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SUMMARY

An account 1is given of explicit solutions in terms of Mathieu function
functions of the problem of two~dimensional subsonic compressible
flow past oscillating airfolls. The results are applied to the
calculation of three-dimensional corrections for the two-dimensional
theory and the effect of the incorporation of the three-dimensional
effects on the Mathieu function solution of the two-dimensional
problem is shown. The developments are formal and mist be supple-
mented by an appreciable amount of mumerical calculations before the
theory can be epplied to specific problems.

INTRODUCTION -

The present report is concerned with the linearized theory of
oscillating alrfoils in two-dimensional and three-dimensicnal subsonic
compressible flow. .

The problem of two-dimensional flow was first treated in 1938 by
Possio (reference 1) who reduced it to an integral equation and obtained
approximate solutions of the integral equation by collocation methods.
Subsequently, various authors have extended Possio's work and have
applied other approximaste methods to the solution of Possio's integral
equation., Detailed references and a survey of the existing results
may be found in a monograph by Karp, Shu, and Well (references 2 and 3).

A second method of treatment deals directly with the boundary-value
problem of the differential equation for the velocity potential or the
acceleration potential. If this is done, it is found that an explicit
solution of the problem may be obtalned by introduction of a- suiteble
curvilinear coordinate system and that this explicit solution is in
terms of Mathieu functions. The earliest report containing this
Mathieu functlion approach to the problem under consideration appears
to be that of Sherman and the present author (reference 4)., Independently,

a similar approach, differing in details, was used by Biot (paper pre-
sented at the Sixth Internetional Congress for Applied Mechanics, Sept. 19k6,
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but not available in published form), Timman (reference 5), and Haskind
(reference 6). It appears that Haskind has gone furthest in presenting
the solution in a form sultable for the by no means simple numerical
evaluation.

Part of the present report consists in a reproduction, with minor
modifications, of the existing results in terms of Mathieu functions
for the problem of two-dimensional flow. One of the reasons for this
reproduction is the application of these results, in the remainder of
the present report, to the problem of calculating three-dimensional
corrections for the results of the two-dimensional theory.

Just as the problem of two-dimensional flow can be formulated in
terms of a one-dimensional integral equation, so the problem of three-
dimensiongl flow can be formulated as a two-dimensional integral eque-
tion. This has been done in an earlier report (reference 7). It has
also been shown in this earlier report that an approximate theory for
three~dimensional effects can be obtained by msking certain approxima-
tions in the kernel of the integral equation of the three-dimensional
problem. On the basis of these approximations, the three-dimensional
problem 1g reduced to what amounts to a succession of two two-dimensional
problems. One of these two problems is of the nature of the problem of
the two-dimensional theory proper. The other problem consists in
determining the spanwise variation of circulation around the alrfoil.

In the present report 1t wlll be shown in which way the Mathieu function
solution of the two-dimensionsl problem is affected by the incorporation
of three-dimensional effects according to reference T.

This work was conducted at the Magsachusetts Institute of Té%hnology
under the sponsorship and with the financial assistance of the Hatlonal
Advisory Committee for Aeronsutics.

SYMBOLS
X Y, Z Cartesian coordinates
H defined by equation of lifting surface Z = H(X,t)
t time
U main~-gtream velo;ity in X-direction
u, w components of velocity change caused by presence of

1lifting surface

Po denslity of undisturbed fluid
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P, P

e

b

I

¢

D

X, ¥, 2

M

k

¥
kM2

HETT e

K= 1
1-M°

Y = k2
1l1-~-M

r= Mxe + 22

¥y

Vo

pressure and density changes, respectively,.caused by
presence of lifting surface

veloclty of sound in undisturbed fluid
semichord '

perturbation veloclty potential
clrcular frequency of oscillation
potential amplitude

pressure amplitude

dimensionless coordinates defined by equations (17)
and (122)

Mach number of main stream (U/a)
reduced-frequency parameter (wb/U)

modified potential amplitude defined by equation (20)

part of ¥ representing noncirculatory portion of
flow

part of V¥ representing circulstory flow around flat
plate at rest and at zero angle of attack

elliptical coordinates



Cems» Cen

sep, sep

Amns Bmm
Cep, Cep
Sep, Sep

c

Cemr» Csm

&y 8p, by, bp

fa(l)

Jn(u)) Jn' (w) .

i
el
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downwash function defined by equation (41)

pressure amplitude at airfoil

functions determined by equations (45)
separation constant

even, perlodic Mathieu functions

odd, periodic Mathieu functions

coefficients of Fourier series expressing cep and
‘sep, respectively

LI

Mathieu-Hankel functions corresponding to ce, and
cep, respectively

Mathieu-Hankel functions corresponding to
sep; regpectively

se, and

separation constants

coefficients defined by equations (84) and (56)

contribution to pressure at ailrfoil for noncirculatory-
flow component

noncirculatory portion of 1ift

coefficient defined by equations (59) and (68)

moment about midchord

coefficient defined by equations (62) and (69)

hinge moment gbout x = ¢

alleron hinge-moment coefficient

Bgssel functions and their derivatives, respectively
functions defined by equations (70)

function defined by equation (T1)
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am, %n, Bm, Bn

7,(2)
1(2) N2
(1

fo
A
Ko, Ky
Q

B

coefficlent defined by equation (72)
coefficient defined by equation (73)
funétion defined by equation (Th)
coefficient defined by equation (75)
arbitrary constant

