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SUMMARY 

The general equations of motion for an airplane with a number of 
spherical fuel tanks are derived. The motion of the fuel is approxi-
mated by the motion of solid pendulums. The same type of derivation 
and equations are shown to apply to any type of fuel tank where the 
motion of the fuel may be represented in terms of undamped harmonic 
oscillators. 

Motions are calculated for a present-day high-speed airplane and a 
free-flying airplane model with two spherical tanks in the symmetry plane. 
These calculations show that the normal airplane motion may be consider-
ably modified and that residual oscillations may result. The ratio of 
the natural fuel frequency to the natural airplane frequency is shown to 
be the most important parameter for determining the effect of the fuel 
motion on the airplane motion. The stabilizing effect of turbulence in 
the fuel is discussed, and it is suggested that the stabilizing effect 
of artificially induced turbulence be investigated experimentally. 

INTRODUCTION 

Small-amplitude lightly damped lateral oscillations are a trouble-• 
some characteristic of certain high-speed airplanes. Several possible 
explanations for these oscillations, which are adequate in specific 
cases, have been offered. For example, reference 1 shows that nonlinear 
aerodynamic derivatives could cause such oscillations, and it has been 
shown that atmospheric turbulence is another possible cause. It has also 
been suggested that a possible cause of such oscillations is the motion 
of fuel in the tanks. In some recently designed airplanes the mass of 
the fuel relative to the airplane mass is much larger than has been 
common in the past; therefore, the effects of fuel motioncan be expected 
to be relatively-more important. In fact, in several cases bdffling the 
fuel tanks was found to have considerable effect on the general handling 
qualities of the airplane and sometimes actually eliminated the trouble-
some lightly damped lateral oscillations which had been present.
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An experimental investigation of the effects of fuel motion on the 
lateral motion of a free-flying airplane model is described in refer-f 
ence 2. The results indicated that the effects of fuel motion were 
noticeable and caused the lateral motion of the model to be very erratic. 

The present analysis treats each fuel tank as a pendulum oscil-
lating in two degrees of freedom and applies Lagrange's equations of 
motion to obtain the interaction between these pendulums and the air-
plane. Thus, for small motions the fuels are treated as simple harmonic 
oscillators. The results are applied to obtain the general equations of 
motion of this system and, in particular, the lateral motion of an air-
plane with internal fuel tanks in the plane of symmetry of the airplane. 
Since the general solution of the equations is extremely complicated, 
an attempt is made to evaluate the results by carrying out numerical 
calculations for specific cases. This approach is shown to be adequate 
in yielding the most general effects of fuel motion. 

The discussion of the numerical application of the equations of 
motion to specific cases is given in detail following the derivation of 
the euations of motion. This discussion of results is understandable 
quite independently of the derivation of the equations of motion. 

SYMBOLS 

X, Y, Z	 airplane stability axes with origin determined by 
equations ( 13); also components of applied forces 
along these axes 

L, .M, N	 components of applied moments about X-, Y-, and 
Z-axes, respectively 

1, j, k	 unit vectors along X-, Y-, and Z-axes, respectively 

x, y, z	 components of translational displacement of airplane 

vector translational velocity of airplane 
(ik^jr+kiu0+v) 

Uo	 magnitude of steady-state velocity 

u, v, w	 components of disturbance translational velocity of 
airplane 

v	 vector disturbance velocity of airplane 
(iu+jv+kw)
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B vector position of a point in airplane 
=	 (!xRyR) 

R. vector position of center of gravity of fuel in 
a particular fuel tank 

V total vector velocity of a point in airplane 

sideslip angle	 (tan_i	 _ 
Uo 

0, infinitesmal rotations of airplane about X- . , Y-, 
and Z-axes, respectively 

vector rotational velocity of airplane 
(O +	 + ici) 

components of angular displacement from vertical of 
line joining fuel center of gravityto tank center, 
taken on mutually perpendicular planes;	 positive 
in direction of positive roll and 	 i	 positive in 
direction of positive pitch 

1 distance from tank center to fuel center of gravity 

h vertical displacement of fuel center of gravity from 
equilibrium position 

k number of fuel tanks

m	 mass 

mt	 total: mass of airplane and fuel 

'X'	 '	 total moments and product of inertia of aiplane 
IZ' IXZ	 J	 about X-, Y-. , and Z-axes 

I, I, I, 1 rigid-body moments and products of inertia about axes 

z'	 z'	 through center of gravity 

I, I	 fuel moments of inertia about - and i-axes through 
tank center 
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fuel moments of inertia about - and. ri-axes through 
fuel center of gravity 

nondimensional radius of gyration in roll

\Y mtb2 

/ i_Iz 
nondimensional radius of gyration in yaw f

/-Ixz 
nondimensional product-of-inertia parameter	

2 \mb 

/ 
I_ir 

Kf = Il
1 fb 

Ek	 kinetic energy 

potential energy 

P	 period 

Tj/2 , T2	 time for exponentially damped or increasing oscilla-
tion to halve or double amplitude, respectively 

t	 time

Iut 
s	 nondimensional time parameter 

g

	

	 acceleration due to gravity	 . .. 

bg 
TT 2 vo 

7	 flight-path angle with respect to horizontal 

P	 air density 

S	 wing area

If = 

I , 

Kx 

Kxz
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b wing span	 - 

lateral nondimensional mass coefficient 

	

(
_mt	 mf\ -	

'	 - 

D	 diffei'entiation operator 

CL	 trim lift coefficient (m
tg cos 

	

-	 1 pUo2S ) 

C 1	 rolling-mbment coefficient tRolling moment'\ 

(\	 PUO2Sb ,/ 

Cn	 yawing-moment coefficient /Yawing moment\ 

-	 (	 pUO2Sb ) 

Cy	 lateral-force coefficient 'Lateral force\ 

(	
pU2S ) 

ol 

=

\2U0 

= f__ 
\2Uo 

CY 

= (Øb 
t 2U0
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cl 
cz= r( 

\2U0 

cn 
Cnr= ,. 

