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METHODSOF CALCULATION INVOL~ IN THE ~

AN AUTOPIZOT AND THE AU’U3PILO!HUXRAFT COMBINATION

By LOUiS H. Smaus and Elwood C. Stewart

SUMM!4RY

mthods are presented for making the v=ious calculations
required for the analysis o~ an autopilot and an autopilotitrcr~ com-
bination from frequenc~sponse data. Equations are derived for deter-
mining the servo-system error voltage for both displacement input signal
and displacement plus rate of displacement input signals, the autopilot
frequency response for addition of rate of dlsplacem3nt input signal,
the serv~stem frequency response for a chsmge of gain, and the rek
tion between ope~loop W closed–loop frequency responses for the
servo system ad for the autopilotaircraft coribimationoWhere possible,
comparisQnE are made between e~rimadml data and calculated responses
using the equations developed.

IN’lRODUCTIOli

The concept of predicting the dynamic stability of an autopilot–
controlled airplane from the individual frequency responses of the autm
pilot and aircraft is well known. The basic theory may be readily
obtained from texts on servo~chanisms such as reference 1 and has been
applied in several NACA reports, of which reference 2 gives a compre-
hensive survey of the techniques developed and a bibliography of the
field. However, in the course of conducting exprhntal work to eval–
uate and analyze the performance of a particular autopilut-ircraft cob
bination it was found necessary to derive from the basic theory several
analytical mthods and formulas for handling experimental data. me
combination studied is t~ical of autopilokircraft systems, being of
the positio~ontrol ty-pewhich is characterized by feedback of angular
displacement and rate of angular displacement. Hence, the methods and
formulas should prove useful to others investigating similar systems. A
block diagram showing the components of such a system is given in
figure 1.

One limitation to predicting stability by the usual mthods is that
the theory applies only if the entire system is linear.in operation. In
practice, the system is linear only over a limited rsmge of omration and
it becoms important to how the extent of this range in order that data
may be obtained for the system in linear o~ration. A common source of
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nonlinearity occurs in the servo’system and is referred to as saturation.
When a certain level of servo+ystem error voltage (volts@ input to the
servo amplifier) is exceeded, one or more components exhibit saturation
and the output-input relation is no longer linear. Although the error
$oltage can be masured directly when obtaining the frequency response
of a closed–loop system, frequently it is easier to determine its limit-
ing value by making a few sample calculations using the input and optput
data. Formulas are derived for the calculation of error voltage for
either displacemmt signal or displace~nt plus rate of displacemmt
Signel. Thus, input signals to the autopilot may be chosen such that
the serv~ystem error voltage does not exceed the value which would
cause partial saturation, emi the entire system will operate in the
linear range.

When the autopilot is combined with the aircraft, an additional
signal, the command input signsl to the combination, affects the error
voltage to the servo smplifier. The error voltage fa this case is
treated in the discussion of %he complete system.

The most accurate way of determining the frequency response of the
autopilot where both displacemmt and rate gyros are used is to mchan-
ical.lyoscillate the gJros. Not only does this require an oscillating
table drive but a great many tests have to be made to adequately cover
the range of possible values of displacement and rate. Hence it may
prove expdient to calculate the rate response for any desired amount of
rate signal from the ~o characteristics and the masured serv~ystem
response for displace~nt signal only. The response for displacement
signal only can be readily determined using a sine+rave generator to
simulate the electrical signal from the displacemmt gyro. I?romrela-
tively simple measurements of the rate gyro its steady-state charactep
istics my be obtained. The natural frequency and damping ratios are
usua13y such that the variations of phase angle and amplitude ratio are
negligible over the frequency range of interest for the autopilut-
airplane cotiination. The nmthod for computing from the above data the
autopilot freqummy response for vsrious amounts of displacemmt and
rate of displacement is given.

