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1iJti.1 

Existing conical-flow solutions have been used to calculate the 
hinge-moment and effectiveness parameters of trailing-edge controls 
having leading and trailing edges swept ahead of the Mach lines and. 
having streamwise root and tip chords. Equations and. detailed charts 
are presented for the rapid estimation of these parameters. Also 
included is an approximate method by sihich these parameters may be 
corrected for airfoil-section thickness. 

Deflected controls are assumed. to be located either at the wing 
tip or far enough inboard to prevent the outermost Mach lines from the 
contrpls from crossing the wing tip.. For either of these locations, 
the innermost Mach lines are assumed not to cross the wing root chord. 
The method for determining control hinge moment resulting from wing 
angle-of-attack loading is valid for wing plan forms having the leading 
edges swept ahead of the Mach lines and. having streamwise tips. The 
only additional restriptions are that the controls must not be influenced 
by the tip conical f]ow from the opposite wing panel or by the inter-
action of the wing-root Mach cone with the wing tip. 

INTRO1JCTION 

Linearized theory, though neglecting viscosity and second-order 
effects existing in practice, is .the most practical method now available 
for estimating the characteristics of control surfaces at supersonic 
speeds. A general application of this theory tocontro1 surfaces having 
edges swept either ahead of or behind the Mach lines is presented in 
reference 1. (Edges swept ahead of or behthd the Mach lines are
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subsequently referred to as supersonic or subsonic edges.) Conical-flow 
solutions for various deflected control configurations are presented in 
reference 2. Such solutions were used in reference 3 to evaluate the 
characteristics of a restricted family of trailing-edge control surfaces. 

In the present paper a general analysis based on existing conical-
flow solutions has been made which will apply to a broad range of 
trailing-edge control configurations having supersonic edges and will 
provide for a comprehensive coverage of control location, aspect ratio, 
taper ratio, and sweep. Equations and detailed charts are presented 
from which lift, pitching-moment, rolling-moment, and hinge-moment coef-
ficients due to control deflection, and hinge-moment coefficient due to 
wing angle of attack, as predicted by linearized theory, may be deter-
mined in an estimated 5 percent of the time required without the use of 
such equations and charts. Also included is an approximate method by 
which these hinge-moment and effectiveness parameters may be corrected 
for airfoil-section thickness. 

The equations and charts presented are applicable to control-surface 
plan forms that vary throughout the range in which the leading and trailing 
edges are supersonic and the root and tip chords are in a streainwise 
direction. Deflected controls are assumed to be located either at the 
wing tip or far enough inboard to prevent the outermost Mach lines from 
the controls from crossing the wing tip. For either of these locations, 
the innermost Mach lines are assumed not to cross the wing root chord. 
The method for calculating the hinge-moment coefficient due to wing 
angle of attack is valid for wing plan forms having straight supersonic 
edges and streamwise tips. This method is restricted only in that the 
controls must not lie in a region influenced by the tip conical flow 
from the opposite wing panel or by the interaction of the wing-root Mach 
cone with the wing tip.

SYMBOLS 

M

	

	 free-stream Mach number 

= j2 - i 

C1, C2 	 functions of Mach number used. in calculating two-
dimensional-flow characteristics 

A	 angle of sweep of wing leading edge, positive when 
swept back 

angle of sweep of control hinge line, positive when 
swept back
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angle of sweep of wing trailing edge, positive when 
swept back 

bf	 span of controL surface 

c.p	 root chord of control surface 

cf	 tip chord of control surface 

X1. control-surface taper ratio	 (cft/cf) 

Sf area of control surface 

Af aspect ratio of control surface 	 (bf2/sf) 

Af ' = t3Af 

Ma area moment of control surface about hinge axis 

SL area of a loaded region 

SL area of part of deflected control surface lying in two-
0 dimensional-flow region less area lying in region of 

overlap of conical-flow fields 

m0 moment of	 SL	 about hinge axis 
o 

7.. 0 moment of	 SL	 about control root chord 
o 

distance of center of loading from control hinge axis 
measured normal to hinge axis 

spanwise distance of center of loading from control 
root chord 

e slope of airfoil-section contour 

t/2c one-half airfoil-thickness ratio measured in plane 
normal to control hinge axis 

(t/c)max maximum airfoil-thickness ratio measured in plane 
normal to control hinge axis 

x/c chordwise position measured in plane normal to control 
hinge axis
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xh/c	 chordwise location of control hinge axis measured in 
- plane normal to control hinge axis 

(t/2c)', (x/c)' dimensions measured in plane normal to wing leading 
edge 

Xf	 distance of leading edge of control root chord behind 
wing axis of pitch 

-distance of root chord of control from root chord of 
wing 

b	 wing span 

Cr	 wing root chord 

ct	 wing tip chord 

mean aerodynamic chord of wing 

S	 area of semispan wing 

tanA 
g=

tan 1HL a= 

d=
13 

a	 wing angle of attack, degrees 

angle of control-surface deflection measured in stream-
wise direction, degrees	 S 

free-stream dynamic pressure 

- Lift induced by deflected control 
L T	 qSf 

- Moment about control root chord induced by deflected con4ol 
1 -	 qbSf 

- Moment about hinge axis induced by deflected control 
m -	 2qM
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Hinge moment 
h	 2qM 

= Lift induced by deflected control 
L	 qS 

- 
1

Rolling moment about wing root chord 

2qbS 

- 
m

Pitching moment about wing axis of pitch 
- 

qSc 

F1 thickness correction factor for CL '	 and	 C 
8 

F2 thickness correction factor for Ch and	 C 

F thickness correction factor for Ch
a. 

difference between local pressure and stream static 
pressure 

C , pressure coefficient	 (p/q) 

C two-dimensional pressure coefficient (	
28 

p0
\57.3j1 - a2) 

or	
73l _ g2) 

P' local piessure ratio 	 (c/C) 

P average value of pressure ratio P' over conical-flow 

(fP'asL'\ 
region	 . 

\	 SL 

angle denoting arbitrary position of ray in conical-flow 
field

= T +

t = P tan T 



r
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t' =	 tan i' 

r=
t 

n, r	 nondiinensional coordinates used in integration of wing 
root and. tip conical pressures 

angle of sweep of line intersecting conical-flow regions 
of wing at angle of attack 

Subscripts: 

6, a.	 denote partial derivative of force and moment coeffi-



cients with respect to 6 or a 

cp	 denotes center-of-pressure ray location 

Superscript: 

*	 indicates that parameters P, PSL, PSL, PS7, t,', 

and rcp refer to loss of loading from two-dimensional 

value rather than to actual loading 

ANALYSIS 

Characteristics Due to Deflection of Control Surfaces 

Scope. - Existing solutions of the linearized equations of fluid 
motion have been used as a basis for calculating the characteristics due 
to deflection of trailing-edge control surfaces on wings in steady flight 
at supersonic speeds. These solutions, as presented in reference 2, are 
applicable to configurations for which the leading and trailing edges of 
the control are supersonic and the root and tip chords are streamwise. 
Two control-surface locations are considered. The control is assumed to 
be located either at the wing tip or far enough inboard to prevent the 
outermost Mach line from the control from crossing the wing tip. For 
either of these locations, the innermost Mach lines are assumed not to 
cross the wing root chord. For these locations, deflected control-surface 
characteristics are functions only of Mach number and control-surface plan 
form. (The parameter Ch6 depends on control-surface location only when 

-the control is located inboard from the wing tip and lies in the region' 
influenced by the interaction of the control-tip Mach cone with the wing 
tip.) If the limitations previously mentioned are considered, the analysis 
is valid for all controls except those located at the wing tip and having
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the inboard conical-. flow regions intersecting the tip. In such cases, 
the conical pressures on the control, as given in reference 2, are not 
applicable in the region influenced by the interaction of the Mach cone 
with the wing tip. Necessary corrections for this region can be deter-
mined by the method described in reference i . . Such corrections are not 
considered in the present paper because of the prohibitive amount of 
computation involved. Results not including these corrections are pre-
sented, however, because they should be very useful as an indication of 
trends and should in many cases closely approximate the corrected result. 

