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SUMMARY

A partly linearized solution of plastic deformation of a
rotating disk based on the deformation theory of plasticity and
considering finite strains is obtained. The stresses and the
strains of this problem for a given material and a given maximum
strain can be obtained merely by a simple multiplication using the
tables presented herein. This method is used to investigate the
general plastic behavior of a rotating disk. An aspproximate method
is also given in which the stresses are calculated by using strains
obtained from the ideally plastic material and the tensile true
stress-strain curve of the material.

Numerical exemples are calculated by the two methods and
agree very well with the exact solution based on deformation the-
ory previously obtained. Calculations are also made for ideally
plastic material and for the power-function approximation for pur-
poses of comparison.

The following conclusions, similar to those resulting from
the linearized solution of the thin plate with a circular hole, are
obtained for this problem:

(1) The variation of a parameter, which is determined from the
octahedral shear stress-strain curve of the material, can be used
as a general criterion of the applicability of deformation theory.

(2) The ratios of strain along the radius to the maximum value
and the ratios of principal stresses are essentially independent
of the octahedral shear stress-strain curve of the material, but
the distributions of the stresses, and therefore the rotating
speeds of the disk, depend very much on the meterial.

(3) The results obtained from the ideally plastic material
with the infinitesimal strain concept give good approximate values
of strains but not of stresses.
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(4) The rotating speed of the disk for a given maximum strain
of the disk can be determined directly from the tensile true stress-
strain curve of the material.

(5) Good correlation between the experimentally determined
bursting speed and the calculated value determined directly from
the tensile stress-strain curve of the material is obtained.

(6) If a simple analytical function representing the octa-
hedral shear stress-strain relation is required for analysis, the
power-law approximation can be used.

INTRODUCTION

In the design of a high-speed or a highly stressed machine
member such as a turbine or a compressor rotor, the distributions
of stresses and strains in the strain-hardening range must be
known. The problem of a rotating disk for an ideally plastic
material was solved by Nadai (reference 1). A solution for gas-
turbine disks considering small plastic strain in the strain-
hardening range is obtained in reference 2 by a trial-and-error
procedure and by using elastic stress and strain distributions as
a first approximation. An experimental investigation for the high-
speed rotating disk is made in reference 3; distributions of plas-
tic strains (logarithmic strains) for different types of disk are
measured. The effect of strength and ductility on the burst char-
acteristics of rotating disks are experimentally investigated in
reference 4. An exact solution based on deformation theory for
plane plastic stress problems with axial symmetry (including a cir-
cular membrane under pressure, a rotating disk, and a thin plate
with a circular hole) in the strain-hardening range is obtained
in reference 5; numerical calculations are made for Inconel X and
Timken alloy 16-25-6. A linearized solution of plastic deformation
of a thin plate with a circular hole is given in reference 6. This
linearized solution is not only simple and accurate but also offers
a means of investigating the general plastic behavior of that prob-
lem for most materials.

Extension of this method to the problem having the additional
complication of body forces, such as a rotating disk, is therefore
interesting. (For a circular membrane under pressure, the normal
pressure can be treated in a manner similar to the centrifugal
force of a rotating disk.) The partly linearized solution obtained
at the NACA Lewis laboratory and presented herein is also used to
jinvestigate general plastic behavior for this problem.
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SYMBOLS

The following symbols are used in this report:

coefficients of nonlinear differential equations; functions
of a, v, and r/fk

original outer radius of rotating disk

trigonometric functions of a
instantaneous thickness of disk
initial thickness of disk
strain-hardening constant

arbitrary loading constant

constant, in dimension of length
parameter relating to strain hardening

parameter relating to criterion of applicability of deforma-
tion theory

radial coordinate of undeformed disk

radial displacement

axial coordinate

parameter indicating ratio of principal stresses
octahedral shear strain

logarithmic strain (natural strain), logarithm of instantaneous
length divided by initial length of element

angular coordinate

mass per unit volume

normal true stress, force per unit instantaneous area
octahedral shear stress

angular velocity
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Subscripts:
b at outer radius b
0 at center of disk

r,0,z principal directions:; radial, tangential, and axial directions

BASIC EQUATIONS

A disk having an original outer radius b and an initial thick-
ness hyn;4 rotating about its axis with an angular velocity
is shown in figure 1(a). A small element defined by AP and
A(r+u) taken at the radius (r+u) in the deformed state is given
in figure 1(b). In the undeformed state, this element is located
at r and defined by A8 and Ar. The instantaneous thickness h
of the element and the stresses acting on the element are also
shown in the figure.

The relations of stresses and strains based on the deformation
theory for plane plastic stress in the cylindrical coordinates are
(references 7 and 8):

€. +€g +€,=0 (1)
T="T(y) (2)
Alz’ z
2 2
T = (crz - 0, 0g + 092) (3a)
1
2
1t 1
fp = 3';'(Ur ) og) (42)
i 1
1 AL
€Z = -S—E- [— E (O'r e 0'9)] (4C)

The constants 1/2 and 1/3 in equations (4) are determined from the
condition defined by equation (1) and one of the equations (3).
Only five of these equations are therefore independent.
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The finite-strain concept (references 8 to 10), which con-
siders the instantaneous dimensions of the element, is used because
large deformation in the strain-hardening range is considered.