In a stability analysis of the enttie system, conditions for cok
bining autopilot and aircraft responses might necessitate obtaining a
servo response at some particular value of servo-loop gain for which
tests were not made. Ws ~ be the case when the stability of the
autopilat-aircraft coribination is controlled in part by the servo
fol.loy-p potentiometer which at the same tim alters the serv~ystem
gain. It then becoms convenient to be able to calculate the servo
response at this new value of gain using the data obtained with some
other value of gain. Equations are derived for performing this opera- ‘
tion directly without the usual necessity of converting the closed–loop
servo response to ope~loop, changing gain, and converting back to
closed-loop.
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Finally, in working with any closed-loop system,
necessary to know the relations between own-loop and
tioM . In the case of the servo system for which the
response is determhedj ordinarily it is desirable to
the form or order of the equation associated with the

it is usually
closed-loop condi–
closed-loop
know approximately
system. This

information canbe seen from a ylot of the open-loop response. As far
as the autopilot-aircraft ccmib~tion is concerned, it is often necessary
to determine the closed-loop response from measuremmts of the component
responses. Conversely, if the closed–loop response is measured in
flight, it is generally desired to convert to the open-loop response to
check on the relative stability. The relations for carrying out these
analyses are given.

DEFINITIONS AND SYMBOLS

Frequency response: A frequenq+iependent vector response of the output
of a system to a sinusoidally varying inpti function, expressed q~
titativel.yby a plot of amplitude ratio sad phase singleversus
frequency

Amplitude ratio: The ratio of the output amplitude to the input ampli.
tuae. Tor a closed-loop system-this is ordinarily converted to
dimensionless formby dividing by the amplitude ratio,at zero
frequency

Phase angle: The angle between an output vector and input vector. When
the output leads the inpti, the angle is positive

Closed–loop response: The frequency response of a closed-loop system,
that is, one which possesses feedback and is sensitive to the diffe~
ence between output end input

Open-loop response: The frequency response of an opekloop system

Servo system: That part of the autopilot composed of the amplifier and
servo actuator or motor and its own feedback loop

Autopilot: The aircraft stabilizing device composed of the servo
sptem, the error+masuring component, and other feedback elemnts

Voltages, angular displacements, and transfer functions: Vector quanti–
ties having amplitudes and phase angles, unless otherwise noted

. A open-loop tramfer function of servo system

Aa transfer function of servo amplifier

— —.—.
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Pa

Pf

Pr

R
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(t)

‘e

‘ec

‘er

opbloop transfer function of autopilot+ircraft

transfer function of servo motor or actuator

transfer function of rate ~o

2.7T8...

frequency, cycles per second

G

follow-up pickoff constant, ;olts per degree

displacement ~o constmt, volts per degree

NACA ‘1’N2373

combination

static control gearing, ratio of control+wrface deflection to
-~sphceunt input to autopilot, degrees per de~ee

rat-o constant, volts per cycle per second per degree
oscillation

ratio of two ope~loop transfer functions with different values of
gain

gain of smplifier attenuator,percent

gain of follow-up attenuator,percent

gain of rate-gyro attenuator,percent

amplitude ratio of closed–loop servo response, dimensionless

amplitude ratio of autopilot response when rate of displacemmt
input signal is included, dimensionless

function of time

error signal of seno system, input to amplifier attenuator, volts

error signal of servo system for the atiopilot%ircraft coribina-
tion, volts

error signsl of servo system when rate of displacemm.t input
signal is added, volts

.

.

.—— —— ——
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/“ \

error signal of autopilot-aircraft combination
(VI-J’ ’01”‘E

feedback voltage of servo system, volts

system when rate of displacement input

volts

feedback voltage of servo
signal is added, volts

displacemmt ~o output,

input signal to servo system, voltsvi

input signal to autopilot-ircraft combination, volts

rate gyro output, modified by rate attenuator, volts‘r

/3 control surface deflection, degrees

phase angle of Ve relative to vi, de~ees

phase angle of ver relative to 19,degrees

,
.