Hankel functions of second kind and of zeroth and
first order, respectively

" coefficients in equation (78)

function defined by equation (79)
arbitrary parameters defined by equations (143)

coefficients defined by equations (85)

preésure distribution at airfoil for circulatory-flow
component

circulatory portions of 1lift and moment, respectively
auxiliary variable of integration

arbitrary constant in equation (102)

function defined by equations (107) and (125)
modified Bessel functions

circulation function

agpect ratio of surface

dimensionless spanwise coordinate given by equation (123)
variable of integration '
function defined by equation (128)

function defined by equation (129)

auxiliary variables of integration
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Q function defined by equation (131)
G function defined by equation (132)
Py, Pp coefficients defined with reference to equation (98)
Q, Qp coefficients defined in accordance with equation (ilh)
Qc coefficient defined by equation (139)
5t

Ry = 22% f elvcoslece (1) at

0
Rg = 2 ZBn /;ﬂ elV cos gcen(g) at
a(2) function defined by equation (146)

FORMULATION OF TWO-DIMENSIONAL PROBLEM

Let Z = H(X,t) be the equation of a nearly plane lifting surface
in the path of an inviscld compressible fluid flowing with uniform
velocity U in the direction of the positive X-axis. Because of the
presence of the lifting surface, the velocity field (U,0) 1s changed
to (U + u,w). The disturbances caused by the presence of the lifting
surface are agsumed to be small in the sense that the differential
equations and boundary conditlions of the problem may be linearized.

The differential equations are, in linearized form,

du u__90 [P
S (po (1)
oW ,yow__9 (P (2)
ot X oZ \Po

% ,yd . (é&. éﬂij

3t X Po ax+az (3)

p = a2 (%)
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In equations (1) to (%), p, is the density of the undisturbed fluid,

a 1s the velocity of sound in the undisturbed fluid, and p and p
are the changes of pressure and density caused by the presence of the
lifting surface.

The boundary condition of no relative normal flow at the lifting
surface of chord 2b 1is, in linearized form,

legb: Z=i0,‘w=g—i+Ug_}H{ (5)

The form of equation (5) indicates that w may be teken as an even
function of Z. The differential equations (1) and (2) then imply that
u and p may be taken as odd functions of Z. As the pressure change
p must be continuous except when crossing the 1lifting surface, 1t
follows that a further boundary condition may be taken in the form

-vS|x|, 2=0, p=0 (6)

Further conditions are the condltions of finite tralling-edge
velocity,

X=b, Z=0, u finite (7)

and the condition that the motion of the lifting surface produces energy
radiation without reflection at infinity.

The problem as stated may be solved by means of a perturbation
velocity potential @, in terms of which

L) .
X
f (8)
-
oZ

J

Combination of equations (8), (1), and (2) expresses p in terms of @,
as follows: .

o (B, 38
p=-po(Lrv¥ (9)

e e e e et~ o ————————— et = 7 g e A b
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Combination of equations (9), (8), (4), and (3) leads to a differential
equation for @ of the form

d \2, _ '
3}2 a_z% at+U8X/¢_O (10)

5

Boundary conditions for @, besides the radiation condition at infinity,
are

< - 0f _H , y OF
|x| <b, Z=0, 7 =5t + X (11)
X=b, z=0, P sinite (12)
X .
p<|xl, z=o0, e+ U o 0 (13)

Attention is now restricted to the case of simple harmonic motion,
by setting

¢(x,2,t) = el0tg(x 7) (1k)

Corresponding expressions are written for H and p.

‘'The differential equation for $ is

2=
axz+§£%-—-iw+Uﬁ>¢ (15)
a a

Q/

while the relation between pressure amplitude D and potential ampli-
tude P is of the form

P = _poéaﬁ +U %g) (16)
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At this stage it is convenient to introduce the following dimen-
sionless variables and parameters:

> - @an

° | | (18)

b
k=22
T

-

The differential equation (15) then becomes

2 ry 2 7T D
a_¢v+a_2_ﬁ_i ZKM2§Q+ k2M2¢=o ' (19)
dx2 Vaz2 1 -M“90X 1 .M

In order to eliminate the first-derivative term in equation (19) a
function ¥ 1is introduced, defined by

¥ = em 1 (20)
Setting
: M2
1 - M
makes equation (19).read
ééi + §E£ + kS =0 (22)
dx2  dz2 .
where
KM ) .
k= (23)

1 - M2
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Combination of equations (16), (20), and (21) gives for the
pressure amplitude P the relation

=_ .0V 4 ei's
) - e_ux<?vw + ax) (2k)
where ‘
k
1 - M°

In terms of the function V¥ boundary conditions (11) to (13) assume
the form : ' .

-iux -
U - .
x| <1, z=0, 3 =—‘°"————m+a—ﬂ> (26)

x=1, z=0, %,% finifce‘ (27)
1< x|, z2=0, ivy+ gy-= 0 ’ (28)
X

The condition of no radiation-energy reflection at infinity is
taken in the form

z—>iw, yx £(x,z)e 1T (29)

where 12 = x2 + z2 and where f +tends to zero as =z +tends to plus or
minus Infinity.

Determination of the function V¥ is facilitated by introducing
two functions ¥y and wz such that

\F=‘lf1+$2 . (30)

and where both V; and V¥, satisfy the differential equation (22).
The boundary-conditions for v, and Y, are chosen as follows:
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— -1 o
x| S1, z=0, —L._Ue ”x(ikmai) 20 (31)

dz Ji - M2 oz

] ¥, 3
x=1, z=0, MM e (32)
ox ox
3, ,

1S x|, z=0, ¥ =0, iw, +—==0 (33)

X

It may be seen that the function ¥, represents the noncirculatory
portion of the flow to be determined, while the function V, represents
the circulatory flow around a flat plate at rest and at zero angle of
attack. The Intensity of the circulatory flow must be chosen such that

its infinite trailing-edge velocity cancels the infinite trailing-edge
velocity of the noncirculatory flow. *

BOUNDARY-VALUE PROBLEM WITH REFERENCE TO ELLIPTICAL. COORDINATES .

