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By John R. Spreiter

SUMMARY

A method based on assumptions similar to those of Munk's
airship theory and R.T. Jones' low-aspect—ratio pointed—wing
theory has been developed to determine simple closed expressions
for the load distribution, 1ift, pitching moment, and center—of—
pressure position of inclined slender wing-body configurations
having flat—plate wings extending along the continuation of the
horizontal diameters of circular fuselage sections. Expressions
for the aerodynamic properties of triangular wings in combination
with conical bodies, semi—infinite cylindrical bodies, and bodies
pointed at the nose but cylindrical at the wing root have been
developed in detail for all ratios of body diameter to wing span.
In all cases, the lift-curve slope of the wing—body combination was
less than that of the wing alone. For the case of the triangular
wing and the body pointed at the nose but cylindrical at the wing
root, the loss in lift—curve slope reached a maximum of 25 percent
at the large diameter—span ratio of 0.707. With a conical body
mounted on the same wing, the maximum loss of lift—curve slope was
only about 8 percent and occurred at about the same diameter—span
ratio.

It 1s shown that the results are applicable at subsonic and
transonic speeds, and at supersonic speeds, provided the entire
wing-body combination lies near the center of the Mach come.
Furthermore, it is pointed out that the assumptions related to the
study of low-espect—ratio pointed bodies and the study of moderate-—
aspect—ratio pointed bodies traveling at sonic speed both lead from
Prandtl's linearized equation for compressible flow to the two—
dimensional Laplace's equation in the transverse plane although by
different means.
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The determination of the potential distribution for an inclined
moderate—aspect—ratio wing at sonic speed is therefore mathematically
equivalent to the determination of the potential distribution for an
inclined low—aspect—ratio wing in an incompressible fluid.

INTRODUCTION

In the quest for airplane configurations having aerodynamic
properties favorable for supersonic flight, one of the more
promising configurations involves the use of a low-aspect—ratio
wing. When the general layout of such an airplane is considered,
however, comparatively large fuselages are often found necessary. It
thus becomes important to study the aerodynamics of a complete wing—
body combination throughout the entire Mach number range of the air—
plane. In an incompressible medium, the mutual interference of a
fuselage and wing of high—aspect ratio (to which lifting-line theory
is applicable) has been treated by Lennertz, Wieselsberger, Pepper,
and Multhopp in references 1, 2, 3, and 4. It is the purpose of this
note to treat the effect on the aerodynamic loading of the mutual
interference between a low-aspect—ratio pointed wing and a fuselage
consisting of a slender body of revolution.

The aerodynamic properties of slender wing-body configurations
may be approximated by the method originally used by Munk in studying
the aerodynamics of slender airships (reference 5). R. T. Jones
(reference 6) applied this method to the study of low—espect—ratio
pointed wings and Ribner (reference T) extended it to determine the
stability derivatives of low-—aspect—ratio triangular wings. The
esgential point in the study of slender bodies by this method is the
fact that the flow 1s approximately two—dimensional when viewed in
planes perpendicular to the direction of motion. Methods of classical
hydrodynamics may then be employed to determine the load distribution,
lift, and center of pressure.

It has been shown by Tsien, Laitone, and R. T. Jones (references
8, 9, and 6) that the aerodynamic properties of very slender bodies
of revolution and low-aspect—ratio wings at small angles of attack
are unaffected by compressibility at subsonic and supersonic speeds.
A gimilar result will be shown for slender wing-body combinations.
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cross—section area of body of revolution (maZ2)

crogs—sgection area of base of body of revolution

olume
ength

mean cross section of body of revolution C

L
1ift coefficient <a-§>

lift—curve slope <:§L>

1ift coefficient of wing without body

pitching moment coefficient <q—g-g>

pitching moment coefficient of wing without body

1ift

pitching moment about apex of wing
free—stream Mach number

wing area

velocity of flight

complex potential function (@ + i)
complex variable (y + iz)

radius of body

maximum wing chord

distance from apex to section of maximum span
semispan of flat plate

over—all length of wing-body combination

additional apparent mass of circular cylinder



P gtatic pressure

q free—stream dynamic pressure

r,8 polar coordinates

g local semispan

Smax maximum semispan

t time

V,W velocities in y and 2z directions
Xy V2 Cartesian coordinates

X ,p. distance from apex to center of pressure
) velocity potential

v stream function

a angle of attack

€ downwash angle

Tyl transformed rectangular coordinates
3 complex variable (n+if)