‘er

phase angle of vf relative to vi, degrees

phase angle of vf relative to Ve) degreescfe

%

‘L

phase angle of Vfr relative to I!3,de~ees

phase angle of (v +Vr) relative to vi (and 13+0r relative to
u$opil&aircraft loop 1s o~ned, degrees13i)when the a

phase angle of vr rektive to 8, de~ees

engular displacement, attitude of

error angle, degrees

%

e aircreft, degees

\
‘E

‘i

e~

hypothetical input angle to servo system, de~ees

1

See
diagrsm

combination, degrees on

degrees
page 18.

input angle to atiopilot-aircraft

er &pothetical. rate feedback angle,

u) angular frequency, radians ~r second

.
Subscri@

I@ax maximum amplitude of a variable denoting a scalar quantity

_—. .=_ .._. — —— - .. . . ..- -— -.— .—— --—.- .—— ---—- ---— -—-
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ANALYSIS

Servfiystem Error Voltage

Displacement signal &y.– As mentioned previously, for purposes of

-is it is necess~ to limit the error voltage to a value which till
allow the servo system to operate within the linear range. The error
voltage may be calculated using the ~asured closed–loop frequency
response as follows:

With reference to fi@re 1, the error voltage for the servo system
alone is the difference between the input and follow~ (feedback)volt-
ages, or \

‘e
= vi — Vf

where Ve and vf era vector quantities with phase angles

relative to the input vector vi.

3?heclosed–loop response of the se&o system is 8/vi
sionless form is equivalent to Vf/vi since vf = Pfk@.

(1)

measwed

but in dim~
Ths nondimw

sional form is p?eferred since it is easier to obtain e~rimntally.
I?urthermore,from the standpoint of the calculations involved in an
analysis it is more convenient to separate the actual respause into a
frequency-variant characteristic (the nondimensional f’orm) and a con–
stant qusmtitatively relating the otiput to input under static conditions.
The amplitude ratio amd phase angle of the closed-loop response may be
represented by R smd ef, respectively, so that

– = ReJ’f
Vf

vi
(2)

or

j=f
Vf = vi Re (3)

= vi (1+ Cos ~f- j R sin+

where

R sin ef
.se= -tin-i

1-R cos~f

(4) “

(5) ~

(6)

—-— ———
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hqect,ion of equation (5) shuws tkt for a @~en ~Put si@ t~
magnitude of the error voltage increases as the magnitudes of the closed–
loop respom3e and phase angle increase. Thus, the error voltage will be
small at very low frequencies and increase to a peak near the resonant

frequency. Ultimately, at high frequencies where the response magnitude
diminishes to zero, the error voltage approaches the input voltage in
magnitude.

Displacement plus rate of displacement input signal - The response
to displacement plus rate of d.isplacemrctinput sims & be dete~
mined by sinusoidally oscillating the displacemeti and rate gyros, cop
sidering f3 as the input. To compu%e the error voltage for this conM-
tion it is first necessarg to develop an e~ession for the rate signal.
If the rate gyro is Pzsunad to be rockimg with a motion

the corresponding

.

For the frequency
always negligible

~ motion of

e(t) = e= sin a-t

rate eqmtion is

W=&=cosust
at

range of interest, gyro resonance effects are nearly
so that the output voltage is related to the rate of
equation (7) by a constant ~:

Vr(t) = ~ em Cos at

Usually this output is modified by an attenuation fa~or Pr twt
governs the amount of rate signal, that is,

vr(t) = p~em cos ti

Stice e= cos @ represents the vector e sHed in x@@e lc/2
radians, equation (8) may be written in vector form as

= P#pf3
J:

‘r

In the practical
indicated above.
angle. 5n . Jer

Vr = Pr~fe8

case the rate–fgro phase angle
Hence, the general symbol er

may not be 90° as
will be used for

(7)

(8)

phase

(9)

(lo)
j% i8 tb transin which Ar = krfe fer function of the rate ~o. .

—...—— —..—— —.. .-— -.. .— --— _.. —— —
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The autopilot
unit ~ fim
of displacemmt tiput sign& the autopilot response is (b/e)r. m

response is defined as the control~mface motion per
to the gyros. I?orthe case of dispkce~nt plus rate

addition of the subscri@ r here and in the folhwing equations indi-
cates that the quantities are ~asued with rate signal present. The
quantity Vg may be considered the equivalent electrical input to the
autopilot since it is directly related by a constant kg to the actual

inpti e * iS ti phase tith e, -c effects of a di.splacellmlt
gyro being negligible in the range of frequencies considered. The term
vfi may be used to represent the equivalent electrical OUtpUt of the
autopilot when both displacement and rate gyros are sinusoidally oscil–
lated. Hence, ths autopilot response my be designated as V*/-v

fwhich is the nondimns ional form usually obtained from memmemen s. ‘
Resolving into
written

The basic

amplitude and phase comp&ents, this response may be

‘fr s~fr
—= Rfre
‘g

equation for the error voltage is .