Method,- In order to determine control-surface characteristics, the 
two-dimensional region and. the triangular seents of the conical-flow 
regions (fig; i) are considered independently. The characteristics are 
obtained by summing the products of pressure ratio and nondimensional-
area and. moment-arm parameters for all parts (table I). The nature of 
conical flow is such that the pressure is constant along any ray from 
the origin of the flow field. Any infinitesimal triangle having the 
origin of the flow field as an apex, therefore, has its center of pressure 
located at two-thirds of the distance from the apex to the base. It 
follows that the summation of the loading of such infinitesimal triangles 
results in a finite triangle having its center of pressure lying on a 
line parallel to the base and located at two-thirds of the distance from 
the apex to the base. The center-of-pressure location and, consequently, 
the desired moment arms, can therefore be determined from the location 
of the ray on which the center of pressure lies. General equations for 
the average pressure ratio and center-of-pressure ray location for each 
conical segment (tables 11(a) and 11(b)) were obtained by integrating 
the pressure equations of reference 2. (See appendix A.) Table 11(c) 
presents eouations for the nondimensional-area and moment-arm parameters 
(in terms of center-of-pressure ray location) for each conicaL segment. 
Equations pertaining to the two-dimensional region were obtained by 
treating this region as a simple geometric area and are also included 
in table 11(c). Results obtained by evaluating the general equations 
of table II when they become indeterminate at taper ratios of 1.0 are 
presented in table III. 

For regions in which the two conical-flow fields overlap, the method 
of superposition must be used wherein the losses in pressure ratio from 
the two-dimensional value (P' = 1.0) in the two conical-flow regions are 
additive; that is, 

pt = 1.0 - (i.o - Pmc')_(l.O - mc2t) 

=	 mc1 +
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(Subscripts mc1 and mc 2 refer to inboard and outboard conical-flow 

regions.) The net effects of the pressure distribution in this region 
are obtained by adding the effects of the two conical-flow regions as 
though the flow regions did not overlap and subtracting the effects of 
a two-dimensional pressure distribution. This subtraction is accomplished 
by use of the equations for the two-dimensional region (tables 11(c) and 
111(b)). In calculating control hinge moments it was convenient to 
calculate the effects of regions 'c and 11c or III (fig. 1) and 

then subtract the effects of the parts of these regions lying off the 
control. For controls located at the wing tip and having the inboard 
Mach cone intersecting the tip, a sixriilar procedure was also used to 
•reduce to zero the lift, pitching moment, and rolli.ng  moment contributed 
by the triangular part of the inboard conical-flow region lying beyond 
the tip. As previously mentioned for this case, a rigid application of 
linearized theory would require a correction, as described in reference 1i, 
to the loading assumed in the region influenced by the interaction of the 
root Mach cone with the free edge. It should be pointed out that the 
areas influenced by such interactions become appreciable for extreme 
conditions and approximate results for such configurations should be 
used with caution. 

Hinge Moment Due to Wing Angle-of-Attack Cbange 

Scope.- Conical-flow solutions for swept wings at supersonic speeds, 
as presented in reference 5, are used as a basis for the analysis. These 
solutions are applicable to wing plan forms having straight supersonic 
edges and streamwise tips. 

As in the analysis for deflected control surfaces, only control 
surfaces having supersonic edges and streamwise root and tip chords are 
considered. The only restrictions regarding control location are that 
the control must not lie in a region influenced by the tip conical flow 
from the opposite wing panel or by the interaction of the wing_root Mach 
cone with the wing tip. 

Method. - The method consists essentially of determining the hinge-
moment parameter PSLX for the flap by assuming two-dimensional loading 

and then subtracting the losses resulting from the wing-root and wing-
tip conical flows. The conical-flow losses are obtained by dividing the 
conical regions into a series of triangular segments, each having its 
apex at the origin of the Mach cone, and summing the hinge-moment param-
eters (pSL ) * for these segments as illustrated in figure 2. In deter-

mining (PsLx) for the triangular segments, integrations of the loading 

are necessary for obtaining }* and .. As has been previously explained 
for this type of conical-flow segment, it is sufficient to determine p*
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and. t, because the moment arm .i can be determined from tq) . The 

method for obtaining P and 	 is illustrated in figure 3 and. 
involves integrating the pressure losses along the bases of the segments. 
From integrations of the pressure losses between 0 and . n (or 0 and. 

r1 '), values of	 and ncp (or rcp') are obtained. Values of P* 

and values of tq, corresponding to cp (or rcp'), obtained in this 
manner are applicable to the triangular segment bounded by the Mach line, 
the ray -r = T1, and the section intersecting the Mach cone. Results 

have been obtained by numerical integration using Simpson t s rule (refer-
ence 6) except in regions where the slopes of the pressure curves become 
infinite (fig. 3). In these regions, integrating coefficients, as pre-
sented in reference 7, have been used. Forms by which the integrations 
were made are presented in tables IV to VII. The upper part of these 
forms are used for computing the pressure distributions (1 - P') along 
the sections intersecting the Mach cones (fig. 3). In the lower part 
of the form, the areas and area moments about n (or r') = 0 of the 
curves of (1 -	 plotted against n (or r') are determined and are 
used.td obtain P and tcp for the corresponding triangular segments. 

Tables IV to VII can be used directly for calculating the loading dis-
tribution for intermediate cases or cases not included in the present 
paper.

Method for Approximately Correcting Results Obtained 

from Use of Linearized Theory for Airfoil-Section Thickness 

Scope. - The method for approximately correcting the theoretical 
results for airfoil-section thickness is based on the assumption that, 
at any chordwise position on an airfoil having finite thickness, the ratio 
of conical to two-dimensional pressure is the same as that predicted by 
linearized theory for an infinitely thin flat plate.. (This method is a 
variationof the method presented in reference 8.) The method can be 
logically applied only to configurations having similar sections at all 
spanwise positions affected. The method is expected to give most accurate 
results at moderate and high Mach numbers for thin controls located 
inboard from the wing tip and having relatively large areas over which 
the flow is two-dimensional. 

Method.- On the basis of the preceding assumption, the method requires 
the determination of the following three factors:
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F - 
CL'(Two- dlmensional with thickness)

1	 CL'(Two-dimensional flat plate) 

- C 1 '(Two-dimensional with thickness) 

C'(Two-d.ixnensional flat plate) 

C '(Two-d.in]ensional with thickness) 
F2 = m

Cm'(Twod.imensional flat plate) 

- Ch(Two_d.imensional with thickness) 	
( ) 

Ch( Two_dixnensional flat plate) 

C (Two-dimensional with thickness) 
h	

() 
Ch(Two-dimensional flat plate) 

(The coefficients in equations (1) and (2)' are for deflected controls, 
and the coefficients in equation (3) are those resulting from wing angle-
of-attack loading.) Corrected values of CL', C i ', C', C, and 

are obtained by multiplying the results obtained by use of the 

linearized theory for three-dimensional flat plates by the appropriate 
factors. 