o] density of air

Subscripts

W wing

F body

o) compressible

i incompressible
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ANALYSIS

General

The flow around an inclined wing-body combination of very low
aspect ratio may be approximated by considering it to be two
dimensional in transverse planes (perpendicular to the fuselage
center line). It can be shown as a consequence of thig assumption
that the flow in each transverse plane 1s independent of that in
the adjacent planes. Consider a coordinate system moving downward
through the air with a velocity Ua. The wing-body combination is
now consldered to be flying in the negative x—direction with a
velocity U and angle of attack a so that the fuselage center line
coincldes with the x—-exis of the coordinate system and the plane of
the wing coilncides with the 2z = O plane. (See fig., 1(a).) The
flow patterm, then, In the arbitrary x = X5 plane during the time
of the passage of the wing-body combination is approximately similar
to that of the transverse flow around an infinite cylinder having a
crogs sectlon similar to the local wing—body section. Observed in
this plane, the semispan of the wing and the radius of the fuselage
change with time as the wing-body combination moves through the
Plane. The resulting unsteady nature of the flow patternm produces
pressure differences between corresponding points on the upper and
lower surfaces of the wing and fuselage. The following analysis,
therefore, consists of three parts: determination of the velocity
potentlal for the two—dimensional flow around the wing-body sections,
determination of the distribution of load over each section, and
integration of the loading to determine the total 1lift and pitching
! moment. Several examples are included presenting the total 1lift,

center of pressure, and load distribution for typical complete wing—
- body configurations.

‘ Velocity Potential

It 1s necessary for the subsequent analysis to know the velocity
potential for the unsteady two—dimensional transverse flow field
around an infinite cylinder, the cross section of which is varying
with time in such a mamner that it always remains similar to the
wing-body section in the x = x5 plane. Due to the infinite rate of
Pressure propagation in an incompressible fluid, the study of the
unsteady flow of an Incompressible fluid is greatly simplified since
the flow field at any Instant is 1dentical to that of the corresponding
steady—state flow. The first step in the solution of the present
problem, therefore, is to determine the velocity potential for the
steady—state flow around an infinite cylinder having a cross section
similar to the wing-body section. In this analysis, only wing-body
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configurations having circular fuselage sections and flat—plate
wings extending along the extension of a diameter will be treated.
The flow around such a section may be obtained from the transverse
flow around an infinitely long flat plate by application of the
principles of conformal mapping using the Joukowskl transformation.
Thus we consider the mapping shown in figure 1 in which the ¢
plane will be mapped onto the X plane by the relation

a2

£ =X+ (1)
where

g = n+il
and

X = y+iz

The complex potential function for the flow in the ¢ plane is
(see, for instance, reference 10)

W' = ¢ + iy = —1Ua 242 (2)

vhere the primed symbols indicate values in the ¢ plane as opposed
to the X plane. It is also shown in reference 10 that, 1f d=2a, the
flow around a flat plate expressed by equation (2) transforms by
equation (1) into the vertical flow around a circle of radius a having
its center at the origin. If d 1s taken larger than 2a, the flat—
plate flow transforms into the desired vertical flow around a cylinder
consisting of a circular cylinder of radius a with thin flat plates
extending outward along the extension of the horizontal dlameter to a
distance s from the origin. When the ¢ plane is transformed into
the X plane in this manner, the complex potential for the flow in

the X plane 1s found to be

W=0+V= —an,/ écf;)a—dz = -1Uc,/ <x+3§>2-— <s4%2 ] (3)

gince the point d in the ¢ plane corresponds to the point s in the
X plane. The velocity potential ¢ for the flow in the X plane may



then be found by squaring equation (3), substituting X = r (cos 6 + i sin 6), and solving.
Thus 1is obtained

2
4 4 4
Q= 13% [— <l49-‘4—4>r2cos 26+s2 (lﬁE) ]+ /r“< l-i%) +2a%cos Lo+s* <l-ia'—4 )—232 <l+a—4> <l+a1-> rZcos 26
2 2 8 r 8 8 r

()

where the sign is positive in the upper half plane (0<6<=n) and negative in the lower half
plane (m <6< 2n).

Load Distribution

Once the velocity potential of a flow field is known, the methods of clagsical hydro—
dynamics may be applied to determine the pressure at any point in the field. Consider again,
the case shown in figure 1 where the wing-body combination is plercing the x=x, plane. As
previously noted, the flow in the x=x, plane is considered to be similar to the two—
dimensional flow surrounding an infinitely long cylinder having the shape of the wing-body
cross section Intersected by the x=x, plane. If the radius of the body a and the semispan
of the wing s are considered to be functions of time, equation (4) may be thought of as
representing the velocity potential of the unsteady flow in the X=X, plane. In the case
of unsteady two—dimensional potential flow of an incompressible fluid, the pressure at any
point fixed in the coordinate system is given by (see, for instance, reference 11, p., 19)

= % = ?rtq) + %’- (va+w2) + F(t) (5)

It may be seen that this expression reduces to the well—known Bernouli's equation for the

pressure in a steady flow field when the velocity potential is invariant with time % =0
and the arbitrary function of time F(t) 1is a constant.

