horizontal surface is

. | é’i>ﬂ _ s A2 [ K+(2BXK) (y/s)° o -
' (8 )+ | ()
and that the load distribution on the vertical surface is _.
| () ;a2 [k=(2Ek)(2/s)27 (22)
<Q>v+ g L/m J

where k = l/,./' 2 1in both equations. These load distributions are shown
in figure 8. ' , .

If the surface velocity potential for the horizontal surface (see

appendix) is substituted into equation (5) and integrated, the rolling
moment due to the horizontal surfaces is seen to be - .

L'y =-L§{;—2— ['212 <-;——1>fE]pU28503; k = 1/1/2—

| : (23)
= —='1.128 pU%so 3
Similarly, the rolling moment due to the vertical surface' is
L'V = + 1&3_.,](2[{2(_ <g—+ l> - E] pUZSSOS; k = l/«/ 2
: ' (2k)

- = + 0.620 pUZBs,®
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The total rolling moment is therefore

L'), = ‘““/—(23-4() pUZBs0%; k = 1/4/2

— 0.508 pU®Bsg 2

and the coefficient of rolling—moment effectiveness is

(Chy), = - Ag{f (2E): k = 1/J/2

— 0.127A

1

based on the horizontal wing area. If the vertical surfaces are also
deflected differentially through a small angle &, the preceding value
would be doubled, or’

c = — 0.25LA
C1),
Ffom reference 11, the rolling moment for a slender plane wing
having the panels differentially deflected is
(L )__ = :% DU%SQS

and the coefficient of rolling-moment effectiveness is

Y

The ratio of the rolling moments produced by the horizontal panels of the
slender cruciform wing and the slender plane wing is '

(L')+ 2J_
(L)

It is seen that, although the rolling moment supplied by the hori-—
zontal surfaces of the cruciform wing is larger than for the plane wing,
the counter rolling moment induced on -the vertical surface is so large
that the total rolling moment is 24 percent less than for the plane wing.

(2E-K) = 0.762

2 .

If the velocity potential for a slender plane wing with differen—
tial incidence of the horizontal surfaces is substituted into equation (3)
it is found that the spanwise loading is

AP 20 y/s '  (25)
( ) "t [; 1 - (y/s) ] '

The velocity potential for this case may be easily derived by applying
the Joukowsky transformatlon with the method of this report.
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Figure 8 shows the pressure distribution over the vertical and horizontal
surfaces of the cruciform wing and, for comparison, the pressure distri—
bution over a plane wing.

Rolling Effectiveness of a Slender Cruciform Wing With Differential
- Incidence of the Horizontal and Vertical Surfaces

A parameter often used in evaluating the rolling effectiveness of a
lateral—control system is the rate of change of the wing—tip helix angle
pb/2U with differential control surface deflection. This parameter is
obtained from the relationship ' .

C )

a (pby __ls
a5\ 2U Cy

P

From the results of the previous sections, the rolling effectiveness of
the cruciform wing having four panels equally-deflected is

- (Cls> = %@ (2B%); k = 1///2

Cip4
= 1,594

Simiiarly, the rolling effectiveness of a plane wing (or of a cruciform
wing with zero interference) is )

D" -

The ratio of the rolling effectiveness of a cruciform wing to that for

a plane wing is therefore
(C }
la/Clp
= 0.94
(cla/clé_ ‘

‘It is seen that the rolling effectiveness of a plane wing is reduced

6 percent by the insertion of a wing with similar plan form and surface
incidence in the vertical plane of symmetry. If no interference effects
exlsted between the horizontal and vertical surfaces of the cruciform
wing, this reduction would be zero. Although the coefficient of damping
in roll is 81 percent, and the coefficient of rolling-moment effective—
ness is 76 percent of their respective values with zero interference,
the combined effect of these reductions is to decrease the rolling
effectiveness only 6 percent. '
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‘CONCLUDING REMARKS

The rolling-moment characteristics of slender cruciform wings have
been investigated by a method based on low-aspect-ratio wing theory.
It was found that the coefficient of damping in roll (based on the area
of the horizontal wing) of a slender cruciform wing is 62 percent
greater than that for a slender plane wing having the same aspect ratio,
and that the rolling moment supplied by differential deflection of the
opposite. panels of the horizontal and vertical surfaces of a slender
cruciform wing is only 52 percent greater than that for a slender plane
wing in which the panels are similarly deflected. The rolling effec—
tiveness d(pb/2U)/dd of the cruciform wing having four panels deflected
was found to be 6 percent less than that of the plane wing.