\ 2U 

Cy 
Cy = ______ 

\2U0 

cl 
Cl

13

cn 	 S 

Cn13 =

Cy 
Cy = - 

Subscripts: 

f	 particular fuel tank, or summation index over fuel 
tanks (f = 1, 2, . . . k) 

a	 airplane without fuel 

0	 initial conditions at t = 0 

DERIVATION OF EQUATIONS OF MOTION 

Assumptions for Derivation of General Eqtiations of Motion 

As a first approximation, only the effect of the motion of the fuel 
as a whole is considered; that is, only the fundamental mode of the wave 
motion is considered, 'and this mode is approximated by rigid-body 
motion. The main effect of the internal wave motion is to introduce
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damping. into the fuel oscillation. This damping is caused by the con-
version of kinetic energy into heat through the turbulence caused by 
the splashing of the fuel. A strictly analytic consideration of such 
damping effects is extremely difficult; on the other hand, the damping 
caused by the viscous tangential forces between the fuel and the tank 
is completely negligible (see reference 3). - The analysis of the problem 
is therefore confined to the motion with no fuel damping and the effect 
of the damping is considered in the discussion of the results. 

In a spherical tank the fuel can oscillate approximately as a rigid 
body if no splashing is assumed for-small oscillations. The motion may 
be pictured as the "rocking" of a spherical segment of constant shape. 
The restraining force of the tank, which always acts in a direction 
normal to the motion, is exactly analogous to the tension in a pen-
dulum. Thus, the small motions of the fuel in a spherical tank may be 
represented quite well by the well-known, simple properties of small 
pendulum motions. This approach is used in the mathematical analysis 
of the problem. 

The effect of a spherical tank shape can be approximated by 
replacing the tank by an equivalent harmonic oscillator with an arbi -
trary amount of turbulence damping added even for small motions. For 
example, the representation of rectangular tanks- as harmonic oscillators 
is discussed in reference 14• Thus in this case also the most general 
effects of the fuel motion on the airplane motion should be qualita-
tively obtainable by this type of analysis. 

The effects of large-amplitude fuel motions will be discussed 
qualitatively after the discussion of the results of the mathematical 
analysis. As usual in stability analysis all motions are assumed small 
and second-order terms are ignored. 

Derivation of General Equations of Motion 

With the preceding assumptions the physical problem can be con-
sidered as the interaction between two or more rigid bodies, namely the 
airplane and the several fuel pendulums, with each fuel pendulum con-
sidered as suspended from the tank center. The only potential energy 
considered in the system is that of the pendulums. - ' f the inertial 
characteristics of the airplane and the fuel are known, the kinetic 
energy of the system can be obtained from the translational and rota-
tional velocities of the airplane and the fuels. With this information
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the interactions in the system can be obtained by using Lagrange's 
equations of motion in the form (see reference 5) 

(E\ Ek
(1) 

(i = 1, 2, . . . n) 

where q1 is one of the n generalized coordinates of the system cor-
responding to the n degrees of freedom, 	 j is the corresponding 
velocity, and Q is the corresponding generalized force. The q 
wili be lengths and angles and the corresponding Q will be forces 
and moments, respectively. 	 - 

The airplane itself introduces the customary six degrees of free-
dom, which are the three displacements of the airplane system along 
akes fixed in the airplane (x, y, z) and the corresponding angles of 
rotation of the airplane about these axes (0, a, jr). For small dis-
placements the pendulum motion can be described by two angles, 
and , since the vertical motion can be neglected (see fig. i). The 
angle	 is measured from a vertical line through the tank center to 
the projection of the line joining the tank center to the fuel center 
of gravity on the vertical plane parallel to the Y-axis and r is the 
corresponding angle in the vertical plane parallel to the X-axis. For 
small angles,	 and r may be represented as in figure 1. In effect 

this figure makes use of the fact that small angles may be added vec-
tonally. When the two additional coordinates 	 and	 are used to 
describe the pendulum motion, the whole system has two additional 
degrees of freedom for each fuel tank. 

Expressions must be obtained for Ek and E in terms of the 
coordinates of the system and their time derivatives in order to use 
equation (i). The only potential energy is that of the fuel pendulums', 
which can be written as follows fOr k fuel tanks 

E=hg	 (2) 

For the height of the center of gravity.. in. each fuel tank, as can be 
seen from figure- 1, 

h = h + h	 - i cos cos r	 - (1 - 1 2)(.i 1 21
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or

h	 (2 + 2)	 () 

Note that the vertical displacement h is of second order in the small 
quantities r and. . This facts justifies the previous statement that 
the vertical displacement could be neglected in describing the pendulum 
motion only by the two coordinates	 and . As mipht be expected, 
equations (2) and (3) indicate that each fuel pendulum is being con-
sidered as an und.amped oscillator with two degrees of freedom in a 
horizontal plane. 

The kinetic energy of the total system can be.written as the sum 
of the kinetic energy of the airplane and the kinetic energies of the 
fuels. Also the kinetic energy of each rigid body can be expressed as 
the sum of the translational energy of the mass moving with the velocity 
of its center of gravity and the rotational kinetic energy of the mass 
about its •center of gravity. Thus, when the inertial characteristics 
of the airplane and the fuels are known, the kinetic energy can be 
obtained as a function of' the generalized coordinates and velocities if 
the translational velocity of each center of gravity and the angular. 
velocities of the airplane and fuels about their respective centers of 
gravity can be expressed in terms of these generalized coordinates and 
velocities. 

In order to obtain the required expressions for these velocities 
a system of axes fixed in the airplane with the X-axis along the steady-
state velocity at t = 0 is used, as is customary in stability analysis. 
For the present the origin of the coordinates will not be specified. 
However, these stability axes are not inertial axes and Newton's second 
law applies only in an inertial system of axes. The inertial axes may 
be taken as axes fixed in the earth. Then in the equations of motion 
the velocities and. accelerations must be measured with respect to the 
earth, and their expressions in terms of components in the moving air-
plane axes may be obtained as shown in reference 6. These expressions 
will give the kinetic-reaction forces, which for the case of a rotating 
system are often referred to as flgyroscopicU forces. For the velocity, 
referred to the inertial system, of any point.defined by the vector R 
in the airplane axes (in particular, for the centers of gravity pre-
viously discussed) 

= + w X R + R = iU0 + V + W X B +	 ().)
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where all vectors are given in terms of the airplane axes and. 

!Uo + 

is the velocity of the origin of the airplane system with respect to 
the earth, while V and w are the translational and rotational dis-
turbance velocities of the airplane axes. 