The factors are determined, as described in appendix B, by using 
the Busemann second-order approximation to determine the cdefficients 
for sections having thickness. This approximation gives results which 
are generally in good agreement with results obtained by use of the more 
involved exact theories. The theory is iot considered accurate, however, 
at Mach numbers for hich the shocks become detached or at Mach numbers 
below about 1.3 (reference 9). For the general group of airfoil sections 
that are symmetrical about the chord plane, equations for the correction 
factors as derived in appendix B are: 

10	
t\' 

1
c 

(l_ 1) xh/c \	 II

(Ii.)
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r1.O' 

	

F2='	 2	 J	 ()(I+2 d 

xhSs2 Xh/C	 l d 2E i c 
cJ 

\	 C) 

P3= (i)2Lh/c(c)L
()i 

CHARTS 

Presentation 

Aside from the restrictions regarding location, the characteristics 
of deflected control surfaces are functions only of control plan form 
and Mach number. The effects of plan form and Mach number are deter-
mined from solutions to equations (tables I to. III) involving the van-

-	
tan 'A	 tan	 f 

ables	 ,	 , and Xf. (For untapered controls the varia-

tanA 
bles are	 and 3Af. Figure 11. presents I3CL', 

and Ch.8 as functions of these variables for controls located at the 

wing tip. Each chart of figure 11. presents the characteristics of a 
series of plan forms having a fixed hinge-line sweep angle (if the Mach 
number is considered to be fixed) and varying trailing-edge sweep angles 
and taper ratios. The solid-line curves present the effects of varying 
taper ratio for plan forms having fixed hinge line and, trailing-edge 
sweep angles. The characteristics of controls having constant aspect 
ratios are indicated in the charts for t3Ch by dashed lines. Constant-

aspect-ratio curves are not included in the charts for the other.charac-
teristics because, tn many cases, they would be quite confusing. If 
desired, such curves can be drawn by simply determining the taper ratio 
at which the curve will intersect each of the curves' of constant d from 
the following relation:	 .	 - 

2- 'Af '(a - d) 
Xf -

2 + Af '(a - d)

(7) 

(6)
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For inversely tapered controls, the parameter l/X f is used as a coor-
dinate to avoid elongation of the curves. Calculations were made at 

values of	 and	 = 0, 0.20, 0.40, 0.60, 0.80, and. 0.95 and at 

valuès.of Af t = 0.8, 2.0, 4.0, 6.0, 8.0, and 10.0 for u.ntapered controls. 
Calculated results not included in the charts are presented in table viii; 
The results not included In the charts are mainly for configurations 

tan ATE. 
having values of :	 near 11.01 and, consequently, having extremely 

large areas of induced loading on the wing. Results for such configura-
tions are of little practical value because if these large areas are to 
lie entirely on the wing, as has been assumed, the wing must have a very 
large span or the control must have a very small chord. 

Charts presenting the characteristics of deflected controls located 
inboard from the wing tip are presented in figures 5 and 6. These charts 
vary somewhat from those for controls located at the wing tip. Equations 
for CL t and 13C' were simplified and found to be dependent only on 

tanA	 tanA 
and.	 . These equations, with results in chart form, are 

presented in figure 5 Charts for t3Cb and 3C 1 ' (fig 6) are pre-

sented only for normal taper ratios because the characteristics of 
inversely tapered controls can be obtained by entering the charts at 

-tan A	 -tan ATE	 . , 
-	 ,	 and. lfXf. 

The computing form for C is presented in table IX and is self-

explanatory. Supplementary charts for determining the loading distribu-
tion (p* and t) for' the various triangular segments of the conical-, 

flow regions are'presented in figures 7 to 10. It should be pointed out 
that figures 8 and 10 can easily be used for determining the spanwise and 
chordwise loading of the wings considered in this paper and will there-
fore be of value in inaking loads analyses. 

Use 

In order to use the charts for determining the characteristics of 
tan A tan 

deflected controls, values of	 ,	 ' , and	 for the con-

figuration being considered must be determined. These values are then
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used. for entry into the charts, figures 1. or and 6, depending on control 
location. The coefficients obtained from the charts have been made non-
dimensional by use of control geometric parameters. For determining the 
coefficients based. on the usual wing parameters, the following equations 
are given (approximate thickness correction factors are included but can 
be neglected by letting the factors equal 1.0): 

Sf 
(CL)c = F1CL5 ' --	 (7) 

(CL)c( 
+ bf	 (8) (cz) = 

2b yf 

- (CLb)cfr2Cmt	
VL ^ 2a2 - abf	 - Xf)	 (9) (Cm8) -	

•	 Sf 

(ChB)c = F2Ch	 (10) 

(The subscript c indicates that the approximate thickness correction 
factors have been included..) 

For determining the control hihge moment due to wing angle of attack, 
preliminary calculations are first made on the computing form of table IX. 
Results of these computations indicate positions in the charts (figs. 7 
to 10) from which P and tcp are to be obtained. Values from the 

charts are then inserted in table IX and the operations indicated in the 
computing form are completed. The approximate thickness correction factor 
can be applied by use of the following equation: 

(ChcL)c = F3Ch	 (11) 

Illustrative Example 

As an example of the use of the charts, the control-surface charac-
teristics are determined for the configuration shown in figure 11. The 
wing is assumed to have 5-percent-thick syetrical parabolic sections 
in planes normal to the control hinge line.
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Lift and. pitching-moment coefficients are obtained by entering the 

	

tan A	 tan A 
charts of figure 5 at values of	 0.i.0 and	 = 0.35. 

Hinge-moment and rolling-moment coefficients are obtained by entering 
tan 

the charts of figure 6(g) at values of 	 = 0.35 and Xf 0.713. 

Coefficients obtained from the charts are 13CL5 ' = 0.071i.8,	 = -0.0365, 

	

= 0.0372, and 13Ch6 = 0.03 14.5. The calculation of C 	 for the 
example is presented in table IX. Preliminary calculations are made in 
table IX(a) and in column (1) of table IX(b). Values of n and r 
calculated in column (1) are used to enter the charts (figs. 7 to 10). 
Values of	 and tcp obtained from the charts are inserted in 

columns (2) and (3) of table IX(b) and the computations are completed. 
The theoretical value of Ch is -0.0l9)#. 

The equation for the section contour in a plane normal to the control 
hinge axis is

= 2()n2ax EI - (I	 (12) 

The slope in this plane at any point along the airfoil is 

___ = 2(t) (1 - .2	 (13) 

	

c max\	 C 

C 

Substitution of equation (13) in equations ( ii.) and (5) yields the following 
equations for	 and F2: 

	

F1 = 1 - 1i	 (111.)
C1kc)max C 

	

F2 = 1 - Ea"	 (1	 Xh\ 
3 C1c)max\ + 2 -a-.)	 ( 15)
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For determining F3, the equation for the section contour in a plane-

normal to the wing leading edge is written as 

2(-\	 (x 

(!.) =	 \c)max	 Ic1	 cI/ I	 (16) 

	

2c	 cos(r._A)[l + K() J 
where

K = tan(A - A)tan(A - A.) 

The slope of the airfoil contour in this plane is 

______ -: 2( .)	 c - 2(	 - K'1 ______	 C ma	 J	 C /	 c)	 (17a) 
____ - cos(A - AHL)	 [i+k()'l2 _I 

cJ J 
orintermsof x/c	 - 

	

_____	 2(.)	
Ii - 2 + K x 2c	 _____________	 _____ 

	

____ = cos(A.- A) L	 c 1 + K(C)J	 (17b) 

Substitution of equation (ilb) in equation (6) yields the following 
equation for F3:

(t)
(18)F3 = 1 - ______________________ 

	

3C1 (l + K)cos(A. - A)	 C 

From equations (114. ), (15), and (18), the fol1oing correction factors 
are obtained for the sample configuration: Fi = 0 . 8077, F2 = 0. 7'889, 
and F3 = 0.7355. It is of interest to note that these values indicate 

appreciable losses in loading due tO airfoil-section thickness, and it 
might be pointed out that greater losses would be obtained for thicker 
airfoil sections.
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The coefficients obtained from the charts and the preceding correc-
tion factors are then substituted in equations (k-) to (8).. The results 
obtained are:

(cL) = o.00i4n 

Cm) = -0.00318 

(c 1 ) = 0.000619 

(c \ = -o.o182 

(c) = -0.011i3 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., September 8, 1950
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APPENDIX A 

1'1ETHOD OF INTEGRATING PRESSURES OVER CONICAL 

REGIONS OF DEFLECTED CONTROLS 

The pressure distributions in the conical-flow regions shown in 
figure 12 are given in reference 2. With suitable changes in notation 
these are: 
For regionI,

-1 a -. t 
P t
 = cos 1 - at 

For region III,

	

P t = 1	 1 - (2 + a)t	 (A2) 

	

it	 l+at 

Because the flow is conical in regions I and III, integrations of 
the pressjires along the trailing edge within these regions are representa-
tive of integrations over corresponding triangular segments having the 
Mach cone origin - as apexes. For such integrations, a coordinate for 
distance along the trailing edge must be introduced. The nondinensional 
coordinate chosen was t' = tan T' (fig. 12 and reference 2). The 
integrations required for determining average pressure ratio and center-
of-pressure ray location for any segment are 

12. 
P dt' 

1

dt' 

and	 -

rt
2 t' dt' 

tcpt=_l

P t dt'

(Al) 

(A3) 

(AJ4.)
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(Subscripts 1 and 2 indicate values of t' corresponding to the end 
points of the part of t' over which integrations were made.) 