The stress is then egqual to the force divided by the instantaneous
area and the strain to the logarithm of the instantaneous length
divided by the initial length of the element (references 8 to 10).
It is mentioned in reference 5 that as long as the deformation the-
ory is applicable, the logarithmic strain can also be used. The
strain-displacement relations for this problem are then as follows:

d(r+u)
€. = log, e (5a)
CG = loge E—:TIE (Sb)
€, = log, h (5¢)
init

From the condition of equilibrium in the radial direction of
the small element in figure 1(b), the following equation of equi-
librium is obtained (reference 5):

d(o,h) r
(r+u) d_:_i_)- = (0g - 0,) h - p (or)? ny 4y % &—(i:—u) ()

Nine equations defining this problem are equations (1), (2), (3b),
(42), (4v), (5a2), (5b), (5¢c), and (6), which involve nine
unknowns: 0., Og, €,.,€9, €,, ¥, T, h, and u. Equetions (1) and
(5) cen be used to eliminate €¢,, u, and h, resulting in a com-

patibility equation. The equations defining this problem are then
reduced to six equations with six unknowns: o0,., 0g, €., €95 1>

and T, Two of the four unknowns, 0., Ogy €,, and €g, may be

eliminated by using equations (4a) and (4b) or (3b). The quan-
tity T is a known function of Y, which is experimentally deter-
mined from a simple tensile test. The problem is then reduced to
one involving three unknowns. Obtaining the solution of the
resulting equations is not, however, a simple matter. This diffi-
culty cen be avoided by using the following transformation (refer-
ences 1 and S5 to 7) because the yielding surface of plane plastic
stress based on the deformation theory is an ellipse:
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ce + 0., = 3N2 T sin

'\IchosoL

Rewriting the principal stresses as functions of T and a gives

r = \/% 1‘(q/g-sin @ - cos Q)
4\’% T(:\/S_sin o + cos a)

where T, which is a function of Y, varies with r and also with
load. With equations (7) substituted into equations (4a) and (4b),
the principal strains can be expressed as functions of v and «
as follows:

Ue -O'r

a

(7)

Og

5 Y _ (sin o -A/3 cos a)
2N/ 2

m
I

(8)

€9 2Y2 (sin o +4/3 cos a)

In these equations, the parameter o is closely related to the
ratio of principal stresses, inasmuch as

5‘1 ’\/B—Sinoz,-cosoc

Og '\/gsina+coscx.

and veries almost linearly with o for the range of « encountered
in the present problem, which is the same range as in the thin

plate with a circular hole as shown in figure 2 of reference 6.

By using the transformation, the equations for this problem are
reduced to the following two nonlinear differential equations,

which are to be solved with an experimentally determined func-

tion T(r):

A(ﬁ i +B(3) ¥ _ -
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or
> do CE - FB
K/ (r\  AE - DB
(€)
(9)
(5) dy FA -G8
k r\  EA - BD
d(E)
where
A=(,\/—?;cosoa+sina,)-(,\/_51non-cosa.)r—c—j_z—g T
Y dar T sin a@\pi
B = % n = S
(;\/_s1 a - cos a) (‘T o »\/E)T
-J%:YCOSC" —Y—-sincx,
2 > 3 sane A2
C =2 (cos a) e -\/;p(a)k) ‘F(l_:) e
D=(,\/3_sinor.-coson)¥
E=- (af3 cos a + sin a)’
—\’é cos a
5 Y
F =242 |1 - e j
f(TJu')
Using eguations (9a) and expanding the terms of e into a

series result in

¥ dr. SN
e = - = 2] oty D
CE - BF 2HL - 2Af3 HJ(,r = «/2 7
AF - CD = {8’ 243 HL |1 - 4 ( ')+JKTor
e i s B 1?(E
- - .12 _ yo Xﬁil-\/gl;f_
L J(TdY ZJTOYO

2 b

Yo)fl(a,r) - LKl(TTO)(%) £,(,1)

) fz(%Y)} .

T

(9p)
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where
-qf% (cos a)r
Al
fl(UvT) = 1l-e
3
,‘/; (cos a)y
=1 - —q/: (cos @) v + i (cos a) yé
7? sin a
fola,y) = e
. V.2 1(a
=1 + sin a| v + sinal v +=|—sino v + . ;
Nz 2 6 \W2
H = cO8 ¢
dJd = NJgholn a - cos a
Kl =,\/—.§'p(w}‘)2
3 To
L = N’S cos o + sin a

LINEARIZATION OF EQUATIONS

In eaquations (9b), the varisble T occurs not only in the

=
combingtion of ¥'%F as in the case of a thin plate with a circu-
lar hole (reference 6), but also in the loading term. As proposed

T
in reference 6, the term ; %F can be replaced by m, which is
equal to the slope of a straight line approximating the T{y) curve
on the logarithmic plot within the range of Y encountered along
the radius of the disk, vy, to v . Thus m is a function of ¥Y;

in other words, the value of m for one material is different for
different loads. The special case where a straight line is used to
epproximate the whole strain-hardening range of the 7(y) curve
of a given material on the logarithmic plot, so that m is con-
stant through the strain-hardening range, is the well-known power-
law approximation. As in the case of a thin plate with a circular

N

=
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hole, the power-law approximation gives very good approximate
results for this problem, as will be shown in the section "Calcu-

lations, Results, and Discussion.” The term ; %1 can thus be
g

replaced by m without appreciable error.

Furthermore, the term q/% %(g;) in equations (9b) can be
o

replaced by a constant C,, vhich is determined in a manner simi-

lar to that in the case of a thin plate with a circular hole (ref-
erence 6), as will be described. The terms r QI - é l : 8 T
in equations (9b) then become (m - Cyv).