Equation (4) may now be used to express the inertial velocities of 
the airplane center of gravity and the fuel centers of gravity in terms 
of the generalized coordinates by inserting for B the values Ba 
and	 where	 is the vector position of the airplane center of 

gravity and R. indicates the vector position of any particular fuel 

center of gravity. The vector R is constant; therefore, Ra = 0. 
To obtain	 note that to first order 

Bf - h f sin(70 + 6 - 1f) - .a if(f - 0 cos	 - '	 ' 7o) + 

k f cos(7 0 +-6 - Tf) 

4 Rf - llf[Sifl 7o + ( e - llf)cos "s] -	 - 0 cos	 - sin	 + 

.kl f[cos yo - (e - llf) sin 70] 

where Rf is the ' fixed position of the tank center. Since 7 is 

constant, to first order 

	

1Zf (r1f - )cos 70 - 
•. 2f ( f -	 cos	 - ( sin	 + 

klf (T f - )sin o



NACA TN 2280
	

11 

Again keeping only first-order terms leads to the following equation: 

w x 4 Ct) X Rf +	 COS 7 - lf(Ø cos 7o + sin	 + ki fé 51fl 

Now combining the last two equations gives 

x	 +	 X R. + :.T1f lf	 7o - .a 1ff + ki flif sin 7 o	 (.5) 

This equation shows; as could be predicted physically since no viscous 
force is assumed between the tank and the fuel, that the airplane rota-
tion affects only the motion of the tank center. 

From equations (4) and (5) the necessary translational velocities 
can be obtained for the translational kinetic energies. The rotational 
velocity of the airplane is simply . The spinning motion of the fuel 
about the vertical axis is ignored; then, the rotational velocity of 
the fuel may be given' by the components 	 and ri. The two corre-




sponding horizontal axes of rotation through the fuel center of gravity 
are principal axes of the spherical segment of fuel; consequently, no 
product-of-inertia' terms occur in the fuel rotational energy. Also, 
since the airplane center of gravity is in the airplane symmetry plane, 

= I = 0 and only the I	 product of inertia will appear in 

the airplane rotational energy. 

By use of equation (4), the airplane velocity can be shown to be 

	

Ia =	 + U +	 - fRy) + j(v + irR -ØRza) + 

k(w + øRy - eRg)
	

(6a) 

When equation (5) is substituted in equation (4), the velocity of any 
particular fuel center of gravity is 

= !(uo + + RZ	 Ryf+flf cos	 + (v. + Rxf øRzf	 f1f) + 

+ øRy' eRxf 
+ h f if ifl 7 o)	 ,	 '	 '	 . '•	 (6b)
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If V is the magnitude of the translational velocity of the center 
of gravity of a rigid body, I' its moment-of-inertia tensor about the 
axes through its center of gravity, and w the rotational velocity of 
the rigid body, the kinetic energy is 

Ek = I mV2 + (i2 + i(Dy2 + IWz2 - 2I zWLDz - 2I zUU)z - 2Ioo) 

(7) 
Thus, for the kinetic energy of the airplane, substitution of equa-
tion (6a) in equation (7) gives 

Eka =	 + u + ORza - ya)2 + (v + Xa - za) 2 + 

I	 t 
(w + ØRy - éRxa) 2] +	 2 +	 +	

-	 (8a) 
2	 2	 2 

and, for the kinetic energy of each fuel, substitution of equation (6b) 
in equation (7) gives 

Ekf =	 + u + Rzf - Ryf + fZf.cos )2 + 

( + 1fRxf - ØRZf - f if)2 + ( + øRyf - eRXf + hf if Slfl 70) 2] + 

1	 t 

I	 I 
._:.	 +	 hf2

	

k	 - 
For the total kinetic energy, Ek = E k + > Ekf; therefore, 

f=l 
equations (2), (3), and (8) may be used in equation (1) to obtain the 
(2k + 6) equations of motion. However, it must again be recalled that 
the coordinate system is rotating. The whole system is therefore sub-
ject to an additional gyroscopic acceleration since the time-derivative 

(8b)
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operator contains an additional gyroscopic term (see reference 6) when 
the components of the velocity (or any vector) are taken in the rotating 
system:

8.	 -. 

Thus the gyroscopic acceleration acting on the whole rotating system is 

x i = u x (iuo + v)	 (w x i)U0 = jjru0 - kOU0 

The effect of this acceleration can be brought into the equations of 
motion by considering the inertial reaction of the total mass to this 
acceleration as an additional applied force. If the total mass is 

k 
= ma + >111	 this reaction has the following components: 

f =1

Y'=-mtU0r	 1 

	

'7	 (9) 

ZI =mtU0G	 j 
In addition there is the inertial reaction torque !4 on the fuel; this 
torque acts about the tank center and is caused by the acceleration of 
the tank center. For each tank, the vector reaction torqu is 

= (	 - R) x mfu0(_j, 
+ ic) 

= mfUo [(_il f sin	 + kl cos 7) x (_jir + 1c) + Second-order termsl 

mflfUo(I1 f cos 7o +	 in 7 o ^ 1cc sin 

	

'	 /	
o+( ''

	 '	 / '' = M 1 cos	 M	 sin	 and	 = 

	

Since M	
—fjx	 —f/z
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M = mf2fUoV(cos2yo + 5jfl27 ) mlU0 r	 (l0a) 

= rnf l fU0& sin	 (lob) 

The forces and moments in equations (9) and (10) must be added to 
the weight and aerodynamic forces to obtain the Qj in equation (1). 

