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SUMMARY

A simple method is developed to solve plane-stress problems with
axial symmetry in the strain-hardening range based on the deformation
theory of plasticity employing the finite-strain concept. The
equations defining the problems are first reduced to two simultaneous
nonlinear differential equations involving two dependent variables:

(a) the octahedral shear strain, and (b) a parsmeter indicating the
ratio of principal stresses. By multiplying the losd and dividing the .
radius by an arbitrary constant, it is possible to solve these problems
without iteration for any value of the modified load. The constant is
determined later by the boundary condition.

The method is applied to the cases of a circular membrane under
pressure, a rotating disk without and with a hole, and an infinite
plate with a circular hole. Two materials, Inconel X and 16-25-6, the
octahedral shear stress-strain relations of which do not follow the
power law, are used. Distributions of octahedral shear strain, as well
as of principal stresses and strains, are obtained. These results are
. compared with the results of the same problems in the elastic range.
‘The variation of load with maximum octahedral shear strain of the mem-

ber is also Investigated.

The followinglresults are obtainéd:

1. The ratios of the principal stresses remain essentially con-
stant during loading and consequently the deformation theory is appli-
cable to this group of problems. '

2. In the plastic deformation, the distributions of the principal
strains, and of the octahedral shear strain, are less uniform than in
the elastic case, although the distributions of the principal stresses
are more uniform. The stress concentration factor around the hole is
reduced with plastic deformation, but a high strain concentration
factor occurs. ' ‘

3. The deformation that can be accepted by the wember before
failure depends mainly on the maximum octahedral shear strain of the
material.



2 ’ _ : NACA TN 2217

4, The added load that the member can sustain between the onset of
yielding and failure depends mainly upon the octahedral shear stress-
strain relation of the material.

INTRODUCTION

In the design of turbine rotors, it is desirable to know the
detalled stress and strain distributions in the strain-hardening range
and the amount of increase in load that can be sustained betwsen the
onset of yielding and fallure. It 1s also desirable to know the effects
of a notch or a hole in a turbine rotor or other machine members that
are stressed in the strain-hardening range. If a member is thin, it can
be analyzed on the basis of plene stress. For problems of this type,
Nedai obtained solutions for ideally plastic material in the cases of
the rotating disk, the thin plate with a hole, and the flat ring radially
stressed (references 1 and 2). For the case of materials having strain-

. hardening characteristics, a solution of plane-stress problems has been

obtained by Gleyzal for the circular membrane under pressure (reference 3).
The concept of infinitesimal strain was used and the solution was obtained
by an iterative procedure with a good first approximate solution. The
plastic laws were always satisfled by using a chart given in reference 3.
In reference 4, a trial-and-error method 1s given for rotating disk with
very small plagstic strain, in which the elastic stresses and strains are
used as the first approximate values. Experimental investigation for the
high-gpeed rotating disk is made 1n reference 5; distributions of plastic
strains (logarithmic straing) for different types of disk are measured.
Reference 6 experimentally investigates the burst characteristics of rotat-
ing disks; stress at the center of disk is calculated by assuming that the
material behaves elastically at the burst speed; the average tangential
stress along the radius at burst speed is also calculated.

A simple method of solving plane-plastic-stress problems with axial
symmetry employing the finite strain concept in the strain-hardening range
and based on the deformation theory of Hencky and Nadai (references 7 to
9), which is derived under the condition that the directions and the
ratios of the principal stresses remain constant during loading, was
developed at the NACA lLewis laboratory and is presented herein. The
equations of equilibrium, strain, and plastic law are reduced to two
simultaneous nonlinear differential equations involving three variables,
one independent and two dependent, that can be integrated numerically to
any desired accuracy. These variables are the proportionate radial
distance, the octahedral shear strain, and a parameter o that indicates
the ratio of principal. stresses. The magnitude of variation in calculated
values of the parameter a wlth change in load directly indicates whether
the deformation theory is applicable to the problem.

The method developed is applied to: (1) a circular membrane under
pressure, in order to compare results obtained by this methqd with that
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obtained by Gleyzal (reference 3); (2) rotating disks without and with a
circular central hole, in order to investigate plastic deformation in
such disks .and the effects of the hole; and (3) an infinite plate with a.
circular hole or a flat ring radially stressed, in order to investigate
the effects of the hole in the strain-hardening range.

In the investigation of (2) and (3), two materials, Inconel X and
16-25-6, with different strain-hardening characteristics were used in
order to determine the effect of the octahedral shear stress-strain
curve on plastic deformation. The octahedral shear stress of these two
materials is not a power function of the octahedral shear gtrain, so that
more general information can be obtained. Distributions of stresses and
strains of the same problems in the elastic range are also calculated for
purposes of comparison.

SYMBOLS
The following symbols are used in this repbrt:

8 radius of hole

b outside raﬁius of membfane, rotating disk, or flat ring

c outside radius of plate, very largé comparéd with radius a
h instantaneous thickness of membrane, rotating disk, or plate

hi initial thickness

k arbitrary constant
P pressure on membrane
r radial coordinate

8  arc length
‘u radial displacement

W axial displacement

z axial coordinate *

a parameter indicating ratio of principél stresses
V4 octahedral shear strain

€ logarithmic stra;n

e angula% coordinate

O

masg per unit volume

o} normal stress, normal force per unit instantaneous area
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T - octahedral shear.stress

w anguler velocity

Subscripts:

b | at radius b

c at radius c

o at center, for case w1thout hole or at radius a for case with

concentric circular hole
1,2,3 principal directions in general

r,0,z principal directions in cylindrical coqrdinate system.

STRESS -STRATN RELATIONS IN PLASTIC DEFORMATION

'The deformation theory of plasticity for ideally plastic materials
was developed by Hencky from the theory of Saint Venant-Levy-Mises for
the cases in which the directions and the ratios of principal stresses
remain constant during loading (reference 7). Nadail extended the theory
to include materials having strain-hardening characteristics (refer-
ences 8 and 9). The conditions for the deformation theory have been
emphasized by Nedai (reference 9, p. 209), Ilyushin (references 10 and
11), Prager (reference 12), and Drucker (reference 13). Experiments con-
ducted by Lessells and MacGregor (reference 14), Osgood (reference 15),
and others on thin tubes subjected to combined loads with the directions
and the ratios of the principal stresses constant throughout the body and
remaining constant. during loading show that good results can be expected
from the deformation theory.