The general information concerning the effect of the
T(r) curve of the material on the solution of this problem can be
obtained only if the quantity T /T, in the loading term can pos-
sibly be expressed as a function of (m - Clro). For any part of

the T(y) curve that does not deviate greatly from a straight
line in the strain-hardening range within the value of Y con-
sidered, Yo to 71y, the following equation can be written with

sufficient accuracy:

iy - (Yo‘Y)(%%)avaOl'< _FY—>:_O(%)&;| sy

o} o)

where <§1) is the average slope of T(y) from To %o 1y
av

dr
and (v,, T,) is a known point on the T(y) curve. The quan-
i ar
tity ;S (&F>av does not equal (m - Cyr,) but has a certain

relation to it. Results obtained in reference 5 show that the val-
ues of o and Y/Yo are not very sensitive to the 7(y) curve

-
of the material. If only a linear relation between B ) ak
To \d7/ gy
and (m - Cyy,) is retained, equation (10) becomes
0 T
T—O =1 - (1 - Y—o-) Co (m - Cﬂo) (10a)
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An spproximate value of Cl = 0.5, vhich is equal to the mean value

of q’% % i along the radius, can be used in equation (10a). The
1
o}

values of Yo, Tp/Yos @nd m are known for any point (v, To)-
By using the values of T/T = Tp/T, taken from the true octahed-

ral shear stress-strain curves of several materials and using equa-
tion (10a) and Y/r, = Tp/ros the constant Cp is then found to

be

CZ=2

A zero value of Co 1is used for the case of negative (m - ClYO),

because there is no negative slope on the true stress-strain curve
of any material. Thus:

T—T-J = 0 B (1 . fg) (m - Cyr,) (10b)

It may be noted that this relation is very approximate and is only
used to determine the variations of a and r/ro along the radius,

which are not sensitive to the T(y). curve of the material. For
the stress and rotating speed, which are dependent on the

T(y) curve, this approximate relation cannot be used. The
stresses are determined from the values of a and Y/YO obtained
by the partly linearized solution and the true octahedral shear
stress-strain curve of the material obtained from the tensile test.
The rotating speed is determined from the distributions of tangen-
tial stress and strain.

Substituting equation (10b) into equations (9b) and the result-
rar o1y

T ay 24d 1% Yo

by (m - Cyv,), and neglecting the small terms (as in reference 6),

ing equation into equations (9), replacing

the following equations are obtained:
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R e e
- [+ @] @

1 ?(11)
D) el BERcl-Dean] Jr
[+ () e ] J

Let

n=m-Cy 7, (12)
In equation (12), once the value of o is chosen, m can be
determined from the T(y) curve of the material; C, 1is a con-

stant and n is therefore a constant determined from the
T(y) curve of the material. Substituting equation (12) into equa-
tions (11) gives

2ty |

Rd M |
@ e

S
@ b3k alele
Jo/ _ 8H 8H 7o o
2 a
4 ~_T) x
|EL+(L n](k) y,
In equations (13), all the terms are functions of a, v/r,, and

r/k except Ki, which is an arbitrary loading constant, and n,
which is also a constant during the calculation. The values of «

dao _ 2

(13)
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and 7v/v, can be obtained along r/k until o reaches the value
that satisfies the outer boundary condition (a = %). Because r
at the outer boundary is equal to Db, the constant k can be

determined. (For details, see reference 5.) The variations of «
and Y/TO with r/b for different values of n can then be cal-

culated. Compare the values of a and Y/Yy along r/b obtained
o)

from equations (13) for several values of n with the values of «
and Y/Yo along r/b obtained in reference 5. (The values of n

for these last cases are calculated from equation (12) with the
approximate value C; = 0.5.) The variations of o and Y/r,

with r/b having the same n values obtained from equations (13)

and from reference 5 are quite close; therefore Cl = 0.5 can be

used and equation (12) becomes

n=m-0.57 (12a)

O

The relations of a and ¥v/r, with r/o for several values of n

are given in both tabular and curve form to facilitate solution of
this problem for any material under any maximum strain. This
method of determining the distributions of a and v/r, along r/b

will be referred to as the "partly linearized solution."

PRINCIPAL STRESSES AND STRAINS

After the variations of o and Y/ro with r/b are obtained

by the partly linearized solution, the principal stresses and
strains can be obtained from equations (7) and (8) together with
the actual T and y relation of a given material. The equations
show that €./v, €g/v, 0./T, and 0g/T are functions of a« only;

they can be calculated for different values of o and given in
tabular form to facilitate solution of any given case. Equa-
tions (7) and (8) can be written as

o, /7 =»\F§- (N3 sin « - cos «)
(72)

ag/T =\]§ (a3 sin @ + cos )
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]

W 212 (sin o -r\/:":_cos @)

<'

o (8a)

co/r Zo\/_2_

The values of principal stresses and strains can then be obtained
by simple multiplication.

(sin « +'\/3— cos a)

It is usually interesting to know the ratios of maximum and
minimum tangential stress and strain, because the rotating speed
of the disk is mainly determined by the tangential stress and
strain along the radius. The maximm tangential stress and strain
occur at the center of the disk; at r = 0,

Jdg = 0n.

a ==
° 2

The minimum tangential stress and strain occur et the rim of the
disk; at r = b,

°r=0

sz

ol 8

From equations (7), the ratio of maximum to minimum tangential
stress is

(69)0 7o( A3 sin
(Ge)b ) Ty :\/-3- sin

From equations (8), the ratio of maximum to minimum tangential
strain is

+ cos %)
2 T

LD
b

(2] P- W IaGT I

+ cos %)
6

+ N3 cos

nof A

(€ 9)0 To(sin

(€9)b i 7 n
1y, (sin § *A3 cos -6-)

b1
E) Ts
- r,
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IDEALLY PLASTIC AND APPROXIMATE SOLUTION

For the case of n = 0, equations (13) become

K k2
() 1 % (£) LED

(3

Y N
PO
Yo _<8H> €H o
i (E)
k
Equations (13a) and (13b) can be integrated numerically; these equa-
tions are much simpler than those for the cases of n % 0. For

ideally plastic material with the infinitesimal strain concept,
T is infinitesimal and m = O; the constant n 1is then equal

(13pb)

to zero; this case is a special one of n = 0. For this case,
Nadai (reference 1) obtained a similar relation between a and
r/b as equation (13a).