The method may be applied to the investigation of the characteris—
tics of slender, egqual—span, cruciform wings which have any specified
distribution of normal velocities in the planes of the horizontal and
vertical surfaces.

A conformal transformation is given which may be used to investi-
gate the moment characteristics of a rotationally symmetric slender—
wing configuration consisting of any number of plane wings having a
common root chord. -

Ames Aeronautlcal Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Sept. 29,.1950.
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_ APPENDIX '

INTEGRATION FOR ROLLING MOMENT DUE TO DIFFERENTIAL INCIDENCE
OF THE HORIZONTAL SURFACE OF A SLENDER,

CRUCIFORM, TRIANGUIAR WING

The complex potential for the cruciform triangular wing is

iWoS ./_ /—' e cn2u ' )
= X —-2—-—-——— d_ . . G
u/\ —s2cn2u : S
o (a1)
e g
X2—520n2u H
_ ' J
Let
. ) K
1, - ,-au : ; (a2)
- Jy X“—s2cn2u Xz—s 1-[ 32/(82—X2)]sn2u 4
On the real axis
1 ' : du : -
Iy = =
1T P fK 1-[s2/(5252) JsnZa (83)
o .
The integral 'is of the form )
. , \
. /‘K du |
l-a12snu- o
o . ;
where ‘/’ (ALF)
g2 P
812 = 5552 (15a,2<>) !

This is- the standard form for the complete elliptic _integrai of the
third' kind with parameter a;. It can be expressed in terms of incomplete
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elliptic integrals of the first and second kinds, by use of Jacobi's
7eta and Theta functions (see reference 12, ch. 22) The result for the

stated range of values of a; 1is

/j | Hdus;zu J(alz_iitalz_ki‘? = (‘51‘)‘“@1‘) ] o

. From equations (Al), (A4), and (A5) 1t 1s found that the surface
velocity potential for the horizontal wing (z=0, -sSySs) - is

L. -+‘2 KJ—J;T},Z +2y [EF «/1—sx—2_’*f‘> KE< /_:, ./') }(A6

Substituting equation (A6) into equation (5), the rolling moment for
the horizontal surfaces is then

'L'H lmUwo fso {KA/— /5_0?,7+2Ey2F< /1- soz’ f)
2Ky2E( /1—8—2, ./'> , (A7)

The integrals in equation (A7) may be easily evaluated by integration by
parts. The result is

e ECPRUEC e

with

-

On the imaginary axis (—s <z<s) the integral in equation (Al) is
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Io = — : —
_/; z2+82¢cn2u
(a9)
-1 /K du
sZ+z o 1-[8%/(8%+2%) Jen®u
Let
2 ,
822 = — L2 (A10)
g2+4z2 2 '

By applying the Jacobian Zeta and Theta functions as previously noted,
it can be shown that®

__du . ot
/j Tez%an® m“mm%k“m% 2

where
(A11)
o o L1 [e22i® >
8 " as 1-k2
k2 Sax2S1 K2 + k%=1
J

From equations (Al), (A9), (A10), and (All), the surface velocity
potential in the plane of the vertical wing is

5]}

NP

q’v=iyn£ E‘£ st—z? -2z [(E-K)F</I—:E L +KE<
(a12)

SThis integral was obtained from a comprehensive table of complete
elliptic integrals of the third kind calculated by Paul Byrd, Ames
Iaboratory, NACA.
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Substituting equation (Al2) into equation (5), with y replaced by
z, and evaluating the integrals by parts, the rolling moment for the
vertical wing is )

\ Lty = _14-_[3 [E<£ + l) = EJ pPURds P | (A13)
31( . 2\2 ’
v.rith '
X = _l_ _ :
/2 -
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(b) x plane. - (¢c) ¢ plane. “NACA -

Figure 7-Cruciform wing with differential incidence
of the horizontal surfaces.