For convenience, the results of equations (2), (3), and (8) are 
as follows:

=j g f=l l(f2 + f2)	 (ha) 

Ek =	 + u + ORZa -	 a)2 + (v + *1 xa - ØRz) 2 + 

(w + 0Ya - eRXa)2] + E {[(Uo + u ± eRZf -	 +	 cos )2 + 

(v + RXf	 Rzf _ f if) .+ (w + Ryf -	 + f if Slfl 7o)] } + 

2 +	 +	 2 -
	

+ •• 1	 + I)	
(ilb) 

Equations (9), (io), and (ii) may now be used in equation (i) to 
obtain the equations of motion. It should be noted that 

________ = -k-, -- = --, and	 = --.. For example, to. obtain 
*	 + u)	 u ?4,r	 v	 z	 w 

the equation of motion in the x-direction, note that 

E
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Then, equation (1) may be written as follows: 

d ( Ek	 d (Ek 
dt \ ic I	 dtu 

= xna(ü + eR	 - Ya) +
	

mf(u + ORzf - I1Ryf + h f if COS 7o) 

=	 +	 mfRzf) -	
.	 1 m

fRyf) + 

Effzf CoS 0	 (12) 

The position of the origin of airp1an coordinates has not yet been 
specified. Equation (12) and the similar equations obtained in the 
other degrees of freedom suggest that the position of the origin be 
determined by the following three conditions: 

k 

	

maRx +	 nL1.R = 0	 (13a) 
a f=1 

-	 maRY +	 Ry = 0	 (l3b ) - 

	

maRza +	 = 0	 (l3c)

f=1 

Equations ( 13) imply that the origin is at the position of the total 
center of gravity when the fuel mass is treated as being concentrated 
at the tank center.. This choice of the origin greatly simplifies 
expressions such as equation (12). The physical reason for this choice 
is again that the fuel does not rotate with the airplane; thus, a force 
acting on a line through this point, the center of gravity where the fuel 
reaction is assumed concentrated at the tank center, will produce no 
rotation of the airplane..
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The following substitutions will also greatly simplify the writing 
of the final equations of motion:

k 
+ m[(iy)2 + (Rz)2] + r mf [(Ryf )2 + (Rzf)2] 

f=l	 L 

+	 + (Rz) 2] +	 mf[(Rxf)2 + (Rzf)i 
f=l L

(i1a) 
k 

I + ma [(Rx ) 2 + (R \21 +	 IRxf)2 + (Ryf)2] 
Ya)J f=l L 

k 

1xz 1xz + IUaRyRz + 

Note that the quantities defined by equations (i4a) are the total moments 
and. product of inertia about the origin of the airplane coordinates 
when the fuel mass is assumed to be concentrated at the tank center. 
Finally, the necessary moments of inertia of each fuel pendulum about 
the tank center are

If = If + mflf2	 1
(llb) 

If = I + mfif2	
j 

Without loss of generality then, equations (13) and (114. ) are used in 
the equations of motion obtained by substituting equations (9), (10), 
and (ii) in equation (1). The general equations of motion can now be 
given as follows:
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k- 

I%U+EIBulfT1fCOS7oX 

- u0b)	 mflf1f sin 7 = Z 

-	
+ i mfR

f) - (IIIaRZ RY +	 +

•(15a) 
L. Rzf COB 7 - Rx	 7o)m±4frf = M 
f =1 

i 711 j1 + mi z 1 [ i +	 + ( - u
0b)sin 7o + RØ suui y + 

COB 7 - Rx1 sin	 -	 COS 70] = o 

+ u0 i) -	 = Y 

Iz	 Ix - (RRZ + A	 -	 S	 • 	

S 

1	
+	 COB 7) = N

(15b) 

-	 (RXRY +
	 + 

mflf(Rzf f +	 sin	 = L 

Ii + m1l1(g1 - - Uo* + Rx* R 1ø) 0
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In equations (l5a) and (15b) only the fuel equations for the first fuel 
tank have been written. In each set there are k similar fuel equa-
tions. As has been previously stated, the forces on the right-band sides 
of these equations are the applied forces and the weight and aerodynamic 
forces.

Simplifying Assumptions 

The equations of motion have been separated into what would gen-
erally be considered the longitudinal motions, equations (l5a), and 
the lateral motions, equations ( 15b ). In the ordinary six-degree-of-
freedom case, as can be shown frOm considerations of symmetry, no 
cross-coupling terms exist between these motions in the aerodynamic 
forces (see reference 7). Although such, terms are known to. exist in 
practice, they are small and generally neglected. However, many èross-
coupling terms occur between equations ( 17a) and equations ( 15b ) because 
of the fuel motions, even when the aerodynamic coupling forces are 
ignored. The magnitudes of these fuel forces can be seen to depend on 
the masses of the fuels, the vector positions of the fuel tanks, the 
"pendulum length" (i.e., the radius of the tank and the height of the 
fuel), and the accelerations involved in the fuel motion. Increasing 
the magnitude of any of these parameters will increase the effect of 
fuel motion. For most a:trplanes these fuel forces will be relatively. 
small, but the present investigation is primarily concerned with all 
first-order fuel effects. In any particular . case, the actual magnitudes 
of these forces may of course be obtained by inserting the values of 
the previously mentioned parameters. 

Symmetrical fuel distribution.- Some of the terms in equations (l5a), 

for example, the 0 and ir terms in the e equation, are essentially 
product-of-inertia terms arising from unsymmetrical distribution of the 
fuel about the y = 0 plane (i.e.., the plane of symmetry). That this 
is so can be seen if the fuel tanks are assumed to be distributed 
symmetrically with respect to the symmetry plane; that is 

	

k	 k	 k 

	

E	 = E mfRzfRyf = r mfRy = 0	 (l6a) 

and from equations (13)

= 0	 (l6b)
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therefore, these terms vanish for symmetrical fuel distributions. In 
most cases the fuel will be symmetrically distributed, and substitution 
of equations (16) in equations (15) yields the equations of motion for 
symmetrical fuel distribution: 

k 
Intl +

	

	 mflf'rlf COS 7o	 X

f=l 

- uoè) 
•+	

sin	 = Z 

Iy ±
	

cos 7o - Rxf sin 7o)1ff = M	

(17a) 

+ m1 igr11 + ü cos	 +( - UoO) sin Y o +Ry sin 7o + 

	

cos 7o R 1 sin o)	 Ry1CoS	 = 0 

	

+ u) - 
l	

= Y 

- 
E Inzf(Rxf f + Ryff cos.	 = N 

iØ -	 ± r 2f(R f Ryf 51fl 7o) = L
	 (rib) 

Ill + m1 z 1 (g 1_ -	 +	 - RZØ) =0
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In equations (17) even though the terms arising from unsymmetrical fuel 
distribution have vanished, some cross-coupling terms still remain 
between equations (ha) and ( hib ). These terms occur in the	 equa-




tions of set (ha) and in the 0 and 4i equations of set ( i7b ). The 
significance of these terms is evident since each contains a factor 

Thus, these terms arise when the airplane has fuel tanks with centers not 
in the plane of symmetry, even though they are symmetrically distributed 
with respect to this plane. For example, they would arise for wing-tip 
tanks. Physically, these terms clearly give the interaction between 
the longitudinal fuel motion	 in the wing-tip tanks and the airplane 

rotation about the vertical axis, which consists of the lateral 
motions 0 and . For example, assume for simplicity that 7c = 0; 
then, a yawing acceleration of the airplane will cause a longitudinal 
fuel acceleration	 in the wing-tip tanks, and vice versa. 

