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TECHNICAL NOTE 2233

SOME EFFECTS OF NONLINEAR VARIATION IN THE DIRECTIONAL-
STABILITY AND DAMPING-IN-YAWING DERIVATIVES
ON THE LATERAL STABILITY OF AN AIRPLANE

By Leonard Sternfield
SUMMARY

A theoretical investigation has been made to determine the effect of
nonlinear stability derivatives on the lateral stability of an airplane.
Motions were calculated on the assumption that the directional-stability
and the damping-in-yawing derivatives are functions of the angle of side-
slip. The application of the Laplace transform to the calculation of an
airplane motion when certain types of nonlinear derivatives are present
is described in detail. The types of nonlinearities assumed correspond
to the condition in which the values of the directional-stability and
damping-in-yawing derivatives are zero for small angles of sideslip.

The results of the investigation indicated that under certain condi-
tions the nonlinear stability derivatives assumed in the analysis caused
a motion which had different rates of demping for the large and small
amplitudes of motion, with very little damping at the small amplitudes.
In general, the period of the resultant oscillation increased with time.

INTRODUCTION

Recent flight tests of several airplanes desighed for high-speed
high-altitude flight have indicated neutrally damped lateral oscillations
of small amplitude generally referred to as snaking. Upon examination of
the flight records, the decrement of the oscillatory motion is found in
some cases to be different for the large and small amplitudes of motion
with a neutrally stable oscillation occurring at the small amplitudes.
One of the explanations offered for the cause of this type of motion is
that some of the stability derivatives are nonlinear; that is, the
derivatives have different values for the large and small amplitudes of
motion. The nonlinearity could be caused by boundary-layer effects or
flow separation due to poor fairing at the junction of the tail surfaces.
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The present paper represents a preliminary investigation of the effect
of the presence of two nonlinear stability derivatives, the directional-
stability derivative CnB .and the damping-in-yawing derivative Cnr,
on the motion of an airplane. These derivatives were selected for the
analysis since the damping of the oscillation is a function of Cnr and

since Cnr depends upon the CnB contributed by the tail. The
derivatives CnB and' Cp  ~ were both assumed to be functions of the

sideslip angle f. Calculations were made of the airplane motion due to
a disturbance in sideslip for three different types of nonlinearities.

SYMBOLS AND COEFFICIENTS

¢ angle of roll, radians

¥ angle df yaw, radians

B angle of sideslip, radians except where noted in figures (v/V)
r yawing angular velocity, radians per second (dW/dt)

P rolling angular velocity, radians per second (d@/dt)

v sideslip velocity along the Y-axis, feet per second

\' airspeed, feet per second

o) mass density of air, slugs per cubic foot

a dynamic pressure, pounds per square foot (%pvQ)

b wing span, feet

S wing area, square feet

W weight of airplane, pounds )

m mass of airplane, slugs (W/g)

g acceleration due to gravity, feet per second per second

K relative density factor (m/pr)
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n inclination of principal longitudinal axis of airplane with
respect to flight path, positive when principal axis is
above flight path at the nose, degrees

4 angle of flight path to horizontal axis, positive in climb,
degrees

kXO radius of gyration in roll about principal longitudinal
axis, feet

kg radius of gyration in yaw about principal vertical axis,

° feet

KXO nondimensional radius of gyration in roll about principal
longitudinal axis (kyx,/b)

KZO nondimensional radius of gyration in yaw about principal
vertical axis (kg /b) '

Kx nondimensional radius of gyration in roll asbout longitudinal
stability axis QVKXOECOSEW + Kzoesin2n>

Ky, nondimensional radius of gyration in yaw about vertical
stability axis O/Kzogcosgn + Kxogsin2n>

K7, nondimensional product-of-inertia parameter

(’KZO2 - KX02>sin n CcOs 7
Cr, trim 1ift coefficient (W—-C—gs—l>
q
Cy rolling-moment coefficient (Rolling mcment)
qSh

o yawing-moment coefficient |12¥ing moment

n aSb

Cy lateral-force coefficient (Lateraé f°r°é>

: q
Y
3¢y,
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Cnc yawing-moment constant

t time, seconds

5y nondimensional time parameter based on span (Vt/b)