A Mach number of	 was assumed for convenience (3 = 1) in making 
the integrations of equations (A3) and (As-). This assumption is valid 
because any case of Mach number greater than 1 can readily be reduced 
to an equivalent case at M = / by an affine transformation corre-
sponding to the Prandtl-Glauert transformation for the subsonic case 
(reference 5). An example of this transformation is shown in figure 13. 
The equivalent plan form is obtained by dividing all streamwise dimensions 
by	 and leaving lateral dimensions unchanged; consequently, values 
of a, d, and t (for equivalent points) are the same. From equa-
tions (Al) and (A2), it can readily be seen that values of P' for 
equivalent points are the same. It follows that su.mination of P' aver 
equivalent regions results in equal va1ue of P and tcp• It is 
apparent from figure 13, however, that values of tcp' are different. 
This difference is of no consequence because values of tcp for the 
equivalent wing (obtained from tcp' and geometric relations) are the 
same as values of	 for theinitial wing. 

The procedures followed in the integrations of equations (A3) and 
(Ale-) are the same for regions I and III and. are only shown for region I. 
If the Mach number is assumed to equal j where j3 = 1, equation (Al) 
may be written in terms of t' as follows: 

P' = I cos1 (a + d) - (1 - ad)t' 
(1 + ad) - (a - d)t' 

If y is substituted for cos icP', equations (A3) and (Ale-) become

S 

-1 
= -(1 - a2)(l + d2)	

y2	

- ad)-(a - d)y]2 dy
	

(A5) 

_(l_a2)(l+d2)f	

1-ad) - (a_d)yJ2
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i- a2)(l + d2)1Y2 (a + d) - (1 +ad)y 
COS	 dy 

- ad) - (a - d)yl	 (A6) t t= 
cp

-(1 - a2)(l + d2)	 ____________________ 

	

-	
Yi	 1 - ad) - (a - d)y] 

Integration by parts was then employed in the solutions of équa-
tions (A5) and (A6). 

For cases in which the conical-flow region overlaps the opposite 
parting line, the average pressure loss and center-of-pressure ray 
location are required for regions 'a and 1b (fig. 1). Equations (A3) 
and (A14-) may be used in obtaining the solutions for region 'a by a 
slight modification requiring.no additional integration. Thus, 

t2'

	

(1	 P')dt' P' 
*_l - 

0	 ___ 

P =1-	 (A7) 
tt -	 rt2t dt4
	 f 2 

	

Jtl ,	 tli 

rt2t t'(l - pt)dtt	
t2] t2t	 rt2' 

L 

	

t t= ___________ =	 (A8) I	 rrt t rt2t 
(1 - pt)dtt	 t]	

j 2	 dt' 
Jtl t	 .	 tlt - Jtlt 

In obtaining the solutions for region 'b (fig. 1), essentially the 

same procedure as previously outlined was used. The parameter r = 

was used to epresent distance along the . parting line nondimensionally. 
Values of. P and rcp were obtained by making integrations similar 

to those in equations (A7) and (A8) (before simplifications). 

Results of integrations over all regions shown in figure 1 are pre-
sented in tables 11(a) and 11(b). Results of evaluating these equations 
at taper ratios of 1.0, where they become indeterminate, are preéented 
in table 111(a).	 .	 -
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NETHOD FOR DETERMINING THICKNESS CORRECTION FACTORS 

The pressure coefficient at any point on a two-dimensional surface 
as given by the Busemann second-order approximation (reference 8, with 
suitable changes in notation) is 

-	 c = c1 (s + e) + c 2(s +0)2	 (Bi) 

(The angle S is considered positive when calculating C for lower 
surface and negative when calculating C for upper surface. Through-

out appendix B, 5 is considered to be in radians.) The constants C1 
and. C 2 are functions only of Mach number. Equations for these constants 
and tabulated values are presented in reference 10. 

The lifting pressure coefficient at any chordwise position is simply 
the difference between the pressure coefficients on the lower and upper 
surfaces. The net lift coefficient is obtained by integrating the local 

lifting pressure coefficients between the hinge line ( =
	 and the 

trailing elge ( = i.o). (See fig. 1 1i.) Thus, 

1. 0 

CLtthicknes(S) = 1 --'h/c JCP)L - (cp)J d	 (B2) 

(The subscripts L and. U denote lower and upper surfaces.,) Similarly, 
the hinge-moment coefficient is obtained by integrating the products of 
local lifting pressure coefficient and moment arm between the hinge line 
and the trailing edge. Thus, 

i 
Chthickness(S) =
	

\2 x/	
i)[(C) - (C)d	 (B3) 

\	 cJ
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An_application of sweepback theory, as explained in reference 9, 
must be used for determining C - C . It is important to note that., 

LU 
for deflected controls, this theory requires the use of the Mach number 
component and the airfoil section in a plane normal to the control hinge 
axis. Values of CL' and Ch thus obtained are based on the dynamic-

pressure component normal to the hinge line and the deflection angle 
measured in a plane normal to the hinge line. Values of CL' and Ch 
for a two-dimensional flat-plate control, based on the same q and , 
are obtained by considering the Mach number normal to the hinge line in 
determining values of C1. Equations for these coefficients are 

CL'	 =	 (B)i-) 
flat plate 

Chflat plate =	 (B5) 

The following correction factors re then determined by dividing 
equations (B2) and (B3) by equations (B4) and (B5), respectively: 

rL.O 
F1 =	

1 Xh\ "xh/c [(c
r)	 (cp)]d.	 (B6) 

-

1.0 f 
F=	 1	 r ) C) - (C)} 2	 /	 \2J	 c 

	

-	 xh/c 
\	 cJ 

If the sections are assumed to be symmetrical about the choi 'd plane, 
equations (B7) and (B8) can be simplified because 

+2C	 2c1	 (B8) (cp)L - (Cp) = 2(Cl
2 d I 

Equations (B6) and (J7) then become 

	

F1=	
XhJ	

(l+2dd 

l--. - xh/c	 Cldxj	
(B9)

c
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F2=(2)2f((1+22c)d
	

(Blo) 

The equation for F3 may be written as equation ( B7) for F2 

(substituting a. for	 )

1.0 1 
F= 3
	 ( Xh\21/c cI (• T	 JP)L - (c)]d	 (Bli) 

In this case, however, the airfoil section. and Mach nwnber component in 
a plane normal to the wing leading edge must be used. in determining 
values of C 1 and (c \ - (c ' \ PJL .\PJU 