In more recent experiments on thin tubes by Fraenkel (reference 16)
and Davis and Parker (reference 17), it hag been shown that even with
considerable variation of the ratio of nrlnclpal stresses during loading,
the strains obtained from the experiments were in good agreement with
the strains predicted by use of the deformation theory. Further experi-
mental investigation is needed to determine the extent to which the vari-
ation of ratios of principal stresses is permissible. In case the vari-
ation is small - (approximately 10 percent over the strain-hardening .
range ), the deformation theory can, however, be expected to give good
results. ’
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In the present problems with‘axiai symmetry, the directions of
the axes of principal stress remain fixed during loading and it seems

that the ratios of principal strains and of principal stresses may
also remain approximately constant.

discussed is therefore used.

‘follows:

where

WY

The deformation theory previously

The stress-strain relations are then as

]

€ + €3 =0

02703 0370y

[(01-02)2,

. 1/2
[(e:l-ezz-)2 + (52"’-3)2 + (€ 5-61)2]

+

€2-€3 - €3-€l

T(7)

, 1/2
(02-03)2 + (03-01)2] A

(1)

(2)

(3)

(4a)

(4p)

From equations (1) to (4b), the following relations are obtained:

1
€l='3‘
-1
€2 =3
21
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z
T
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o = 5 (03“‘01)]
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For plane-gtress problems Oz = 0, 80 that

z
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- o2 (e.2; ;2)1/2‘;
Y = —3- El +€l€2+€2

1/2

(Sa)

(5p)
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. and
l -
€l = g -'T-' (Ol- —02) (6&)
17 1
€p = 3‘_]:‘ (Oz- E’Gl) (Gb)
l 4 *
When 04 and O, are expressed in terms of €, and €5, there is
obtained ' ‘ ‘
T
(7)
Oz = 2 = (2e,+ep) |

EQUATIONS OF EQUILIBRIUM AND STRATN INVOLVING DISPLACEMENTS

Equations of equilibrium and equations of strain are derived for
three. plane-stress problems with axial symmetry. It is convenient %o
use cylindrical coordinates for these derivations; the principle
directions 1, 2, and 3 in the preceding equations become radial,
circumferential, and axial directions, respectively. Because a large.
deformation in the strain-hardening range will be considered, the
concept that the change of dimension of an element is infitesimal
compared with the original dimension of the element is not accurate
enough. Hence, the finite-strain concept, which considers the instan-
taneous dimension of the element, is used. (The equations of infin-
itesimal strains will be given by considering them as special cases of
finite strains.) The stress is then equal to the force divided by the
instantaneous area and the strains are defined by the following equation:

. 5(14)
5(53) A 1
l
j-
where lj is the instantaneous length of a small element having the
original length of (1) and J =1, 2, and 3. During plastic
deformation, the plastic strains at a certain state depend on the path
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by which that state is reached. For the paths along which the ratios
of principal stresses remain constent during loading, however, the
octahedral shear stress-strain relation, the value of the octahedral
shear strain, and the value of the principal strains are defined

by the initial and final states (reference 15 and reference 9, p. 209);
8(6 ) is then an exact differential and

1
= log 4 8
-l T @

It should be noted that the condition under which eguation (8) was
obtained is also one of the conditions under which the deformation theory
is derived; as long as the deformatlon theory is anpllcable, equatlon (8)
can also be used.

Circular Membrane under Pressure<

The membrane considered is so thin that bending stress can be
neglected (relerence 18, p. 576). Figure 1 shows the membrane clamped
at the rim and subjected to a pressure p, and a small element defined
by A8 and As ‘taken at radius r+u in the deformed state. In the
undeformed state, the same element would be at radius r and defined
by A6 and Ar. The instantaneous thickness of the element and the
. stresses acting on the element are also shown in the figure. The two
principal stresses are 0, and Og, and ¢ is the angle between O
and the original radial direction.

Equations of equilibrium -~ When dll the forces'acting on the
element in the direction of Q. are summed up, the following equation

of equilibrium is obtained:

oi (r+u) h A6 - (Op+A0y) | THu + A(r+ui] A% (h + Ah) cos A® +

J 0
20, As (h + 5 Ah) sin %? cos® - p As (r+u) A8 sin - Np

=0

When A(r+u) approaches zero as a limit, the differential equation of
equilibrium may be obtained: .

'

,(£¥u)'@(qrh) =ih(d ) o o (9)
d(r+u) &~ x’ ‘
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A cap of the membrane bdunded_by radius r+u and the forces
acting on it are shown in figure 2. Summing up the forces in the
z-direction yields ' :

pr (r+u)? = Oy ¥ 2n nr+u)

d

or

” .
dw o 1
[;1r+u$] - P (10)
2ho., i :
plr+u) )
Eguation of strain. - Inasmuch as the element at radius v, defined
by A6 and Ar in the undeformed state, is moved to radius r+u,

‘defined by A€ and As, by the application of pressure, p (fig. 1), by
. use of equatloq (8) the strains are ,

ds
€, = log, e
‘ ' ' €g = log, Sl
h
fo 7 e By
Then
, ' 1/2 -
_ eer _ dlra) )4 I 2 : (11a)
. _ T ar a(r+u)
€g .
8 -r+u
e =7 . : (11p)
€q h .
e =g ‘ (11c)

Rotating Disk

Equation of equilibrium. - A disk of radius - b and thickness h,
rotating about its axis with .angular speed w, and an element taken at
radius r+u, defined by A6 and A(r+u), . 18 shown in figure 3 with
all the external forces acting on it. Summing up all forces acting on
the element in the radial direction yields
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0. (r+u) h 46 - (0,+40y) [%+u + A(r+u)] 46 (h+ah) +

‘ . 1 A9
[ 4+ = Ah 1 —— -
g A(r+u{_ (h + 5 Ah) sin >

: 7 pn [3r+Ar)2 - ré] A6
2 1 .
w [}4u + 3 A(r+u) -

2n - by

puv

=0

When A(r+u) approaches zero as a_liﬁit, the following equation of
equilibrium is obtained:

a(0,h) ) . > 2, r+u _dr - '
T Flmmy - Oo0p) B - win Rty o (12)

Equation of strains. - The strains are

' N a(r+u)
er = log hanih Yool oA
| | r+u
ee = lOge * ~ ,
h .
€ = 108 —
Z

! e hi

therefore

] _ v

T - dlzm) . (132)
€9 : :

e = | © (13b)
€7 h :

= - (13
© T | (13¢)
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Infinite Plate with Circular Hole or Flat Ring Radially Stressed

An infinite plate uniformly stressed in its plane in all directions
and having a circular hole is shovn in figure 4. The whole system is
equivalent to a very large circular plate of radius ¢ with a small
concentric circular hole radially subjected to the same uniform stress
0 on the outer boundary. The solution obtained in such a plate within
- any radius b can also be considered as a solution of a flat ring with
-outer radius b and inner radius a, that is, uniformly loaded at the
outer boundary with the radial stress 0y obtained in the plate
solution.