(1-l)

‘er’Vg+Vr —Tfr

The substitution for Vr from equation (9) &d vfi from equation (l-l.)

gives

s=~
+l?##?ee . –vg Rfie S*

Ver = Vg

By substitution of vg/kg for t3

The
if,
the

fikrfv jer 3efi
‘er = ‘g

+~e
k

—vg Rm e

=V g
K

l–~ cosefi+~
)

Cos ~ —

(

Prkrf
j R~sinefi-~stier )1 (12)

nmgnitude of the error voltage could be found from this equatio~bti
as is usually the case, the rate–~o @se Wle is close to 90
error volta& simplifies to

Ver =

=

fromwhich the

Vg [ (l-Rfrcos E*)-ii ‘frsh
L (

vg (E + Y)

magnitude, of the only intereat here,

( 13)

is

——
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p] = pg @-- (14)

The expression for the error voltage existing in the atiopiloti
aircreft closed loop is derived in a later section covering the
autopilot-aircraftcombination.

Autopilot Response With Displacemmt Plus Bate of
Displacement tiput Signal

From the experimental closed-loop response for displacement signal

-j it is possible to c~ctite the autopilot respmse for any amount
of rate sigml titldn the linear operating range. The resultant
response my be used in autopilot~ircraft loop calculations as shown in
later sections. The autopilti respome as defined ~eviously is the
control+mrface motion per unit angular input to the gyros emd nm.ybe
represented by (8/0)r. Hem, again, the subscript r is used to denote
the condition when rate signal is present. Then, referring to figure 1,

(ar=(w$)r “ “
(i)6=— (kg + p@r)
v

In order to obtain the responses in nondiHw.Mional tmms, mibstitutions
are made for b and 13 from the relations vf = kfPf8 and Vg = k~.

—
Hence,

sm~m,

the

te~ (vf/vg)r,

autopilot, may

representing the desired nondimensional response of

be witten as v&/vg. Therefore

?=$(’+%9 (15)

Equation (15) gives the autopilot remonse for dis dacemmt plus rate

of displacemm~ in terms of Zhe serv&3ystem respoiwe and the relative
amount of rate to displacement signal. This equation can be expanded

-—. ————— -—-— —-- ——--—-. —--— .—— —— —- ..__
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to give the amplitude and phase responses:

-.~ej% [1+ &le3~r)
Vfi

‘g

= Re3’f
[(1+ l%j ‘Os ‘r) +3 Iw‘h‘r]

=Rfied~f~
from which

P+ 2 P*
R’~=R 1+ -~ +2 — Cos Er

g ‘g
(16)

\ (17)

If the rate-gyro phase an@e is constant at 90°, equations (16) W (17)
reduce to

( 18)

(19)

.“

values of atiopilot
rate of displacemmt

‘f==d=RF2

A comparison of calculated tith experimmtal
frequency response for cmibined displacement plus
input is given in figure 2. The a@itude ratio and phas&emgle curves
for zerc-rate signal were obtained experimentally by runninn a frequency
response on a typical autopilot servo system. By substitution in equa-
tions (16) and (17) of the data obtained f?om the zero rate signal
curves, the response curves for two values of Pr were obtained. (The
values of Pr = 8 percent and 20 percent gave values for P&/kg of
O.83f and 2.07f, respectively, up to a frequency of 1.2 cycles W.
second. At higher frequencies the amplitude of ~ departed from its

linear relationshi~ with frequency and the actual masured values were
used in the calculations.) me e~rtint~ points shown for the rate

—— .— ——
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signals were obtained by oscillating displacement sad rate ~os sinu—
soidally sad feeding their electrical outputs simultaneouslyto a servo
system.

