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SUMMARY 

A simple method is developed to solve plane-stress problems with 
axial synunetry in the strain-hardening range based on the deformation 
theory of plasticity employing the finite-strain concept. The 
equations defining the problems are first reduced. to two simultaneous 
nonlinear differential equations involving two dependent variables: 
(a) the octahedral shear strain, and. (b) a parameter indicating the 
ratio of principal stresses. By multiplying the load and. dividing the 
radius by an arbitrary constant, it is possible to solve these problems 
without iteration for any value of the modified load. The constant is 
determined later by the boundary condition. 

The method is applied to the cases of a circular membrane under 
pressure, a rotating disk without and with a hole, and an infinite 
plate with a circular hole. Two materials, Inàonel X and. 16-25-6, the 
octahedral shear stress-strain relations of which do not follow the 
power law, are used. Distributions of octahedral shear strain, as well 
as of principal stresses and strains, are obtained. These results are 
compared with the results 6f the same problems in the elastic range. 
The variation of load, with maximum octahedral shear strain' of the mem-
ber is also investigated. 

The following results are obtained: 

1. The ratios of the principal stresses remain essentially con-
stant during loading and. consequently the deformation theory Is appli-. 
cable to this group of problems. 

2 • In the plastic deformation, the distributions of the principal 
strains, and of the octahedral shear strain, are less uniform than in 
the elastic case, although the distributions of the principal stresses 
are more uniform. The stress concentration factor around the hole is 
reduced with plastic deformation, but a high strain concentration 
factor occurs. 

3. The deformation that can be accepted by the xamber before 
failure depends mainly on the maximum octahedral shear strain of the 
material.
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4. The added load that the member can sustain between the onset of 
yielding and failure depends mainly upon the octahedral shear stress-
strain relation of the material. 

INTRODUCTION 

In the design of turbine rotors, it is desirable to küow the 
detailed stress and strain distributions In the strain-hardening range 
and. the amount of increase In load that can be sustained between the 
onset of yielding and. failure. It is also desirable to know the effects 
of a notch or a hole in a turbine rotor or other machine members that 
are stressed in the strain-hardening range. If a member Is thin, it can 
be analyzed on the basis of plane stress. For problems of this type, 
Nadai obtained solutions for ideally plastic material In the cases of 
the rotating disk, the thin plate with a hole, and the flat ring radially 
stressed (references 1 and 2). For the case of materials having strain-
hardening characteristics, a solution of plane-stress problems has been 
obtained by Gleyzal for the circular membrane under pressure (reference 3). 
The concept of infinitesimal strain was used and the solution was obtained 
by an iterative procedure with a good first approximate solution. The 
plastic laws were always satisfied by using a chart given In reference 3. 
In reference 4, a trial-and-error method Is given for rotating disk with 
very small plastic strain, In which the elastic stresses and. strains are 
used as the first approximate values. Experimental investigation for the 
high-speed rotating disk is made in reference 5; distributions of plastic 
strains (logarithmic strains) for different types of disk are measured. 
Reference 6 experimentally investigates the burst characteristics of rotat-
ing disks; stress at the center of disk is calculated by assuming that the 
material behaves elastically at the burst speed; the average tangential 
stress along the radius at burst speed. is also calculated. 

A simple method or solving plane-plastic-stress problems with axial 
symmetry employing the finite strain concept in the strain-hardening range 
and based on the deformation theory of Hencky and Nadal (references 7 to 
9), which Is derived under the condition that the directions and. the 
ratios of the principal stresses remain constant during loading, was 
developed at the NACA Lewis laboratory andis presented herein. The 
equations of equilibrium, strain, and. plastic law are reduced to two 
simultaneous nonlinear differential equations involving three variables, 
one independent and two dependent, that can be integrated numerically to 
any desired accuracy. These variables are the proportionate radial 
distance, the octahedral shear strain, and a parameter a that indicates 
the ratio of principal stresses. The magnitude of variation in calculated 
values of the parameter a with change in load directly Indicates whether 
the deformation theory is applicable to the problem. 

The method developed is applied to: (1) a circular membrane under 
pressure, in order to compare results obtained by this method with that
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obtained by Gleyzal (reference 3); (2) rotating disks without and. with a 
circular central hole, in order to investigate plastic deformation in 
such disks and the effects of the hole; and (3) an infinite plate with a. 
circular hole or a flat ring radially stressed, In order to investigate 
the effects of the hole in the strain-hardening range. 

In the investigation of (2) and (3), two materials, Inconel X and. 
16-25-6, with different strain-hardening characteristics were used. in 
order to determine the effect of the octahedral shear stress-strain 
curve on plastic deformation. The octahedral shear stress of these two 
materials Is not a power fui-iction of the octahedral shear strain, so that 
more general information can be obtained. Distributions of stresses and. 
strains of the same problems in the elastic range are also calculated, for 
purposes of comparison.

SYMBOLS 

The following symbols are used in this report: 

a radius of hole 

b	 outside radius of membrane, rotating disk, or flat ring 

c	 outside radius of plate, very large compared with radius a 

h	 instantaneous thickness of membrane, rotating disk, or plate 

h1 initial thickness 

k arbitrary constant 

p	 pressure on membrane' 

r	 radial coordinate 

s	 arc length 

u	 radial displacement 

V	 axial displacement 

z	 axial coordinate 

a.	 parameter Indicating ratio of principal stresses 

y	 octahedral shear strain 

C	 logarithmic strain 

0	 angular coordinate 

p	 mass per unit volume 	 - 

0	 normal stress, normal force per unit instantaneous area
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T	 octahedral shear stress 

w	 angular velocity 

Subscripts: 

b	 at radius b 

C	 at radius c 

o	 at center, for case without hole or at radius a for case with 
concentric circular hole 

1,2,3 principal directions in general 

r,e,z principal directions in cylindrical coordinate system. 

STRESS -STRAIN RELATI0NS IN PLASTIC DEFORMATION 

The deformatIon theory of plasticity for 1da11y plastic materials 
was developed by Hencky from the theory of Saint Venant-Levy-Mises for 
the cases in which the directions and the ratios of principal stresses 
remain constant during loading (reference 7). Nadai extended the theory 
to include materials having strain-hardening characteristics (ref er-
ences 8 and 9). The conditions for the deformation theory have been 
emphasized by Nadai (reference 9, p. 209), Ilyushin (references 10 and 
ii), Prager (reference 12), and Drucker (reference 13). Experiments con-
ducted by Lessells and. MacGregor (reference 14), Osgood (reference 15), 
and others on thin tubes subjected to combined loads with the directions 
and. the ratios of the principal stresses constant throughout the body and 
remainitg constant.. during loading show that good results can be expected 
from the deformation theory. 

In more recent experiments on thin tubes by Fraence1 (reference 16) 
and Davis and Parker (reference 17), it h been shown that even with 
considerable variation of the ratio ot principal stresses during loading, 
the strains obtained from the experiments were in good agreement with 
the strains predicted by use ofthe deformation theory. irther experi-
mental investigation is needed to determine the extent to which the vari-
ation of ratios of principal stresses is permissible. In case the vari-
ation is small . (approximately 10 percent over the strain-hardening 
range), the d.eforination theory can, however, be expected to give good 
results.