From this discussion the 	 motion appears to couple the lateral

and longitudinal airplane motions even for the perfectly symmetrical 
fuel distribution described by equation (16a). However, the fact that 
this coupling does not occur can be seen by considering any pair of 
symmetrically placed and loaded tanks. Designate the . i motion in 
this pair of tanks by	 and	 Then, the r equation in equa-
tions (17a) show that a longitudinal horizontal acceleration of the 
tank gives rise as expected to r accelerations. Since the system 
is linear this portion of the	 motion may be considered independently, 

and because of the symmetry of the two tanks it is seen that l = 

for the portion of the r1 motion arising from the longitudinal motion. 
Therefore, in the 4r and 0 equations of set (l7b) the effects of 
this j will vanish since By1 = .-R 2 . In a similar manner the laterally 

caused r motion can be shown to have no effect on the longitudinal 
motion. Essentially the argument is that the r motion for each pair 
of tanks can be split up for perfectly symmetrical fuel distribution 
into symmetrical and antisymmetrical motions. The symmetrical portion 
of the	 motion for each pair of tanks couples only With the longi-




tudinal motion; the antisymmetrical i motion couples only with the 
lateral motion. Thus, for perfectly symmetrical fuel distributions 
the i equations o set (l7a) could be combined with, set (rib), 
only lateral degrees of freedom in the	 equations being used (since 

the symmetrical portion of the rj motion is of no interest); or 
the	 equations may be used as shown with equations (ha), the lateral 

degrees of freedom in the r equations being ignored. 

Fuel tanks centered in symmetry plane.- Many airplanes have large 
internal fuel tanks which are centered in the airplane symmetry plane. 
For such airplanes the equations of motion may always be separated into 
independent lateral and longitudinal modes since 	 = 0. Using this
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value in equations (17) gives the equations of motion for tanks centered 
in the symmetry plane: 

mü +
	

mfZff cosy0 =X 

	

- uO) 
+	

mfZff sin o = 

Iy +	 (z cos	 - Rxf sin	 = M	

(18a)

f=1 

Ir1 + m1 z 1 [1l1 + cos	
+ (' - U

oO) sin	 + 

(Rz1 C°S Yo -	 sin 
O)IJ 

= 0	 - 

k 

	

+ u0 ) -	 mflff 
f=l 

k 

Iz - Ixz -	 ItLflfRxff = N

f=1 

Ix -	
+ l	

= L (18b) 

+m1 l1 (g 1 -	 -	 -	 - RZ Ø) = 0
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Each set of equations, (18a) and (18b), contains (k + 3) variables; 
the two sets can ba seen to be independent of each other since the 

motion .of each tank couples with only the lateral motion and the 
motion couples with only the longitudinal motion. 

For the case of a single fuel tank at the airplane center of gravity 
the modification of equations (18) is obvious. Then a = Rf = 0, and 

all coupling between the rotational motion and the fuel motion vanishes; 
that is, all the fuel terms in the rotational equations vanish and all 
rotational terms in the fuel equations vanish. For an aspherical tank 
the rotational coupling in this case will be small. 

Limitations Inherent in the Approximations 

Before proceeding to the application of equations (18b) it is 
appropriate to consider somewhat more explicitly the assumptions involved 
in the indiscriminate dropping of all second-order terms which appeared 
during the derivation of the equations of motion. In this connection 
the correction, arising from, the airplane accelerations, to the constant 
acceleration fie'ld g involved in the pendulum potential energy should 
be considered. The assumption which is implied in neglecting these 
accelerations is that the acceleratibns of the tank centers are small 
with respect to g. 

Considering this and previous approximations, it can be seen that 
three essential assumptions were made in dropping second-order terms: 

.(i) The fuel and airplane angular displacement variables are small 
enough so the angle approximates its sine. However, this approximation 
sometimes took the form that the angle was much less than 1 radian. 

(2) The disturbance velocities are much less than U0 , and products 
of the linear or angular velocities can be ignored. 

(3) The accelerations of the tank centers must be small compared 
to g. 

Strictly speaking then,' the statement that the equations of 
motion (15), and also the simplified equations, are accurate equations 
of motion to first order is to be taken to mean that the motions to 
which these equations apply are restricted by the preceding three con-
ditions. Thus, the equations would appear to remain accurate at least 
at the beginning of a disturbance. Moreover, when the motion becomes 
large enough that these assumptions break down, the fundamental physical 
assumption that the fuel may be considered to move as a rigid body also 
breaks down; therefore, nothing can essentially be gained by keeping 
higher-order terms in the mathematical expressions.
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Since the pendulum motion is little changed even up to angles 
of 300 to liO0, it could be expected that aside from splashing effects 
these equations should remain a good to fair approximation even at such 
angles. On the other hand, even the splashing effects, lthough they 
would introduce some damping and change the inertial characteristics 
of the pendulum somewhat, could certainly not be expected to cause the 
general assumptions to break down completely for fuel motions up to 
angles of 30° to 40°. Therefore, the equations of motion derived are 
assumed to present a fair picture of the disturbance motion even up to 
fuel displacements of this magnitude. 

APPLICATION TO SEVERAL CASES 

Nondimensional Equations for Tanks in Symmetry Plane 

The equations of motion (18b) have been applied to the lateral 
motion in several cases with two fuel tanks in the plane of symmetry. 
In these cases the lateral motion can be considered independently. The 
applied forces are the weight, the usual aerodynamic forces linear in 
the disturbance veloc-ities, and any disturbing forces that may be 
present. In order to put the equations in nondimensional form, the 
nondimensional lateral airplane equations are used as obtained inrefer-
ence 8. The fuel equations are made nondimensional by making the 
standard transformation to nondimnensional time derivative, as in the 

Ifl2fU2 
airplane equations, and then dividing through by 	 ° • The resulting 
nondimensional expressions in the following e4uations are defined in 
equations (20): 

(bD -	 Cy)3 + (bD - . CL tan 7o)41 -	 Cj0 - b1 T 
D2 1 - 

1b2 D2 2 Cy
	

(19a) 

liR 
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G	
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IlLflfb	
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The derivatives Cy and C 	 were assumed to be zero. 