2991 °ON NI VOVN
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For any two corresponding points ' P; and Po (fig. 1(b)), so
gelected that y; = y2 and 2z; = —zp, the differential pressure at
any instant is given by

Ap  pzpa 0pz 0Py 1 1
— I e—— I — — m—) o 2 = 2
P ) 3t ot 2 (vaBiw®) + 2 (= 2)
-+ 228 2 (vPu?) + 2 (na%an?) (6)
ot 2
Pz 00
since -— 515—2 = f by reason of symmetry of the flow field. Now if

the points are brought to the wing-body surface

Voltwol = V12+W12

the differential pressure between any two corresponding points (or the
loading) is given by

Ap 28q>1 1)
AT !

Utilizing the relationship

Xy Opy dx  OP;
— e 8
ot ox dt ox v (&)

1
and dividing equation (7) by 5 U2, the loading coefficient is found
to be
i
Ap PPy X L /3¢ ds  Opy da ()

— = = — +

q q U U\ 08 dx Oda dx

The load distribution may now be obtained by substituting the
expression for the velocity potential given in equation (%) into
equation (9) and letting 6=0 or 6=n for the wing loading and
r=a for the fuselage loading. The loading over the wing is then
found to be given by
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ds . at da a /a® a2
<Ap> =\~ ") t&|caleE— =
= La
W

i (10)
a4 r2 a4
/<l+'sj- — 32 l+FZ
and that over the fuselage is given by
ds a* da a /a2
T = Lo (11)
F at at
l+-s—4 —2'8—200829
In Cartesian coordinates,the loading over the fuselage is
[
ds a4 a da a® =
& l‘ﬁ) +2§d_x-<l+§§_25.§
o = bq (12)

Total Lift and Moment

The total 1ift and pitching moment of a complete wing-body
combination may be determined by integrating the loading over the
entire plan—form area. It is convenient to carry out the integra—
tion by first evaluating the 1ift on one spanwise strip and then
integrating these elemental 1lift forces over the length of the wing—

body combination. The 1lift on a spanwise gtrip of width dx is
given by

dL = 2q dxl: [Ié(%)FasinedBt[s (%’)W dr:! (13)

or, in Cartesian coordinates

cona [ v [ e]  w

} (+2) —u(Z
- L
%
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When the indicated operations are performed, the following expressions
for the elemental 1ift on the wing and body are obtained.

1+25
S
(15a)
4 2
L(2), =) -2[36-D)])
| dx \ g4y dx 8 dx 8 8
|
| L _ a3
4 i 2 )
+ las {9§<1-%—>+9‘1 L23<1+?— :!}sin‘l——s
dx 8 dx ] 8 1+ 82
52
(15v)
Noting that
a a2
oa 1 -
sin—l 8 2+sin—l _53=£
1+ 2 1+ 9; .
° ° (16)

equations (15a) and (15b) may be combined and simplified to give the
following expression for the total 1lift on an elemental spanwise strip.

| S e S ——

e e Sy s i it
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2_
da L3 8
S oss [<___ _._<1+—— inl__l+8'2 ] (17)

g2

The 1ift, pitching moment, and center of pressure of the complete
wing-body combination may now be determined by integration of the
1ift of all the elemental strips

SIHOE
M=—fx§;(—2—>dx (19)

(20)

L"IZ

npo

where the integration interval extends from the most forward point
to the most rearward point of the wing-body configuration. The 1lift
coefficient, moment coefficient, and center of pressure may be
determined from equations (18), (19), and (20) by division by

appropriate constants
L f 4 <E> dx (21)
SJ dx \g

Cpy —é’-;fx%(i’-)dx (22)

S (23)

Cy,

where S 1is the reference area and c¢ the reference chord or

length.
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Effect of Compressibility

In contrast to the well—known infinite—aspect—ratio case where
the pressures on the surface of a wing are influenced by compressi—
bility in a manner described by the Prandtl-Glauert relation, it has
been shown by several investigators that the pressures on very low—
aspect-ratio wings and very slender bodies of revolution are
unaffected by compressibility. This result has been found by Jones
(reference 6) for low-aspect—ratio pointed wings at both subsonic
and supersonic speeds. B. G&thert (reference 12) extended the low—
aspect—ratio rectangular wing theory of Bollay (references 13 and 1h4)
to include the influence of compressibility and found no effect in
the subsonic range., For a very slender inclined body of revolution
at subsonic and supersonic speeds, Laitone and Tsien (references 9
and 8) have found that the loading was unaffected by compressibility.
That such is also the case for slender inclined, pointed wing-body
combinations follows from consideration of the basic differential
equation of linearized compressible flow. In addition, it will be
shown that the aspect-ratio range to which the theory is applicable
becomes larger as the Mach number approaches one.