NACA TN 2217	 5 

In the present problems with axial syetry, the directions of 
the axes of principal stress remain fixed during loading and it seems 
that the ratios of principal strains and of principal stresses may 
also remain approximately constant. The deformation theory previously 
discussed is therefore used. The stress-strain relations are then as 
follows:

£1 +	 ^ C3 = 0	 (1) 

01 2 - 02 03 - 03 l
(2) Cj.C2 - 23 - 3l 

T = T(7)
	

(3) 

where

2	 1/2 

	

T = [(oi a2) + (G2o3)2 + 3l)]	 (4a) 

2	 2	 2	 l/2 

	

= - [(1-2) + (c 2 -c3) + (c 31j	 (4b) 

From equations (i) to (4b), the following relations are obtained: 

1r 
£i =	 L'- -	 23j 

2 = F [02 - (03+01)] 

C =	 -	 (o 

For plane-stress problems 0 3 = 0, so that	 - 

2	 21/2 

	

T = -- (o Cl 0 2+02 )	 (5a) 

2 
7 = 2f- (	 +C J C 24C 2 )	 (Sb)
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and.

(6a) 

=	 (-	 i)	 () 

£3 = .	 [-	 = - (l2	 (6c) 

Waen	 and. a2 are expressed. in terms of	 ai £2, there is 

obtained	 - 

a1 = 2 1 (2€12 

	

-	 (7) 

G2 = 2	 (2c2-1-ciJ 

EQtThTIONS OF EQUILIBRIUM D STRAIN INVOLVING DISPLACEME1TS 

Equations of equilibrium and. equations of strain are derived for 
three. plane -stress problems with axial symmetry. It is convenient to 
use cylindrical coordinates for these derivations; the principle 
directions 1, 2, and 3 in the preceding equations become raiia1, 
circumferential, and axial directions, respectively. Because a large 
deformation in the strain-hardening range will be considered, the 
concept that the change of dimension of an element is infitesimal 
compared with the original dimension of the element is not accurate 
enough. Hence, the finite-strain concept, which considers the instan-
taneous dimension of the element, is used. (The equations of inf in-
itesimal strains will be given by considering them as special cases of 
finite strains.) The stress is then equal to theforce dividedby the 
instantaneous area and the strains are defined by the following equation: 

=	 U 

where	 is the instantaneous length of a small element having the 

original length of (j) and j = 1, 2, and 3. During plastic 

deformation, the plastic strains at a certain state depend on the path
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by which that state is reached. For the paths along which the ratios 
of principal stresses remain constant during loading, however, the 
octahedral shear stress-strain relation, the value of the octahedral 
shear strain, and the value of the principal strains are defined 
by the initial and final states (reference 15 and refe±ence 9, p. 209); 

is then an exact differential and 

loge 	 (8) 

It should be noted that the condition under which equation (8) was 
obtained is also one of the conditions under which the deformation theory 
is derived; as long as the deformation theory is applicable, equation (8) 
can also be used.

Circular Membrane under Pressure 

The membrane considered is so thin tat bendthg stress can be 
neglected (reference 18, p. 576). Figure 1 shows the membrane clamped. 
at the rim and subjected to a pressure p, and a small element defined 
by e and s taken at radius r+u in the defonned. state. In the 
undeformed state, the same element would be at radius r and defined 
by ie and tr. The instantaneous thickness of the element and the 
stresses acting on. the element are. also shown in the figure. The two 
principal stresses are cr and G, and cp is the angle between 0r 
and the original radial direction. 

Equations of equilibrium. - When all the forces acting on the 
element in the direction of	 are summed up, the following equation 

of equilibrium is obtained: 

0r (r+u) h tG - (rft r) Lr ^ (r+u)1 tO (h + h) cos ACP + 

209 s (Ii +	 h) sin	 coscp - p s (r^u) 9	 ç 

When i(r-i-u) approaches' zero as a limit, the differential equation of 
equilibrIum may be obtained: 

(r+u) d.(r+u)	 .h ( Oe Or)	 j(s),
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A cap of the membrane bounded. by radius r+u and. the forces 
acting on it are shown in figure 2. Suimning up the forces in the 
z-directlon yields

dv 
pit (r+u)2 = r - 2t h(r+u) 

or

[dv 12	 1
(10) [a(r+u)j	

[2h0r12 
[p(r+u	

- 1 

Equation of strain. - Inasmuch as the element at radius r, defined 
by ie and r in th undeformed. state, Is moved to radius r+u, 
defined by ,e and As, by the application of pressure. p (fig. 1), by 

- use of equation (8) the strains are 

Celog

h = loge 

Then	
1/2 

e =	 + [ ( thH 2	 (ha) 

(hib) e = r 

€z	 ..2_	 -	 (llc) e =h

Rotating Disk 

Equation of equilibrium. - A disk of radius b and thicknes h, 
rotating about its axis with .angular. speed w, and an element taken at 
radius r+u, defined by Ae and A(r-i-u), is shown in figure 3 with 
all the external forces acting on It. Summing up all forces acting on 
the element In the radial direction yields
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0r (r^u.) h te - (Or+Or) [r^u + c(r+u)] t.O (h+h) + 

e [(r+u)] (h +	 h) sine - 

i pj [(r+r)2 - r] e 
w 2 [r+u ^	 (r+u)J	 h1' 

=0 

When (r+u) approaches zero as a.1init, the following equation of 
equilibrium is obtained.: 

	

r+u d.(r^u) = (a) h - ctOr2h T d.(r^u)	 (12) 

Ecuation of strains. - The strains are 

d.(r+u) 
Cb0e

r+u 
C = lo - r	 - 

h 

1 

therefore

er - d.(r+u)	 -	 (13a)
- 
dr 

e0 = r+u	 (13b) 

e	 = h	 (l3c)

h1
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Infinite Plate with Circular Hole or Flat Ring Radially Stressed 

n infinite plate uniformly stressed in its plane in all directions 
and having a circular hole is shown in figure 4. The whole system is 
equivalent to a very large circular plate of radius c with a small 
concentric circular hole radially subjected to the same uniform stress 

on the outer boundary. The solution obtained in such a plate within 
any radius b can also be considered as a solution of a flat ring with 
outer radius b and inner radius a, that is, uniformly loaded at the 
outer, boundary with the radial stress 	 obtained in the plate 
solution. 

The equations for this case can be obtained in a manner similar to 
the two previous cases, or by simply setting dw/dr and w equal to 
zero in the case of the membrane, or setting w equal to zero in the 
case of the rotating disk. 

EQUATIONS OF EQUUIBRIUM AND COI4PATThILITY IN 

TE4S OF PRINCIPAL STRESSES AID STRAINS 

Circular Membrane under Pressure 

• .
	 By combining the equations previously derived the following set of 

independent equations, which define the problem, are obtained: 

.17	 1
(6a) 

=	 (e -	 r	 •• ••

	 (Gb) 

Ez =	 [-	
(a^G)]	 ..	 (6c) 

2\]/2 
7 = 2(2^c Co+€e )

	
(5b) 

T=T(7)	 .	 (3)
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21/2 
d(r^u)	 + d(dw	

; 
(ha) 

r-i-u 
e=—. 