	

p	 r 

Methods of Solution 

In the present case the two fuel degrees of freedom introduce two 
additional oscillatory modes into the characteristic solution, in 
addition to modifying the original airplane mode. The motion will 
therefore be a combination of-three oscillations (aside from the less 
important exponential modes), but just knowing the three oscillatory 
roots is insufficient to indicate the type of motion since the relative 
magnitudes of the oscillatory modes must also beknown. For this 
reason motions must be calculated in order to see the actual effects 
of the fuel motion. However, in several cases the characteristic roots 
were also found in order to facilitate the interpretation of the motions. 
These cases will be discussed subsequently.
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The most convenient method for the analytical solution of a set 
of linear ordinary differential equations such as equations ( 19) is 
probably the Laplacetransform method (see reference 8). However this 
method is extremely cumbersome and difficult to check since it involves 
the expansion of fifth-order determinants in which the elements are 
often quadratic functions of the characteristic root. Therefore, it 
seemed preferable to use some step-by-step method which would be more 
amenable to machine computation. 

Reference 9 gives a matrix method for getting the step-by-step 
solution of a set of linear ordinary differential equations. When 
applied in the present case to equations ( 19) this method results in 
a simultaneous solution for the motion in each of the five degrees of 
freedom and also for the motion in DØ, Dic, D 1 , and D 2. The cal-

culations were carrIed out on the Bell Telephone Laboratories X-667 11i-
relay computer in use at the Langley Laboratory. The essential details 
of the method are given in appendix A. 

Solutions for Several Cases 

The two basic cases for which motions were calculated were case A, 
a present-day high-speed airplane with two fuel tanks satisfying the 
conditions for equations (19), and case B, which corresponds essentially 
to case B of the model used in reference 2. The essential parameters 
for these two cases are given in tables I and II. Table II gives the 
conditions for case A when both tanks are one-half full (A1) and when 
the fuel height equals one-half the radius (A2) and for case B when the 
fuel heights in both tanks are 2 inches (B2 ), 3 inches (B3 ), and 
] inches (Bi1.). 

In case A the tanks are spherical, somewhat over 14-fet in diameter, 
and centered on the body axis approximately 4- feet in front of and behind 
the airplane center of gravity. The flight conditions are given in 
table I. The fuel weight in the half-full condition is approximately 
25 percent of the total weight. 

In case B the tanks are spherical, centered in the plane of sym-
metry slightly less than5 inches below the airplane axis and inches 
in front of and behind the model center of grav-ity. The diameters are 
8 inches and the total fuel weight in the half-full condition is 
approximately 6 percent of the total weight. The flight conditions 
are the same as in reference 2.
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Motions were calculated for certain subcases of the basic cases 
which were obtained by varying certain significant parameters. By 
comparing the resulting motions an attempt was made to evaluate the 
effect of varying such factors as amount of fuel, position of tanks, 
and relative natural fuel and airplane frequencies on the disturbance 
of the airplane motion caused by fuel motion. Also various initial 
conditions were considered to show the effect of initial conditions on 
the resulting motion. In some cases an initial disturbance in sideslip 
was assumed, and in other cases an initial fuel disturbance was assumed. 
An initial sideslip of 50 and a fuel displacement of 10° were arbitrarily 
chosen as standard. Since the equations are linear, multiplying the 
initial displacements by a common factor simply multiplies the resulting 
motions by the same factor. In this connection it must be emphasized 
that, if at any time the calculated motion in any degree of freedom 
becomes too large to satisfy the equations, the following motion is 
meaningless For example, if a 50 displacement in 13 gives rise to a 
fuel motion much greater than 300 to )400, the accompanying 13 motion is 
meaningless because the assumption of small displacements is violated. 
However, if multiplying the fuel motion by some arbitrary factor, for 
example 2/5, will bring its peaks down to less than 30° to 110°, then 
the 13 motion resulting from an initial 13 disturbance of 2° can be 
obtained by simply multiplying the previous 13 motion by 2/5 also. The 
effect of large fuel displacements must be discussed qualitatively. 

The motion in sideslip and the motion of the two fuel pendulums in 
the various subcases are shown in figures 2 to 12. Comments on these 
motions are presented to facilitate interpretation of the figures. The 
period of each fuel pendulum is called the natural fuel period. The 
period and damping of the airplane, the fuel being disregarded, are 
called the natural airplane period and damping. 

Case A1 .- The natural fuel periods for case A 1 (half-full tank) 

are approximately 1.66 seconds and the natural period of the airplane 
alone is lifo seconds. Damping to half-amplitude occurs in 2 cycles. 

The motion in figure 2 is for initial 13o = 2°. The early 13 motion 
seems to have more damping than the natural airplane mode. The disturb-
ance arising from the fuel modes is evident after 2 cycles. That the 
irregular residual oscillation of amplitude i/1i 0 to 1/2° is essentially 
due to the fuel modes is seen from the fact that the dominant period in 
the later motion is approximately 1.6 seconds. Notice that in this case 
a 5 initial 13 would almost immediately cause fuel displacements of 
over 800, so that the following motion would be radically changed. 

The motions shown in figure 3 for	 = (2)o = 100 arequite 
regular and indicate one dominant mode in each motion. The fuel period
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is 1.6 seconds. The airplane period starts at 1.4 seconds and builds 
up to 1.7 seconds and averages 1.6 . seconds. The amplitude of the side-
slip motion- is very small. The largest such motion which could occur 
for this ty-pe of disturbance would be for initial (l)o = (2)o = 30° 
and would give 13 amplitude slightly more than 0.10 .	 - 

The small amplitude of the sideslip motion in figure -3 was sur-
prising. It was conjectured that for this fuel configuration the fuel 

displacement (l)o = 100 and (2)o = -1O, corresponding essentially 

to an initial yawing moment, might be more effective in inducing an 
airplane oscillation. (See fig. 14.) Apparently, this configuration is 
more effective inasmuch as the sideslip motion now builds up to an 
amplitude of approximately 0.4°. The energy necessary to induce -this 
considerable "snaking" type of oscillation seems to be obtained initially 
from the rear-tank motion, which is in the proper phase relation with 
the sideslip motion to feed energy into it at the start of the motion. 