Equations (13a) and (13b) can also be used to determine
approximately the variations of o and Y/YO with r/b for a

material with n # O. An approximate method of solution is there-
fore proposed. The procedure of the approximate solution is as
follows: Use the variations of « and Y/vr, with r/b for

n = 0 (or for ideally plastic material with infinitesimal strain)
as the approximate solution of the variations of a« and Y/YO

T
‘rom the approximate relations of «, Y/YO, and r/b because the

with r/b. The principal strains ¢y and €. can be calculated

strains are functions of o« and Yy only. The stresses, which
are functions of o and T, can be calculated from equations (72)
by using the tensile true T(y) curve of the material and the
relations of «, Y/YO, and r/b determined for n = O.

ETERMINATION COF ROTATING SPEED OF DISK

The rotating-speed function p(mb)z can be determined by con-
sidering a circular sector as shown in figure 1(c). The radial
component of force acting on the sector due to oy 1s equal to

. 21Z28c.rc
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b

%? a(r+u) dr

- 209h sin
dr

0
The centrifugal force on the same sector is equal to
b

2
phynit r(48) o° (r+u) dr

From the condition of equilibrium of the sector in the radial
direction, the following equation is obtained:

b b

o, h dfr+u) dr = h, pr (r+u)r ar
0 e ar 0 init

or
1

-€
e
0'68 d<%‘)

L&

The value of p(a)b)z is then determined only by the tangential
stress and strain. Accurate values of p(a)b)2 can be obtained by
substituting into equation (15) the tangential stress and strain,
Og and €4, calculated from the linearized solution.

Be) =

APPROXTMATE VALUE OF ROTATING SPEED OF DISK DETERMINED
DIRECTLY FROM TENSILE STRESS-STRAIN CURVE OF MATERIAL

If only the approximate value of the rotating-speed func-

tion p(wb)? is required, equation (15) can be made even simpler.
Consider first the denominatog because it is a function of )

and r/b only. Expanding e £ into a series, the denominator
becomes

15
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where T is a constant and can be taken out of the integral sign.
Thus the denominator of equation (15) becomes

€6 (r\% [r 1 £
oe (B') d(B-)=-3-+G1*fO+GZYO+... (162a)

where Gy, Gp, and so forth are integrals, which are functions of a,
Y/TO, and r/b only. The integrals are given in table I.

The integrals can be calculated using the values of o« and
Y/Yo along r/b obtained from the approximate solution. The var-
iations of « and v/y, with r/b are independent of material
according to the approximete solution.

The numerator of equation (15) is a function of Ogs €g» and
r/b. The tangential strain €g can be treated in a manner similar
to that used for the denominator. The tangential stress Og can
be written as (oe/T)T, where 0p/T is a function of «, and T
can be written as an approximate function of y; thus

" . -
8 e m
Ggh= (T)T = (TT_) Ky

where m is the slope of a straight line approximating the tensile
T(y) curve of the material on the logarithmic plot within the
range of Yy encountered along the radius of the disk Ty T T4

and K 1is a constant that can be determined from the actual
T(y) curve within the same range of Y. The integrand of the
numerator thus becomes:

Y
O
- il —=
<o u (%) [+ % g (n oge - +<g)
0'98 = KYO == -] e = TO <7 e
T‘O

.
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Expanding the exponential function of e into a series gives

YO
—(m loge —Y—_- <3 €9)
e

Y il T
o al 0 pra 1 | (o) %)
= 1-(m log, ;;-+c9)-+§T (m log, 3;~+€9) - 37 (m logg 17*'66) + .
35
To @ To,2 n Yo
=1 - m log, = (Log, = ~ig7 ( o8e — + 2
o _9 L TO -+ o _6 L loge .—g = n.l__ TO .6_9_ = (l ge _2) +
N To A S 1
2 2 2 a 2 2
To [F8) {1 _ e Gﬁ%) l%) (i =2y +
t = 8e *
2 ¥ g 2t \r °

5. aig T8
Y_o_(_@_) L) "
3t Vo To

The values of m and Yo remain constant along the radius and can

therefore be taken out of the integral sign; thus the numerator of
equation (15) becomes

9 e 2 3
. oge d(ﬁ) = 7(Ip - I1m + Iom™ - Izm” + .