The equations for this case can be obtalned in a manner similar to
the two previous cases, or by simply setting dw/dr and w equal to
zero in the case of the membrane, or setting w equal to zero in the
cage of the rotating disk.

EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY IN
‘TERMS OF PRINCIPAL STRESSES AND STRAINS

Circular Membrane under Pressure

By combining the equations previocusly derived the following set of
independent equations, which define the problem, are obtained:

17 1
=379 -30) | (62)
17 1
€ = 4 -
8 =37 (09 - 2-.01") (6b)
€, = 37 [ 5 (09"'0?):' . . (6c)

k.2 2\L/2 :
7—2.\];(61‘4,61, €9+€ev>l _(5‘9)

T = 7(7) ' , (3)
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. . » o) 1/2 :
e T = d_%rﬂll 1+ [d @LJ : © (11a)
e ® rau - o (11b)
r ' .
2 = ﬁ% o . . | | - -(11c)
(er) 2020 _ o, q) (9)

aw |2 1 .
[d_(_”:’uj == o7 2 . - (10
_ Lplr+ui} - _ _

These equations are 10 independeﬁt relations of the 10 unknowns O

v

G, €. €95 €, 7, T, h, u, and w.

If equation (11b) is differentiated with respect to r -and combined
with equation (1la),

deg o (€x=€p) ' '
= . - 14
T & N1 1 : (14)
14] 8%
d2r+u5
J

Substituting equation (10) in equation (14) to eliminate w yields
following equation of compatibility: '

o . 1/2 , o .
A L g _ o(Er-€) /4 _[g%’r_u)]z -1 (15)

Or
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Equations (9) and (15) can be simplified by using equations (11) to
eliminate u and h, which results in

N

40y de, (€r-€o) E___.._'(ee-ez) |
Pt O T s Co) N TTAL - 1B 0o
aﬁd : 2 1/2
- 3% _((r-f9){, _ zeseff.ez_) a1 (17) |

ar 2hy0p,

The ten equations d.efining‘this prbblem are now reduced to seven
independent equations, (6a), (6b), (6c), (Sb), (3), (16), and (17),
with the seven unknowns Oy, Og, €5, €9, €,, T, and 7.

' The solution of the I;roblem is simpiified by further reducing
equations (16) and (17) to the following forms:

| ) 1/2)
pkr (€0-€2)
' de : h,; k
:_r‘_d°r+o_1; z=(o_c)e(€r-€9)l_ i
k ./ rk . /r 67 r 20
af) TUE) v
p > (18)
1/2
2
, Eli__l_'e(_ee'ez
c _ ;
r % (%)) Pk -1
k J

where k 1is any arbitrary unknown constant with the dimension of
length. By using the two parameters r/_k and pk/hi , 1t is then
possible to solve the problem in a simple, direct way without use of
the iteration method. This fact will be further discussed in the
gection METHODS OF NUMERICAL INTEGRATION. ' .
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Rotating Disk

The set of equations that define this problem are:

€. = %.% (0, f-%‘oe) - o | (6a5
eritCocrel @
o-it[dece]
Y =2 .%-(é¥2 + €, €9+ ee?)l/z . (sb)
T = 1(7) | ' - (3)
eerl= gé?z_)_ N . ' (13a)
O rru | o (13b)
' . r . B )
% - %’; (13¢)
. T Z—'gf—h; - 'h(oé_fgr) - pufy? lr—l‘:‘id—(%f—u)- | (12)

These equations are nine independent relations of the nine unknowns
'O, Og, €, €, €, 7, T, h, and u. If equation (13b) 1s

differentiated with respect to r and combined with equation (13&),
‘the following compatibility equation is obtained:

d€e_ '(Cr_..'ﬁe‘)

= e .-1 (19)
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As in the case of the membrane, u and h can be eliminated
from the equilibrlum equation (12) by u51ng equations (13), which
yield

’do -de,

P dr +0,r __A= (9g-0y) e(€ -€g) _ pcl,21426(.-6'2_) (20)

The nine equations defining this problem are now reduced to seven

independent. equations (6a), (6b), (6c), (5b), (3), (19), and (20), with
seven unkno¥ms O,, Og, € s 69, €,, T, and 7.

The solution of the problem is made simpler by further reducing -

equations (19) and . (20) to the following forms:
: ‘ : )

ao de , €y € 2 (-¢
= (0’6 -G. ) e( r-€0) - p(wk)Z(kz:) e( z)

r
+ Cr
k r
d =
( .d(k>

)r.

i

[ L]
o Lo

> (21)

)
=e r 9 _3

3 | | y

By using the parameters r/k and Wk iﬁstead'of r sand ®, a simple
direct solution is possible for any arbitrary value of ~wk with k
to be determined by the boundary condition.

Infinite Plate with Circuler Hole or Flat Ring Redially Stressed

The equations of equilibrium and compatibility for this case are: .

ao, T d_€z

S
(§) ‘*;-‘?(,I;) | (22)
e _ o(€r-€g)

Ly ke

Wi
——

‘d(
When equations (22) ‘are combined with equations (6a), (Sb), (60), (5b),

and. (3), there are seven equatlons with seven unknowns.
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EQUATIONS OF EQUILIBRIUM AND COMPATTIBILITY IN TERMS OF
OCTAHEDRAL SHEAR STRATN AND PARAMETER INDICATiNG
RATIO OF PRINCIPAL STRESSES |

In the preceding section, dis'piacements are eliminated from the

equations, which result in seven equations involving the seven unknown
quantities Ops Ogs €y €@y, €,,- T, end 7. The quantity ¢, can
be expressed in terms of €, and €g (from equation (1)). Two of the

four unknowns O,, Og, €y, and €g may be eliminated by using
equations (6a) and (6b) or (7). The quantity T is a known function
of 7 that is experimentally determined. The problem is then reduced

to one involving three unknowns. Obtaining the solution of the result-
ing equations is not, however, a simple metter.