Dy, differential operator <a£;j

c ) operator in laplace transformation

Tl/2 tiﬁe for amplitude of oscillation to damp to one-half its

original value, seconds

The subscript o is used to indicate initial conditions and a bar
is used to denote variables in the operational equations.
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ANALYSIS

Nonlinear Stability Derivatives

The assumptions made with regard to the nonlinearity of the stability
derivatives Cnﬁ ~and Cnr are shown in figure 1. TFor all three cases

presented in the figure, Cp 1is equal to zero for -2°< B < 29, a region
which is subseguently referred to as a dead spot. Thus when the airplane
is within the dead spot, the value of the directional stability deriva-
tive CnB is zero. ©Since the damping-in-yawing derivative Cnr is a

direct function of CnB contributed by the tail, Cp, was also assumed

to.be.zero for values of -2° < B < 20, In the region outside of the

dead spot, each one of the cases represents a different type of variation
of Cp with B in order to simulate the effect of several possible flow
conditions on the side force acting on the vertical surface. For cases 1
and 2, CnB = 0.28 and for case 3, CnB = 0.41. The corresponding value

of Cp, for all three cases is -0.39. It should be noted in figure 1

that for cases 2 and 3, Cp, =0 at B of 2° and -2°, whereas for
case 1, Cp has a finite value at B of 2° and -2°.

‘Method of Calculating Motion

Since the nonlinearities shown in figure 1 can be treated as linear
derivatives of different velues within and cutside of the dead spot, the
airplane motion is calculated on the basis of classical linear theory.
The equations of motion and the general method of calculating the motion
of an airplane are given in references 1 and 2. The methods of refer-
ences 1 and 2 are based on the Laplace transformation which inherently
takes into account the initial conditions of the problem. Because the
Laplace transformation considers the initial displacements and initial
velocities of the problem, this method is directly applicable to the
calculation of the motion of an airplane which has nonlinear derivatives
similar to the derivatives presented in figure 1.
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The nondimensional linearized lateral equations of motion, referred
to the stability axes, are: '

For rolling

\
2“b<Kx2Db2¢ * szDb2“’> = Cygh + %CzprVS + 203, Dy¥
for yawing .
2y, (KZBD‘DE“’ + KXZDb2¢> = CnBB + %CnPDb¢ + %CnrDbﬂf + Cp, > (1)

and for sideslipping

2hy, (DbB + wa) = Cyg8 + %cYpryS +C1f + %cyrnbw + (CL tan 7>xr

~

The Laplace transformation of equations (1), with the use of the
symbol o for the operator, is:

w

Pupky” [‘7¢o + (Db¢)o] - %Czp% + 2upKyy, [""’o + (%“’)J 3 A

r

2 1 A 2.2 1 I B =
<2U-bKXZc - -é-CnpO>¢ + (QHbKZ o~ - —2-Cnr0') V- CnBB =

>(2)
C
2uy Ky E:Qso + (Db¢>o] - %Cnpgéo + EubKZQ [c\lro + (Db\V)(;J - %Cnr\lfo + —-?—9-
<— —%CYPG - CI>§3 + <2|J.-b0' - %CYI-G - C1, tan 7>\_Ir +<2ubo - CYB)TS =
- %CYP¢0 + (2“b - %CYI) Vo + 2HpBo y

Equations (2) represent three simultaneous algebraic equations which can
be solved for B, @, V¥, and their derivatives by the method of determinants.
For example,

=L
-5 (3)

w
1}
1>p|H |
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where A 1is the characteristic lateral-stability equation
Ach + Bo3 + Co® + Do + E
and
Zl = Alc3 + B102 + Cl“»* Dl'

The expressions for A, B, C, D, and E, in terms of the mass and aero-
dynamic parameters of the airplane, are given on pages 27 and 28 of
reference 1. The coefficients of the A; equation are

S 50[8%3(1%(21(22 - szeﬂ

1]

td
d
1

= ¢O[}ub20ﬁ<KX2KZ2 - KXZ%ﬂ + (Db¢)o{%“bgcyp(Kx2Kz2 _ szeﬂ +

2 2 2 2
Bo [2% (szczr - X Cnr) + 2uy (KXZCnp - Kz Czp)] +

2 2y 2
Cnc(‘ hokxaCy, + bRy Cy, - My KX)
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_ 2 2
Cp = ¢o[“bCL <szczr - Ky Cnr> + “bCL<KXZCnp - Ky Czp)] +