For syinetrical sections, the equation for F 3 may be simplified 

in the same manner as the equivalent equation for F2. Thus, 

F3 =	 2 2 1 	 -	
[^2	 a 

Equation (B12) will in some cases become somewhat involved because 
d(t/c)'	 .	 .	 - 

must be determined from the equation for the airfoil section in 
d(x/c)' 
a plane normal to the wing leading edge and must then be written in 
terms of x/c (unless the surfaces are plane). It should. be pointed out 
that suitable approximations for most symmetrical biconvex airfoils 
(which in general require involved expressions for defining the contour) 
may be obtained by assuming the sections to have parabolic contours. 
General equations for the thickness correction factors for symmetrical 
sections having parabolic contours have been derived in the illustrative 
example of the present paper.
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TABLE I. - GENERAL UATIONS USED )R DNTERMINING CHARACTERISTICS OF DEFLECTED CONTROLS 

[Subscripts I, 'a, b' 'C'	 "a' Ub "c'	 "a' and 
to regions defined in fig. i] 

(a) Configuration Having Control Located Inboard from the Wing Tip. 
I Parameter Formula 

r 

CLBt Hf), \Sf),,j 

2CpFCm' 

Cl5'
rz06\ 4 

s\ 1 \i/ 

in0 / s,\	 / S 
+	 p	 Lx	

-

/ SL *	 / SLX\	 SLi)'	 - 4, S1 x\'	 1 I	 +(P-1	 + " 
"c	 (	 ) \	 'c	 'a 'b "a 

(b) Configuration Having Control Located at the Wing Tip. 

Parameter Formula 

CL'
2CPO I LoI'P SL) (s	 +(SL\ 1 

Sf, ) 'a 'b \Ff)IIIj 

C
2Co[0	

+ 4, L\ + 'A f	
\*

-

( SL\*	
+ 6 SL3E\	 1 

[ 'a ' ' 

C l6 ' + 
6	 bS

+ 6 - 6 + 4	 1 
'a 'b 

+ f 
SJ)C\	

+ 4, SD - 'P Lr / SLX\ +	 i 
a2tiI

/	 _\*	
5L * + 1 1'	 1	 - 

2aJ	 \ 2Ma) j'c 'a 2a1 'b \	 "a	 'I'b]
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TABLE II. - COMPONENT PANTS OF EQUATIONS USED IN CALCULATING CHARACTERISTICS 

OF DEFLECTED CONTROLS RAVING TAPERED PLAN FORMS 

(a) Average Pressure Ratio 

[Values of P for regions ' "a' 11b' and 1I are obtained by substituting -a, -d, and l/Xf 

for a, d, and 	 in equations for regions ' 'a' 'b' and 'c' respectively. In cases where 
plus and minus signs are together (±), the upper sign must be--used when values of a and d 
substituted are such that a - d is negative and the lower sign must be used when values of 
a and d substituted are such that a - d is positive.] 

Region 1 
(fig._1)1

Average press	 ratio	 - 

l_a2)(l_d2)_(l_a)(l+d) 

2(a - d) 

=	 1 -d	 {	 cosl1	 - a2) - X(l - ad)l

- - a) - (1- a)	 -	 L	 X(a - a)	 ] 
'a

1 h-a2 	 _l[l_ad)_Xf(l_d2}	 - cos 
Vl-d2	 (a-d) 

=	 f(a - d	
1 (1 - a2) - Xf(l - ad) 

)cos	
[ ] + Xf(l - a) - (1 - a)	

L	
f(a - a) 

(1- x)l - a2 	 (a -	 ± j(l - ad) -	 f2(l - d2) - (1- a2) 
log 

It	 lXf 

= 1 - -a2	 - i cos_ld) +	 cos1a - i 
a_a[l - a2 

p = (1 + a) - Vi + a)(l + d) 
a-d 

1	 Il+dcos_l2+a+a)_2Xf(l+a

- (1 + d) - Xf(l + a)	 L	 (a - a)'	 ] 

Xf(l + a)(l + a) 	 _l(l + d) -	 f(2 + a + d)]} cos	
L	 Xf(a_d) 

1	 a	 l(2+a+d)_2Xf(l+a)1 

[ Xf(l + a) - (1 + d) t n	
(a - a)	 j 

+ a)(l - Xf) f(l + a) - (1 + d)]} 
Ill
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TkBLE II. - CO'OREIff PARfS OF 2UATIONS USKD IN CAlCUIATfl CRARkCTERIST1CS 

OF DXFLfED COTPPROLS HAVING PAFERD PLAN FORI1S - Continued 

(b) Center-of-Pressure Ray Location. 

[values of t	 (or r) for regions	 "a' '1b' e.nd 11 are obtained by substituting -a, -d, 
and 1/).f for a, d, sad Xf in equations for regions I, I, 'b, and 1c, respectively. In 
cases vhere plus and minus signs are together (±), the upper aign must be tided vhen values of 
a and d aubstituted are auch that a - d is negative and the lower aign must be used ,.'nen 
values of a and d substituted are such that a - d is positive.] 

Region 
(fig.	 1)

Center-of-pressure ray location (t,	 or	 r) 

1 tcp=
P(a	 d)2{d21 +	 d - 3d2 -	 a2)(1 - d2 ) - 2d(l - a)2 -

1	 )[2xf(1+ ad) - X 2(1 + d2cOs	 (i - a2) -	 f(l -ad)] 
=

[ f(ad) (a-d)(l+d)[f(1-d)-(l-a)]	
L 

'a hi(1 + 3ad - 3d2
 - ad3)cos_l' - ad)-?.f(l - d2)] 

- 

(1 + d2)	 - a2) f(l - ad) -	 f2 (1 - d2) - (i - a2} a

f(a - d)[2a - Xf(a + d)J	 - a2) - x,(i - ad ± 
[f(1 - a) - (i - a)]	 5(1 - t,)	 L	 )f(a - d) 

- a2)[ f(l - ad) - Xf2(l - d2) - (1 - a2 
It + '1 

a(l -	 (a - Xd) ±	 2tf(l - ad) -	 (i - d2 ) - (1- a2) 
•	 ltf 

1	 ___________ {2(1 + 3ad - 3d2 - ad3)(l - ! coa_1d) + (a - d)(l ±d2) 	 - 
tcp

2P(1 + d)(a - á)2 

-a2)(l - d2) - 2d(1 - a)2	 + (1 - d2)(1 + 2ad - d2) cosa 

+ a)(l + d)	 2 - a + d)(l - d2 ) + 2ad(1 + d) + 2d(l + a)] - tcp	
1 

P(i + d)(a - d)2 
"I

21 -	 2)(1 - a2 ) + 2d(l + a)2]

f(l + ad) - (i +d2cos_l2 +a+ d) =
	

f(l + a	
± ______________________________	 2(1 +	 _______________________ 

{ 
tcp Cif - d)[f(1+ a) - (1 + d)] 

"a 2(1 + d2) 
5	 V(1+a)[Xf(2	

) -)..2(i+a) - (i+d-

1f	 - a + d)(l - d2) + 2ad(1 + d) + 2d(1 + a	
cns_11 + d) - X(2 + a + 

- d) 1+d

- 

{3	 - d)[2, - (a + d	 i2 + a +
	

+ a)] * r0=	 coa 
- Af) f(l+ a) - (i + d)]	 a-d 

2[,(1 - 2a) -(2 - 3a - d)] 	
+ a)[tf(2 + a + a) -	 f2(1 + a) - (1 + d} e
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TABLE II. - COMPORERT PAS OF FUATIONS USED IN CALCUIATIPO CBARACIISTICS 

OF DEFLECTED CONTROLS RAVING TAPERED FLAB FORMS - Coacluded 

(c) Geoeetrlc Parmoeters. 