Explicit solutions'of the problem as formulated by means of
equations (22) and (30) to (33) may be obtained through the introduc-
tion of elliptical coordinates €& and {. The Carteslan coordi-

nates (x,z) are related to the coordinates (&,{) by means of the
equations

x = cosh £ cos ¢

(34)

Z ginh ¢ sin ¢

The differential equation (22) becomes, in ‘terms of the elliptical
coordinates, ’

aew 22y v

2 2 =
+ k<(cosh“t - cos g)v 0 : (35)
852 8§2

s e e PO ]
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Partial derivatives with respeét to the old and new coordinates
are related as follows: -

v _dv 3k, vt )
0z Jg¢ 3z of oz
' r (36)
ox Jdtdx dt dx
N 7
where
—_
Ot _cosh € sint- 'of _ sinh € cos §
oz A ? dz A
dt _ sinh & cos § a§=—cosh§sin§
ax A, ) a_x‘ A ? (37)
A = cosh?§ - coszg »

{

The boundary z =0, |x| S 1 becomes the boundary & = 0,
0% t < 2x. The boundary z = 0, X < -1 becomes the boundary
0€t<Ew, ¢ =x. The boundary z =0, 1 <x becomes the boundary
0LE<®», t =0, The boundary z = *» becomes the boundary § = .
The coordinate curves £ = Constant are confocal ellipses with E = O
as the limiting ellipse =z =0, |x| < 1. The coordinate curves
€ = Constant are hyperbolas intersecting the ellipses £ = Constant
at right angles.

Boundary conditions (31) to (33) may now be written in the following
form )

1 O

Vo
= —— — P — = 8
€ =0, E 3 g(t) Yy 0 (38)
oy
_o, 1im |1 (3 %> Finit
: §%€>O [;in £ \at * &t | ° (39)
£ =0,n, "lfl = 0, iv\lfg + 1 % =0 ()-I-O)

sinh & O¢



NACA TN 2363 13
The function g({) follows from a comparison of equation (38) and
equation (31) in the form : :

Ue-n;cosg

V1 - M2

From equation (24) it follows that the pressure amplitude P, at
the alrfoil may be written in the form

Dy = - P’ elncos § Ew (0,) - —% B\V(O’g’)] | (ko)

g(t) = (ikﬁ + %E (k1)

b sin { of

The problem now is to solve equation (35) in such a way that
boundary conditions (38) to (40) are satisfied. Solutions suitable
for this purpose will be discussed in the following section.,

MATHTEU FUNCTION SOLUTIONS OF TWO-DIMENSIONAL
" WAVE EQUATION
In the present section are summarized some known results which will
be needed in what follows. These, and further developments, not neces-
sarily employing the same notation as that used here, may be found, for

instance, in a recent bock by McLachlan (reference 8),

Suitable solutions of the differential equation (35) for ¥ are
obtained by separation of variables, as follows. Setting

v = 7(e)ale) - (B3)
there is obtained
L T LR

Equation (44) implies, with a separation.constant ¢, the following
two equations:

F" + (k2 cosh2t - c)F = 0
‘ (45)
Q" - (¥ cos2t - c)G = 0

U T e T ———-
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Possible values of the separation constant c¢ are determined by
the requirement that the functions G(¢) are periodic of period 2.
The periodic solutions of the equation determining G may be either
even or odd functions of '¢. They may be written in the followlng form:

cez(€) = ZE: Apn cos nt | (46)
n=0 ‘
sen(t) = }i_: B sin nt | (57)

The function ceé(g) has the same significance for elliptical

coordinates as has the function cos mf for polar coordinates. The
function sep(f) 1is & generalization of sin m{, in the same sense.
2

The coefficients Ayn and Byy may be written as power series in k°.
The same is true for the separation constants c.p and cgp. Evidently
these statements imply the following limiting behavior of the results:

v

~
cen(t) = Aypm cos mb
E =0 ﬁ sep(t) = Bym sin mg (48)
| Cem = Cgm = m?

The functions cep and sep may be normalized in various ways.
The following normalization condition is chosen here:

]: [cen(t)] d;=j: [sen(t)]® at = 1 (9)

The possibility of obtaining an explicit solution of the problem con-
pidered in this report is due to the following orthogonality properties

of the Mathieu functions (when m # n) )
18
| een®eeatt) at -

!
(@]

«(50)

li
o

e \
j; sen(t)sen(t) at
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Caming now to the functions  F(&), as determined by the first of
the differential equations (45), there will be two linearly independent
'solutions F(&) for each value of the separation constant c. These
two solutions must be combined in such & way that their behavior at
infinity 1s as follows:

' 4
> B0 8 e (51)

e

This behavior i1s required in order that the energy-radiation condition (29)
be satisfied by the solution to be obtained. Functions F(E) which have
this property and which correspond to the functions cep(f) and sep()
are here designated by Cep(£) and Sep(t).

In what follows these two sygtems of functions are considered
normalized by the requirement that

Cep'(0) = sep'(0) =1 (52)
Note that the functions Cep and Sep may be obtained from func-
tions Cepx and. Sepx which are normalized in a different manner by

the relations Cep = Cemﬁ/Cem*'(O) and Sep = Sem*/éem* (0). A corre~
sponding statement applies to the functions ceyp and sep.