The fuel periods in the regular motion are slightly over 1.6 seconds. 
The airplane period increases from 1.5 to 1.8 seconds and has an average 
period of 1.6 seconds.	 - 

Case A2.- The natural fuel periods in case A2 are approximately 

1.52 seconds and the natural airplane period is 1.49 seconds. Damping 
to half-amplitude occurs in 1.3 cycles. 

The motion in-figure 5 is for initial 13 = 0.5°. The early side-
slip motion seems to be of greater damping than the natural airplane mode. 
The residual airplane motion arising from the fuel modes sets in very 
quickly and is a regular unstable motion of very large relative amplitude, 
with a period of. approximately 1.7 seconds. Both fuels start with a 
period of approximately 1.5 seconds, which increases to 1.7 seconds. 

In figure 6, () = -10° and- (2)o = 10°. The sideslip builds 
up to a fairly regular oscillation of 0.4° amplitude, with the period 
increasing from 1.5 seconds to 1.7 seconds. The fuel motion has a 
period somewhat under 1.7 seconds, with amplitude quickly building up 
to the limits where splashing must become important. 

Case B2 .- The sideslip motion shown for case B 2 appears to be a 

normal damped oscillation for the first 4 seconds (fig. 7, 13 = 50), 
but then the peaks show a slight irregularity instead of damping smoothly. 
The period of the early sideslip motion appears to be somewhat over 
0.9 second and the motion damps to half-amplitude in less than 2 cycles. 
This motion is very close to the undisturbed airplane mode (period of - 

0.92 sec and damping constant of l cycles). The natural fuel. periods
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are 0.61 second. The fuel motion is very irregular and. obviously con-
tains considerable amounts of at least two characteristic modes. 

Cases B3 and B4.- The motion in cases B 3 and B4 shown in figures 8 

and 9, respectively, for	 = 50 is very much the same as in the pre-




vious one, except that the disturbance of the airplane mode in the 
sideslip motion appears somewhat more pronounced as the amount of fuel 
increases. 

Figure 10 (case B4, (l)o = (2)o = 10°) shows that the motion in 

sideslip resulting from the fuel displacement is much more irregular 
than in case A. The dominant mode corresponds to a fuel frequency, but 
apparently the airplane mode is present with considerable amplitude. 
The maximum oscillations are approximately ±1/4°. The sideslip motion 
in this case was much more irregular than for the cori-esponding initial 
conditions in case A. It was conjectured that this might be caused by 
the fact that in this model both tanks are below the X-axis, so that the 
coupling of the fuel motion with yawing and rolling motions does not 
have the same phase relationship as in case A where one tank is above 
and one below the X-axis. Therefore, in case B 4 shown in figure 11, the 

front fuel tank was assumed to be above the X-axis, all other conditions 
remaining as in case B4. In this case the general type Of motion does 
seem to resemble that in figure 3. The sideslip, which builds up 
to ±1/4°, shows a snaking at the fuel frequency. 

In case A the fuel natural peri6ds are very close to the airplane 
period. In case B, however, the fuel period is approximately two-thirds 
of the airplane period. In case B4b, shown in figure 12 for 	 = 5°, 
the value of	 of the model has been arbitrarily changed to give 

the mbde. a period very close to the fuel period of 0.66 second. Com-
parison with figures 2 and 5 shows that the motion in this case is very 
much like the motion in case A. 

Transverse accelerations.- In evaluating pilots' reactions to 
snaking oscillations, the magnitude of the transverse accelerations 
involved in the oscillations has been found to bean impOrtant factor. 
Acceleration amplitudes above 0.025g are found to be bothersome, and 
amplitudes above 0.08g are considered very unsatisfactory. Calculations 
of the transverse accelerations involved in several of the previous 
motions were carried out. The magnitudes of the acceleration peaks in 
the residual oscillations were found to be approximately 0.04g to 0.05g. 
The actual motions are not shown since all the airplane oscillations are 
essentially of the same type as the	 motions.
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DISCUSSION OF RESULTS 

The motions described in the preceding section are su!ficient to 
give a fair picture of the types of possible fuel effects. Moreover, 
since each motion is just a superposition of the characteristic modes 
of the total system, these motions are often easier to understand if 
the characteristic roots are known. Physically it is clear that the 
characteristic modes will not differ much from the natural (uncoupled) 
modes when the interaction between the airplane and fuel is small. 
Comparison of figures 2; 5, and 12 with figures 7, 8, and 9 indicates 
that •the interaction between airplane and fuel is strongest when the 
frequency of the airplane is close to that of the fuel, as might be 
expected from comparison with the resonance phenomena exhibited by an 
oscillator driving a system at its natural frequency. For this reason 
the characteristic modes of the total system were calculated in cases A2 
and B4b, whee the frequency ratio between airplane and fuel natural 

frequencies was practically unity. The. natural modes are given for 
purposes of comparison. The results are given as follows in terms of 
periods and times to halve or double amplitudes, in seconds: 

Case A2 , natural modes: 

= 1.49, T112 = 1 .91 ; P1 = P2 =, 1.52 

Case A2 , total system: 

= 1. 47, T112 = 61; P1 1.29, T112 = 1 . 34; P2 = 1 .67, T2 = 4.56 

Case B4b, natural modes: 

= 0.66, T1/2 = 1 .29; P1 = P2 = 0.66 

Case B)1b, total system: 

= 0.65, T112 = 30; P1 = 0.54, T2 = 1.5; P2 = 0.71, T1/2 = 0.48 

In these cases of large interaction it is difficult to identify 
one of the characteristic modes as the airplane mode. The character-
istic mode in which the period is changed least from the natural air-
plane period has been called the airplane characteristic mode. However, 
in figures 5 and 12 this mode is not obviously the dominant one, as the 
airplane mode is in figures 7, 8, and 9.
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The most important effects to be noted in these particular cases, 
where the fuel and airplane frequencies are equal, are that a charac-
teristic mode which is very lightly damped with a frequency close to 
the natural airplane frequency exists and that an unstable mode appears. 
In connection with the first of these effects, it would seem that, 
theoretically, certain initial conditions might be found that would 
excite mainly this lightly damped mode in the characteristic solution 
for , so that the resulting motion would be a typical snaking. Of 
course the required initial conditions might or might not be practical 
ones.