- d)(1 * 

2(1. Ar) 

2b3(a - 1)2(1 - 1r3) 

3(1 - A)1 + 

(f1.i)
SjSf SLy/bSf 

2(a - d) SL 2(a - d)(t02	 - a) 1 - A 2 f . + ad) - (a - 

3(1 - A)(
T 

(1 - A 2)(l - a2 ) 1 * 

x(i - a) - (1 - a) SL 2(a - d)( t 5 ' - d) 1 -	 + ad) - (a - 
°

5f3(1.Xr)(1+d2) (1..A2)(1d) 

Ar(1 -	 1) - (1- a) - A)(rcp - al 

35r a-a (1-A)(a_d)

(a - a)[i + ad) - (a - d)tcp 

(1_x3)(1_a)(1+a2) 

- a) 21r(a - a)(t0' +	 )1 3L	
1 - A 2 T1	 ad) + (a - 

3(1 - A)(1 * a2yj
A

1 * a2 (1- Af)(1 - a2)

X 2 (1	 a) - Ci	 d)]1 * ad) • (a - d)t...] 

a -
(	 + a)(j. * a2) 

(1 - Ar)2[A(1 * a) - (1	 d(r	 * a) 
b . ------------------ -

(1_1f3)(a-d)2 

113(a - d)[1 + ad) • (a - 
IIC

(i - Ar3X l + a)(i * a2) 

- d) SL[	 21(a - d)(t	 •
A3(a - d)1 + ad) * (a - d)tj 

5L	 3(1 - X)(1 * a2)
	 j (1 - 1r2)(1 + a) (1 - L 3)(i + d)(i + a2) 

1r2[Ar(1 + a) - (1 	 d)]i + ad) + (a - d)tJ 
III a

(1 - 1r3 )( 1 * d)(1 + d2) 

II-----------------------

(1 - Ar) 2[A(1 + a) - (1 + d)J(r cp	 a) 
III .--------------------

(i - A 3)(a - a)2 

(a-d) 3	 - 

(1. - Ar) 2( 1 - a)2 

() -
(12 - Ar3() 

dImensional i * a) -1(1* f 
(1 - A2)

(1 - 1) 2(1	 a)2	 J
2(1 - 

3(0 - d)(i + A)
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TABLE III. - COMPONENT PASTS OF EJATIONS USED IN CALCULATING CHARACTERISTICS

OF DEFLNGTED CONTNGLS RAVING USTAPERED PIA1 FO1H&S - Concluded 

(b) Geetr1c Parameters. 

S1
A1' 

2b3

A1' 2 Ii + 22 

(fi.i) SL/Sf 51j/bfSf 

1 (i+) 

Af'(l - a2) -	 S1 6Af(1 -	 2) 3 Sf 

'a
1 - A,'(l - a) 5L 2(t' - a) 2 
2A1'(l - a) S	 3A,'(l + a2) 3 Sf 

1-A1'Cl-a) 25L 2SL 
2

1 

3A1'(l - a) 

II - a2)

sj -	 -	 )	 1 
Sf[ 6A1 '(l - a2)j 3Sf 

l-A1'(l+a) 
3A1 '(l + a) 

( rop	 a) [1 -Af '(l+ a)] 
b 3 

"C

-

_______ 
3A1 '(l + a) 

i 5L[. 5 25L 
2A1 '(l + a) s1 1f'(1 + a)j 3 Sf 

-

1 - A1 '(i + a) 

3A1 '(]. + a) 
----------

A1'(r	 + a)[1.. A 1 (l + 
'XIb

- a2) - 1

-

3A1'(i - a)(1 - a2) 	 '(l + a) - 1	 - 3A1'1 - a2 ) - 4 

A1'(l - a2) r2(l - a2)2 dImensional
6A,e(1 - a2)
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TABLE II. - COMPONENT PABTS OF EQUATIONS USED IN CALCULATING CEARACTERISTICS 

OF DEFLECTED CONTROLS RAVING TAPERED PLAN FORMS 

(a) Average Pressure Ratio 

[Values of P for regions	 "a' 11b'	 11 are obtained by substituting -a, -d, and i/X' 

for a, d, and Xf in equations for regions	 'a'	 and	 respectively. 'In cases where 

plus and minus signs are together (±), the upper sign must be-used when values of a and d 
substituted are such that a - d is negative and the lover sign must be used when valueB of 
a end d substituted are such that -a - d is positive.] 

( g ) Average pressure ratio 

Vl - a2)(l - d2) - (1 - a)(l + d) -

2(a-d) 

1 - d	 f	 - a2) - Xf(l - ad)1 p* =	 cosl[ 

Xf(l - d) - (1- a)	 L	 )f(a - a)	 J 
'a

1	 - a2 	 05_lFl - ad) - Xf(l - d2 

5 V l - d2	 L	 (a-d)	 J 

=	 {(a - d)cosLl -	
- ad	 + 

f(l - d)- (1 - a) 

(l_Xf)l_a2 1	 (a..)d)	 ±j2Xf(1_ad)_Xf2(l_d2)_(l_a2) 

a	 l_f	 - 

IC P=L/82(l_icosd)+icosa_ 
a_d[l_d2 a	 a	 l_dj 

(l+a) - V(l+a)(l+d) 
a-d	 - 

1	 Icos_lR2+a+_f+a 
(l+d)_Xf(l+a)	 L	 L	 (a-d)-

Xf l(l + a)(l + d) cos-F	 + d) - ?f(2 + a + d)1	 - 

L	 Xf(a_d)	
-	 J 

1	 _______________ 

xf( l+a)_( l+d) L t	 L	 (a-d)	 -	 J 

pkl + a)(l - Xf) f(1 + a) - (1 + d)] -
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TABLE II. - CONPONEH'T PARPS OP UATIONS USND IN CA1CUIATfl CUABkCTERISTLCS 

OP DNFLTED CONTROLS HAVING TAPRRED PI..R FORMS - Continued 

(b) Center-of-Pressure Ray Location. 

[Values of tq, (or r) for regions	 "a'	 11 are obtained by substituting -a, -d, 

and i/lf fora, d, and	 in equations for regions I, 'a, 1b, and Ic, respectively. In 

cases where plus and minus signs are together (i), the upper sign must be used when values of 
.a and d substituted are such that a - d is negative and the lover sign must be used when 
values of a and d substituted are such that a - d is positive.J 

Region 
(fig.	 1)

Center-of-pressure ray location (t	 or rsp) 

tp	
=	 2	

+ 3ad - 3d2 - ad	
_u[1_ a2)(l - d2 ) - in(i - a)2] 

1	 __________________________ 
=

i1fi - a2) -	 - ad) {(1	
a2)(l + ad) -	 f2(1 + a2cos cp ,.

- a)(i + d)[ f(l - d) - (i - a)] 	 f(a - d) 

'a + 3ad - 3d2 - ad3)coa-	 - ad)a__(l - d2)] 

(1 + a2)	 1 - a2) f(l - ad) - 1,2(1 - a2) - (1 - a2} 

(a - d)[2a - Xf(a + a)]	 (1 - a2) - Xf(l - ad) 1	 ____________________________ 	 ________________________ cos-1

[	 ] ± 
cp• =

- d) - (i - a)] 	 lf(a - a) 
L	

e(l - x,) 

-ad) - 1,2(1 - a2) - (1 - a2J
+ 

It 

a(l - Lf)	 1	
(a - X) ± V21f(1 - ad) - 1(i - a2)	 (1 - a2) 

1 - 

+ 3ad - 3d2 - ad3)4 - 1	
+ (a - a)(i +d2 )	 - 

+ d)(a -	 )2 

- a)(1 - a2) - 2a(l - a)2] + (1 - a
2)(l + ina - a) cosla 

1	 (i + a)(l + d)	 2 - a + a)(i - a2 ) + Sad(l + a) * 2d(1 + a)] - 
4P(i + d)(a - a)2 

'I'

2[l - a2)(1 - a2) + 2d(l + a)

2(1 +	 _______________________ 

{	

f(l + ad)	
(1+ a2coa_lL2 + a + a) z HA(1 + a 

tcp
P(a - d)[1,(1+ a) - (1 + a)] 

2(1 + a2)	
+ a)[L,(2 + a + a) - 1f2 (1 + a) - (i + a-

- a-+ a)(1 - a2) + ina(i + a) + 2a(1 + acos=1	
(1 + a) - ).(2 + a + a 

'	 xf(a - a) 

1	 J3(a - d)[inx, - (a + a	 -1	 2 + a + d)_f(l + a ______________ rspa(	
- L,)[1,(1 + a) - (1 + a)] 

2(l_in) -(2- 3a-d)]	
l+a)[Xr(2+a+a) -X2(1+a)_(i+a 

It
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T&BLE II. - COMPONENT PARCS OF POUATIONS USED EN CAICUIATIIR3 CRAPACTERISTICS 

OF flEFICTZD CONTROLS EAVINO TAPERED PlAN FORMS - Concluded 

(c) Oetric Paraontera. 