There exist varlous infinite-series representations for Cep and
Sey for which reference is made to the literature (reference 8), as no
use of them is made in the present report.

As the problem under consideration is linear, all solutions of the
type here discussed may be combined and written

¥ = Z_o amcen(t)Cen(t) + 3 bsen(t)Sen(t) (53)
2 :

The constants ap and by wlll be determined by the application of
appropriate boundary conditions.

DETERMINATION OF NONCIRCULATORY—?LOW COMPONENT

Considered first is the simpler problem of determining the funce
tion ¥, which, as can readily be seen, corresponds to a flow without
circulation. . Boundary conditions (38) to (40) indicate that ¥ owill
be an odd function of £; thus .




16 NACA TN 2363

00

V1 = > bysey(t)Sen(t) (5k)

m=1

Boundary condition (38) for y; leads to the following relation:

— ; > - byse(t)se, ' (0) = a(t) (55)

In view of the orthogonality relations (50) and the normalization
conditions (49) and (52), the coefficients by are obtained from
equation (55) in the form ‘ :

-
ba= [ ein a0 sen(t) b (56)
. |

The contribution 13&(1) to the pressure at the airfoil follows
from equations (42) and (54) in the following form:

)

L=

5 .
5,0) - - 2w cont EV S et )86 0) - i%g S busen'()sep (0

(57)

From equation (57) it follows that the noncirculatory portion f(l)
of the 1lift may be written as

=(1) _ L)
L =2b dx
/.=

TC
2bf iasingdg
0

; .
~2pg0 > bySey(0) f eltco8 Llay sin ¢ sey(t) - s’ (6)] at
0]
(58)
The Pfollowing abbreviation may be used:

in =v/:t o1t COBC'EL\; sin t sep(f) - een'(_t,):] at - (59)
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Then,

T = 20U > bySen(0)ig  (60)

A corresponding expression for the moment about midchord becomes

%1 (0) = =2 fl x5, (1) ax

-1

~20qUb > bySey(0)my (61)

where

%=£ﬂ cos ¢ ei“°°5§Ev sin § sen(t) ~ sep'(8)] ab .

o1
= =i _n 62
> (62)

-

Analogously, there is obtained for the hinge moment about x = c,

1 Z
c

where
= - c)et Ii in €m - t l a
M.y cos c VvV 8 t 8 8en ) (6’+)

It may be further indicated in which way the coefficients m; and

lm may be evaluated. By sultable integration by parts in equation (59)
there is first obtained

I = G:- - > j: eltt cos gBem'v(g) ag (65).

There are  introduced into this eguation the series

sen'(£) = Z Bypn cos nf (66)

n

PSSR S SRSl AR, e R EES
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and the relation v/k =M~2. This gives
e | : 7t
1m=<__...]> Zannf el cos € oog nt af (67)
L \? ol 0

The integrels in equation (67) are well-known formulas for Bessel func-
tions and equation (67) may therefore be written in the alternate form

- (G - IPREREAD | (68)

From equation (62) it follows then that

g = (L -1> S Bty ) (69)

_As tables exist for the coefficients B, and the Bessel functians Jp(k)
and thelr derivatives Jp'(n), the coefficients 1y and m; may
readily be evaluated for given values of M and k.

Before a gimilar statement can be made about the hirige—momen‘a coef-
ficients myy, 1t will be necessary tc tabulate the function

fcos'
0

and its derivative with respect to p for vaerious values of m and c.

lc

e~il cos € cos m¢ at

Having evaluated the coefficients 1, mp, and m.,,, 1t 1is next
necessary to evaluate the remaining coefficients by in equations (60),
(61), and (63), which depend on the motion of the wing, through equa-
tions (56) and (41). As will next be shown, this evaluation is readily
carried out for the two basic degrees of motion

H(x) =h

(70)

H(x) = abx
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There 1s obtained

and

where

Im=f0“ 108 L Gin t sey(t) at

=ZBmf‘e-iucos£sm;smn; at
n 0

= ZBﬂm %J;ﬁ e~ip cos EEos (n - 1)t - cos (n + 1)§:] at
n

n

z i. g an(-l)nian(u)

*

geiHX

go(t) =

and, with I, from equation (73),

- _g_ ZanE(nwl)Jn_l(_u) _ i(n+:.]-)Jn+l(...u]

19

(1)

(72)

(73)

(%)

(75)
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In order to evaluate the corresponding coefficients for alleron
motlon one is again led to nontabulated integrals of the same form as
those occurring in the evaluation of the aileron hinge-moment
coefficients mgp.

In summary it may be sald that existing tables are adequate for
direct calculation of the nonclrculatory part of 1lift and moment for
bending and torsion motion of the wing section but that additional
tables are required for aileron motion and for aileron hinge-mament

calculation.
DETERMINATION OF CIRCULATORY-FLOW COMPONENT

The essential difficulty in the present problem is the determina-
tion of the function Vp. Boundary conditions (38) and (%0) for o

are homogeneous and so the solution ¥, will contaein an arbitrary

multiplicative constant. This may also be seen by rewriting the boundary
conditions for v, in the form
1

3
z =0, |x|<1, azﬁ:o

> (76)

N
Il

0, 1<kl iv\lfé+%=0
- ox

S

The conditions for 1 < le may be rewritten in the form

z =0, x¥€-1, ¥, =0

° (77
z=0,15x, § = ce~ivx

where C 18 an arbitrary constant and where account has been taken of
the fact that the uniform main flow 1s undisturbed far in front of the

airfoil.