€ z	 h e
U]-

(ri-u) (rh) = 
d(r--u)

(ub) 

(ho) 

(9) 

r dW l 2 	 1 
[d(r+u)J	 r 2bo 1 2 

r	 -. Lpu)J 
These e quations are 10 independent relations of the 10 unknowns 

e, £r, Le, €z, 7, T, h, U, and. 

-if equation (lib) is differentiated with respect to r and combined 
with equation (ha), 

r	 =	 er9)
	

- 1	 (14) 
( r

dv LJ 
Substituting equation (10) in equation (14) to eliminate w yields 
I o11owin equation of compatibility: 

-	

e ere	
[^2V2 - 1
	 (15)
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Equations (9) and. (15) can be simplified. by using equations (ii) to 
eliminate u and. h,which results in

[ (C_C	 2 1/2 
I rpe = (G) e(r)	

L 2hiGr )] j	
(16)
r -+ 

and.	

(Cr £e)(	
T (Ce_C	

2 1/2 

r--e	 _Irpe 
dr -
	 L 2hjGr z)])
	

- 1	 (17) 

The ten equations defining this problem are now reduced to seven 
ind.epend.ent equations, (6a), (6b), (6c), (5b), (3), (16), and. (17), 
with the seven unknowns Gr, 	 O, Cr, Ce,	 T, and. 7. 

The solution of the problem is simpli.fied by further reducing 
equatIons (16) and (17) to the following forms: 

( r	 12112 
I	 I 

r r +	
de =
	 - )	

- h1 k 

I	 L	 2ar 
I"-	 . .	 (18) 

1/2 

I pkr e ( e - z ) l I 
dEe = (Cr_Ce)	 -	 .	 I	 - 

kd(r)	 L	 2ar	 JJ 
where k Is any arbitrary unknown constant with the dimension of 
length. By using the two parameters r/k and. pk/h j , it is then 

possible to solve the problem In a simple, direct, way without use of 
the iteration method. This fact will be further discussed In the 
sectiOn ME'THODS OF NJMICL INTEGRATION. 	 . . -
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Rotating Disk 

The set of equations that define this problem are: 

=	 ( je) (6a) 

•	 (6b) 

(Go) 

211"2
•	 (5b) 

T=T(7) (3) 

e= d(r-i-u)
• (13a) dr • 

Ce 
e=E±.. (l3b) r 

C 
e	
=- •	 (13c) 

r+u	 = h(er) - pr2h1	 d(r+u) (12) 

These equations are nine independent relations of the nine unknowns 
.0r'	 e '	 C r,	 Ce,	 c,	 7,	 T,	 h, and U.	 If equation (13b) is 
differentiated with respect to	 r	 and combined with equation (13a), 
the following compatibility equation is obtained: 

d€9.	 (€	 ) r	 e_1
(19)
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As in the case df the membrane, U and. h can be eliminated 
from the equilibrium equation (12) by using equations (13), which 
yield.	 .	 .	 .	 . 

d.c	
(c-c)	 (c) 

	

r a + G rr 	 . = (0e 0r) e r 0 - pr2e Z	 (20) 

The nine equations defining this . problem are now reduced to seven 
independent. equations (6a), (6b), (6c), (5b), (3), (19), arid. (20), with 
seven unknoinis 0r' 'e C r, C.O, c, T and. 7. 

The solUtiOn of the problem is made simpler by furbher reducing 
equations (19) and.. (20) to the following forms: 

Gr	 = e0r) cr-c0) - P(Wk)2()2

'(21) 

r dc0 = er_C0) - 1 
kd(r 

\k 

By using the parameters . r/k and.	 k instead of r and (0, a simple

direct solution is possible for any arbitrary value of cok with k 
to be determined by the boundary condition. 

Infinite Plate with CIrcular Hole or Flat Ring Radially Stressed 

The equations of equilibrium and compatibility for this case are: 

r dGr	 r ___ = O - )e (CrEe) -	 r	 e r k /r\	 . 

	

d1	 .\kI	 .	 (^2) 

r	 (€r_Ee) -1 
kd(r 

When equatios (22) are combined with equations (Ga), (Sb), (Sc), (5b), 
and (3), there are seven equations with seven unknowns.
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EQUATIONS OF EQUILIBRIUM AID COMPATIBILITY IN TERMS OF 


OCTAHEDRAL SHEAR STRAIN AI1D PARAMETER fl'IDICATING 


RATIO OF PRINCIPAL STRESSES 

In the preceding section, displacements are eliminated, from the 
equations, which result in seven equations .involving the seven unknown 
quantities cYr, a9 Cr, C e,	 r, and 7. The quantity C can 

be expressed in terms of. Cr and. C e (from equation (i)). Two of the 

four unknowns r'	 and Ce may be eliminated by using 

equations (6a) and (6b) or (7). The quantity 7 is a known function 
of 7 that is experimentally determined. The problem is then reduOed. 
to one involving three unknowns. Obtaining the solution of the result - 
ing equations is not, however, a simple matter. 

It is proposed. that this difficulty can be.. avoided. by using the 
following transformation: 	 . 

= 3T sin a. 

ae_ar =,r7 COS a. 

or

ar =JIT(iJ sin a - cos a.)l 

1	 (23) 

a9 =	 T	 sin a. + cos a)) 

Then 0r and (Y9 satisfy equation (5a) The octahedral shea' stress 

a function of 7, in the preceding equations varieswith r/k 
and. also with loading. Such a transformation has been used for the 
ideally plastic material (T = constant) by Nad.al in the section "Yield-
ing in Thin Plate with Circular Hole or Flat Rings Radially Stressed." 
(reference 1, p. 189) and. for a rotating disk (reference 2). From 
equations (6a), (Sb), and. (23), the principal strains can be also 
expressed. in terms of 7 and a.: 

= 2 :;r- .(sin 
a. -	 cos a)) 

= 2	
(sin a. +cos a)]	

(24)
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The equations of equilibrium and. compatibility for the three 
problems considered. here are then obtained in terms of y ann. a. in 
the fo1lowin form:

A1+Bd.7=C 

\k)

(25) 

D.	 +EL	 =F 
• k dj r \	 kd(r 

rhere the coeffic.ients A, B, C, D, E, and F are functions of a, 
7, and. r/k. For the circular membrane under pressure, from 
equation (18),

7 008 a. 

A = ( 'J cos a. + sin a) -. (if sin a - cos a.) 

yd.T _yeina.\l 
B=(sina-cosa)5

11/2 

C = 2(cos a)	
)	 - e	

(	 sin a + cos a)	 r 2 pk2l 

6T 2 ( sin a - cos a)	 (cij 
2 

D = ('j sin a - COB a) y 

E=([COSa.+81n) 

F =	 a)[ e ::::: :::

(26)
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For the rotatiri€ d.isk, from equation (21), 

A = (cos c+ sin a) - (fs1n a. -008 a) 
.,vi 

7coso

I 
B= (sina_cosa.)(L_ 75n1 I 

Td7 I 

C = 2(cos a.) e
co	 a) -

p .(wk)2
()2 L51

(7)

D=(JsincL-c0sa.)Y 

= - (/cos a sin a) 

F=2[l_e(
)] 

For the iafinite plate with a circular hole, from equation (22), 

A = ( iJ cos , a. + sin ci) - (/ sin a - cos a) 	
cos a 

B = (	 sin a - cos ci) ( 
T - 7 sina.l 

\Td7 VT/7 

C = 2(008 a)e(	 ci)	
(28) 

D = (i,f sin a. - cos ci) y 

B = - (Vcos a + sin a.) 