- d)(1 + 

2(1-Xe) 

- .1)2(1 - x3) 
3(1-Li 

(f R ) ScJS L'Yf 

2(a - a) 5L 2(a - d)(t 2	 - a) - + ad) - (a - 

3(1 - lf)(1 .-d) 1 + A2 (i - l 2)(1 - A2 ) - 

- A) - (1 - a) 2(a - d)( t 2 ' - A) 1 -	 2i + ad) - (a- A)t' 
a S	 3(1	 ).)(1 •c a2) (1'-	 2)(1 - a) TL 1 + A2 

Lf(1 - a) - (1- a) - ))(r	 - a] 

36f 3t1_3L	 0.-A (1-.X)(a_d)

(a_d)f1*ad)-(a_d)tcp 
C

(1 - x 3)(1 - a)(i + A2) 

- d)
[	

f(a - d)(t	 + d)1 1 -	 2 i * ad) * (a-SL 

3(1 - Xf)(1 ..A2)	 j

1
1 * A2 (1-	 2)(	 - a2 )

L2(1 * a) - (1 * d)]1 * ad) * (a - dJLCP] 
II a

(i - x 3)(1 * d)(1 + A2) 

(1 - ).f)2[X.(1 * a) - (1 + dJ(r 	 ... a) 
II b

- (1 -	 3 )(a - a)2 

1f3(a - d)[1 + ad) • (a - d)tcpJ 
IIC

(i - 1 3)(1 + a)(i • d2) 

- a)
L[	

21f(a - d)( t 2 ' • 1f3(a - d)[1 • ad) * (a - a)t] 

3(1 - lX1 + U2) J (1- ). 2)(1 • a) (1 - 1 3 )(1 + d)(1 + A2) 

12[1(1 * a) - (1 + d)]]. * ad) + (a - a)t,fJ 
III a

(i - 1 3)(i * a)(i + A2) 

----------------------

(1 - L)2[i(i + a) - (1 + d)J(r+ a) -

(i - l 3)(a - a)2 

I (a-a)3 
((1 • a)(1 - 1) - ______________ - 

(1 -	 ,) 2(1 - d)2 L 

Aimenolonal
- 1, a) - 1 (1 .

-	 3(1)2 

(1- 12)
-	

2 (1	 If) (1	 d)
2(1 - l3) 

3(a - a)(i + If)
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TABLE XII. - COMPONENT PANTS OF EJATIONS USED IN CAlCULATING CEABACTERISTICS

OF DEFLNGTED CONTNGIS SAVING UNTAPEBED PLAN FOR	 Concluded 

(b) Gecaetr1c Parieeters. 

A1' 

2b3 

Al 2 fi + 2a2 

(1i.i) SL/S! SjJ/bf.Sf 5LX/4a 

1 ________ 

A1'(l - a2) S1	 - a2) 3 Sf 

'a
1 - A1'(i - a) 2(tcp' - a 2 

2A1'(i - a) 1 3A1(1 + a2) 3 S 

1-A1(1-a) 2L 
-- 25L 

2

1 
3A1(i - a) 

1- a2)
SLL

-	 (1	 14)	 1 

:t- -

Sr{ 6A1(1 - a2)j 3 S 

a
1 - A1 (i + a) 

3A1(1+a) 
II- -

3 

II- - 1 
3A? (1+ a) 

1 ______I 
2Af (1 + a) l2A1(1 + a)j 3 

"a
- 1 - A(1 + a) 

3Af'(l+a) 

-

Af'(rC2 + a)[1_A
1'(l + 

- a2) - 1 3A1'(l - a)(1 - a2) [(i + a) -	 - 1 a '(i - a2 ) - 

A1'(l - a2) 6A'G(1 - a2)2 dimensional
6A1'(i -	 2)
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TI4BLE VIII. - CONTL-SURFACE CHARACTERISTICS NOT 

INCLUDED IN FIGURES 

(a) Tapered Controls. 

a

• 

d Xf l/)

Wing-tip 
controls

Inboard 
controls 
____ a d

Wing-tip 
controls

Inboard 
controls 

C15 ' CL' Cm5' C' 3C1 Ci Cm' C2 

• 
-O 95 f_o.8o ---- 0.95 -0.2678--[-0.83 0 04740.1164 -0.1875 -0.0474. 

-.9) ---- .95 -.2778 I	 -.83 .20 -.0680 .1139 -. 1865 -.0661 
-.80 .40 -.1162 .1053 -. 1794 -.1102. 

-.60 .95-.2162 0.20 --.&3 .60 -.2086 .o846 -.1555 -.2106 
-.85 0.95-.1335- -.95 0 -.7606 .2236 -l.344 -.7606 
-.95 0 -0.2236 -0.275] f	 -.95 .20 -.9921 .2184 -1.3578 -.9917 

- -.95 .20-.2232 -.2751 L--9' .140 -1.42014 .1997 -1.3085 -1.4551 
-.95 .40 .-----.1076 .2218 - .2741- 
-.95 .60-.2325 .2184 -.2709 

--

-0.2311 1-.83 0 .1164 -.2133- 
-.95 .80-.6156 .2074 - .2587 - .6306 I - .63 .o-.1128 -.2118 
-.95 .95 2.3878 .1399 -.1814 -3.0759 J -.80 .140 -.1369 .1002 -.2004 -.11422 

1 -.95 0 -.9058 .2236 -1.5823 -.9058 
-.83 .95-.3349---.4466 -.95 .20 -1.1787 .2.161 -1.5715 -1.1793 
-.95 0 -.1796 .2236 -.4930 -.1796 L-•95 .140 -1.6605 .1896 -.4907 -1.724.8 

- 60 -.95 .20-.2420 .2226 -.4925 - .2413

--

-.95 .40 .3773 . 2192 -.4888 -.3762 -.600 .0927-
-.95.60 .6670 .2105 -.4758 -.6759 -.60 .20-.0917- 
-.95 .80

-

1.4710 .1823 -.4276 -1.6150 -.Eo .40 -.0845- 
-.83 0 -.0819 

- ------

.1164 -.2392 -.0819 
-.80 0 --- ----- ---.1099-.60 -.80 .20 -.1148 

--

.1109 -.2366 -.1106 
-.83 .20- .1097 -.80 .40 - .1820 .0927 -.2180 -. 1742 
-.80 .140- .1084 -.95 0 -1.0510 .2236 -1.8301 -1.0510 
-.83 .60- .1038 -.95 .20 -1.3642 .2123 -1.7818 -1.3669 

- -.8o .80-.1747 .0868 -.1776 -. .40 -1.8747 .1737 -1.6453 -1.9945 
-.95 0 -.3249 .2236 - .7109 -.3249 
-.95 .20-.4299 .2219

--

-.7097 -.4289 .75 .95 .1405 
-.95.40 .6446.2159 -.7008 -.6459 .60 .95- .2229 
-.95 .60 1.0835 .2009 .. . 6705 .-1.1206 -.600 .1009
-.95 .80 2.1657 .1526 -.5574 -2.5993 -.60 .20 .0993- 