- Iy, + Igmgiees o & (16b)

The integrals Ios I3, Ip, Iz, I4s I, and so forth are functions
of o, Y/To, and r/b, and are independent of material according

to the approximate solution. These integrals are also given in
teble I. Substituting equations (16a) and (16b) into equation (15)
and neglecting the small terms result in

v %,
p(a)b)Z ~ IO = Ilm + Iz.rﬂ = I3m = I4:YO -3 Isnl‘fo
T =

e
3 e - (17)
gt ¥y + Garg
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The values of I - Gl’ and G2 are calculated from the

G
formulas listed in table I by using the «a, Y/Yo, and r/b rela-

tions obtained in the case of n = 0 (the approximate solution).
These values are as follows:

I, | 2.3050" | Tg[0-6239
I, |2.0281 || 15| .3514
1.3151 || Gy | .0537

15 .6362 G2 .0047

Equation (17) shows that p(wb)z/To is a function of m and Y.
The value of Ta is the maximum value of Y in the disk. Once
the value of v, is selected, m can be obtained from the tensile
T(y) curve of the material within the range of Y considered

(rp, to 714 Tp/Y, 1s approximately equal to 0.15), and T, is
the value of T corresponding to LS taken from the T(y) curve
of the material. Equation (17) thus gives the epproximate value

of p(ab)z, vhich is directly determined from the tensile stress-
strain curve of the material. Curves of p(wb)z/TO against T,

for different constant values of m can be calculated and plotted.
The value of p(wb)z/To can then be read directly from the chart
for given values of m and vy,.

CORRELATION BETWEEN EXPERIMENTAL BURSTING SPEED AND
CALCULATED VALUE DETERMINED DIRECTLY FROM
TENSILE STRESS-STRATN CURVE OF MATERIAL

It is interesting to compare the experimentally determined
rotating speed corresponding to a value of Yo at the center of

the disk with the rotating speed predicted from the chart (or equa-
tion (17)) mentioned in the previous section. In order to deter-
mine these speeds experimentally, it would be necessary to measure
Yo at the centers of the rotating disks during operation. Such

data are unavailable in the literature to the best knowledge of
the author. If it is assumed that fracture in the rotating disk
takes place at the same value of 1, as the fracture octahedral

shear strain in simple tension, then the data in reference 4,
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together with additional data obtained at the Lewis laboratory for
the work reported in reference 4, are sufficient to allow comparison
between prediction and experiment.

The predicted rotating speed is determined directly from the
tensile octahedral shear stress-strain curve of the same material
as the disk. These curves are calculated from the unpublished
tensile test data for reference 4. The tensile specimens were cut
in the radial direction of the disk of the same material and same
heat treatment. The specimen was 3.00 inches long with a 1.00-inch
gage length. Detailed dimensions of the tensile specimen are
given in figure 4 of reference 4. During the tensile test, the
load-elongation curve was obtained by a recording extensiometer.
The original and breaking diameters of specimens were measured
before and after the experiment. The load at which the. specimen
broke was read from the dial of the tensile machine. From these
data, a T(y) curve of the material can be obtained. First, cal-
culate T and Yy by using the values taken from the load-
elongation curve up to the meximum load point:

i =‘\/§ g =»\/—2- log, (1+417)

where
Al elongation of l-inch gage length
A instantaneous area

AO original area

o~

instantaneous length
{/ original length
12 load of tensile specimen

The T and Y relation cannot be obtained from the tensile
load-elongation curve after the maximum load is reached because
of the nonuniform elongation within the gage length. However, the
T and y at fracture can be calculated from the original cross-
sectional area, fracture area, and fracture load:
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oo Sl
)
(18a)
Ay
Ter =‘\/5108e Wil
i

where the subscript fr means at fracture. Plot the 7T and Y
relation obtained on a logarithmic scale. Draw a straight line
to approximate the T(y) curve in the range of Yfr(rb/ro) tBR i s

for a solid rotating disk, Tb/TO is approximately equal to 0.15
(for the case of n = 0). The slope of this straight line gives
the value of m. Find the value of p(wb)z/‘rO corresponding to m
and Y, =Yg, from the chart. The predicted value of p(w’b)z when
the disk bursts will be equal to [P(wb)z/Téler by assuming the
disk breaks when the maximum 7Y in the disk (To at the center

of the disk) reaches the value of Top in simple tension.

CALCULATIONS, RESULTS, AND DISCUSSION

In order to observe the degree of the approximation resulting
from the use of a power function representing the octahedral shear
stress-strain relation over the complete strain-hardening range
(power-law approximation), a calculation is made with the follow-
ing relation between T and 7v:

7(y) = 126,000 y°%°

The - constants are chosen to approximate the T(y) curve of
Inconel X over the whole strain-hardening range, as shown in fig-
ure 2. In figure 3, the variations of «, v, 0., 0g, €., and €g

with r/b for the case of v, = 0.30 obtained by the power-law

approximation are compared with the values obtained from the actual
7(y) curve of Inconel X; it can be seen that the power-lew

approximation gives good results. These results indicate that

2y
replacing the term ‘2 %F in equations (9b) by m should introduce
very little error. Also, if a simple analytical function of =~ (Y)
is desired for analysis, the simple power function representing
the T and Y1 relation of a given material will give a very good

approximation.
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The values of o and Y/YO along the radius are calculated

for n=--0.05, 0, 0.1, 0.2, and 0.3 from the partly linearized
equations (13). The variations of o« and Yv/fr, with r/b for

the different values of n are piotted in figure 4; these values
are given in table II. The values of a and y/y, along r/b

obtained in reference S5 for 16-25-6 and Inconel X are plotted

in figure 5; the values of n for these cases are calculated from
equation (12a) and indicated on these curves. The curves obtained
from the partly linearized solution in figure 4 having the same
range of values of n as those obtained from reference 5 are also
plotted in figure 5 for comparison. The curves for the same

n value of the two solutions agree very well for most cases. For
simplicity, the solution based on the deformation theory obtained
in reference S5 is designated the exact solution. The simple rela-
ftiongn = m - 0.5 7o can then be used as a good approximate cri-

terion to find the variation of o and Y/YO with r/b for dif-

ferent materials and different maximum strains. This generality
leads to a general criterion of epplicability of the deformation
theory of plasticity to this problem for any material in the strain-
hardening range. The criterion is that if the value of n for a
given material is constant or approximately constant in the strain-
hardening range, the deformation theory can be applied to this
problem for the material. For the special case of infinitesimal
strain, the condition of n being constant reduces to m being
constant, which is the same condition cobtained by Ilyushin
(reference 11).