1, k2 i 2(ox 20 .
(Db¢>o{'2‘“bKX (CanYr CanYp> * BhHply (EKZ L Cnp) *

2MbVEKXZ (Clp - QKXZCL> + %“bez (Czrcyp - ClpCYr>] +
\lfo[ubCL tan 7<KXZClr -_CanXQ) + pyCr, tan 7<KXZCnp - Kzgclp)} +
(Db"’>o[%“bez(Cn Cy. - C, Cy ) + iHszg(Cz Cy - Cy Cy ) +

' p o r°p) 2 r'p p ‘r
buy2Cr tan 7(Kx2K22 ) sz2> N QHbE(Kzzczp ) szcnpﬂ .
BO[%% (Clpcnr i Czrcnp>] ¥ CnC(T];CYpCZr - PupKyzCr, + 2Ky Cr, tan 7 +
HpCyy - %Czchr)

_ ¢ |1 2
Dy = ¢O[I;CL<CZPCnr - Clrcnp>] + (Db¢>o[“bCL tan 7<KX Cnp - szczp> *

- 2
ubcL(KXZch - Ky cnr)] + [%CL tan 7(clpcnr - clrcnp>] +

2 2
(Db¢>o[“bCL<KZ' Cip. - KXZCnr> + HpCp, tan 7(szcnp - Ky Czpﬂ +

C::lc<:§LCLCzr - %‘CZPCL tan 7)
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- The solution of equation (3), which will result in a time history
of B as a function of sy, is obtained from the Heaviside expansion
theorem ( reference 3):

1 f()» ) X‘ Sb
) gé; F'(;n) : (1)

where MAn are the roots of F(o) set equal to zero. Similar solutions
are derived for @, V¥, Dpf, DpV¥, and DpB. The time scale is readily

converted from sy units to t units by the equation t = %Sb-

The values of the stability derivatives and mass characteristics
used in the calculations are presented in table I. The table is divided
into two columns which differ only in the values of CnB and Cnr of

the airplane for the cases where the airplane is either outside of or within
the dead spot. From the analytical solution of the motion, based on the
mass and aerodynamic characteristics of the first column of table I and an
initial condition of B = 5°, the time history of B was computed for
several values of s, until the value of s, for which B = 2? was
reached. For values of sp - greater than the sp which results in B =2
this analytical solution is incorrect since the airplane has now entered
into the dead spot and the values of CnB and Cnr are zero. Thus, a

0
’

new solution must be calculated with the use of the values given in the
- second column of table I with new initial conditions. The new initial
conditions are determined by substituting the value of sy, at which

B = 2° in the original analytical solutions of @, V¥, Dp@, DpV,

and DpB. Once these initial conditions are known, another set of
analytical solutions are computed for B, @, V¥, and their derivatives
from equations (3) and (4). This procedure is followed every time 8
crosses through 2° or -2°. The final resultant motion in sideslip is
the sum of all the analytical solutions in B, each one of which is
correct only for a particular interval of time.

The constant 'Cnc is introduced into the yawing-moment equation of

equations (l), since the value of the yawing-moment coefficient due to
sideslip is CnBB + Cnc for the condition of the airplane having the

dead spot in cases 2 and 3 of figure 1. The values of Cy, are |0.00977|
and l0.0lh3| for cases 2 and 3, respectively. The sign of® Cnc is
opposite to that of PB. For case 1 of figure 1, Cn. = 0.
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| It is apparent that the procedure employed is a time-consuming

| process and subject to the possibility of many computational errors due
to the magnitude of the computations, The final solution can be obtained
however, in a relatively short time through the use of automatic digital
computing machines.