F = 2	 [i - e(	
°° 

With these transformations, the solution of the problems is reduced 
to simply a numerical Integration of the two simultaneous differential 
equations (equations (25)) involvIng the two unknowns y and. a. 
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Furthermore, the parameter 7, being the octahedral shear strain, 
directly indicates the stage of plastic d.eformation at any point under 
any load. (In plastic problems, according to the deformation theory, the 
individual stress and strain distribution cannot give as clear a picture 
of the stage of. plastic deformation as can the octahedral shear strain.) 
Also, the parameter a indicates the ratio of the principal stresses or 
strains. At any point, if a remains constant during loading, the ratio 
of principal stresses at that point remains fixed. The value of a 
obtained at each point in the calculation during loading directly indicates 
whether or not the deformation theory is applicable to the problem. 

The value of a is known at the boundaries or the center. From 
equations (23) and (24), in the case of a circular membrane under 
pressure, 

when r/b = 0,

= 

a = = 1.5708 

when rib = 1,

a=.,t=2.Q944 
3 

In the case of a rotating disk without a hole, 

when r/b = 0,

= 

a = = 1.5708 

when r/b 1,

a=-=0.5236 
6
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In the case of a rotating disk with a hole, 

when na = 1 and. r/b = 1,

a = = 0.5236 
6 

For the infinite plate with a circular hole, 

when r/a=l,	 -

0 

a=IL=0.5236 
6 

when na approaches c/a or a value large compared with 1, 

= 

a = = 1.5708 
2 

EQUATIONS OF EQUILIBRIUM A1JD COMPATIB]IITY FOP ThFThITESIMAL STRAIN


INTEPMSOF a AED 7 

The final forms of the equilibrium and compatibility equations for 
thecase of small strains are given in this section. The concept of 
infinitesimal strain is defined as follows: The change of diniensiona.are 
small compared with the original dimensions, but are large enough so 
that the elastic strain can be neglected. The equations presented can 
be obtained either by direct derivation as was previously done or by 
reducing from the equations for finite strains tbrcigh expanding the 

e '( '5	 terms in series and neglecting the small terms. For Infini-
temal strain, the cQefficients (ftnctioIs of a and y) A, B, C, 
D, E, and F in the preceding equations are denoted with a super-
script prime in similar forms, but the coefficient (functions of a and 
7)are simplerthan those for large strain.
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B'	 -C' k d( r\	 kd(r 

	

da +E'	 d7 -F' - 

For , the circular membrane under pressure, 

A t =r	 a.+ sin a
1 d.T 

B' (4/i sin a. - cos a) - 

C' = 2 cos a. 

= (#/ sin a. - cos a.)y 

= ( \(T 
coo a + sinra) pk	 12 

hk 
F' = 24y cosa +	

Bin . - 000 cLj 

For the rotatiig disk, 

A' =	 cos a+ sin a. 

B' =	 sin a.- cos a. 

C' =2cosa_/P (wk)2()2. 

D' = ( V sin a. - cos 

= -( ..fi cos a-F sin a) 

F' = 2V (coo a)y

(29)

(30) 

(31)
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For the infinite plate with a circular hole, 

A' =	 cos a + in a 

B' = (\f sin a - cos a) . L 
Tdiy 

C' = 2 cosa 

_	 D' = (iJsiaa-cos a)

	 (32) 

=	 cos a + sin a) 

F' = 2f (cos a)y 

METHODS OF NUMEtRICAL INTEGRATION 

Two methods are developed, to solve the differential eciatlons (25). 
In the first method, the differential equations are numerically integrated 
along r/k, which is considered the independent variable. In the second 
method, a is considered the indépend,ent variable. Because many terms 
In the equations are trigonometric functions of a, the use of a as 
the independent variable considerably reduces the work of computation. 

Numerical integration with r/k as independent variable. - 
Equations (25) can be written in the following forms: 

r	 da	 _CE-FB 
kd,(rAE-DB

(33) 

r	 d,7	 _FA-CD 
EA-BD 

\k /

For the case of smafl . strain, the terms A', B', C', D', E, 
and F' are used in equation (33) instead of A, B, C, D, E, and 

F, respectively. If at any point a and 7 are known, 	 da 
d(r/k) 

d7	 can be calculated by equations (33). At the bou.ndaries or the 
d.(r/k) 

center, a. is known, but 7 is to be determined, by the load. Only 
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one value (unknown) of . 7 corresponding to a particular load, exists 
on' each boundary. It is therefore difficult to start the numerical 
integrations on the boundary with the correct value of 7 corresponding 
to a given load. Also, in plastic problems covering the strain-
hardening range, the method of superposition is invalid. Usually, a 
method of iteration is used. to solve the problem (for example, refer-
ence 3). In the method presented herein, an arbitrary but unknown 
constant k has been introduced in equations (18), (21), and (22). For 
the cases considered, the terms in the equations that involve load are 

'r 2	 -	 fTk\2	 2

always multiplied by r, so that (L ) can be written as (_' () 

\h1/	
2	

\hiJ k 

in equations (18) and (26) and- (wr) 2 as (ok)2 (.) ±n equations (21) 
and (27). 

The numerical integration can then be started at the inner boundary 
(or at the center if there is no circular hole at the center) by using 
the known values of a.0, a desired value of y, and arbitrary value 

'k'2 of ( i-) for the membrane or of (ok) for the rotating disk. The 
.\hiJ 

numerical integrations can then be carried out, obtaining values of a. 
and- 7 at different values of r/k, until a progressively reaches 
the value that satisfies the other boundary condition. Because the 
value of r is knocm at the bound-aries, the value of k can be 
determined for the selected value of y. The number of points and the 

fonnulas used in the calculation depend on the accuracy required (ref-
erences 19 and 20). It has been found that if the fori1a for evaluat-
ing definite integrals Is applied after using the forward integration 
fornmla (references 19 and. 20), high accuracy can easily be obtained. 