Prandtl (reference 15) has found the linearized differential
equation for the velocity potential of compressible flow to be

%0 . 330 . 33
2 : =0 oL
(1M,2) = + - = = (24)

In the development of the expressions for the forces on long slender

2

wing-body combinations, it has been assumed that %;g is so much
2 2

9% and 9% that the first term of equation (24)
dy2 dz2

smaller than

32
may be neglected. Therefore, so long as the term (l—M02) gzg

in the differential equation remains small, Mach number will have

little influence on the distribution of the velocity potential.

Consequently, Mach number has little effect on the aerodynamic

characteristics of a long slender wing-body combination at either

subsonic or supersonic speeds. It is immediately apparent that the

Mach number cannot be increased indefinitely, for then the coeffi—
2

cient of g—g? becomes so large that the first term will no longer
X
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be negligible. The required condition will be satisfied, however,

if the body has a pointed nose, the wing a pointed plan form, and

the entire wing-body combination lies near the center of the Mach
cone. All these conditions, however, correspond to those originally
assumed in the derivation of the expression for the velocity potential
(equation (4)). Therefore, the present theory is applicable at
supersonic speeds, as well as subsonic speeds, provided the entire
wing-body combination lies near the center of the Mach cone.

It has been shown by Robinson and Young (reference 16) that,
for finite aspect ratio, the linearized theory of compressible flow
(equation (24)) remains theoretically consistent and yields finite
and continuous lift—curve slopes in the transonic range. Recent
experiments on triangular wings at transonic speeds support this
contention by indicating agreement between measured and computed
lift—curve slopes. Therefore, to Predict the flow around a body
traveling at or very near sonic velocity, it is correct, unless the

2
term é{? becomes extremely large, to let Mo=1 and solve the

b
remaining equation for the potential distribution. The remaining
equation is the two—dimensional Laplace's equation in the transverse
plane. This means that, although the velocity potential may vary
In the longitudinal direction, its value at each point may be
determined solely by studying the flow in the transverse plane
containing the point in question. Therefore, since this is precisely
the manner in which the potential distribution was obtained, the
results of the present analysis are applicable at transonic speeds.
In fact, the present theory is most applicable to wing—body
combinations of moderate aspect ratio if the Mach number is one, since

2
it is then no longer necessary to assume that é—f is very much
2 2 ox*
smaller than é_? and Q_Q 5

dy> 0z2

In retrospect, the assumptions related to the study of low-aspect—
ratio pointed bodies and the study of moderate—aspect—ratio pointed
bodies traveling at sonic speed both lead from the Prandtl equa—
tion (equation (24)) to the two—dimensional Laplace's equation in
the transverse plane although by different means. The low-aspect—

29 029
ratio theory neglects the term (1-My2) g;z in comparison with S
2o 329
and . because S—E is very small; while the moderate-aspect—
Z X

ratio sonic theory neglects the same term because (1-M,2) is zero.
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Thus the determination of the potential distribution for an inclined
moderate—aspect—ratio wing at the speed of sound is mathematically
equivalent to the determination of the potential distribution of an
inclined low—aspect—ratio wing in an incompressible fluid.

EXAMPLES

For a glven wing-body configuration complying with the general
requirements of the present theory, the load distribution may be
determined directly by substituting the proper values for the body
radius and wing semispan and their rate of change with x into
equations (10) and (11). In addition, closed expressions for the
1ift, pitching moment, and center—of-pressure position of several
elementary configurations may readily be found by simple Integration
of the integrals indicated by equations (21), (22), and (23).
Several such examples will be presented in detail in this sectiom,
and the results will be compared in the following section with those
obtained from linear theory and from experiment.