It is proposed that this difficulty can be. avoided by using the
following transformation: .

Ggt0,. = 3'\/E-T sin a

0p=0y. =4/6 T cos o

-or
Op =J—§“T'(:\/g sin o - cos @)
. Ge'zld—%:'r (V—géin o + cos a)

Then O, and Og satisfy equation (52) . The octahedral shear stress
1',' .a function of 7, 1in the preceding equations varies-with r/k ,
end also with loading. Such & transformation has been used for the
ideally plastic materlal (T = constant) by Nadai in the section "Yield-
ing in Thin Plate with Circular Hole or Flat.Rings Radially Stressed"”
(reference 1, p. 189) and for a rotating disk (reference 2). From

equations (6a), (6b),.and (23), the principal strains can be also
expressed in terms of 7 and o3

(23)

|*

€ =

> .(sin-oc - 1[5 cos a)

[V}
i
=

(24)

€ = (sin a + \/g'qios a)
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The equations of equilibrium and compatibility for the three
problems considered here are then obtained in terms of 7 and a in
the following form:

Az 8 ,pr =C

“of) FeE) |

| 7  (25)
, DX da EX 4 _ 7 '

'kd<) “a

where the coefficiénts A, B, ¢, D, E, and F are functions of «,
7, éand r/k. For the circular membrene under pressure, from
equation (18), ‘ :

cos @

= (\fs_cos a+sinoc) -'(;\lgsina-cés @) Z—J_-z__

7 47 7 sin a1
(\l—sinou-cos 0')<'rd7 -———-—2 >7

-[B 7 cos ) ‘ n\/; (V3 sin o + cos @)y 2/ 1/2
¢ = 2(oos =) & 4T e 6612 (/3 ein a - cos )? <E> (E) )
D= (r\[gsinoo-cosa,)y
E':;-(»\Igcos.a-r sin «) _‘ _ . - ~
‘(-\F-r cos @) e,\jg (fs otn o + cos c)y Ji\? M
F=2,\/El-e i l-BTz(l\lgsina-cosa)2<><h1> )

(26)
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For the rotating disk, from equation (21),

\
A=(‘\/gcosa,'-|-sj_na,)-(\jgsina_cosa)‘ric/);a
= 7 4r _7 sin o)l
B = (/\/g gin o - cos a,)(T T __\/_? )7
3 ) y
' -\ g7 cos @ 2 =—sina .
= (\/‘2- ' -2 21/yr .
C = 2(cos a) e \/;p(wk) ?(E) e \2 | > (27)
D=('\/§sinul-coscz,)7 .
E = - (4/3 cos o + sin a) ’
: '('F?'coea) ‘ :
F=2y2l1-e\\2 | )

'For the infinite plate with a circular hole, from equation (22),

N
" A= (Af3 cos o+ sina) - (\3 sina - cos a) L:/’%&
B='(\/gsinm—cosa)<%%-uv_;=n£‘>% ‘

c = 2(cos o,)e<-\/§7 oo a)- | - | »  (28)
D=,'('\/Esiﬁa-cos a.)'y. |

E = - .(\/g-c.os d+ éiﬁ a)

FZV_Z—[l(\/gya)J | o

With these transformations, the solution of the probleins is reduced
to simply a numerical integration of the two simultaneous differential
equations (equations (25)) involving the two unknowns 7 and a.

-
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Furthermore, the parameter 7, Dbeing the octahedral shear strain, .
directly indicates the stage of plastic deformation at any point under

any load. (In plastic problems, according to the deformation theory, the
individual stress and strain distribution cannot give as clear a picture
of the stage of plastic deformation as can the octahedral shear strain.)
Also, the parameter a indicates the ratlo of the principal stresses or
strains. At any point, if o remains constant during loading, the ratio
of principal stresses at that point remains fixed. The value of o
obtained at each point in the calculation during loading directly indicates
whether or not the deformation theory 1s applicable to the problem.

The value of & 1is known at the boundaries or the center. From
equations (23) and (24), in the case of a circular membrane under
pressure,

when r/b

= 0,
OI‘:GG
T 3
G;—§ 1.5708
when r/b =1,
69 =0
o =25 = 2.0944
3 -

In the case of a rotating disk without a hole,

when r/b = 0,
Oy = Og
@ =% =1,5708
[
when r/b =1,
o, =0

Q
n
(o k2

= 0.5236
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In the case of a rotating disk with a hole,
wvhen r/a =1 and r/b =1,
=0
o=2%=0,5236
6 .
For the infinite plate with a circular hole,
when r/a =1, o - . N

=0

03

a=%=0.5238
6

when r/a approaches c/a or a value largg compared with 1,

Oy = Op
o =%=1.5708
2

EQUATIONS OF EQUILI?RIUM AND COMPATIBILITY FOR INFINITESIMAL STRATN
IN TERMS OF o« AND 7

- The final forms of the equilibrium and compatibility equations for
the case of smell strains are given in this section. The concept of
infinitesimal strain 1s defined as follows: The change of dimensions. are
smell compared with the original dimensions, but are large enough so
that the elastic strain can be neglected. The equations presented can
be obtained elther by direct derivation as was previously done or by
reducing from the equations for finite strains through expanding the

ef(%7) " terms in series and neglecting the smell terms. For infini-
tesmal strain, the coefficients (functions of o and 7) A, B, C,

D, E, and F in the preceding equations are denoted with a super-
script prime in similar forms, but the coefficient (functions of o anmd
7) are simpler than those for large strain.
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For the circular membrane under pressure,

A'
Bl
C!
Dl

El

FI

A'
. B'
C'
Di

E'

. F!

L}

i

1]

]

n

f\/—gcos o+ sin a

(l\/gsina,-cos a.) Td‘)’

2 cos o
(\/—?: sin o - cos @)y

-‘(‘\/g cos o + sin «)
pk

2 hi

r

k

Zrycos a+~

- For the rotating disk,

'\/3 cos &'+ sin a

(\/gsinc,-cos oc)———

2 cos a -‘/-;- 0 (wk)z-(£>2

(/3 sin o - cos @)y .