In figure 4(a), the maximum variation of « is about 15 per-
cent whereas n varies from -0.05 to 0.3. For most materials, m
increases with 7Y; thus it can be seen from equation (12a) that
m and y affect n in an opposite sense, so that n does not
change much with strain. The value of n for most materials of
any maximum strain Yo Varies from -0.05 to 0.3 (references 12

to 14); only a small part of this variation is due to the varia-
tion with strain for a given material. The variation of o during
loading is expected to be very small for most materials; conse-
quently the deformation theory of plasticity is applicable to this
problem within engineering accuracy.

The values of o./1, og/r, €./v, and €p/y are calculated

from equations (7a) and (8a) for the range of « considered and
are given in table III. The distributions of principal stresses
and strains are obtained by the partly linearized solution for the
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cases of T, = 0.3000 for Inconel X and 1, = 0.4400 for 16-25-6.

These results are plotted in figure 6. The results obtained by
the exact solution are also plotted for comparison. The examples
with T = 0.3000 for Inconel X end 71, = 0.4400 for 16-25-6, with

the values of n equal to 0.15 and -0.05, respectively, are
chosen because they give the largest deviation of the examples con-
sidered between the partly linearized and exact solutions in curves
of « and.‘r/ro against r/b. For v, = 0.3000, Inconel X,

n is equal to 0.15 and the values of a and Y/YO corresponding

to different values of r/b can be obtained from table I by lin-
ear interpolation. In figure 6, the principal stress and strain
distributions obtained by the partly linearized solution are shown
to agree very well with those obtained by the exact solution, even
for these two cases that have the largest deviation of the varia-
tions of o and T/YO with r/b between the two solutions. For

the rest of the cases, the o and Y/Yo curves obtained by the

two solutions are approximately the same; therefore the distribu-
tions of principal stresses and strains will also be practically
the same.

The variations of o and Y/YO with r/b obtained by the

approximate solution are the same as those for the case of n = 0
in figure 4. The principal strains obtained by the approximate
solution and the exact solution are plotted in figures 7(a) and
7(b) for 16-25-6 and Inconel X, respectively. The stress distri-
butions obtained by these two solutions are plotted in figures 7(c)
and 7(d) for 16-25-6 and Inconel X, respectively. The stresses
and the strains obtained by the approximate solution give fairly
good results.

The variations of «, T/vy, 69/(€9)O, and ¢./(e.), with

radius for ideally plastic material are the same as those obtained
by the approximete method. The principal stresses for the ideally
plastic material with Y, equal to 0.4400 and 0.3000 are also cal-

culated. In this case, T is constant and is chosen equal to the

To for which the solutions are being compared. These distribu-

tions of principal stresses along the radius as well as those
obtained by the partly linearized, exact, and approximate solutions
are plotted in figures 8(a) and 8(b) for the case of 71, = 0.4400

for 16-25-6, and Y, = 0.3000 for Inconel X, respectively, for com-

parison. It is seen from these figures that the stresses (espec-
ially the tangential stress, which is the most important part of
the solution) obtained by the ideally plastic material are not good
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- enough to represent the actual results. The curves obtained by
the three other methods agree very well. These results also indi-
cate, as in the case of the thin plate with a circular hole (ref-

” erence 6) that the ratios of strains along the radius to the maxi-
mum value and the ratio of the principal stresses are essentially
independent of the 1T(y) curve of the material and the maximum
strain of the disk, but that the stresses are very much dependent
on the material. The conclusions obtained in reference 5 for the
problem of the rotating disk (with body force) of Inconel X and
16-25-6 are then extended to most materials.

The rotating-speed function p(a)b)2 is calculated from equa-
tion (15) by using the values of Og and €g obtained in the

partly linearized solution for Inconel X and 16-25-6. These values

of p(wb)z and those obtained from the exact solution are plotted
against vy, in figure 9. The loads obtained by these two methods

are practically the same (the two curves coincide). The relations
between the approximate value of p(wb)z/n) and Yo, for several

values of m are calculated from equetion (17) and plotted in fig-
ure 10. The variations of load p(wb) with Yo for Inconel X

and 16-25-6 are obtained from figure 10 and are plotted in fig-

- ure 9 for comparison. The values obtained by the approximate sol-
ution are also very close to the values obtained by the exact
solution. The percentage deviation of p(wb)2 of the approximate
solution from the exact solution is much less than the percentage
deviation of tangential stress and strain. This can be explained

by the fact that p(a)b)2 (equation (15)) increases with increas-
ing value of 0g but decreases with increasing value of €g;
values of 0y and €g obtained by the approximate solution

(fig. 7) differ from those of the exact solution in the same
direction; hence the part of error cancels. The percentage devia-
tions of radial stress and strain in some cases are quite large,
but fortunately these quantities do not enter in the calculation

of pl(wb)”.