As V¥, is an odd function of z, 1t follows that V¥, and
dVo/dx are discontinuous across the line (z = 0, 1 £ x) and this is
what is responsible for the Inconvenience of the problem.
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It had previously been proposed (reference 4) to take V¥, in the
following form:

) 3u.(2) :
Y, = - ° e~ lvx! _fg___iffl dx'+-zz:'bn(z)sen(g)Sen(ﬁ) (78)
' 2idg oz
where

r2 = (x - x')2 + 22

The coefficients bn(z) in equation (78) are then to be determined

, oV,
from the remalning boundary condition, which requires that S—g =0
Z

when 2z = O, le < 1. While this determination is possible in principle,
it appears to lead to inconvenient formulas when it comes to the evalua-

tion of the coefficiemts by(2).

An alternate procedure due to Haskind (reference 6) is at present
believed to be the most convenient approach. Haskind's procedure makes
use of a function W defined by

W v,
-a—; = infz + g;' (79)

and required also to satisfy the differential equation VW + n2W = 0.

As OW/dz 1is an odd function of =z, it is indicated that W itself
is an even function of z. Furthermore, the function W is continuous

outside the slit z =0, |x] < 1. Consequently, W may be teken in
_ the following form:

W= > apce (§)ce(£) (80)
‘m

In order to obtain the coefficients a&ap 1t is observed that the

first of equations (76) is equivalent to the following boundary conditicn
for W:

z=0, [x]<1, ggg = - (81)
b/
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In view of the form of the differential equation for W,
is equivalent to the following equation:

sin kx

NACA TN 2363

equation (81)

z=0, |x| <1, W=Acoskx+B3 . (82)
Combination of equations (80) and (82) shows that
E amcen(§)Cen(0) = A cos (k cos £) + B sin (KKCOS ¢) (83)

The orthogonality properties of the functions cep lead then to the

following expresslons for the coefficlients ap:

ap = Aoy + BBy (8%)
where |
Jf cos (k cos t)cep(t) at

_Vvo
“m = Cen (0)
~ (85)
oA
U/‘ k™" sin (k cos {)cen(f) at
0
P = Cen (0)
: /
Now

W=ha D> agcen(t)Cen(t) + B > Brcen(t)Cepy(t) (86)
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and

- Eﬁeme_W) |
oz / 2=0, [x|S1

_ ey 1w
- eteost (e &

p U eipcos§

= - ; Bi‘n : EZ apcen(8) + B Z Bmcem(gﬂ (81

Calculation of 1lift 3(2) and moments ﬁ(2) proceeds in a manner
vwhich 1s entirely analogous to the procedure used in equations (58) to

(75) in order to obtain expressions for (1) and M(l) These expres=

slons may be readily listed as soon as numerical calculations are
intended.

The foregolng golution ¥, stlll contains two arbitrary param-

eters, A and B, instead of one as it should. The reason for this
is that, instead of the condition szlaz = 0 at the airfoll, only

the less restrictive condition (1iv + 9/0x) awglaz O at the airfoil

has been satisfied. A relation between A and B which takes account
of this fact 1s obtalned as follows. From

aﬂl’E = e—iVX 9 < ivx 84"2) - éei (88)

iv +
8_ oz

there 1s obtained by integrdtion

Cave 23] vt 3B
i° = =fxe"x — dx (89)

oz

-00 Bz
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In view of the form of the differential equation for W, and since
Mo(~, 2)/dz = 0, equation (89) is equivalent to the following equation:

elVx ?_112: -f e1vX! 32w + n2W> dx' (90)
Bz -0 Bx'z

Equation (90), when suitably applied, leads to the required relation
between the constants A and B. Since OVp/dz = 0 at the airfoil,

equation (90) implies that

X
1im 1vx’ <aaw + n2w> ax' =0, |x|s1 (91)
2—>0 VY - dx'2

Since 3% + 8% =0 when z =0 and |x|<1, there follows from

a2
equation (91)

-l+€ 2
1im elvx <a_g + n2W> dx = 0 (92)
z-—>0 Ax
c—>0

Equation (92) may be transformed by integration by parts in various ways.
One such form is obtained by writing

-
f TR lvx O _ [Tivx a lre iv TR tvx W o
oo dx2 oo dx
r (93)
\'/s—l+e i‘\)xw» 1vx ]-l'i'G _ _]:— -lte ej_vx —a}!—. dx
iv iv w ox 5

- o

This makes equation (92) appear in the following form:

-1 BW(x O)
- ye N =
(n ) f ax

e'iVE(i‘vR gin k + k2 cos k) + B(1V cos k - k sin nﬂ (94)
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Another equation which follows from equation (92) and which is
equivalent to Haskind's equation is obtained by writing

-1 -1 -1 '
f e eiVx BZW dx = Eivx éH_ - ivei"xi] e - V2f +e eiVXW dx (95)
Bx ~00

o0 dx° o

Combination of equations (95) and (92) gives
o

1
(k2 - v2) f eiva(x,O) dx =

e"iVE(iv cos k - k sin k) - B(cos K + -j%}- sin 9:] (96)

It may be remarked that equation (96) cannot be used to obtain the
correct result for the limiting case of incompressible flow Ffor which
# = O. The reason for this is, as will be shown, that when k = O the
integral on the left of equation (96) 1s not convergent. On the other
hand, equation (94) does lead to the correct result im the limiting case
of incompressibility.