RESULTS AND DISCUSSION

The effect of the nonlinear stability derivatives on the lateral
motion was investigated for the airplane described by the mass and aero-
dynamic characteristics given in table I, with three different values for
the damping of the lateral oscillation as calculated on the basis of
derivatives constant with amplitude. Since the damping was varied
i arbitrarily by assuming different values for the angle of inclination of
the principal longitudinal axis of the airplane to the flight path M,
three values of 1, -2°, 0°, and 20, were selected which correspond to
a damping of the lateral oscillation, expressed in terms of Tj/p, of 5.6,
3.0, and 1.8, respectively. The motion of the airplane in sideslip, due
; to an initial disturbance in sideslip of 59, for the three values of 1
_§ is shown in figure 2. Since these motions are calculated on the assump-
tion of derivatives constant with amplitude, the amplitudes of the motion
decrease exponentially with time and will eventually reduce to zero. As
can be noted in the first column of table I, the CnB for cases 1 and 2

is 0.28; whereas the CnB for case 3 is 0.41. The motions presented in
figure 2 are for CnB = 0.28; however, the motions for CnB = 0.41 would

exhibit oscillations of approximately the same damping and a slightly
smaller period. :

The motions of the airplane in sideslip, showing the effect of the
nonlinearities illustrated in figure 1(a), 1(b), and 1(c), are presented
in figures 3 to 5, respectively. In all cases, an initial disturbance
in sideslip of 59 was assumed. The pronounced effect of the nonlinearities
on the lateral motion is noted by a comparison of figure 2 and either
one of figures 3, 4, or 5. In all three figures (figs. 3 to 5) the
motion for 1 = 29, the most stable case, approaches a constant value.

The analytical solution of the motion for the case of 1 = 2° in figure 3
indicates that, within the dead spot, the airplane will oscillate at a
period of 6.56 seconds and T1/2 = 3.38 seconds and will eventually

approach the value of B = -0.0092°, Similar motions would be obtained
for the case of 7 = 2° in figures 4 and 5. As 1 1is decreased, the
damping of the oscillatory motion depends upon the nonlinearity assumed
and the values of ‘7. In figure 3, the motion for 1 = 0° damps at a
slow rate at the large amplitudes until the oscillation reaches an

| amplitude of approximately 2.4° where the damping of the oscillation is
! zero. The period of the oscillation increases from 1.5 to 1.85 seconds.
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For the case of 17 = -20, a very lightly damped oscillation is apparent
"within the first few seconds and the airplane may be considered to be
neutrally stable at an amplitude of #4.5°. 1In figures 4 and 5 the
motion for 1 = 0° clearly indicates that the damping is decreasing as
the amplltude decreases and the period of the oscillation increases;
for 1 = -2° ; the oscillatory motion is slightly unstable. A neutrally
stable oscillation would be expected to occur in figures 4 and 5 for the
combinations of a value of 17 Dbetween 0° and -2° and the dead spot
assumed in the calculations or for n = -2° and a smaller dead spot.

In general, the results indicate that the damping of the lateral
oscillation calculated with the use of derivatives constant with amplitude
is a determining factor in the type of motion obtained where nonlinear
derivatives are present. As the inherent damping of the lateral
oscillation decreases, a smaller dead spot will result in a neutrally
stable oscillation. Obviously, if the inherent damping is zero, a
neutrally stable oscillation already exists with zero dead spot.

Some additional calculations were made for the case where the air-
plane is disturbed within the dead spot. The motions for an initial
condition of B = 1° were computed for 17 = -2 and 0° with the assump-
tion of the nonlinearity described in figure 1(b). The results are
presented in figure 6. It should be noted that the only difference between
figures 4 and 6 is the initial condition assumed in the calculations. Ih
figure 6, the motion for n = -2° is unstable and gradually approaches
the amplitude and period of the motion for the case of 7 = -2° in
figure 4. The motion for N = 0° in figure 6 is slightly unstable and
will probably increase until its amplitude and period are in close
agreement with the motion for the case of 1 = 0° in figure 4. Calcu-
lations have indicated that the oscillatory motion of the airplane within
the dead spot will double amplitude about every 4 seconds for mn = -2°
and about every 30 seconds for 7 = 0°. If the motion is unstable within
the dead spot, either the airplane motion will be neutrally stable with
an amplitude equal to or greater than the amplltude of the dead spot or
the motion will be unstable.