Pointed Low-Aspect—Ratio Wing

Although the assumptions of this note have been used previously
by R. T. Jones in reference 6 to determine the aerodynamic properties
of low-aspect—ratio wings, the load distribution, 1ift, and
pitching moment will be rederived for completeness of presentation
and to show a simple application of the preceding expressions. The
aerodynamic properties of a low-aspect—ratio wing without fuselage
may be determined by letting

a _ e
g-0 g_%_o

By substitution of these values into equation (10), it follows that
the load distribution along any elemental spanwise strip is

ds

o =
T
s2

The loading (fig. 2(a)) thus shows an infinite peak along the
leading edge of the wing. The total load on an elemental spanwise
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strip is found from equation (17) to be

d L ds
d_.x-(;> q = bnags = (26)

Equations (25) and (26) show that the development of 1ift by the
long slender wing depends on an expansion of the sections in a
downstream direction. Accordingly, a part of the wing having
rarallel sides would develop no 1lift, while a part having contract—
ing width would have negative 1ift with infinite negative loads
along the edges. In the actual flow, however, as R. T. Jones points
out (reference 6), the portion of the wing behind the maximum cross
section will lie in the viscous or turbulent wake formed over the
surface ahead. Consequently, the infinite negative loads will not
be developed on these edges. With the aid of the Kutta condition,
Jones then concludes that no 1ift is developed on sections aft of
the maximum cross section. This is known to be an oversimplifica—
tion of the truth and considerable caution should be exercised in
applying the present results in the case of constant or gradually
contracting width.

The 1ift coefficient for this wing is found by integration of
the load on the elemental strips between the leading edge and the
wldest section as indicated by substituting equation (26) into
equation (21)

cl
Smax 2
A um%d“‘g_a[ sds = Zo 2URL X,y (o)
o}

2 S
hopay®
where c' 1is the effective wing chord and 3 = A, the aspect
dCy,
ratio, It is seen that the lift—curve slope = depends only

on the aspect ratio. It should be noted, however, that the actual
1ift force depends only on the span and angle of attack and not on
the aspect ratio or the area.

By similar substitution and integration by parts of equation
(22), the pitching moment about the leading edge is

ct 2
i ds nct bsmax® h(szth o i [ ;:aim-]
Cm=-§c—[ lma.sai-xd.x=-§c—a.[ S - 5 =—55-—Aa. 1l - =
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1 pct
where (32)m = ET\/p g2dx and where moments tending %o produce
o]

a nosing-up rotation are considered positive., The center—of-—
pressure location is then found by dividing the moment coefficient
by the 1ift coefficient as indicated 1n equation (23).

S ;— [1 . u(sz)m] ot [1 (Sz)m} (29)

SA c " Spax?

For a more specific example, consider a triangular wing moving

]l
point foremost. Then since (s82), = 3 Smaxa and c'=c, the pitching-
moment coefficient and center—of—pressure position are given,

Xc.p.
respectively, by Cp = — 2 Ax and _E—g_ = % . The center of pressure

is seen to be at the two—thirds chord point or the center of area.

Pointed Slender Body of Revolution

The present method for treating the flow around long slender
bodies wae introduced by Munk in reference 5 for the determination
of the distribution of forces along the longltudinal axis of a body
of revolution (airship hull). In the present section, these results
will be rederived. In addition, expressions for the total 1ift,
pitching moment, and load distribution will also be presented.

For the slender pointed body of revolution, the following rela—
tions exist:

w|®
113

-
ax

where %% is not necessarily constant. If these values are

substituted into equations (11) and (12), the loading distribution
along any elemental strip is

2
BN e ne =82 f1-T (30)
q /% ax = a2

B Y el P e Yy st ==
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The load distribution (fig. 2(b)) is thus seen to be elliptical,
being zero at the extremities of a horizontal diamster and a maximum
at the midpoint. The total load on an elemental spanwise gtrip is
found from equation (17) to be

d /L da dB

s = 510 pasa S el

dx<q>q 4mqadx 2aq = (31)
where B 1s the local cross—section area. It is seen that equation
(31) 1s identical to equation (26) for the integrated load on an
elemental spanwise strip of a triangular wing, even though the
distribution of load in the two cases is widely different. In
contrast, however, to equation (26), which is to be applied only to
wings of increasing span, equation (31) may be applied to bodies of
revolution in regions of elther increasing or decreasing radius,
gince the Kutta condition does not apply to bodies of revolution.
Thus, in general, the 1lift and pitching moment of a body of revolu—
tion are different from those of a wing of identical plan form;
however, if the maximum diameter of the body of revolution is at
the base station, its 1ift and pitching moment are equal to those
of a wing of identical plan form at the same angle of attack.

As before, the 1lift coefficient will be determined by substituting
equation (31) into equation (21). Taking the area of the base cross
gsection Bp as the reference area and integrating over the length
of the body 1 the 1lift coefficient is found to be

1
lu/ﬁ dB
s = 20 — dx = 2a (32)
L
B,J,  dx

gince the cross—section area B is at x=1 and zero at x=0.
It is thus seen that the 1lift of a slender body of revolution depends
only on the cross—section area of the base, and is independent of

the general shape of the body. A possible effect of viscosity is
indicated by such a relationship since the effective base area of

the body will be larger than the true base area by an amount
dependent on the boundary-layer thickness. Therefore equation (32)
will probably tend to underestimate the true lift—curve slope,
particularly at lower Reynolds numbers where the boundary-layer
thickness is greatest.