In order to evaluate equations (96) or (9%) 1t is observed that,
for { =mx, x=-cosh £ and dx = -sinh & 4. Hence,

-

=1 -g
f eMVE(W),_o dx = f eIV COBnE(y) y sinh ¢ at
0 .

-0

N

> (97)

f'l olvx B_W> ax = _fm, o-iv cosh g (a_w a
0% /z7=0 0 o =

—co 14 J

—_— e ey e o T T e o Pt g . et ey — -
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Now take W from equation (86) and obtain, first from equation (96),

AE"iV(K gin k - iV cos k) +

(k2 - v2) Zcr,ncen(at) f eV cosh 'E’Cen(g) sinh & da +
04

BE"‘iV <cos n + -j% sin n) +
(K2 - v2) Z__Bncen(at) j; e~1v cosh e'Cen(ﬁ) sinh § dg =0 (98)

The corresponding result based on equation (94) is

AE’ivn(iv gin kK + k cos k) +

(2 - ¥2) > apceq(n) j; etV SO eyt (¢) dg:l +
BE"iV(iv cos k - k sin k) +

(2 - v3) D> Broen(n) fo g-1v cosh gCen'(g)'dgl -0 . (99)

It thus sppears that determination of the appropriate values of the
ratio A/B involves the calculation of the set of infinite integrals

’

f g1V coshEne 1(¢) ginh £ at
0
or

o o

for all integer values of n and for whatever values of k and V are
of interest.
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It may finally be remarked thet in the work of Hagkind (reference 6)
it is shown-that equation (98) can be replaced by an alternative equation
in which, instead of the above infinite integrals, there occur integrals
between the limits O, n. The integrand in these alternate integrals
consists of products of a Mathieu function and a function which itself
is defined as an infinite integral involving a Hankel function in the
integrand.

DETERMINATION OF CIRCULATORY-FLOW CCMPONENT FOR
INCOMPRESSIBLE FLOW,
The following discussion is intended to show the usefulness of
Haskind's functlon W 1in the derivation of the known solution of the
problem of incompressible flow. .

Setting k = 0, boundary condition (82) becomes

z =0, |x|§1, W=A+ Bx ~ (100)

or

E=0, 0S¢ S2nr, W=A+Bcostl (101)
Solution (80) beccmes, when k = O,

oo

W= a?o (g + Eg) + %Z am cos mf -1t (102)
n=1

The constant E,o is arbitrary and may be set equal to 1. Comparison of
equations (102) and (101) shows that equation (10l) is satisfied by setting

ao=1tA
ap=0 m=2,3...)

and, consequently, the function W assumes the form

W=A(1+¢)+ Be~f cos t | (10k)
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The pressure distribution fa(z) at the airfoill becomes, according
to equation (87),

5. - gﬂ( 1. é?_f)

-l A P (105)

Equation (94), which glves a relation between A and B,. becomes,

with & =0,
(o0}
Bive~lv = y2 f e~1v cosh g(% ag
0] J E=mn

= v2f e-iv cosht (p 4 Be~f) a (106)'
0

The integrals in equation (106) become, with

cosh £ = A
(107)
a = a2 - 1 '
expressible in terms of modified Bessel functions, as follows:
® ® e=1VA
f o-iv cosh € at = e & = Kp(iv) (108)
0 1 Vxé -1
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| 3
A= Ac -1
J@e~iv'cosh E_E a = f N o
0 1 A2 -1

u/‘co ~ivan < A+ l _ 1 ;) ar
1 o1 A2 -

i
=%W)Hﬂm-%%-%m)

-1V

= (109)

= Ky (1v) - 2

Combination of equations (106), (108), and (109) relates the con-
stants A and B 1in the following way:

BKy (iv) + AKgp(iv) =0 : . (110)

Combination of equations (105) and (110) gives the required explicit
expression for the pressure distribution at the airfoil for the purely
circulatory flow component.

It may finally be remarked that use of equation (96) instead of
equation (9%) is not permitted, when k = O, as the integral on the
left of equation (96) does hot converge when the function W of equa-
tion (104) is substituted in it. The reason for this is that W tends
to infinity for 1arge values of & when k =0 and does not do so
vhen k # O. .

SATISFACTION OF TRATLING-EDGE CONDITION

It remains to obtain one further condition, besides equation (98)
or equation (99), for the two congtants A and B in equation (87) for

the pressure component Pg (2) This remgining condition is the condi-
tion of finite trailing-edge velocity as expressed by equation (32).

As {7 and YV, themselves remain finite at the trailing edge, equation (32)

may be replaced by the following conditions:

&7y ¥,
z =0, x=1, vl ivis + S finite (111)
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From equation (54) it follows that

- ; S bse,! (£)Sen(0) (112)

sin
From equations (79) and (80) it follows that

=0, iviy v
Z—’ ‘V2+g sing g_

[

cen(f)  (113)

Combination of equations (111), (112), and (3_13) leads to the following
further relation between A and- B:

A5 apeey(0) + B3 Breey(0) = 3 byoey’ (0)5ex(0) (114)

It may be recalled that the coefficients an and Bn are given by

equations (85) and that the coefficients b, are given by equation (56),
where the downwash function g is defined by equation (38).

[}

VALUE OF CIRCULATION FUNCTION

For the purpose of the subsequent calculation of three-dimensional
corrections to the two-dimensional theory, there is needed the value of
the circulation function Q, defined by

q = oelv < = 2eVy(1,0) (115)
z—O
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Since Wl(l,o) = 0 it follows that the circulatory componment of flow is
the only one which contributeg to the value of  and
a = 2¢1Vy,(1,0) (116)

From equation (79) it follows that

-1V g; éivx¢2> - g‘;" (117)

and, consequently,

l l . .
Eivxwzj - f eiVX g_:' ax (118)
-1 -1 .