Use is made of figure 10 to calculate p(wb)z from the tensile
stress-strain curve of the same materials as the solid disks con-
sidered in reference 4. (In this reference, data were obtained
for disks that showed no imperfections upon X-ray and surface
inspection and for disks in which defects did exist. For the
Present purposes, only the disks having no defects were considered.)
From the load-elongation curve, original diameter, final diameter,

. and fracture load in tension, which data were obtained at this lab-
oratory for the work reported in reference 4, the 7(y) curves of
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these materials vere calculated using equations (18) and (18a) and
are plotted in figure 11 on a logarithmic scale. Six materials
(SAE 1078 steel of two different heat treatments, beryllium-copper
alloy of three different heat treatments, and one nickel-base
alloy) are considered. For simplicity, these materials are herein
designated materials A, B, C, D, E, and F. The values of Tp.

and Top for these materials are given in table IV; the reduction

in nonnecked diameter, which was used as a parameter in some fig-
ures of reference 4, is also given in table IV in order to corre-
late the results given in reference 4 and herein. (This reduction
in nonnecked diameter is the reduction in diameter in the region
of uniform strain of the specimen.) In table IV are listed the

values of m and p(wb)“, which are calculated by taking To at
the center of the disk equal to Yg, of the tensile test, except
for material C. Because the load-elongation curves of the tensile
test show that material C has a large necking effect, several val-
ues of p(wb)z for different Y, between v = 0.1342 (the 7t
at the maximum load of the tensile test) and Yep Were calculated
and are given in table V. It can be seen that the calculated
rotating-speed function p(cnb)2 increases to a maximum at

To = 0.3 to 0.4 and then decreases. This fact indicates a case

of instability of the rotating disk.

The experimentally determined values of p(wb)? are also
given in table IV. The percentage difference of calculated p(a)b)2
to the experimentally determined p(wb)2 as well as the percentage
difference of calculated w to the experimentally determined
is given in the same table. t can be seen from these values that
the percentage difference in w 1is small. More reliable calcu-
lated values of p(wb)? may be obtained, however, if: (1) the
T(T) curves obtained from the tensile test are corrected for the
triaxiality and nonuniform stress distribution introduced by neck-
ing, and (2) the 7T(vy) curve of a few tangential tensile specimens
taken at different radii of the disk (including a specimen passing
through the center of the disk) are used, because the material of

the disk is not auite uvniform and p(oob)2 is a function of ¢y,
0g, and r/b, as shown in equation (15). The calculated values of

,o(cub)2 at disk failure are plotted against the experimentally deter-

mined p(wb)? in figure 12. It can be seen that these points are
slightly above the 45° straight line. Calculations based on
7(r) curves of tangential tensile specimens may give lower values.
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It should be emphasized that all the results and discussion
are only true for this problem under plastic deformation in the
strain-hardening range in which the elastic strains are small com-
pared with the plastic strains and there are neither time and tem-
perature effects nor unloading.

CONCLUSIONS

The results obtained for the rotating disk in the strain-
hardening range, in which the elastic strains are small compared
with the plastic strains, lead to the following conclusions, which
are similar to those obtained in the case of the thin plate with a
circular hole:

1. The results obtained by the partly linearized solution
agree very well with those obtained by the exact solution based on
the deformation theory of plasticity. The amount of computation
is greatly reduced by the partial linearization. The stresses and
the strains can be obtained for any material under any maximum
strain by a simple multiplication using the tables or curves given
in this paper.

2. The variation of a parameter, which is determined from the
tensile-stress-and-strain curve of the material, can be used as a
simple general criterion of the applicability of deformation the-
ory for this problem.

3. The results previously obtained for Inconel X and 16-25-6,
namely, the variation of the ratio of the principal stresses with
radius and the ratios of the strain along the radius to their maxi-
mum value are essentially independent of the octahedral shear
stress-strain relation of the material but that the distributions
of the stresses depend very much on the material, are extended
to most materials.

4. Results obtained for the ideally plastic material with the
infinitesimal strain concept give good approximate values of prin-
cipal strains but not principal stresses.

5. Sufficiently accurate values of principal stresses can be
obtained by an approximate method in which the stresses are cal-
culated by using the strains obtained from the ideally plastic
material together with the actual octahedral shear stress-strain
relation of the material.

25
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6. The rotating speeds of the disk obtained by the partly lin-
earized solution are practically the same as those obtained by the
exact solution; and those obtained by the approximate solution, in
which the rotating speeds are determined directly from the tensile
stress-strain curve of the material, are also very close to the
exact value.

7. Good correlation between experimental bursting speed and
the calculated value determined directly from the tensile stress-
strain curve of the material is obtained.

8. If a simple analytical function representing the octahedral
shear stress-strain relation is required for analysis, the power-
law approximation can be used.

Lewvis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 23, 1951.
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TABLE II - VARIATION OF a AND v/y, WITH r/b