The procedure used herein to obtain solutions is the same for each 
problem. Calculations are started from the inner boundary (or from the 
center if there is no circular hole at the center) with the known value 
of a.0 , the desired value of y, and. the arbitrary loading term. Tl 

Darameter	 is equal to it/2 at r/b = 0 for the umbrane and. for 


the solid rotating disk and is equal to t/6 at na = 1 for the 
Infinite plate with a circular hole 'and. for.the rotating disk with a 

hole. The arbitrary loading terxn are	 and- (uk)2 for the 
\h11	

r	 -i 
membrane and the rotating disk, respectively. Then _ _da.	 and 

Ld(n/k)Jo 

[d(k)] , correspondiiig t'o 	 and	 at the inner boundary or the
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center, are obtained from equation (33). The following formulas for 
forward. integration are used. to determine the first approximate values 
of	 and. 7 at the next point (cx.1* and 

Er	 r	 da 
l*o+L()l)]L(r)] 

r	 _7	
(34a) 

71* = 0 + L()l 	 L1 r\1 L)joJ 
By substituting cX1* and. 71* into equation (33), approximate values 

of dct 
I I i a nd. are obtained and the second approximate values 

Li 1 
of	 a.i	 and. 7i	 (c*)	 and. 71**) can be computed. from the following. 
formulas:

=	 +
olLd10

__ L] 
1r\ +

-	

rudy 

d)]
+ dy1*

The values of cx1** and.	 are substituted Into equatIon (33) again 

In order to calculated the values of E dctl and [a1 . By use of 

Li1	 Ld()i1 
the foflowing formulas for evaluating definite integrals, the values of 
a1 and.	 are calculated.:

r _ _ = ao+	
)l - 

	

1 r	 11__d7 1 + r d7	 (34c) 

	

+ Li -	 [JJ 
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This procedure is applied, to the next point, and. so forth, until the 
value of a reaches 'the required. value of' a at,the outside boundary 
( = 2/3 c at rib = 1 for the membrane, a , = it/6 at rib = 1 for 
the rotating disk, and.	 = /2 at na = c/a for the thin plate 

with a circular hole). Inasmuch as ' 

_b 
k 

the loading terms are determined as follows: 

For the rnembrane,

2	 2	 2 
(.'\ =(	 '	 '	 ( 33a) 

\h , / \kJ 

For the rotating disk,

ob)2 ='(uk)2 (b)2 , 	 (33b)' 

For the infinite plate with a circular hole, 

tc ,= h	 = ahje r = ah1e 2/ '	 (33c) 

or f or the flat ring radially stressed at the outside diameter b, 

- _..(sin ab -	 cos a.b) 

tb = rb	 ()b = rb h1e 
2/	 (33d) 

where t and. tb are the tension per unit original circumferential 

length at r = c and. r = b, respectively.
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Numerical integration with a.. as ind.ependent variable. - 
Equations (33) can be written in the following forms: 

d7FA-CD 
da. CE-FE

(35) 
(T\ 

___ = AE-DB r 
d.cL	 CE-BF k 

By zsing equaions (26) to (28) and. expanding e17) into a series, 
the following equations are obtained: 

For the circular membrane, from equations (26), 

/ 
CE-BF = 2GJ - [2 'J1TJ g(cL,7, - i-,, f1 (a.,y) - 2 rij 

r. pk\ 
AFD = 2	 - 2 7 - 2 L f2 (a,i)	 (36) 

7 AE -BD = -L2 -	 g 
(a., 

y, 

For the rotating disk, from equations (27), 

CE-BF = -2EL - 2 \1uJ g(a,y, F) f1(a.,) + L	 ()2 f(a.y) 

AF-CD = f112 - 2 %/BL [i - f 1(a,7 +	 ()2 f(a.y y	 (37) 

.AE-BD.=-L2 -J2



26
	

NACA TN 2217 

For the infinite plate with a circular hole, from equations (28), 

CE-BF = -2HL - 2	 (u.iL F) 1'Y1 
AF-CD	 -	 1	 y	 (38) 

.AF-BD = -L2	 2 (a.,7,L )
	 J 

where	
V 

G =eina 

E =cos 

J =sinQL-cosc 

L V 
=á\f cos	 Bin 

(\2 

K2 
r 

and	 -	 V 

	

__________	 _I(cos a.)y 
V 	

V 

f1(cL,y) =	 L -e	 _j 

	

AJ(cos ct)y	 V 

V	

= 1 _	 J-(cos . a.)i + (cos2 a.)y2 - 

-,—(cos a)y 
f 2 (a,y) = e T 

= 1 -(cos a)y 
V^	 x -(cos 2 a)y2 - iJ(cos3 ct)y3 + •:• 

= 1 _41(cos a)y f1(a,y) 	 V	

V
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sin a 

f3 (ct,y) = e 

= i	 sin a)^j. (.. sin a)2 2 + 2J a-sin a)373+ 
6 

g(a,y,LI)= Z...I. -4 Td7
7 

sin a - 003 a 

7 dT AJ7 
Td7 '2J 

/	 r pk\ [ e	
7(.	 sin a + 005 a) 2
	

11/2 

___________________ 'r\ 
7P)= [ 6 (	 sin a - 005 a)	 ) (hDj 

	

r	 11/2 
K1 11 r\2 f3,7)1 

	

= ['	 f2(cL,7.?.j 

The symbols G, H, J, and L are trignometric functions of a 
only; K1 and K2 are constants during calculation. The symbols 

±'1, f2, f3, and g are functions of a. and 7; j is a function 
of a, 7, and 

This method is used. herein in the solution of an infinite plate 
with a circular hole. The procedure of numerical integration is 
similar to that used in the first method. The first four terms of the 

series of	 are used; the accuracy of the result is the same 
as that in the first method, with a reduction of one half in computaticzi. 

Both methods presented herein are used to obtain the solutions for 
the given values of y. The purpose of the present paper is to obtain 

solutions f or the entire strain-hardening range and the methods developed 
are very convenient for this purpose. If, however, a solution for only 
a particular value of loading is required, it can be obtained by inter-
polating between values obtained from two or three solutions correspond-
ing to loading near the specified value..
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NUMERICAL EXAMPLES 

Membrane. - In order to compare the results obtained by the method 
developed herein to those obtained by Gleyzal (reference 3), one nuineri-
cal solution for -iiifinitesimal strain is calculated, by using the T(7) 
curve of the tensile test in figure 1 of reference 3 • Inasmuch as 
reference 3 states that: "For simplicity, strain will be taken to mean 
conventional-strain (ds-is 0 )/ds 0 where d,s and ds 0 are final and. 

initial arc length, respectively.", equations (29) and (30) for infini-
tesimal strain are used. The calculation is started at r/k = 0.005. 
Values of a0 = 1.5708,. 0 

= 0.0299, and plc/hi = 55,920 are used. 

Rotating disk..- Numerical solutions for finite strain (eq,u,ations (25) 
and (27)) are calculated. The T(7) curves of two materials, Inconel X 
and 16-25-6, are plotted in figure 5(a)'. These data were supplied by 
W. F. Brown, Jr., II. Schwartzbart, and M. H. Jones. The same r(y) curves 
are plotted on logarithmic 000iinates in figure 5(b). These materials, 
Inconel X and 16-25-6, of which T is not a power function of 7, were 
chosen so that more general information can be obtained. It should be 
mentioned that the given octahedral shear stress -strain curves (-fig. 5) 
of these two materials have not been corrected for the triaxiality and 
nànuniform stress distribution introduced by necking, and consequently 
do not represent the exact stress-strain relation after necking of these 
two materials. The solutions obtained from the T(7) curves of the 
tensile test after necking can, however, represent the solutions corre-
sponding to materials having the exact r(y) curves shown In figure 5 and 
for simplicity the materials are herein st,l1 referred -to as Inconel X 
and, 16-25-6.	 - 

:tn each case, the calculation is started at r/k = 0.005, as in the 
case of a membrane. 