Since V¥5(-1,0) = 0. there follows from équation (118) the relation

eivllfg(l,O) - E eiV cos { gié_) =0 at (119)

and, with W from equation (80), there is obtained for @

. . ﬁ -
| % =4 Zan j;« g1V cos €Cen(g) at + B Zﬁnj; etV cos gCen(g) ag

(120)

For numerical applications it will be necessary to evaluate the
integrals in equation (120) for the chosen values of the parameters Vv
and K. This can be done 1in a manmner which is analogous to the method

of evaluation of the coefficients 1, in equations (65) to (68).

CALCULATION, OF THREE-DIMENSIONAL CGORRECTIONS TO

TWO-DIMENSIONAL THEORY

In what follows there is indicated a procédure of incorporating in
the results of the two-dimensional theory corrections taking account




32 : KACA TN 2363

approximately of the three-dimensionality of the flow over wings of finite
span. This procedure is based on an approximate integral equation of the
three-dimensional problem as given in an earlier report (reference 7).

For the sake of clarity, attention is restricted in what follows to the
case of a 1lifting surface of rectangular plan form, although the results
of reference T were obtained for lifting surfaces with taper and moderate
sweep as well,

In consldering the three-dimensional problem, besides the coordi-
nates X and Z for the two-dlmensional problem, a spanwise coordinate Y
is introduced. The plan form of the lifting surface is given by

Cxlse ]
21
|t] sbJ (e1)

so that s is the value of the aspect ratio of the surface. The following
two dimensionless coordinates are introduced further:

A

A

y = 1-M2% » (122)

and

e === (123)

The f£inal result of reference 7 was an integral equation which, for
the rectangular-plan-form wing, is of the following form:

. l -
g(x,y) = - ei/‘ Me,y)G(x - &5 k) .48 + Q(¥)F(x) +
T4 R

1
e--iVx e K(y* - n%; k, 8, M) dn¥* (124)
1 dn*
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The quantities g, k¥, and Vv have been defined earlier. The functions A,
G, F, and K are defined as follows: :

ov (x: ¥,0)
ox

G(x - & k) = ’i:m,:x — (2)< kl|x - ED ﬁ (2)(|§|) dQ_J (126)

A =2 (‘125)

F(x) = ¥ f e IVEa(x - &5 k) at e
2nvY 3y ‘ .
, 1M y* - ¥ | (@) ksM
K(y* - 1%; k, 8, M) = H v¥ - ¥
b s 8(1 - M2) y* - n* {1 (ml Tl‘)"‘

ksM ly*"n*l

/ 1-M° Ho@)([gl) de -

- o

iks ks(y* -~ q%) \
1-_M!FM[ e } (128)

e 2] ga=iM\lo +§2 |
- Izl =10 ge
(=) z ~/;) ) l:f00 02+ §2+ > e

5 ,Z' —:LM C
M dr +
N el

- -:LM T24yz2 | - i;
f + iM> dt] do - (129)
-c0 ’I'2 + 22 |/72 + z2 T
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To effect the solution of the integral equation (124) proceed as
follows. Write equation (124) in the form -

1
g(5,y) - e VX = - L 4 A (e,1)G(x - &) a (130)
-1
where
1 df
Q =jf1 29 xay (131)
G =G - hrelVF(x) (132)

Eaqustion (130) indicates that the solution of the three-dimensional
problem is equivalent to the solution of a two-dimensional problem with
a modified downwash function g +.Ag, where

Ag = —e-iva, . (133)

It must next be shown how this modification of the two-dimensional
downwash affects the previously discussed solution of the two-dimensional
problem,

Returning first to the noncirculatory portion of the two-dimensional
solution, equation (54), .1t is evident that the Ag term is responsible
for a change of the coefficlents b, into by + Ab,. The coefficients bp
are given as before by equation (56), except that now they are functions
of y.

T . _ -
) - [ sn b stenen ) & Gmcomt) (a3

The correction coefficlents Ab, are correspondingly given by

A " stn £ eIVEOSE oo (1) at (135)

The integrals on the right of equation (135) may be evaluated once for

all. The integrals on the right of equation (134) are the same as those
which must be evaluated for the solution of the two-dimensional problem
and for which series representations for bending-torsion motions are listed

in equations (72) and (75).
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Coming next to the circulatory portion of the flow, it is evident
that the only modification here consists In assuming that the arbitrary
coefficients A and B in solution (86) are functions of the spanwise
coordinate y. The two functions A and B are related to each other,
as before, in accordance with equation (98). This relation may be given
here in the form '

A(y)Py + B(y)Pg = 0 (136)

where Py and Py are defined with reference to equation (98).

.

The next step consists in the satisfaction of the tralling-edge con-

dition. This condition is analogous to equation (11k4) except that now it

is necessary to write b, + Ab, instead of bj. Thus,

A(y)Q + B(y)ag = > (by + Aby)ee '(0)Sen(0)  ©  (137)
where Q and Qp are defined in accordance with equation (11k).