The loss in damping and the increase in period which appeared in
some of the lateral oscillations in figures 3 to 5 can be attributed to
the type of nonlinearity assumed. From classical dynamic stability theory,
it is well known that the damping of the oscillation is a function of Cnp.
and the period of the oscillation is a function of CnB. If the airplane

is considered as a mass-spring dashpot system, CnB is the equivalent
spring constant of the system and Cnr corresponds to the damping

constant contributed by the dashpot. Thus as CnB is reduced the period

increases and as Cnr is reduced the damping decreases.
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CONCLUDING REMARKS

The results of the investigation made to determine the effect of
nonlinearities assumed in the analysis on the lateral stability indicate
that under certain conditions a motion is obtained which has different
rates of damping for the large and small amplitudes of motion, with
very little damping at the small amplitudes. In genperal, the period

“of the resultant oscillation increases with time.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautlcs
Langley Air Force Base, Va., September 19, 1950
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STABILITY DERIVATIVES AND MASS CHARACTERISTICS

OF THE AIRPLANE CONSIDERED IN THE ANALYSIS

Derivative or characteristic

Outside of dead spot

Within dead spot

W/S, 1b/ft2 .

Hph o o s s o o o & &
P, slugs/ft3 o« e e e
V, ft/sec . . . . . ..

Cy, .. o .
b, ft . .
7, deg . o .
2
KZI2 . Y - ° 'S
KX -

o} el maaien 101D
per radian . . . . . . .

CZB, per radian . . . . . . . .
Cy , perradian . . . . . . . .

CYr: per radian . . . . . . . .

My d€Z v & ¢ v 4 4 ¢ ¢ ¢ o o W
Cnr’ per radian .

' CnB (cases 1 and 2), per radian

CnB (case 3), per radian .

80
101.1
0.00089

>3
0.318

27.7
0

0.0573

0.0069
-0.462

.-0.0155
-0.126
0

0

-2.0, 0, 2.0

-0.392:
0.28
0.41

80
101.1
0.00089

53
0.318
27.7

0
0.0573

0.0069
-0.462

-0.0155
- -0.126
0

0
-2.0, 0, 2.0

o O O
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Figure 1.- Three types of nonlinear stability derivatives assumed in
the analysis. o
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B, aegrees

7, seconds

Figure 2. ‘Calculated motion of an airplane due to an initial
disturbance in sideslip for several values of 7.
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Figure 3.- The effect of the nonlinear derivatives descr
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Figure 4.- The effect of the nonlinear derivatives described in

figure 1(b) on the motion of an airplane.
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- The effect of the nonlinear derivatives described in

figure 1(c) on the motion of an airplane.
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Figure 6.- The effect of the nonlinear derivatives described in
figure 1(b) on the motion of an airplane. Initial disturbance
in sideslip of 1°.

61



Stability, Lateral and Directional - 1.8.1.2.2

Dynamic
NACA

Some Effects of Nonlinear Variation in the
Directional-Stability and Damping-in-Yawing
Derivatives on the Lateral Stability of an Airplane.

By Leonard Sternfield

NACA TN 2233
November 1950

(Abstract on Reverse Side)

Damping Derivatives - Stability 1.8.1.2.3

Some Effects of Nonlinear Variation in the
Directional-Stability and Damping-in-Yawing
Derivatives on the Lateral Stability of an Airplane.

By Leonard Sternfield

NACA TN 2233
November 1950

(Abstract on Reverse Side)

Research Technique, Mathematics 9.2.7

Some Effects of Nonlinear Variation in the
Directional-Stability and Damping-in-Yawing
Derivatives on the Lateral Stability of an Airplane.

By Leonard Sternfield

NACA TN 2233
November 1950

(Abstract on Reverse Side)

Sternfield, Leonard

Some Effects of Nonlinear Variation in the
Directional-Stability and Damping-in-Yawing
Derivatives on the Lateral Stability of an Airplane.
By Leonard Sternfield

NACA TN 2233
Novenber 1950

(Abstract on Reverse Side)




Abstract

The effect of nonlinear stability derivatives on the
lateral stability of an airplane is analyzed. Motions are
calculated on the assumption that the values of the
directional-stability derivative and the damping-in-yawing
derivative are functions of the angle of sideslip. The
application of the Laplace transform to the calculation of
an airplane motion when certain types of nonlinear
derivatives are present is desgcribed in detail.
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