By similar substitution and integration by parts, the moment
coefficient about the leading edge is
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-1 dB
Cp = ———\/P 20 — xdx = —2a <' —-%E (33)
0 b

where Bp 1is the mean cross—section area (i.e., the volume of the
body divided by the length). The center—of—pressure location is
then found through use of equation (23) to be

*c.p. _ _.EE 0 %E (34)

i o By

For a more specific example, consider a cone moving point foremost.
The base cross-section area is

By = 182

The mean crogss—section area is

iy % na?

The center of pressure is thus seen to be at the two—thirds point as
would be anticipated by the conical nature of the load distribution
for this case.

Triangular Wing With Conical Body

The first example of a wing-body combination to be considered
is that of a conical body mounted on a triangular wing so that their
vertices coincide. The geometry of such a configuration requires
that

a _da/dx _
s  ds/dx
da ds
where both = and e are constants. If these values are

substituted into equations (10) and (11) as described in the two
preceding examples, the load distribution along any elemental strip
on the wing is given by

52
1+k* —ok*
<ﬂ§ =Mag§ for a<y<s

54
~/1+k . -2-< K

(35a)
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and on the body by

Ap “ds 1
) <_q_ ) = La H/(l+k2)2 -4 Z—a for o<y <a (35b)

Figure 2(c) shows the load distribution on a typical wing-body
combination of this type together with the load distribution on the
same wing without body.

The Integrated load on an elemental strip is

d 1 ds . i L ds
= <E> q = lYrnags = {l+k B I:Ek(l—kz)—(l+k2)asin 1m%]}_ lma;qu(JﬁR)

(36)

where

l+k2

The 1ift coefficient for the entire conical wing—body céombination is
then

1 Az 2%
R =k%* + o [Ek(l—kz)—(l+k2)2 sin >t J

Cy = 7 Aa (14R) = Cp, (14R) (37)

X
2
where CLw is the 1ift coefficient of the basic triangular wing.

The area and aspect ratio of the wing-body configuration are
considered to be equal to those of the basic wing. Due to the
radial nature of the lines of constant pressure, the center of
pressure lies at the two—thirds chord point

Xc.p. 2
5 (38)
The moment coefficient is then obviously
1t
Cp = —3 Aa(1+R) = me(l+R) (39)

where, similar to before, me represents the pitching moment of
the basic wing. Figure 3 shows the variation of CLu/CIuw- with

ratio of body diameter to wing span for this type of wing-body
combination. While the wing alone and body alone have identical
lift—curve slopes since the widest section is at the trailing-edge,
the lift—curve slope of the wing-body combination is always less
than that of either a wing or body alone. The maximum loss of
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lift—curve slope (about 8 percent) occurs when the body-radius
wing—semispan ratio 1is approximately 0.7.

Triangular Wing on a Semi-Infinite Cylindrical Body

The next example to be considered is that of a triangular wing
mounted on a semi—-infinite cylindrical body. The essential relation—
ships to be used are that

da

)
dx

and that ds/dx is constant. By using these relationships as in the
previous examples, it is found that no 1ift is carried on the body
ahead of the leading edge of the root chord. Behind this point o
however, 1ift is carried on both the wing and body and is distributed
on any elemental strip of the wing in a manner described by

mc()

<Ap2’ for a<y<s (40a)
F® %
and on the body by
ds 1 - if)
<Ap> i for o<y<a (4ob)

Teiy-z

The load distribution at one longitudinal station of a typical wing—
body configuration of the type considered in this example is shown
in figure 2(d). For purposes of comparison, the load distribution
over the same wing without the body is also indicated in figure 2(d).

The integrated load on an elemental strip is given by

d /L ds a4t

By integration along the length of the body, the 1lift coefficient for
the complete wing-body combination, based on the area of the basic
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triangular wing without fuselage is found to be

n g2ri G NE
CL:EA&( —SMJ?):CLW l_smax2> khe)

It may be seen from equation (42) and figure 3 that the addition of

a seml—infinite cylindrical body to a triangular wing produces a

loss in lift—curve slope jJust as in the preceding example with the
conical body. With the cylindrical body, however, the lift-—curve
slope has no minimum value, but continues to decrease as the radius—
gemigspan ratio increases until finally, when the latter ratio is one
(corresponding to a body without wings), the lift—curve slope 1s zero.
This 1is as 1t should be, since a semi—infinite cylindrical body has
zero lift—curve slope. The moment coefficient about the vertex of the
baslc triangular wing is