It is seen that ~eement between calculated and experimental
values is very good uy to a frequency of about 1.s cycles per second.
The reason for the dropoff of experimentsllvalues beyond this frequency
is found in the saturation of the servo amplifier with relatively lmge
error voltages. The error voltage for each condition of rate was calcu-
lated from equation (14) and is shown at the bottmn of figure 2. The
nonlinearity level is indicated to show the point at which saturation of
the aqplifier begins. It is seen that the en@lifier begins to saturate
in each case at about the frequency at which the experimental response-
amplitude-ratiovalues start to

Closed-Loop Serv&3ystem

fall off.

Response for Any Value of Gain

Closed–loop frequency~esponse tests of servo systems are generally
made at several values of gain, but it is obviously impractical to c-
duct @asurermnts at all possible values. It is helpful to have a
mthod for calculating the response at any value of gain from the
response at sonm particular gain setting. The usual, and laborious,
method is to convert the closed-loop response to the equivalent ope~
loop response, change the gain to the desired value, amd then calculate
the new closed–loop response. The method derived here gives the desired
response directly in terms of the original response and the ratio of
gain values.

The gain of an o~~loop system is defined as the frequency inver-
iant portion of the ope~loop transfer function. This tremsfer function
is the product of the individual component tremfer functions and for
the servo system in figure 1 is PaAa~Pf. The symboh Aa and ~

represent the complex transfer functions of the amplifier snd motor or
actuator, respectively. The feedback-pickoff constant is ~, while
Pa and Pf represent the values of gain associated with the amplifier

input and followup attenuators. It is by means of either of these two
attenuators that the gain of the system is commonly varied in operation,
and their effect on the ops~loop response

For a given condition of gain denoted
closed—loop response from elemntary servo

is independent of frequency.

by the subscript 1, the

theory is given by

(20)

where Al is the opn-loop transfer function for condition 1 of either
Pa or Pf. Similerly, for the new desired condition 2,

—.— —— __ .~- . . ———
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(21)

It is convenient to deftie N as the ratio of gains, that is,

A2
N=— (22)

A= >

which iS si~ly tk ratio of Paz to Pa= or pfz to pfl if all

other components are held unchanged in value. Substittiing Az from
equation (22) into (21), thus elidnating Az,

Vf2 NAl ““—=—
vi l+NA1

I?romequation (20)

Vf1 Vf1
—+A1

()
= Al

vi y

Vf=Iq
Al ‘= ~_(vf=/vi)

which, when substituted into equation (23), gives

+

Vf1
Vf2 NT,— =
vi Vf1 Vf1

1 –—+I? ~vi )

(23)

(24)

The transfer function vf=/vi is ths complex vector Rles~fI. Substi–

tuting this expression for vfl/vi in equation (24),

N Rle
s~f=

Vf2—=
vi

1 – Rle‘efl+N R=esef=

N Rle
J~f=

=

[ 1[ 1
(25)

1 + R= (N-1) COS efl + j R1 (N–1) sin ef=
.

*
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(26)

where

and X and Y are the real and imaginary parts, respmtively,
denominator of equation (3).

(27)

of the

A comparison of calculated ~th expri~ntal values of frequency
response for a c

v
of gain is given in figure 3. By sfistitution in

equations (26) ad q) of the values for amplitude ratio and phase
angle from the zer~ate sim curves of figure 2, a new response was
obtained for a value of ga&
tor Of 2.17. Thecmes for
determined experimmtally %y
value of gain. Agreemmt is

differing from ;he original valu= by a fac–
this response are shown along with points
operating the servo system at the increased
seen to be quite good.

Opetioop and Closed-Loop Relations

General concepts of opsn-loop and closed-loop responses amd their
interrelationhave been treated in servomechanism literature. It is
the purpose in this section to apply these relations to a typical
autopilokircraft system as diagramed in figure 1. It cm be seen
from this figure that two closed–loop systems are in evidence.

The first or inner loop is the servo system alone with vi as the

input, 8 as the output, and vf as the feedback path. Once its

closed—leap response tis been determined, the servo system may be
represented by a single ltblackbox,” provided it is stable, @ it
becomes one of the components in the outer loop. The outer or autopilot-
aircraft loop, then, consists of the servo system sad aircraft in series
in the forward part of the loop and the displace~nt and rate ~os in
the feedback path.