Three solutions are also obtained for a rotating disk with a central 
hole, using Inconel X. Calculations are started at r/a = 1.
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All numerical examplee are given in the following table: 

Solid,rotating disk 

Material	 y	 j p(wb)2 

Inconel X	 0.04	 1 X i05

.1152 1 x i05 

________ .30	 ixio5 

16-25-6	 0.04	 1 x i05 

	

.1152	 1 x i05 

	

.30	 2.5 x io5 

• Rotating disk with central hole 

Material p(wa)2 

Inconel X	 0.30 1 x lO4 
.30 2x103 

________	 .30 4x102

Infinite plate with circular hole. - The calculations for this 
problem are carried out for the case in which	 = 0 at na = 1. 

The value of	 at na = 1 is then 0.5236. (For other cases where 

is different from 0 at na = 1, the corresponding value of a 
should be used.) The same materials as in the previous rn'oblem are 
considered • The numerical examples are: 

Material	 70 

Inconel X	 0.04 
.1152 
.1871 
.30 

16-25-6	 0.04 
.1871 
.30 
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RESULTS MU) DISCUSSION 

The radial and circuiitf'erential stresses 0r and Ge, respectively, 

obtained f or the case of a circular membrane are plotted against rib 
in figure 6. Two curves, taken from reference 3, corresponding to 
calculations for about the same pressure used in the present calculation, 
are included In the figure for comparison. In the present calculation, 
the 'r(7) curve given in figure 1 of reference 3 and the same 
infinitesimal-strain definition based on the original dimension is used. 
In order to be consistent, the initial thickness hi is also used in 
the calculation rather than the instantaneous thickness h, which is 
used in reference 3. 

The variations of a with the radius for the rotating disk and 
for the infinite plate with a circular hole for different loads and 
materials are plotted In figures 7(a) and 7(b), respectively. The vari-
ations of a with	 (or loading) at verIous radii for the rotating 
disk and the infinite plate with a circular hole are plotted In 
figures 8(a) and 8(b), respectively. Similar curves for the ratio of the 
principal stresses	 are shown in figures 9(a), 9(b), and 10. When 

figure 7 is compared with figures 9(a) arid 9(b), it Is seen that the 
variations of a with radius are very similar to the variations of 

Gr/G9 with radius, although the relation between. a and Or/Ge is nab 

linear. 

Examples for a membrane with a large strain are not calculated 
herein, because the result of reference 3 is sufficient to give an approxi-
mate variation of the ratios of principal stresses along the radius during 
loading, although the infinitesimal-strain concept Is used. The variations 
of the ratio of principal stresses with radius for different loads, based 
on the values of 0r and 0e given in figures 8 and. 9 of reference 3, 

are calculated and plotted on figure 9(c). 

The values of 0r are plotted against °e at different radii 

under different loads for the roatIng disk and the Infinite 'plate with 
a circular hole in figure 11. The heavy solid and dashed curves 
represent the values of 0r and G at different radii for any given 
load and are called loading curves • The loading curve moves away from 
the origin with increasing load. The light solid and dotted lines con-
necting the different loading curves at a given radius and extending to 
the origin represent the values of 0r and.	 at different loads for 

any given radius and are called loading paths. Also shown In the fig-
ures are the yielding surfaces, which are ellipses under the deformation 
theory.
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A clear picture of the variation of the ratios of principal 
stresses in this group of problems with different loads and with 
differert materials is given in figures 7 to 11. It is evident that 
the ratios of principal stresses remain essentially constant during 
loading. For this group of problems, the deformation theory is there-
fore applicable and cj, defined by equation (8), represents the true 

strain and is determined by the final and initial states. 

The variations of y and y/y0 with radius are plotted in figures 12 
and 13, respectively, for the rotating disk and the infinite plate with 
circular hole. It is interesting to note that the curves in, figure 13 for 
different loads for the same material are quite close. The curves for 
different materials on figures 7 and 9 are also close, but are not so 
close infIgure 13. 

The• distributions of principal stresses and principal strains along 
the radius for the rotating disk and for the infinite plate with a 
circular hole are plotted in figures 14 and. 15, respectively. For 
comparison, the variations of oe/(e )b, Ee/(ce)b, and	 with 

radius for both the elastic and the plastic range are plotted in fig-
ures 16 and 17. (The equations for the elastic range are given in the 
appendix.) If only the stress distributions for the elastic and plastic 
cases are compared, it is seen that the stresses are more uniform in the 
plastic state; but if the distributions of the principal strains and the 
octahedral shear strain for the elastic and. the plastic cases are 
compared., it is evident that a less-uniform strain distribution is 
obtained in the plastic state. It is of special Interest in the case 
of the finite plate with a hole to note that with plastic formation, 
the stress (tangential stress) concentration factor around. the hole is 
reduced, but instead there is a hi&a concentration in principal strain 
and. in octahedral shear strain. A similar conclusion regarding con-
centration factor around a circular hole in a tension panel is obtained 
In references 21 and 22. 

The quantities' °ë/(e)o, or/(ar)o, r/(r)o' and. 
along the radius for a rotating disk and ae/(ae)0 and ee/(ce)o for 

an infinite plate with a circular hole are plotted in figures 18 and. 19, 
respectively. 'The curves representing Gr/(Gr)o, £ r/( Cr), and 

ee/(C e) ' for different materials and. different values of are close 
together; but the curves of e/(ae)0 are quite different for different 

materials, as well as for different values of
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The relation between load and. maximum octahedral shear strain 
of the rotating disk and. the infinite plate with a hole are plotted in 
figure 20. The terms •p(wb) 2 and t.b/hl are designated the load for 
the rotating disk and. the infinite plate with a hole, respectively. 
It is shown in these figures that the load. increases considerably for 
Inconel X when the value of 	 increases from 0.04 to 0.30, whereas the

load for 16-25-6 increases only slightly. 

In figures 7, 13, and 16 to 19,. it is shown that in the case of the 
plate with a hole, the variations of ' 

7/7, rI(r)o' and 
with radius are essentially independent of the value of 	 •of the plate 
and the T(7) curve of the material, at least within the range of T y 
variat ion enclosed by those values of the two materials used • From these 
results, it can be seen that the deformation that can be accepted, by tl 
plate before failure depends mainly on the maximum octahedral shear strain 
(or ductility) of the material, which would. not be true if the strain 
distributions were a function of the T-y curve. In the case of the 
rotating disk, however, a slight effect of 	 and the 'r(y) curve is 

apparent on the strains; this effect seems to be caused by the body-
force term of the disk. 

The strees distribution that will determine the load the member can 
sustain is now considered. From figures 16 to 19, it can be. seen that 
the variations of oe/(Ge)o with radius depend upon the T(7) curve of 

the material and. on the value of 7 of the member. From figu.re20, it 
is also seen that the load depends on the T(7) curve. It therefore 
follows that the added load that the member can sustain between the onset 
of yielding and, failure depends on the •T(7) curve of the material. The 
octahedral shear (or effective) stress and strain curve of the material 
should therefore be used. as a criterian in selecting a material for a 
certain member under a certain loading condition, because consideration 
of the maximum octahedral shear strain of the material alone (or ductility 
alone) is insufficient. 