The center—of—pressure position of the complete wing-body combination
1g given by

a 2

Xc.p.
c

= E + i e (4k)

3 3 1+ -

Smax

Since the center of pressure of the wing alone is at the two—thirds
chord point, it may readily be seen the second term of equation (L44)
represents the change due to the addition of the body. Figure 4
shows the variation of the center—of-—pressure position with the ratio
of body radius to wing semispan. In contrast to the constant center—
of -pressure position of the previous example for the triangular—wing,
conical-body combination, the center of pressure of the triangular
wing, semi—infinite cylindrical body combination moves rearward as
the body radius becomes larger with respect to the wing semispan.

Triangular Wing on a Pointed Body

The case of a triangular wing mounted on a pointed body, closed
in an arbitrary manner at the nose but cylindrical along the wing
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root chord, may be studied by combining the results of two previous
examples. The portion of the wing-body combination ahead of the
leading edge of the wing root may be considered to be equivalent to
the arbitrary body of revolution treated in the second example. The
portion of the wing-body combination aft of the leading edge of the
wing root is equivalent to a triangular wing mounted on a semi-—
infinite cylinder as discussed in the precsding example. The load
distribution and the integrated load on any elemental spanwise strip
are then the same as those given in the corresponding example.

The 1lift coefficient is found by adding the 1ift forces of the
component parts of the wing-body combination and dividing by the
dynamic pressure q and the characteristic area, again taken to be
the area of the basic triangular wing. The 1lift coefficient 1s then
found to be

C

= Aa {1 — a2 + a2 >= CLW <l = 8.22 + at > (h5)

Smax®  Smax*

ST

Figure 3 shows the variation of the lift—curve slope with body-radius
wing-semispan ratio. A comparison of the lift—curve glopes shows
that the loss in the 1lift of a triangular wing resulting from the
addition of a body having a pointed nose is much less than that
resulting from the addition of a semi—infinite body.

The moment coefficient for this wing-body combination may be
found in a manner similar to that used in finding the 1i1ft coeffi-—
cient, taking care to transfer the moments of both component parts
to the same axis. The moment coefficient about the vertex of the

basic triangular wing is

A as a4t 2ra [ a8 By /1 a
Gn= = — 2=k £ 3—— )= _om (1.
3 Smax®  Smax S ISmax T \° Smax

e a8 a.4> 23{(1,\:&3 Bm<l o a> }
AN Smax® " 3Smax4 "5 [Bmax T \° Smax
(46)

where a represents the radius of the cylindrical portion of the
fuselage, | the over—all length of the wing-body combination, and
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B, the mean cross—sectional area (i.e., volume divided by length)
of the portion of the body ahead of the leading edge of the wing
root.

COMPARISON WITH OTHER RESULTS

As shown in the preceding sections, it is a comparatively simple
matter to calculate the load distribution, 1lift, and center of
pressure of complete wing—body configurations by means of the present
theory. It has been shown that the theory is most applicable at Mach
numbers near one or for configurations having very low-aspect—ratio
wings. Its accuracy at other Mach numbers or at larger aspect ratios
can best be assessed by comparison with experiment or more nearly
exact theory, where available.

Comparisons with available theoretical and experimental 1lift—
curve slopes of triangular wings of varying aspect ratio at super—
sonic and subsonic speeds are shown in figures 5(a) and 5(b),
respectively. In the supersonic range (fig. 5(a)), the linear theory
solution of Stewart, Brown, and others (references 17 and 18) for
the variation of lift-curve slope with aspect ratio is shown for
Mach numbers of 1.0, 1.2, and 1.4. At a Mach number of 1.0, it is
geen that the present theory exactly predicts the linear theory
value of the lift—curve slopes of triangular wings of any aspect
ratio. Increasing the Mach number decreases the degree of correla—
tion at the larger aspect ratios. In summary, this figure indicates
that the present theory 1s very accurate for slender wings at low
gupersonic speeds where the wing is near the center of the Mach
cone, and decreases in accuracy as the wing becomes larger with
regspect to the Mach cone.

In the subsonic case (fig. 5(b)), no lifting—surface theory
for the triangular wing comparable to the supersonic triangular—
wing theory exists, and all comparisons will be made directly with
experiment. Three test points from reference 19 are shown for
wings of aspect ratio 0.5, 1.0, and 2.0 tested at very low Mach and
Reynolds numbers in the Langley free—flight tunnel. As in the
supersonic case, the accuracy 1s best at very low aspect ratios
and decreases as the aspect ratio increases.