It should be noted that, although the servo system is a relatively
simple loop, the conibination is not, since it contains a dynamic elemmt
in the feedback path. For the servo system the responses G/v’ and

Vf/“1 are dynamically the same, differing only by a constant Pfkf.

7Jorthe autopilokircraft combination, however, the closed-loop
responses (vg~r)/vl ad 19/vl differ dynamically due to the feedback

term Ar which is frequency dependent. Hence, in this c~e, the ope~
loop response can be obtained from the flight closed–loop response e/vi
only if the rate feedback transfer function P@r is also lamwn.

.—-— ——-.. .—. —— —— _. -_
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= analyzing m existing closed–loop system it is generally not
feasible to nmaswe the open-loop response directly. 5s is due to the
very large output magnitudes obtained at luw frequencies smd because of
ths inherent drift in the components. Therefore the open-loop response,
when required, is calculated from the corresponding mmsured closed–loop
response. Conversely, when a system is synthesized from the responses of ●

the several components, it is the opewloop response which is obtained
directly. If the corresponding closed–loop response is desired, it is
then necessary to calculate it from the op~loop response.

The opemloop and closed–loop relations for the servo system are
given mainly for completeness since they are tieady thoroughly treated
in the literature. The relations for the atiopil~craft combination
in terms of qwmtities experimentally determined =e not well known and
are fully developed in the follting paragraphs. It is, of course,
necessary that the calculations be restricted to the linear operattig
range of the various components which is lmt ed by the value of servo-
system error voltage at which saturation of one of the components begins
to occur. The expression for the error voltage for the autopilot-
aircraft combination is therefore derived.

Servo system.- With reference to figure 1, the opmloop response

of the servo system alone is ‘f/ve and is designated by the symbol A.

The no-nsional closed–lo~- response is vf/vi and is given in terms

of the ope~loop response

The ope=loop response in
then given as

Vf—= A
‘e

by the relation

vf A—= —
vi l+A (28)

terms of the measured closed–loop response is

Vf/vi

1 – (Vf/vi)

1 – Re
jsf

[J

R

‘1
d~fee

(1- COS ~f)2 + (R Sti Ef)2

(29)

(30)

—— —
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where

15

Efe + taL-l R Sillef

1 –R COS Cf

R sin G-f

/(1+ cos q)2 + (R sin q)2

(31a)

(31b)

Information on the system characteristics cam be obtained readily

from a lo~ithmic wPh of the ope~loop response amplitude versus fre-

quency. A S1OW of -1 on this type of plot represents a first-order

term, since each doubling of frequency results,in a halving of the magni–
tude. Similarly, a slope of -2 represents a secondader term since
doubling the frequency reduces the magnitude to one-fourth its original
magnitude, and so on. Inasmuch as the log of the amplitude is usually
plotted on a uniform scale with frequency on a log scale, a unit of
logarithmic amplitude is desirable. The decibel is commonly used
because of the carrywver of feedback amplifier theory from communicatio~
engineering. m value in decibels in this case is equal to 20 times the
logarithm of the amplitude ratio. However, there appers to be no valid
reason for continuing its use, and a relatively new term, “1OI’U,“ imply-
ing one logarithmic unit, is preferred. The value in lorus is simply .
tbe loglo of the amplitude ratio. Therefore, slopes of –1 end –2
correspond, respectively, to one or two lorus per frequency decade. In
conmmnicationswork and most servo~cbanism texts, these slows would be
referred to as -6 d –12 decibels pr octave (reference 1, p. 241).

The OPW1OOF response magnitude, then, may be expressed logaritb

mically in lorus as

Vf
—

I

= loglo (J R
‘e loglo

)

lorus (32)
1+R2-2R COS ~f

For convenience, the expression in terms of decibels is also given
as

IVf = 20 loglo(J R
< al)

)
decibels (33)

l-!a2– 2R Cos Ef

The op?Kioop response for the servo system considered in the
examples of the preceding sections was calculated from equations (31) I
and ( 32) using the values from the zero-rate signal curves. These cal-
culated points are shown in figure 4. The straight-line asymptotes are

—. -.. —.——— –—..—- —. .—— .—. ——.-. —-
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drawn with S1OPS of -1 and -2 lorus per decade representing the effects
of ftist— and second~der terms, respectively, of the characteristic
equation for thO servo system. It is appareti that the servo behaws as
a second~rder system in the frequency range shown, except at very low
frequencies. The falling off in amplitude nmy be attribtied to the fact
that the experilnwnte.1phas~e curve in figure 2 levels off at about
6° at low frequencies instead of approaching zero. It can be seen from
equation (30) that too large a phase angle ef would cause a failing
off of the op~loop emplitude vf/ve.