In view of equation (135) there may be written, instead of
equation (137),

A(y)es + B(¥)Qp + A¥)Q; = >  byse,!(0)Sen(0) (138)

where the coefficient Q. is defined by

T
S sent (0)5en(0) fo sin ¢ V%L oo () at (139)

The function Q(y) is defined by equation (131). In equation (131) it
is necessary to express ( 1n terms of A and B, in accordance with
equation (120). To this end, equation (120) may be written in the form

Q = ARy + BRp (140)

Then,

1 1 '
dA
Q =R — K dn* + R —— K dp¥* (1h1)
AJ%il dn* Bu%il dn¥*
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Combination of equations (141) and (138) gives

1 Py .
dA

ansen' (0)5ey(0) o (142)

. Equations (1%2) and (136) represent the main result of the present
developments, so far as the calculation of three-dimensional corrections
to the two-dimensional theory is concerned.

Having calculated A and B in accordance with equations (142)
and (136), the circulatory component of the pressure distribution follows
from equation (87), while the noncirculatory pressure distribution follows

from equation (57), where b, is replaced by b, + Ab,. In equation (135)

for Ab, the quantity Q is to be taken from equation (141).

The foregoing explanation Indicates that the major difficulty in
calculating three-dimensional corrections, once the results of the two-
dimensional theory are known, consists in evaluating the integrals

1
f o K
R
1
-1 dn*

In order to do this, it is necessary to have the numerical values for the
function X, as defined by equations (128) and (129). Once the func-
tion K 18 calculated, the determination of three-dimensional correc-
tions to the two-dimensional theory can be effected in a manner analogous
to what has previously been done for the corresponding problem of incom-
pressible flow, elther In accordance with reference 9 or in accordance
with any modifications of the scheme used in reference 9,

and

i

-
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The following further development of the preceding scheme establishes
a somewhat closer connection with the corresponding results for the.
problem of incompressible flow. Solve equations (136) and (140) for A

and B, as follows:

, PB
A=z—e— >
Ry Py - RpPy
\
-P
B=—_ & g
BAPB - RBBA‘ _J .

(143)

Combination of equations (143) and (87) gives the circulatory pressure
distribution at the airfoll in terms of the circulation function . An
integral equation for the function & 1is obtained by combining equa-

tions (138) and (143), in the following form:

QuPp - QgPy 1 ae :Z:
M Ay) + ch = K dn* = byse, ' (0)Se, (0)
RAPB - RBEA -1 91 CL :

(1)

In analogy with the corresponding results for the problem of incompressible

flow, a function p(k,M) . may be defined by

RyPp = RpPp

P(k;M) = Qc -
QAPB - QBPA

It may further be written

a{@(y) = 5% > bysen'(0)se,(0)
Equation (144) then assumes the form

. \
o) +uom ¢ Lok apx = 2@ (y)
-1 dn¥

(145)

(146)

(147)
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In this form equation (1L47) is of the same appearance as a corresponding
equation .for incompressible flow (reference 9). Equation (147) is valid
for lifting surfaces with rectangular plan form., The corresponding equa-
tion for arbitrary plan form, provided sweep is moderate, may also quite
readily be esteblished on the basis of the results in reference 7.

SUMMARY OF RESULTS

It has been shown that the amplitude of the pressure distribution
on a rectangular-plan~-form airfoil oscillating with frequency w is
given by the following formulas:

(1) . = (2)
a

=Py,  +P

F,(1) = - B et cosllsy ST (5, 4 Aby)ee,(t)sen(0) -

Bin g Z(bn + Abn)sen'(g)Sen(Oﬂ

RIS R

sin

LT aw)
w3 ann“ﬂm

In the equations for f)'a(l) and 'I-;a(e)

kM2 U

H = —— M = -é,-
1 - M2

Vv = -——]S'—— cos g =X = g‘ -~
1 - M2 b

- ub - _ kM
k T K =
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The Mathieu functions se,, ce,, BSep, and Cep are defined by equa-

tions (45) to (49), (53); and (54).

The coefficlents b, are defined by

by = [ stn b aen(t) ot -

7
Kby = -Q fo o1V C08L i ¢ sep(t)

where
Pe-1t co8 4
¢ - S (o
and
1
dq
Q = — K dn¥
-1 dn*
H
* =
" sb

The coefficients a, and Bn are defined by

fﬂ cos (r cos §) cey(t) at
0

U.n=

Cen(O)

f sin (k cos t) c;en(g) at

Pn = kCep(0)

e e e e e e e - e A i g e =
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The coefficients P and R in the equation for T,(2) are definea by

P, = eV(k sin k - 1v cos k) +

(2 = 3) D apcen(x) f eV SO boe (§) simn & at
0

Pg = eIV (cos K+ % sin,n> +
(2 - ¥2) 3 pycen(n) [ et <o toey(s) wtan § o
) 0
and
P
mo= 2D [t eRleen(t) @t
. o -
S
Rg = 2Zan etV cos chn(;) ag
0]

The function € 1s to be determined from the integral equation
laa (2)
Q + p(k, M) — Kdn* = Q
_1 ¥

where

RyPp - RpPp
QyPp - QP

88 (k)M) = Q¢
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and

2@ - E%JM—) > byse,t(0)8e,(0)

1

and where the coefficients QA’ QB, and Qc are given by

Q) = > apcey(0)
Qp = ) Bpcen(0)

T
Q. = Zsen'(O)Sen(O) j; o~V cos g'ssen(g) sin ¢ 4t

The kernel K of the integral equation is defined by equations (128)
and (129) and will not be repeated here.

The reegults of the two-dimensional theory are contained in the
foregoing equations. They appear when dQ/dn* = O which makes Ab, = O

in the equation for Py¢}) and 0= a2 in the equation for the
circulation function.

Masgsachusetts Institute of Technology
Cambridge, Mass., May 16, 1949
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