‘S9IDJINS |DJUOZIIOY
Yyl J0 aouaploul JDIJUSISSJIP YiM SBUIM 104 SUOIINGI1jSIp pOOT -8 84nbi4

buim wai0419n429 . - buim euo/d

NACA TN 2270

s- : . _ , A o
82044nS$
L& 1DDIJIIA

S
80044ns |DJUOZIIOY

30

NACA-Langley - 1-10-51 -1000



Wings, Complete — Theory 1.2.2.1

Theoretical Damping in Roll and Rolling Effectiveness
of Slender Cruciform Wings

By Gaynor J. Adams

NACA TN 2270
January 1951

(Abstract on reverse gide)

Missiles - Components in Combination 1.7.2.1

Theoretical Damping in Roll and Rolling Effectiveness
of Slender Cruciform Wings

By Gaynor J. Adams

NACA TN 2270
January 1951

(Abstract on reverse side)

Damping Derivatives - Stability 1.8.1.2.3

Control, Lateral 1.8.2.2

NACA

NACA

" Theoretical Damping in Roll and Rolling Effectiveness
of Slender Cruciform Wings

By Gaynor J. Adams :

NACA TN 2270
January 1951

(Abstract on reverse side)

Theoretical Damping in Roll and Rolling Effectiveness
.0f Slender Cruciform Wings

By Gaynor J. Adams

- NACA TN 2270

* January 1951

(Abstract on reverse side)




Abstract

The coefficient of damping in roll and the rolling
effectiveness (with differential incidence of the hori—

zontal surfaces) are determined for a slender, equal—span,
cruciform wing. It is found that thée coefficient of
damping in roll is 62 percent greater than for a plane
slender wing of equal aspect ratio, and that the rolling
effectiveness is 53 percent less than for a plane slender
wing of equal aspect ratio. The analysis is based on the
slender-wing theory. The method of analysis can be used
in the estimation of the characteristics of a slender,
equal—span, cruciform wing having any specified distri-
bution of normal velocity components on the horizontal
and vertical surfaces.

Abstract
The coefficient of damping in roll and the rolling

effectiveness (with differential incidence of the hori-—

zontal surfaces) are determined for a slender, equal—span,
cruciform wing. It is found that the coefficient of
damping in roll is 62 percent greater than for a plane
slender wing of equal aspect ratio, and that the rolling
effectiveness 1s 53 percent less than for a plane slender
wing of equal aspect ratio. The analysis is based on the
slender—wing theory. The method of analysis can be used
in the estimation of the characteristics of a slender,
equal—span, cruciform wing having any specified distri—
bution of normal velocity components on the horizontal
and vertical surfaces.
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Abgtract

The coefficient of damping in roll and the rolling
effectiveness (with differential incidence of the hori—
zontal surfaces) are determined for a slender, equal—-span,
cruciform wing. It is found that the coefficient of
damping in roll is 62 percent greater than for a plane
slender wing of equal aspect ratio, and that the rolling
effectiveness is 53 percent less than for a plane slender
wing of equal aspect ratio. The analysls is based on the
slender—wing theory. The method of analysis can be used
in the estimation of the characteristics of & slender,
equal—span, cruciform wing having any specified distri-—
bution of normal velocity components on the horizontal
and vertical surfaces.

Abstract

The coefficient of damping in roll and the rolling
effectiveness (with differential incidence of the hori-—
zontal surfaces) are determined for a slender, equal—span,
cruciform wing. It is found that the coefficient of
damping in roll is 62 percent greater than for a plane
slender wing of equal aspect ratio, and that the rolling
effectiveness is 53 percent less than for a plane slender
wing of equal aspect ratio. The analysis is based on the
slender-wing theory. The method of analysis can be used
in the estimation of the characteristics of a slender,
equal—span, cruciform wing having any specified distri-—
bution of normal velocity components on the horizontal
and vertical surfaces.
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