Autopilat-aircraft, ope~ and closed-loop responses from component
values.- In Synthesizing the atiOpilot-aircraft conibination,the OP*
loop response is obtained by multiplying together the Uvidual compom
ent transfer functions. In this case ths serv=ystem closed-loop
transfer function, in terms of 6/vi, re~resents one of the components.
The closed–loop response for the combination, again .refe?ringto figwie 1,
may be considered to be 8/8= where 01 represents a hy@hetical
~ ti~ to the system. In practice, a voltage V1 is used for
the input and is made equivalent to 81 by use of the d.is@acenmt ~o
constant kg. The input voltage to the servo system is

= ~1 - (kge + P##)

5 e~ession for the forward part of the loop is

Combining these

e=

‘Theclosed-loop

e = (b/vi) (e/~) vi

two equations to eliminate vi

VI (~hi) (6/6) -

response is then

e—. (5/v~) (e/b)
VI ‘l+(kg+ p&) (b/vi) (e/a)

In order to obtain the nondimsmional closed-loop response
made equal to

Although
convenient to

$@ sO tbt the preceding equation b~coms

kg (5/v~) (0/5)

~ = 1 + (kg+P# (b/Vi) (g/b)

,

.

this equation can be used in its present form, it is more

express it in terms including an over-aH gain factor sad

:,

—.
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a nondimmsional servo response. 50 concept of static control gearing

‘P is introduced to represent the autopilot gain factor which is varied
in the open-loop response for the purpose of altering the relative
stability of the autopilot~ircraft coddnation. ‘I@ static control
gearing is defined as the ratio between control+urface deflection and
sJ%@@ attittie @Jut to the autopilot at zero frequency. Thus

%=l+lf=o
From figure 1 it can be seen that vf = Pfk@ and Vg = kge. Substi-
tuting for b and O

%=@J(:)lf=o
Since, at zero freguency, vr = O and vf = vg,

‘P
.3
Pfkf

(35)

As indicated in previous sections, the closed-loop serv~stem resyonse
that is measured is vf/vi which is equal to Pfkf (b/vi). By substi-
ttiion of these relations in equation (34),

=- (vf/vJ (e/a) ‘
e

~=

l+*r+(%91’vf’@ ‘e”)

or

e kp (vf/vi) (@)
~=

[
I. + ~ 1 + (pA/kg)

1
(vf/vi) (f4@

(36)

The expression
[

1 + (~~/kg)
1

(vf/vi) has been shown ti eqmti~ (15)
to be the autopilot rate response so that the expr~ntal values can be
used for this factor if the rate attenuator is at the value desired.

h terms of angilar input, error, and output, equation (36) rwm-
sents a system which my be diagr~d as fcillows:

.————-.— —.. . —. —. .—. ——— . — ———
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% ei
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e e

w %? q R -F

.

1 I

This type of sketch is helpful in visualizing the autopil-ircr~
combination and its feedback loops in terms of angles with the control
gearing ~ as the gain parameter. It should be noted, huwever, that

varying ~ wi31 also vary either the servo response Tf/vi or the

relative amount of rate to dis@acement feedback response pr%/kg9
depending on whether Pf~ or ‘g

is changed.

With a multiloop system such as shown in the sketch, it is possible
to write nqme than one ope~loop expression depending on where the loop
is opened. However, in order to apply the Nyquist criterion to a polar
plot of the op~loop response, it is necessary that any inner loops
included in the function be stable. Hence the response e/~, which

does contain an inner loop, cemnot be used unless it is known that the
inner loop er/Gi is stable. By breaking the loop at E3i this diffi-

culty may be eliminated. A single loop with two parallel arms then
results d the desired opewloop response for the codinat ion is simply
the product of the verious transfer functions around the loop, the
transfer function of the two psrallel arms being the sum of the two
individual transfer functions. From the above figme it can be seen
that the op~loop response after rearremging the order of the terms is

e+er
AL.=.