A comparison between lift—curve slopes for a complete wing—
body combination consisting of a conical body and a triangular
wing calculated by the present theory and by supersonic conical—
flow theory is shown in figure 3. A curve presented by Browne,
Friedman, and Hodes (reference 20) for the lift—curve slope of a
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wing-body configuration consisting of a conical body having a fixed
radius of 0.1322 the Mach cone radius and a triangular wing of
varying span is shown by the dotted line in figure 3 together with
the corresponding curve obtained by the present theory, These two
curves never differ by as much as 1 percent, indicating that the
present theory and the conical-flow theory are in close agreement
in predicting the lift-—curve slope at supersonic speeds of a wing—
body combination consisting of a slender conical body and a low—
agspect—ratio triangular wing.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.

APPENDIX
Correction to Loading on Portion of Fuselage
Aft of Wing Trailing Edge

A method for the calculation of the aerodynamic loading on the
entire surface of a glender pointed wing-body combination has been
presented based on the assumption that the flow in each transverse
plane is independent of that in the adjacent planes. It was noted
that the results so obtained were not applicable to the portion of
a wing situated behind the widest section because the flow in this
region was influenced to a prohibitive degree by the downwash field
of the sections further forward. For the same reason, the results
are also inapplicable to the portion of the fuselage aft of the
wing trailing edge, particularly when the fuselage diameter is
small in comparison with the wing span. Since the fuselage is
usually extended behind the trailing edge of the wing, it is desir—
able to determine a correction to apply to the loading expressions.

With assumptions more restrictive than those of the main body
of this note, i1t is possible to obtaln an estimate of the corrected
loading on the fuselage afterbody. The necessary assumptions are
that the downwash velocity in the vicinity of the fuselage with
fuselage removed is known, and that the downwash velocity remains
constant throughout the entire transverse plane at each longitudinal
gtation. It is immediately apparent that the latter assumption is
not entirely correct, but it 1s true that the downwash velocity is
approximately constant over a region of limited lateral extent at
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each longitudinal station. Since the forces on a body are produced
predominately by the flow field near the body, this assumption
should be a valid one as long as the fuselage sections remain in
regions of relatively constant downwash velocity in each transverse
plane. This means that the fuselage diameter must be small in
comparison with the wing span.

With the foregoing assumptions, the loading on the fuselage
afterbody may be determined by an extension of the present method.
Consider, as in figure 1(a), the flow in the transverse plane as
the fuselage afterbody is plercing the x=xp plane. The flow field
corresponding to that of figure 1(b) would then be that of the
vertical flow around a circular cylinder. As in the previous
analysis, the fuselage radius would, in general, appear to be
varying with time. In addition, since the downwash velocity varies
with distance behind the wing, the velocity of the vertical flow
would also appear to be varying with time. The correct expression
for the 1lift on each strip across the fuselage may then be obtained
by substituting the local angle of attack ao—€ for the airplane
angle of attack o in equation (31) and adding a correction term
for the effect of the longitudinal gradient of the downwash velocity.
The latter correction term may be determined very simply using the
additional apparent mass concept. The correction to the 1lift force
on an elemental strip of unit width across the fuselage afterbody
ig then given by

€
Ad—<1:>q=m93=—213q9— (A1)
ax\q Tt ax

In this equation, the additional apparent mass of a unit length of

a circular cylinder of cross—section area B is (see, for instance
reference 11, p. T7)

m = pB (A2)

and the vertical velocity in any transverse plane is
w = U(a—€) (A3)

where ¢ 1s the downwash angle. The total 1ift on each elemental
gtrip of unit width of the fuselage afterbody is then

%G)q:eq [(H)g—ag] (4)
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Since the downwash angle numerically equals the angle of attack on
the wing surface immediately ahead of the wing trailing edge and
decreases in value as the distance from the trailing edge increases,

it is apparent that € has a positive value and that %§ has a

negative value. Thus, effects of downwash angle in equation (A4)
tend to cancel each other. Another item which should be mentioned
ig that the downwash behind wings varies considerably with Mach
number. Consequently, compressibility will affect the 1ift on
fuselage afterbodies.

At subsonic speeds, an upwash exists over the portion of the
body extending ahead of the wing, although this upwash is of
considerably smaller magnitude than the downwash behind the wing
for the slender pointed wings considered here. Equation (A4) may
be applied to determine the magnitude of the corrected loading
taking into account the upwash.

By using methods similar to those developed in the main body
of this note rather than the shorter additional apparent mass
methods, it can be shown that the load distribution across each
strip of the fuselage afterbody is elliptic.
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Figure 2.— Load distributions over spanwise sections of four
configurations.
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