—(\/_5_ cos o'+ sin a)

2\/5 (‘cos d)y

‘r(\/g gin o - cos a)

L
T

/

)
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(29) '

(30)

(31)
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For the infinite plate with a circular hole,

A'=/\[3_cosa+sinou‘ W
. 1 dr

B' = 3 8in @ - cos @) = =—

C' =2 cos'a

- | > (32)
. D':(l\/gsinon-cosa)

E' = -(\/3 cog @ + sin a)

F' = 2\[§~(cos a)y y

METHODS OF NUMERICAL INTEGRATION

Two methods are developed to solve the differential ecaations (25).
In the. first method, the differential equations are numerically integrated
along r/k,_ which is considered the independent variable. In the second
method, o 18 considered the independent variable. Because many terms
in the equations are trigonometric functions of o, the use of a as
the independent variable considerably reduces the work of computation.

Numerical integration with r/k- a8 independent variable. -’
Equations (25) can be written in the following forms:

r do _ CE--FBw |
k d(;) AE-DB
i
> L (33)
. r 4y _ FA-CD
k EA-BD
(k) )

i

For the case of emall. strain, the terms 4', B', ¢', D', E',
and F' are used in equation (33) instedd of A, B, C, D, E, and

F, respectively. If at any point o and 7 are known, do and
: . ' a(r/k)

E(%ET can be calculated by equations (33). At the boundaries or the
center, o« 1is known, but 7 is to be determined by the load. Only
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one value (unknown) of 7 corresponding to a particular load exists

on’ each boundary. It is therefore difficult to start the numerical

integrations on the boundary with the correct value of ¥ corresponding

to a given load. Also, in plastic problems covering the strain-

" hardening renge, the method of superposition is invalid. Usually, a

method of iteration is used to solve the problem (for example, refer-

ence 3). In the method presented herein, an arbitrary but unknown

constant k has been introduced in equations (18), (21), and (22). For

the cases considered, the terms in the equations that involve load are
e pr\é . - k\2 2

always multiplied by r, so that <E~) can be written as <E;> (E)

1 .
"in equations (18) and (26) and (wr)e as (wk)2 (Z) in equations (21)
and (27). k

The numerical integration can then be started at the inner boundary
(or at the center if there is no circular hole at the center) by using
the known values of gy 8 desired value of Yos &nd arbitrary value

of (%E)z for the membrane or of an)z for the rotating disk. The
“\i

numerical integrations can then be carried out, obtaining values of «

and 7 at different values of r/k until o progressively realhes

the value that satisfies the other boundary condition. Because the

value of r is known at the bounderies, the value of k can be

determined for the selected value of y,. The number of points and the

formulas used in the calculation depend on the accuracy required (ref-
erences 19 and 20). It has been found that if the formula for evaluat-
ing definite integrals i1s applied after using the forward integration
formla (references 19 and 20), high accuracy can easily be obtained.

The procedure used herein to obtaln solutions is the same for each
problem. Calculations are started from the inner boundary (or from the
center if there is no circular hole at the center) with the known value

of a5, the desired value of 7,, &and the arbitrary loading term. The

parameter o, is equal to x/2 at r/b = O for the membrane and for -

the solid rotating disk and is equal to n/6 at rfa =1 for the
infinite plate with a circular hole and for the rotating disk with a

hole. The arbitrary loading terms are (§E> and «nk)z for the
-1
membrane'and the_rotating'disk, respectively. Then E?(i7_y

4 ., corresponding to a, and 7, at the inner boundary or the '
d(x/x) | o _ o o :
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center, are obtained from equation (33).

23

The following formulas for

forward integration are used to determine the first approximate values

of a and 7 at the next point (0.1* and 71*):
+ [(E) -
° (k>1 (

71*

o
Q

r\ [ aa ]
K|

(&)

—

b L

il

)

(34a)

e ),

into equation (33) ; approximate values

g ko

By substituting oy* and 7;%

do -dy
G 1
&)L (&)] |
of a; and 7] (0(1** and 7,%*¥) can be computed from the following.
\

formulas :
¥*

are obtained and the second approximate values

=('Lo+

5 | (34b)

ay |*
r

d(k > l

The va.lues of aq¥**  and 71** are substituted into equation (33) again

and dy « By use of
a( s
(k> 1

in order to calculated the values of

, r
(%)
the following formulas for evaluating definite integrals s the values of
o and 7y are calculated: ‘

— B } ] | \
. @ = ag+ Lz - e _1 4o + =
°% 3 _<k>1 <k>9 §<§>Jo _d<§)Jl
el Ll
71 =7 F % _<k£>1 i <§>_°_ dZ%') ’ dZ%-}J
L\ o LMD
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This procedure is applied to the next point, and so forth, until the
value of a reaches the required value of o, at the outside boundary

(@ = 2/3 1 at r/b =1 for the membrane, oy =x/6 at r/b =1 for
the rotating disk, and o, = x/2 at r/a = ¢/a for the thin plate
with a circular hole). Inasmch as ,

I

the loading terms are determined as follows:

GECICEEE

@b)z =’((.okl)l2 <%>2 _ o | (33b)+

For the wembrane,

For the rotating disk,

For the infinite plate with a circular holé,
‘ 7
-€.. - — ‘
- r—-H'l = r = z 2 ’ . !
tg = Oh_ ( : )c Ohje ' =Ohe 242 (33c)

or for the flat ring radially stressed at the outside diameter b,

b _
- - — (sin o 4§>cos o, )

B = Oy By (), = @) mee 217 (s30)

where t, and t, are the tension per unit original circumferential
length at r =c¢ and r = b, respectively. '
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Numerical integration with o as independent variable. -
Equations (33) can be written in the following forms:

dy _FA-CD
da CE-FB

d(%) = AE-DB r

da  CE-BF k

? | © (35)

[

By using equaetions. (26) to (28) and expanding ef(a’7) into a series,
the following equations are obtained:

For the circular membrane, from equations (26),

r Pk‘\
CE-BF = [ l\/—SHJ g(e7, 1 d7> fl(a,7) + 2 ,\/—] ,-,v,k, ) |
k - .
AF-CD = 2 A2L - 2HJ 7 - 24/2L £5(a,7) j(cx. 7,11; fli) ) (36)
L 2 a2 ar : '
AE-BD = -I% - J g<,7,Td7> | ‘ | )
For the rotating disk, from equations (27), N
. Ky r2
CE-BF = -2HL - 2 A[38] g(@n," gy) £1(0,7) + L —(§> £2(a,7) | |
e : Ko /p\2 >
AFCD = { 6m? - 2ABEL |1 - £1(a,7)| + 3 F(E) f5(@n)ly (37)
oy g2 12 Zgy_



T T TTTTTTTTTTT T T T o Tmmmm o T T T

26 ' : : NACA TN 2217

For the infinite plate with a circular_ hole, from equations (28),

CE-BF = -2HL - 2 '\/EHJ g(a,'y,% %.;.) flga,y)_\
AF=CD = {8E% - 24/3mL [1 - fl(a,')"):l y } (38)
AF-BD = 12 - 3° g<a,7‘,l <_1_T.>
TTay /
where
G =sina
H =

co8 o

J =’\/§ sin a - cos a

L =43 cos a + sina
- (B

E <.hi>

% = & elw)?

and

T [
: l:l-.e-'];(‘cos a){]

() =
,\/:(cos a)y
2 .
1 /3 1 2 2
=1 - 5'\1;(605 a)y + 4—(cos a)y® - FR
. - Zzl(cos a)y
fz(a,y) = 6‘

-

3 1.3, 2 2 1[3..3 1.3 A
l-‘\l;(cos u.)7+-z—x2(cos a)y -4\I;(cos a.)j + e

1 -,\j-—‘g—(cos a)y f‘l(a',7).
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I

=

+
Vi

1 ‘ 171 3 2.2 1/1 )33
—— sinaly+ =({——8in a 7 + ={ =sin a7 "+ . . .
o) i (e e e
/
yar\_zar _.[3 7
-8(@:7;"' —) =& - /‘/:
T ay T 4y 2 Nﬁg sin a4 - cos a
_zg-ﬁz |
T dy 24dJ .
1/2
v r ,\/g’r(;\/gsina+cos a) ” 5 /
j(ME&): 1.8 —(F) (& \
I\ ’k’hi 674 (\/3 sin o - cos )@ \kK (hi

By e /e

e72 \Tk/) T,(,7)

-

The symbols G, H, J; _aﬁd L are trignometric functions of o«
only; K1 and K, are constants during calculation. The symbols

fl, f;, fz, and g are functions of a and 7; J is a function
of a, 7, and ) '

r
k.
This method 1s used herein in the solution of an infinite plate

with a circular hole. The procedure of numerical integration is
- similar to that used in the first method. The first four terms of the

series of ef(c”y) are used; the aéouracy of the result is the same
as that in the first method, with a reduction of one half in computation.

Both methods presented herein are used to obtain the solutions for
the given values of 7o+ The purpose of the present paper 1s to obtain

golutions for the entire strain-hardening range and the methods developed
are very convenient for this purpose. If, however, a solution for only
a particular value of loading is required, it can be obtained by inter-
polating between values obtained from two or three solutions correspond-
.ing to loading near the specified value..
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NUMERICAL EXAMPLES

Membrane. - In order to compare the results obtained by the method
developed herein to those obtained by Gleyzal (reference 3), one numeri-
cal solution for infinitesimal strain is calculated by using the T(7)
curve of the tensile test in figure 1 of reference 3. Inasmuch as
reference 3 states that: "For simplicity, strain will be taken to mean
conventional. strain (ds-ds,)/ds, where ds and ds, are final and

. initial arc length, respectively.”, equations (29) and (30) for infini-

tesimal strain are used. The calculation is started at r/k = 0.005.
Values of a = 1.5708, 7, = 0.0299, and pk/hy = 55,920 are used.
Rotating disk..- Numerical solutions for finite strain (equations (25)
and (27)) are calculated. The 7(») curves of two materials, Inconel X
and 16-25-6, are plotted in figure 5(a). These data were supplied by
W. F. Brown, Jr., H. Schwartzbart, and M. H. Jones. The same T(y) curves
are plotted on logaritimic coordinates in figure 5(b). These materials,
Inconel X and 16-25-8, of which T is not a power function of. 7, were
chosen so that more general information can be obtained. It should be

" mentioned that the given octahedral shear stress-strain curves (fig. 5)

of these two materials have not been corrected for the triaxiality and
nomuniform stress distribution introduced by necking, and consequently

do not represent the exact stress-strain relation after necking of these
two materials. The solutions obtained from the T(7) curves of the
tensile test after necking can, however, represent the solutions corre-
sponding to materials having the exact T(y) curves shown in figure 5 and
for simplicity the materials are herein still referred to as Inconel X

and 16-25-6. :

. In each case, the calculation is started at r/k = 0.005, as in the
case of a membrane. .

Three solutions are also obtained for a rotating disk with a central

_ hole, using Inconel X. Calculations are started at r/a = 1.
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A1l numerical examples are given in the followlng table:

Solid rotating disk

Material  70- Jg o(wb)2
Inconel X 0.04 1 x 10°
: 1152 1 x 109
.30 1 x 10°
16-25-6 0.04 1 x 10°
1152 1 x 109
.30 2.5 x 10°

.Rotating disk with central hole

| 2 2

Material 7o J; pwa)

Inconel X | 0.30 1 x 10%
.30 2 x 10°
.30 4 x 102

Infinite plate with circular hole. - The calculatiohs for this
problem are carried out for the case in which O, =0 at r/a = 1.
The value of ag at r/a =1 is then 0.5236. (For other cases where’

O, is different from O at r/a = 1, the corresponding value of a

should be used.) The same materials as in the previous problem are
considered. The numerical examples are:

Material Yo

Inconel X 0.04
.1152
1871

.30

16-25-6 0.04
.1871
.30
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RESULTS AND DISCUSSION

The radial and circumferential stresses O, and Op, respectively,

obtained for the case of a circular membrane are plotted against r/b

in figure 6. Two curves, taken from reference 3, corresponding to
calculations for about the same pressure used in the present calculation,
are included in the figure for comparison. In the present calculation,
the 7T(7) curve given in figure 1 of reference 3 and the same
infinitesimal -strain definition based on the original dimension is used.
In order to be ccnsistent, the initial thickness hy is also used in

the calculation rather than the instantaneous thickness h, which is
used in reference 3.