The variations of a, 7, Gr 'ye ' r' Ce, and /b with 

radius of three rotating disks with a hole are shown in figure 21 • These 
three disks have the values of ratios of outer and inner radius b/a 
equal to 5.32, 12.45, and. 28.12, respectively. The tangential stress 
G, the tangential strain €, and. the octahedral shear strain 7 are 

much less uniform then in the case of a solid rotating disk. The ratio 
of maximum and minimum octahedral shear strain 	 is equal to 7.41 

for a disk with b/a = 5.32, equal to 11.75 for a disk with b/a = 12.45, 
and equal to 14.1 for a disk with: b/a = 28.12; for a solid disk of the 
same material, the ratio 

o'b 
is about 5.3.
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The values of the load, defined by p(Wb) 2 , for rotating disks 
having different ratios of inner to outer radius a/b are represented 
by. the solid curve in figure 22 • These disks were made of Inconel X 
and reach the same maximum octahedral shear strain 	 = 0.3- at the 

inner radius of the disk. The dashed curve in the same figure is 
obtained by erbending this solid curve toward a/b = 1, where the value 
of p(wb)2 can be determined by considering rotating ring with 
a/b —".l. The figure indIcates approximately how the load p(0b)2 
varies with different disks having different ratios of inner and. outer 
radius and. reaching the same maximum octahedral shear strain at the 
inner radius of the disk. The value of p(b) 2 for a solid rotating 
disk made of Inconel X with	 = 0.3 at the center of the disk is also 

indicated in the same figure.	 - 

The preceding result2 and discussion were obtained for the plane-
stress problems with axial thymmetry in the strain-hardening range in 
which the elastic strains are negligible ccznpared with the plastic 
strains. Whether these results and. discussions are true for general two-
dimensional or thx'ee-dimensional problems, or for the problems Involving 
the region in which elastic strain is not small cpared with plastic 
strain, or for partly plastic problems, can be determined only by a 
detailed-analysis of each case. 	 - 

C0NCLtJI0NS 

The results obtained in the cases of a membrane, a rotating disk 
without and 'with a hole, and an Infinite plate with a hole in the strain-
hardening range of two materials, Inconel X and 16-25-6, whose stress-
strain relations do not follow the power law, show that: 

(1) The method developed not only accurately solved the , plane-
plastic-stress problems with axial symmetry in a simple manner, but also 
gave a clear picture of the octahedral shear strain and the ratio of 
principal stresses during loading. 

(2) The ratio of the principal stresses in such cases remained 
essentially constant during loading and., consequently, the deformation 
theory is applicable to this group of problems. 

(3) The distributions of principal strains, and octahedral shear 
strains, on. the plastic state are less uniform than those' inelastic 
state, although the distributions of tangential stresses appear more uniform 
in the plastic state. The stress concentration factor around. a hole is 
reduced in the plastic state, but instead there is a high concentration 
of principal strain and of the octahedral shear strain.
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(4) The ratios of the strains alone the radius of their maximum 
value are essentially independent of the value of the maximum octaiiedral 
shear strain of the plate and the octahedral shear stress -strain curve 
of the material. Hence, the deformation that can be accepted. by the 
plate before failure depends mainly On the maximum octahedral shear 
strain (or ductility) of the material. 

(5) The stress distributions depend on the octahedral shear stress-
strain curve of the material. Hence, the added. load that the member ' can 
sustain between the onset of yielding and, failure depends mainly upon 
the octahedral shear (or effective) stress-strain curve in the , strain-
hardening range of the material. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronuatics,


Cleveland., Ohio, February 28, 1950.
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APPENDIX 

EQIJATIONS FOR ROTATING DISK AND INTITE PLATE WITH


CIRCULAR HOLE IN ELASTIC RANGE 

Rotating Disk 

For a solid disk with the radial stress - at the periphery (r b) 
equal to zero, •the principal stresses can be expressed in the following. 
equations (reference 23, p. 68): 

=	 pu(b2_r2)

(39) 

a9	 3+1)	 - 1+3', pWr2 

where V is Poison's ratio. 

At r=b,

=	 Pb2 (i-.) 

Dividing equation (39) by (eb yields 

___ - 3+1) [	 r?1

(lV) L

(39a) 

-	 - 3+V •r1.	 l+3	 r\ 
2(1-1)) L - 3+1 (j 

The stress-strain relations of plane-stress problems n the elastic 
range are:

€3:. = •
	 r'ae 

1	 (40) 
= .
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where E is the modulus of elasticity ml tension and compression. 


Substituting equations (39) into equations (40) yields: 

C	 (1v)(3v)(pb2) [ - 3(l^v) (]1
(40a) 

Ce = L (1-v)(3+v)(pU2b2) [

	

1+l?(r)2] J 
or	 -

3(1+V) r21


	

2 L	 ^1' (b)j

(4ob) 

Ce - 3+1' r1 -	 /r\2l 

	

(Ce)b[	
i;7_j 

The equations for the octahedral shear stress and strain given by 
equations (4a), (4b), and. (5a) can be applied to both the elastic and 
the plastic range, but equation (5b) is true only in the plastic range. 
The octahedral shear strain in the elastic range can be calculated by 
equation (4b) or simply by using the following equation: 

- 2(1+1')	 - 2(1^ 1.')	 2hI2 
E T -	 E	 r ree	 ( 

Substitute equations (39) in equations (41) to obtain: 

=	 (p2b2)	 3^)2 -. 4(1+v)(3^v) ()2 + (72v^7v) (r)] 1/2 

(41a) 
or

-	
.	 1/2 

= 2(l-v) 
[(3+U)2 - 4(1^(3^v) (r)2 + ( 7^27v2 )()41	 (41b)
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and

V = 0.29 for Inconel X (reference 24) 

V = 0.286 for 16-25-6 (ref'erence 25) 

Infinite P1te With Circular Hole 

For a unifoin1y loaded infinite plate with a circular hole, the 
principal stresses are (reference 23, p. 56): 

1
(42) 

ae 2C J 
where A and C are arbitrary constants. For the case considered 
herein, the boundary conditions are: 

ar-O	 at r=a 

• aT_T)b	 at r=b 

These boundary conditions are used to determine the arbitrary 
constants A and C, which yield 

•	 fr2 

	

(r)b	
) -1 

2 

•	 )	 \a
(42 a) 

- (r)b (r)2 

- 1 _fa\2 /r\2 • \1 \aJ
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or

2 

i+(.)2 (r)2

(42b) 

ae. -	
(r)2 

____ - (a\2 (r\2 
\b/ \a/ 

Substituting equations (42a) into equations (40) yield.s 

1 rb	
(r)2 - (i+v) 

r - 1(a)2 

(cT )	 (i-i') (	 + (i+v) 
1 rb	 aj 
E	 2 (r 

'b)

2
(i+v) 

___ = [(iv).	 (r)2

(43a) 
2 

(i-i') () + (1+v)	 I C8	
a	

r2	 - (e)b = •[(iv) + (1+v)()2] ()
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Substituting equations (42a) into equation (41) yields 

1/2 

- 2(1+v) (Gr)b I() +3 

-	 3E	 (a'2 (\4	 (44) 

\b) L\aI 

or	 1	 1/2 

(.) +3 

FERENCES 

1. Nadai, A.: Plasticity. McGraw-Hill Book Co., Inc., 1931. 

2. Nadai, A., and Donnell, L. H.: Stress Distribution in Rotating 
DiskB of Ductile Material after the Yield Point HasBeen Reached. 
Trans. A.S.M.E., vol. 51, pt. I, APM-51-l6, 1929, pp. 173-180; 
discussion, Pp. 180-181. 