• -.6o .40 .0861-
-.800

-
-

- .1357 .80 -.800 -.0991 .2650- 
-.80.20

-

.1354--.80.20 -.1397 .2602- 
-.83 .40
-

.1328 -.83.40 -.2121 .2252- 
-.80 .60-.uo6

- ------

.1241 -.1050 -.95 0 -1.1963

-

. 2236 -2.0183 
-.20 -.80 .80 .2618 .0926 -.2945

-

-.95 .201.5143 .2042-1.9822 
-.95 0 .4701 .2236 -.9287 -.4701 -.95 .40 -2.0117 .1395 -1.7162 
-.95 .2o --- -.6iy .2210 - .9264 - .6165 
-.95 .40

-
-

.9386 .2119 -.9094 -.9156 .9) .95

-

.4-493 
-.95 .60

-

-

1.4756

-

.1890 -.8509 -i.564 .80 .95 .4359 
-.600

-
-

-
-

-
-

-
-
-.1010 -.0132 

-.80 0- .1616

-

- .60 .20-.1026

- 

-.0207 
-.83 .20

-
-

-
-

-

.1610 -.6c .40 .0703

- 
- 

-.0411 
-.80 .4o .1566 .95 -.800 .28144 -.1121 
-.80 .60 ---- - . 1617 .1416 -.1578 -.80 .20 - .1625 .2721 - .1496 0 -.95 0

-

.6153 .2236 -1.1466 -.6153 • -.80 .40 -.2250

-

.18)2 -.2302 
-.95 .20

-

.8050

-

.2199 -1.1426

-

- -.8041 -.95 0 -1.3052

-
-

.2236 -2.1813 -1.3052 
-.95 .40

-
-

1.1683 .2067 -1.1129 -1.1853 -.95 .20 -1.6659

-

.1789 -2.0869 -1.69 
-.95 .60
-
-1.8326 .1740 -1.0110 -2.0102 -.95 .40 -1.7604 .0264 -1.3815 -2.4665
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TABLE VIII. - CONTROL-SURFACE CHARACTERISTICS NOT 

INCLUDED IN FIGURES - Concluded 

(b) Untapered Controls. 

a

Wing-tip 
controls

Inboard 
controls

a A' 

______

Wing-tip 
controls

Inboard 
controls 

Cj BCL6' Cm' Cj 8 ' CL' C' C16' 

C 0.8 -1.11421 0.1878 -0.0879 l.21498

-

I 6.o 0.0320 0.0669 -0.0330 0.03149 
2.0 -.142142 .2093 -.1022 -.14328 0 8.0 .0327 .0676 -.0335 .03149 

- .J.i
14.o -.1619 .21614 - .1070 -. 1605 Llo.o .0331 .0681 -.0337 .03149 
6.0 -.0720 .2188 - .1086 -.0698 
8.0 -.0265 .2200 -.10914 -.021414 r	 .8 .0125 .011146 -.0182 .011119 

10.0 ,0009 .2207 -.1099 .0029 I	 2.0 . 0272 .0601 -.0282 .0393 

1	 .8 -.1061 .0962 _.0 1i.47 .10314 .20 1 • 

6.0
.0317 
.0330

.0657 

.0675
-.0319 
-.0332

.0375 

.0369 I	 2.0 -.0117 .1083 -.0528 .0065 8.0 .0337 .0685 -.0338 .0366 
80 J .0225 .1123 -.0555 .0259 Llo.o .03141 .0690 -.03141 .03611 '	 6.o .03112 .1137 .05614 .0366 

8.0 .01102 .11113 -.0568 .01120 .8 .0128 .01415 -.0158 .0608 
Llo.o .01437 .11147 -.0571 .01452 2.0 .0289 .0603 -.0275 .01472 

14.0 .03111 .0682 -.0328 .oI#26 
.8 -.0190 .0702 -.0323 -.75 6.0 .0356 .0709 .03146 .01411 

2.0 .0173 .08011 -.0391 .0232 8.o .0362 .0722 _.0351# •014014 
60

14.0 .0302 .0839 _.0 14].14 .03314 10.0 .0366 .0730 -.0360 .0399 I	 6.0 .03146 .0850 -.01121 .0368 
8.0 .0369 .0856 -.01425 .0385 .8 .0120 .0379 -.0131 .09118 

L10.0 .0382 .0859 _.01127 .0395 2.0 .0300 .0603 -.0257 .064i 
11.0 .03811 .0736 .03145 .0539 I	 .8 .0005 . 0592 -.0268 .01511 6.0 . 01406 .0782 -.0376 .0505 2.0 .0226 .06911 -.0336 .0290 8.0 .01415 .080 14 -.0391 .01487 

140 J	 11.0 .0302 .0728 - .0358 .0336 10.0 .01120 .0818 -.01400 .01477 
'	 6.0 .0328 .0739 - .0366 .0351 

8.o .03141 .07145 -.0370 .0358 .8 .0087 .0321 -.0087 .2198 L.o .03149 .07148 -.0372 .0363 2.0 .0296 .0589 -.0222 .1228 
14.0 .014141 .08014 -.03143 .0905 

r	 .8 .0078 .0527 -.0233 .0263 6.0 . 0508 .0921 -.01420 .0797 
I	 2.0 .02115 .0638 -.0307 .0319 8.0 .0535 .0982 -.01461 .07143 

20 I	 14.0 .0301 .0675 -.0332 .0338 10.0 . 05149 .1018 -.01485 .0711 
6.o .0319 .0688 -.0340 .031114 

I	 8.0 .0328 .06914 .- .031414 .03147 I	 .8 -.00148 .01149 .0032 1.11733 
L1o.o .0334 .0698 -.03146 .03119 2.0 .02142 .0526 -.0157 .6614 

95 14.o .011140 .0809 -.0282 .38111 
.8 .0110 .01482 -.0205 .03149 6.o .o564 .0998 -.0368 .2933 

O .	 2.0 .0258 .0611 -.0291 .03149 8.0 .0657 .11145 -.0438 .21479 
L 14.0 .0305 .0655 -.0320 .03149 10.0 . 0732 .1269 -.0501 .2207
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Configuration (a)
	

Configuration (b) 

_ _ 4' 4 

Region I

	

	 IC	 1b \J\	 4 
Inboard Mach cone, configurations (a) and (b) 

_ _	 /1 /1 

Region it	 it0	 1b	 Hc' 

Outboard Mach cone, configuration (a) 

Region E / 

Outboard Mach cone, configuration (b) 

Figure 1.- Conical-flow regions for which solutions were obtained, in the 
calculation of deflected control characteristics.
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Figure 4.- Characteristics of deflected trailing-edge controls located at 

the wing tip. Results for values of = - a have been obtained 

by use of an approximation and should be used with caution. 
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Figure 1•_ Continued.
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Figure 14. • - Continued. 
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Figure t. - Continued. 
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Figure - Continued. 

.0 

.0 

fiG18' 

-o 

/

-.1g.
0 

0



NACA TN 2221 

.14 

.12 

.10 

.08 
JO CL g 

.06

.04

.02

0 

0 

-0/ 

-02 
fiCn,8' 

-03 

-04 

05 

-06 

:07
0 .2	 .4	 .6	 .8	 1.0 

1.0 .8	 .6	 .4	 .2	 0 
I/A 

(d) Concluded. 

Figure II. . - Continued.



NACA TN 2221 

2	 .4	 .6	 .8	 1.0 
A 1	 1.0	 .8	 .6	 .4	 .2	 0 

I/A c 

tan Ajjr 
(e)	 = -0.20.j3 

Figure Ii. .- Continued. 

1% 

-0 

-0 

.0 
IC18' 

:0 

0L.
0



fiCL8

NACA TN 2221
	

51 

o	 .2	 .4	 .6	 .8	 I.e 
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(e) Concluded.

Figure t. - Continued.
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