% (’l’F)(z)(:) (37)

___ —— ———.— -
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,

Written in this fashion, the gain function ~ appears first fol-

lowed by the atiopilat tremsfer function (1 + P#&)(vf/vi) and the

aircraft transfer function (6/8). By reference to figure 1, it will.be
recalled that the serv~stem transfer function vf/vi contains an

inner feedback loop. However, most autopilot servo systems are designed
to b-estable, and this analysis is then applicable.

Autopilo%ircraft, opebloop response from closed-loop response in
flight.- When the response of a complete autopilfiircraft combination

is @asured in flight, the close-loop response in terms of @/eI is

~ the ~asured quantity. The opemloop response AL may then be
calculated provided the rate componeti,in use, if g, is lamwn. Equa-
tions (28) and(2g) relate the open- and closed-loop respomes for the
servo loop. The s- relations apply for the autopilotiircraft loop
diagramed on page 18 if the corresponding quantities AL and (o+@/el

exe used, respectively, in.place of vf/ve aIId

.e+er

AL . ‘I
e+er

()
1- —

‘I

Ordinarily .9/f3Tis measured rather than (EM-G

Vf/vi● That is,

(38)

r)/el. From the diagram

on page 18 it i; immediately apparent that er is equal- to ( p~/kg)e.
BY substitution of this value for er in eqution (%) ~ the des~ed
opebloop response is given by

e+(p#~)e

AL =
‘I

e+(~AJkg)e
l–

‘I

[

$- I +(P#r/kg)
I 1

= (39)

1 -f [l+(%W%J]

Atiopilat-aircraft, error voltage .– In odder to detemdne if a given

aukopilot and aircreft co?ibinat ion will operate within the lineaz range

. — .— .-.. .—— - — .
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for a given input voltage, it is again necesssxy to calculate the error
voltage to the servo-emylifier attenuator in a manner similar to the
case of the servo alone. Referring to figure 1 sd adding the subscript
c to designate the value for the combination, the equation for the error
voltage is

‘ec = vi — Vf

()Vf
=Ti — ~ vi

“1

=

[
VI - (Vg + Vr)

1[
1- (vf/vJ

1
(40)

The”term Vg + Vr may be considered the output of the over+ll loop

which includes the aircraft and which has W@ feedback, the ~os now
being in the forwerd part of the loop rather than the feedback portion.
5s output is then equal to the input VI nml.tipliedby the new

closed-loop transfer function (vg + Vr)/vi. Since the opebloop
.

response is wmhanged regardless of where the loop is opened, the expre~
sion from equation (37) ~ be used and the new closed-loop response is

’13+ Vr AL
—= —
vI l+AL

A.\-

- ‘I
l+AL [

1 – (v’f/v~)
1

(41)

slibstittiing
the numrator

ReJ‘f for vf/vi and IALI es% for AL and resolving

and denominator into their real and ~ginsry components

l- Rcoe~f -j Rsinef
Vec = VI

1 + IALI cos EL + j IALI s~ ‘L ,,

Since only the magnitude of the error voltage is of interest here, it is ./
given by

— — .——
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By reference to equation (s), it can be seen that the

(42)

expression

for vec represents the error voltage of the servo system done divided
by a factor related to the autopilataircraft opemloop response. By
inspection it cem also be seen that”at zero frequency the error voltage
is zero and at very high frequencies, where the amplitude ratios are
negligible, it is essentially equal to the input voltage. In between,
however, it is possible for the error voltage to exceed considerably the
input voltage.

Ames Aeronautical Laboratory,
NationalAdvisory Committee

Moffett Field, Calif.,
for Aeronautics,
March 1s, 1951.
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Frequency, < cps

Figure 2.- Typicu/ autopilot closed-loop frequency response with
combined displacement and rate of displacement input calcu -
Iofed and experimental. (~=&O.115 volt).
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