3. Gleyzal, A.: Plastic Deformation of a Circular Diapbra under 
Pressure, Jour. Appi. Mech., vol. 15, no. 3, Sept. 1948, 
pp. 288-296. 

4. Millenson, M. B., and. Manson, S. S.: Determination of Stresses in 
Gas-Turbine Disks Subjected to Plastic Flow and. Creep.. NACA 
Rep. 906, 1948. (Formerly NACA TN 1636.) 

5. MacGregor, C. W., and Tierney, W. D.: Developments in High-Speed 
Rotating Disk Research at M.I.T. Welding Jour. Suppl., vol. 27, 
no. 6, June 1948, pp. 303S-309S.. 

6. Hoims, Arthur G., arid Jenkins, Joseph E.: Effect of Strength and. 
Ductility on Burst Characteristics of Rotating Disks. NACA TN 
1667, 1948.	 • 

7. Hencky, Heinrich: Zur Theorie plastiecher Deformationen und. der 
hierdurch im Material hervorgerufenen Nachspannungen. Z.f.a.M.M., 
Bd. 4, Heft 4, Aug. 1924, S. 323-334.



NACA TN 2217 

8. Nadai, A.: Theories of Strength. Trans. A.S.M.E., vol. 55, 
APM-55-15, 1933, pp. 111-129. 

9. Nadai, A.: Plastic Behavior of Metals in the Strain-Hardening. 
Range. Part I. Jour. Appi. Phys., vol.. 8, no. 3, March 1937, 
pp. 205-213. 

10. Ilyushln, A.A.: Relation between the Theory of Saint Venant-Levy-
Mises and the Theory of Small Elastic-Plastic Deformations. 
RMB-1, trans. by Appi. Math. Group, Brown Univ., for David: W. 
Taylor Model Basin. (Waàhington, D.C.), 1945. 

11. Ilyushin, A..A.: The Theory for Small Elastic-Plastic Deformations. 
RMB-17, trans. by Grad. Div. Appi. Math., Brown Univ., for David 
W. Taylor Model Basin (Washington, D.C.), 1947. (Contract 
NObs'-34166.) 

12. Prager, W.: Strain Hardening under Combined. Stresses. Jour. Appl. 
Phys., vol. 16, no. 12, Dec. 1945, pp. 837-840. 

13. Drticker, D. C.: A Reconsideration of Deformation Theories of 
Plasticity. Trans. A.S.M.E., vol. 71, no. 5, July 1949, pp 587-
592. 

14. Lessells, J. M., and. MacGregor, C. W.: Combined Stress Experiments 
on a Nickel-Chrome-Molybdenum Steel. Jour. Franklin Inst., 
vol. 230, no. 2, Aug. 1940, pp. 163-181. 

15. Osgood,W. R.: Combined . Stress Tests on 24S .JT Aluminum Alloy Tubes. 
Jour. Appi. Mech., vol. 14, no. 2, June 1947, pp. A147-A,153. 

16. Fraenkel, S • J.: Experimental Studies of Biaxially Stressed Mild 
Steel in the Plastic Range. Jour. Appi. Mech., vol. 15, no. 3, 
Sept. 1948, pp. 193-200. 

17. Davis, H. E., and Parker, E. P.: Behavior of Steel under Biaxial, 
Stress as Determined by Tests on Tubes. Jour. App].. Mech., 
vol. 15, no. 3, Sept. 1948, p p . 201-215. 

18. Lankford, W • T •, Low, J • R., and. Gensainer, M.: The Plastic Flow of 
AJ-undnum Alloy Sheet under Combined. Loads. Trans., A.I.ME., Inst. 
Metals Div., vol. 171, 1947, pp. 574-604. 

19. Bickley, W. G.: Formulae for Numerical Integration. The Math. 
Gazette, vol. XXIII, no. 256, Oct. 1939, pp. 352-359. 

20.. Mime, William Ed:mu.nd: Numerical Calculus. Princeton Univ. 
Press, 1949.



NACA TN 2217	 41 

21. G-rlffith, George H.: Experimental Investigation of the Effects of 
Plastic Flow in a Tension Panel with a Circular Hole. NACA TN 
1705, 1948. 

22. Stowell, Elbridge Z.: Stress and. Strain Concentration at a Circular 
Hole In an Infinite Plate. NACA TN 2073, 1950. 

23. Tinioshenko, S.: Theory of Elasticity. McGraw-Hill Book Co., Inc., 
1934. 

24. Anon.: Nickel and Nickel Alloys. The International Nickel Co., 
Inc. (New York), 1947. 

25. Fleischmann, Martin: 16-25-6 Alloy for Gas Turbines. Iron Age, 
voL. 157, no :. 3, Jan 17, 1946, pp. 44-53; cont., vol. 157, no. 4, 
.Jan. 24, 1946, pp. 50-60.



z 

1u1—r+u -.J L- A(r+u) 
I	 I 

I	 I	 I
c.	 I 

42
	

NACA TN 2217 

Figure 1. - Thin circular menibrane (under pressure) and its element. 
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Figure 2. - Cap of membrane with rad.ius r+u
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Figure 5 - True octahedral shear stress-strain curves.
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Figure 7. - Variations of parameter a with proportionate radius for Inconel X and 16-25-6. 
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(a) Rotatin€ disk. 

Maximum octahedral shear strain, Yo 


(b) Infinite plate with hole. 

Figure 8. - Variation of parameter a with maximum 
octahedral shear strain at different radii. 
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Radial stress,	 r' lb/sp In. 

(b)	 Infinite plate with circular hole. 

Figure ii. - Concluded. Loading curves, loading paths, and yielding surfaces. 
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Figure 12. - Variation of octahedral shear strain
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(a) Variation of parameter a. with proportionate

radial distance. 

Figure 21. - Rotating disk with hole, Inconel X, 
= 0.30. 
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Figure 21. - Continued. Rotating disk with hole, - 
Inconel X, 7	 0.30. 
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(d) Variation of principal strains with 

proportionate radial distance. 

Figure 21. - Continued. Rotating d.18k with hole,, 

Inconel X, y = 030. 
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(e) Variation of ratio of octahedral shear strain to inthimum 
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Figure 21. - Concluded. Rotating disk with hole, Inconel X, 
0.30.
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Figure 22. - Variation of load. (function of speed.) with ratio 
of inside and. outside radii of rotating disk with hole. 
Inconel X; Yo = 0.3. 
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