FOR VARIOUS VALUES OF n

29

& n=-0.05 n=20 n=0.1 n=0.2 n=0.3
g L v, | o/ | v/, | z/v | i sie | vl el gt
1.57080.0000{1.0000 |0.0000|1.0000|0.0000} 1.0000| 0.0000{1.0000(0.0000f1.0000
1.5675| .0480| .9850| .0510| .9850| .0600| .9850| .0690| .9850| .0800| .9850
1.5615] .0750) .9675) .0900 9675} .1010] .9675] .1140] .9675) .1260] .9675S
1.5480| .1170| .9250] .1325 9250| .1585| .9250] <X780] 9250[NS20SAIN.SE50
1.5500| .1555| .8700| .1780| .8710| .2050| .8730] .2350| .8750| .2720] .8770
1.5045| .2025| .8010| .2250| .8030| .2580| .8060| .2970| .8090| .3380| .8120
1.4820| .2370| .7490| .2600| .7500| .2970] .7550] .3400 7590| .3840| .7630
1.4490( .2820| .6780| .3050| .6820| .3475| .6880| .3930| .6920| .4400| .6960
1.4105] .3280] .6100| .3510| .6150| .3975} .6210| .4420 6280] .4910] .6350
1.3670| .3775| .5420| .4000| .5480| .4460| .5580| .4920| .5675| .5410| .5760
1.3180| .4280| .4790| .4505| .4875| .4950| .4995| .5400 5120| .5900| .5210
1.2635| .4820| .4200| .5025| .4295| .5450( .4450( .5890| .4575| .6370| .4710
1.2045| .5350| .3690| .5540| .3790| .5940| .3950| .6360| .4120| .6800| .4250
1.1400| .5880| .3230| .6060| .3345| .6440{ .3520| .6830| .3695| .7230| .3850
1.0705| .6440| .2840| .6600 2950] .6930f .3145] .7290| .3325] .7650] .3500
.9965| .7000| .2505| .7150| .2610| .7440{ .2820| .7730] .3000| .8050| .3175
.9175| .7575| .2220| .7700| .2330| .7930{ .2525| .8170} .2720| .8440] .2915
.8330| .8140| .1975| .8240| .2075| .8420{ .2280| .8610 2480| .8820| .2690
.7430| .8710| .1760| .8780| .1870| .8920f .2070| .9040 2270 .9180| .2490
.6465| .9290| .1590| .9330| .1690| .9410{ .1900| .9490} .2100| .9560| .2310
.5236]1.0000] .1430J1.0000| .1520{1.0000f .1720}1.0000| .1930}1.0000] .2150




30

WACA TN 2367

TABLE III - VALUES OF or/‘r, ce/T, cr/y, AND ee/r

FOR CORRESPONDING VALUE OF «

o o,/ og/T € /v colv
1.5708 |12.1213'" 2.1215 | '0.3536 ] 0:3536
1.5675 | 23072 2.1255 s951S 2 9D96
156150 20988 2.13526 .3478 <5592
1.5480 | 2.0929 | 2.1487 : 5595 3674
1.5300 [ 2.0696 | 2.1695 o283 0132
1.5045 | 2.0355 |-2.1978 D122 209535
1.4820 | 2.0044 | 2.2216 .2979 4065
1.4490 |1.9568 | 2.2544 2765 4255
1.4105 | 1.8986 | 2.2896 Y2515 4468
1.3670 111 .8295 | 2.5253 A 4702
1.3180 [1..7476 | 2.3602 .1892 .4955
1.2635 |1.6515 | 2.3924 <1518 DS
1.2045 [1.5419 | 2.4192 .1108 .5494
1.1400 |1.4160 | 2.4389 .0655 D110
1.0705 |1.2738 | 2.4488 .0165 .6040

,9965 |1.1157 | 2.4463 | -.0358 .6295

L9175 9401 | 2.4289 | -.0915 .6530

8330 7458 | 2.3935 | -.1503 6735

A4S0 YSB5L |I255570 | =L 218 .6902

.B8465 23003 1 2.2555 | —.2758 <TOL8

. 556 0000 | 2.1213 | -.3536 S TAOlAL

*‘!ﬂ‘”"’




TABLE IV - DISK MATERIALS, TENSILE-TEST PROPERTIES, CALCULATED AND EXPERIMENTALLY

DETERMINED BURST SPEEDS OF ROTATING DISK

Burst speed

Tensile-test properties Celculated from Experimentally| Difference Difference
tensile T(y) curve determined of calcu- of calcu-
= LR - - - p(wb)z lated to lated to
Material®|Reduction in Too T Calculated| Average experimental |experimental
nonnecked (in range 2 |calculated 2
. o(wb) p(wb) @
diameter of p(wb)z
(percent) TFr(Tb/Yo) (percent) (percent)
to Yfr)
Steel,
SAE 1078 3 . .
A 20 68,900 0.186 5.61 386 X 10 382.5% 10° 381.5 x 10° 0.26 (05155
65,800 < L70 BT 379
B CARSS 52,500 o159 SR A 301 309 28951 5.54 Sl
58,000 TS 5.47 sl 292.8 oL 19 2.56
Beryllium
copper
C 6.0 78,120 «192 324 3310.2 4.51 2,108
D 9.0 78,300 413 212 2062 2381 1.40
E 169 76,000 .480 1397 .8 191 .4 S.19 1
Nickel-
base
alloy
F 8.2 94,700 <205 450 445 433.9 2.56 1.34
89,500 .294 440 428.2 3.92 2.02

8Two different heat treatments for SAE

1078 and three different heat treatments for beryllium-copper alloy.

L9g2 NI VOVN

e
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TABLE V - RELATION BETWEEN ROTATING SPEED p(wb)z

AND MAXTMUM OCTAHEDRAL SHEAR STRAIN AT CENTER

OF DISK FOR MATERIAL C (BERYLLIUM-COPPER)

; 9 Té m p(wb)z/To Calculated
from fig. 10| p(wb)?
0.1342 | 54,560 | 0.092 6.04 330 x 103
.2000 | 58,000 112 5.80 336
.3000 | 62,800 TN 538 3357
.4000 | 66,200 .162 5.10 337
.5000 | 69,800 <185 4.81 536
.8224 | 78,120 192 4.15 324

NACA TN 2367
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(a) Rotating disk.

(c¢) Sector.
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Figure 1. - Rotating disk, an element, and a sector in deformed state.
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Octahedral shear strain, vy
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