The variations of o with the radius for the rotatiﬁg disk and
for the infinite plate with a circular hole for different loads and
materials are plotted in figures 7(a) and 7(b), respectively. The vari-
ations of a wilth 7, (or loading) at various radii for the rotating
disk and the infinite plate with a circular hole are plotted in '
figures 8(a) and 8(b), respectively. Similar curves for the ratio of the
principal stresses q./0y are shown in figures 9(a), 9(b), and 10. When

figure 7 is compared with figures 9(a) and 9(b), it is seen that the
variations of o with radius are very similar to the variations of
qrﬁse with radius, although the relation between a and Orﬁse is not

linear.

Examples for a membrane with a large strain are not calculated
herein, because the result of reference 3 is sufficient to give an approxi-
mate variation of the ratios of principal stresses along the radius during
loading, although the infinitesimal-strain concept 1s used. The variations
of the ratio of principal stresses with radius for different loads, based
on the values of 0, and Og given in figures 8 and 9 of reference 3,

are calculated and plotted on figure 9(c).

The values of O, are plotted against Oy at different radii

under different loads for the rotating disk and the infinite 'plate with
a circuler hole in figure 11. The heavy solid and dashed curves
represent the values of 0, and Og at different radil for any given
load and are called loading curves. The loading curve moves away from
the origin with increasing load. The light solid and dotted lines con-

necting the différent loading curves at a gilven radivs and extending to
the origin represent the values of O, and Oy at different loads for

any given radius and are called loading paths. Also shown in the fig-
ures are the ylelding surfaces, which are ellipses under the deformation
theory.
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A clear picture of the variation of the ratios of principal
stresses in this group of problems with different loads and with
. different materials is given in figures 7 to 1l1l. It is evident that
the ratios of principal stresses remain essenﬁially constant during
loading. For this group of problems, the deformation theory is there-
' fore applicable and €55 defined by equation (8), represents the true

gtrain and is determined by the final and initial states.

The variations of y and 7/7o with radius are plotted in figures 12
-and 13, respectively, for the rotating disk and the infinite plate with
circular hole. It is interesting to note that the curves in figure 13 for
different loads for the same material are quite close. The curves for

" different materials on figures 7 and 9 are also close, but are not so

close in figure 13.

The- distributions of principal stresses and principal strains along
the radius for the rotating disk and for the infinite plate with a
" circular hole are plotted in figures 14 and 15, respectively. For
comparison, the variations of Og/(0g)y, €¢/€g)y, and y/y, with
radius for both the elastic and the plastic range are plotted in Tig- -
ures 16 and 17. (The equations for the elastic range are given in the
appendix.) 1If only the stress distributions for the elastic and plastic
cases are compared, it is seen that the stresses are more uniform in the
plastic state; but if the distributions of the principal strains and the
octahedral shear strain for the elastic and the plastic cases are
compared, it is evident that a less-uniform strain distribution is
obtained in the plastic state. It is of special interest in the case
of the finite plate with & hole to note that with plastic formation,
the stress (tangential stress) concentration factor around the hole is
reduced, but instead there is a high concentration in principal strain
and in octahedral shear strain. A similar conclusion regarding con-
centration factor around a circular hole in a tension panel is obtained
in references 21 and 22.

The quantities 0p/(Oglos Or/(0p)gs €r/(ep)o, and. €g/(€p)o
along the radius for a rotating disk and Oe/(oe)o and €9/(€9)o for

an infinite plate with a circular hole are plotted in figures 18 and 19,
respectively. The curves representing Gr/(or)o, €y/(€),, and

59/(€9)0 for different materials and different values of 7, are close
together; but the curves of Ge/(oe)o are quite different for different

materials, as well as for different values of 7.

.
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The relation between load and maximum octahedral shear strain 7o
of the rotating disk and the infinite plate with a hole are plotted.in
figure 20. The terms p(Wb)2 and: t,/hjy are designated the load for
the rotating disk and the infinite plate with a holé, respectively.

It is shown in these figures that the load increases considerably for
Inconel X when the value of 7, increases from 0.04 to 0.30, whereas the
load for 16-25-6 incresses only slightly.

In figures 7, 13, and 16 to 19 .1t is shown that in the case of the
plate with a hole, the variations of a, 7/7 , € /(er)o, and €9/(c9

with radius are essentially independent of the value of’ 7o ‘of the plate

and the T(¥) ocurve of the material, at least within the range of 7, 7
variation enclosed by those values of the two materials used. From these
results, it can be seen that the deformation that can be accepted by the
plate before failure depends mainly on the maximum octahedral shear strain
(or ductility) of the material, which would not be true if the strain
distributions were a function of the T-y curve. In the cage of the
rotating disk, however, a slight effect of 7, &nd the T(7) curve 1is

apparent on the strains; this effect seems to be caused by the body-
force term of the disk.

The stress distribution that will determine the load the member can
sustain ie now considered. From figures 16 to 19, it can be. seen that
the variations of 0g/(0g)e with radius depend upon the T(7) curve of

the material and on the value of 7, of the member. From figure 20, it
is also seen that the load depends on the T(y) curve. It therefore
follows that the added load that the member can sustain between the onset
of yielding and failure depends on the -T(¥) curve of the material. The
octahedral shear (or effective) stress and strain curve of the material
should therefore be used as a criterian in selecting a material for a
certain member under a certain loaeding condition, because consideration

of the maximum octahedral shear strain of the material alone (or ductility
alone) is insufficient.

The variations of «, 7, O,, Og, €., €, and 7/ry with

radius of three rotating disks with a hole are shown in figure 21. These
three disks have the values of ratioes of ocuter and inner radius b/a
equal to 5.32, 12.45, and 28,12, respectively. The tangential stress

Og, the tangential straln €5, and the octahedral shear strain 7 are

mich less uniform then in the case of a so0lid rotating disk. The ratio
of maximum and minimum octahedral shear strain 70/7b is ‘equal to 7.41

for a disk with b/a = 5.32, equal to 11.75 for a disk with b/a = 12.45,
and equal to 14.1 for a disk with: b/a = 28.12; for a solid disk of the
same material, the ratio 7 /7b is about 5.3. -
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The values of the load, defined by p@»b)z, for rotating disks
having different ratios of inner to outer radius a/b are representeéd
by the solid curve in figure 22. These disks were made of Inconel X
and reach the same maximum octahedral shear strain Yo ='0.3 at the

inner radius of the disk. The dashed curve in the same figure is
obtained by extending this solid curve toward a/b 1, where the value
of p(wb)2é can be determined by considering & rotating ring with
a/b-—-l The figure indicates approximately how the load p«ﬂb)

varies with different disks having different ratios of inner and outer
radius and reaching the same maximum octahedral shear strain at the
imner redius of the disk. The value of p(Wb)2 for & solid rotating _
disk made of Inconel X with Yo = " 0.3 at the center of the disk is salso

indicated in the same figure.

The preceding results and discussion were obtained for the plane-
stress problems with axial symmetry in the strain-hardening range in
which the elastic strains are negligible compared with the plastic
straeins. Whether these results and discussions are true for general two-
dimensional or three-dimensional problems, or for the problems involving
the region in which elastic strain is not small compared with plastic
strain, or for partly plastic problems, can be determlned only by a
detalled. analysis of each case.

CONCLUSIONS

The results obtained in the cases of a membrane, a rotating disk
without and with a hole, and an infinite plate with a hole in the strain-
herdening range of two materials, Inconel X and 16-25-6, whose stress~-
strain relations do not follow the power law, show that-'

(l) The metnod developed not only accurately solved the plane-
plastic-stress problems with axial symmetry in a simple manner, but also
_gave & clear picture of the octahedral shear strain and the ratio of
“principal stresses during loading.

’

(2) The ratio of the principal stresses in such cases remained
essentially constant during loading and, consequently, the deformation
theory is applicable to this group of problems.

(3) The distributions of prlncipal strains, and octahedral shear
strains, on the plastic state are less uniform than those' in elastic
state, although the distributions of tangential stresses appear more uniform
in the plastic state. 7The stress concentration factor around a hole 1is
reduced in the plastic state, but instead there is a high concentration
_of principal strain and of the octahedral shear strain.
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(4) The ratios of the strains along the radius of their maximum
value are essentially independent of the value of the maximum octahedral
shear strain of the plate and the octahedral shear stress-strain curve
of the material. Hence, the deformation that can be accepted by the -
plate before fallure depends mainly on the maximum octahedral shear

strain (or ductility) of the material. :

(5). The stress distributions depend on the octahedral shear stress-
gstrain curve of the material. Hence, the added load that the member can
sustain between the onset of yielding and failure depends ‘mainly upon
the octahedral shear (or effective) stress-strain curve in the strain-
hardening range of the material. :

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronuatics,
Cleveland, Ohio, February 28, 1950.
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APPENDIX

| EQUATTONS FOR ROTATING DISK AND INFINITE PLATE WITH
| CIRCULAR HOLE IN' ELASTIC RANGE
Rotating Disk
For a solid disk with the réﬁial stress-at the periphery (r =

equal to zero, the rrincipal stresses can be expressed in the follow1ng'
equations (reference 23, p. 68):

O, = é%sz“;(szrz)

r
. o (39)
Og = s%vp(l)zbz -Eg-‘ipﬁﬁrz
where V ig Poison's ratio. )
At r=b,
1 Ppe
o L ow?re (1-v
Gy =7 ° ( ) :
Dividing equation (39) by (Oe)b yields
. . )
Or _ 39 1 - ;-__).2
(Qg)b -.a(l‘ﬁ) S <b_ : :
‘ B > (39a)
O . e 1. 1+3v £>2 ‘
Golp . Z(1-9) = (5 J
The stress-strain relations of plane-stress problems in the elastic
range are: '
1 A
€ = F (Or“VGQ)
1 (40)



36 NACA TN 2217,

where E 1is the modulus ofdelasticity in tension and compression.

Substituting equations (39) into equations (40) yields:

- ~N
B 2
€. = 'sz:' (15v) (34) (pfp?) | 1 - %%E'v')'(%)jl
= _ ' ? (40a)
_ 1. 21 -1 |
= & (1-")_ (.5+v)(p‘”2b. : sﬁ; (b
| J
or
€. = 34V —l _ 3(1+ ) xr 2
Rl ) |
- }  (40m)
3w |y o Ly ry?
Ty 27| = (5) J

The equations for the octahedral shear stress and strain given by
equations (4a), (4b), and (5a) can be applied to both the elastic and
the plastic range, but equation (5b) is true only in the plastic range.
The octahedral shear strain in the elastic range can be calculated by
equation (4b) or simply by using the following equation:

2\1/2

2(1+V) 2(1v)'\15
e e aE LA

Substitute equations (39) in equations (41) to obtain:

N2 (1) , 22 | 2 _ (1 o T\l (  2 2, rry* e
7 = 155 (ot 0% | (3007 - a@ew)(se) (B + (2w ()
(41a)
or
1 ) 2 2 4 1/2
7_7; - mn(sw)z - 4(1+'1é(5+v) (%) + (T+2v+0%) (%) | .
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and

V= 0.29 for Inconel X (reference 24)

1%

0.286 for 16-25-6 (reference 25)

Infinite Plate With Circular Hole

For a uniformly loaded infini’cé plate with a circular hole, the
principal stresses are (reference 23, p. 56):

A

: (42)
. -A
Opf = —= + 2C
0"

where A and C are arbitrary constants. For the case considered
herein, the boundary conditions are:

qQ
]
—~
Q
c-‘v
o
d—
s
1
o

These boundary conditions are used to determine the arbitrary
~constants A and C, which yield

2 )
o e (Op)y (Ea") -1
r — .. 2 2
6 @ (42e)
(Cr)b (a£)2+1
Oy = — =z |
1-(5-) (E) )



or

.
fa

)

S 1(

oo Yo - _
-T&G)b —1+(%.)2 (

a

r

a
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~ (42D)

- Substituting equations (42a) into equations (40) yields

c
(©,) (l-v).(-§> - (1+v)j

e @

0, @) (Z) + (v

i

€
r

r

y

&a

or
Gy - )

[(1-1,)‘ : (1+v)(%)2] (2) -

r

(eg)y

o ) (g)z - aw)

r\2

© (e3)

)

(43a)

oy [(l_v) N (i+v>(%)zJ( ) )

a
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Substituting equations (42a) into equation (41) yields

4 /2
+3

)

~—

r
_242(1w) Olp (a

R ORI

(44)

m|v~:

or
4
Gk
_ a

" e
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