The total characteristic modes were also calculated for cases B4 

and. B4a to investigate the changes in motion caused by a hypothetical 

shift of one of the fuel tanks. The natural modes and the characteristic 
modes of the total system are given as follows for comparison: 

Cases B4 and B, natural modes: 

= 0.84, T1/2 = 1.64; P1 = P = 0.66 

Case B4, total system: 

= 0.88, T1/2	 1.91; P1 = 0.63, T1/2 = 5.45; P2 = 0 .53, T1/2 = 1.61 

Case B, total system: 

= 0.86, T112 = 1.14; P1 = 0.61, T1/2 = 19.5; P2 = 0.60, T2 = 10.2 

It is interesting to note that both fuels in figure 10 and also in 
figure 11 seem to follow the. more stable fuel mode in the part of the 
motion shown. The t3 motion in figure 11 seems to show the effect of 
the unstable mode. It appears in this case that, when the fuel tanks 
are in front of and behind the center of gravity, the configuration with 
one tank above and one below the X-axis gives rise to an unstable mode, 
whereas the configuration with both tanks below the X-axis makes both 
fuel modes stable. 

A comparison of figures 2 to 4 or figures 5 and 6 clearly shows 
that the initial conditions can have a very important effect, since the 
least stable mode does not necessarily become dominant for a long time. 
The f3 disturbance was chosen as a typical airplane disturbance. On 
the other hand the disturbance of the fuels as an initial condition 
would seem to be completely artificial. However, these motions are 
believed to give rough idea of the residual oscillations caused by
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fuel motion, at least insofar as magnitude is concerned, since, if the 
fuels were still displaced after the airplane motion had practically 
died out, the remaining motion might be considered' to be the type caused 
by a fuel displacement. From this point of view figures , 6, 10, and 11 
seem to indicate that residual oscillations of the order of magnitude 
of i/ LiP to 1/2° might be expected in these cases. Actually, figures 10 
and 11 would show oscillations of the order of 3/1iO for 30° fuel 
displacements.	

0 

Because of the lengthiness of the calculations, only cases A 1 , A2, 
and B j were carried out far enough to show the residual oscillations 

following a 13 disturbance. It is evident that the motion in case B4b 

(fig. 12) resembles the motion in case A (figs. 2 and 5) much more than 
it resembles the unmodified case B motion (figs. 7 to 9). The reason 
for the smaller relative fuel motion in case B4b is probably the fact 

that. the relative fuel mass is considerably larger than in case A. In 
case A2 (fig. 5) the residual oscillation dominates the motion almost 
immediately. These results show that the importance of the residual 
oscillation depends mainly on the closeness of the natural airplane and 
fuel frequencies, that is, on the parameter which might be called the 
frequency ratio. Inasmuch s the previous discussion of the character-
istic modes indicated that the frequency ratio was also the most impor-
tant factor affecting the characteristic modes of the system, the 
frequency ratio generally can be seen to be the most important , factor 
determining the disturbance of the normal airplane motion caused by the 
fuel. Moreover, case A indicates that for spherical tanks the fuel 
frequency may easily be of the same order of magnitude as the airplane 
frequency. Reference Li- indicates that the same is true for rectangular 
tanks and for arbitrarily shaped tanks of reasonable dimensions. Thus, 
even though the residual oscillations might occur at fuel frequencies, 
these frequencies would not be distinguishable from the normal airplane 
frequency in the cases where the fuel effect is most pronounced, since 
in these cases the frequency ratio approaches unity. 

The effects of unstable modes cannot be understood without con-
sidering the nonlinear effects due to splashing of the fuel. For linear 
systems the presence of an unstable mode would imply that the total system 
is unstable. It has been shown, however, that in an actual motion if the 
coefficient of the unstable mode in the solution for the airplane motion 
is very small compared with the coefficient of one of the' stable modes) 
then the unstable mode will not appear in the early part of the motion. 
Now even in cases where the interaction is weak, one of the fuel modes 
(with no natural damping assumed) may be unstable. In such cases the 
unstable mode in the airplane motions will be relatively very small, 
'while the unstable moe may be dominant, in one of the 'fuel motions. 
Then this fuel motion may become very large lefore the effect on the
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airplane motion can be observed. At this point splashing will set in 
and the equations of motion no longer hold. Actually the energy lost 
in splashing may damp out the fuel motion so that the effect of this 
fuel motion - and .therefore of the unstable mode - may never appreciably 
appear in the airplane motion. 

In case A2 , however, the interaction is large, and figure 5 shows 
that the unstable mode does soon become very important in the 3 motion. 
Here again the effects of large-amplitude fuel motion and, in particular, 
the nonlinear effects of fuel splashing should be cbnsidered qualitatively. 
In cases A1 and A2, because of the strong interaction, a sideslip of 50 
would very quickly give rise to fuel displacements of the order of magni-
tude of 90° or greater. Physically, it is clear that the airplane motion 
is feeding energy into the fuel motion in this early part of the motion. 
Because of the large amplitudes of t'he fuel motion, a large component of 
this motion is in the vertical direction, so that a considerable part 
of the energy in the fuel motion will go into creating longitudinal air-
plane motion. Because of the symmetry conditions previously cited this 
energy will not be fed back into lateral motion, so that the fuel tends 
to stabilize the lateral motion by feeding some of the energy from the 
lateral into the longitudinal motion. Also the turbulence due to 
splashing will absorb energy which will then be lost altogether from 
the motion. 

One conclusion which can be drawn from this discussion, is that the 
motion following large disturbances may be more stable than that following 
small disturbances. For example, the initial disturbances in figures 2 
and 5 have been adjusted so that during the motion shown there is little 
splashing, and considerable residual oscillations are shown. But if the 
initial disturbances in these cases bad been 5o or more in , the 
energy lost in splashing in the early motion would possibly be so great 
that the residual motion in 13 would be smaller than that shown here. 
This might explain why some airplanes which definitely showed trouble-
some fuel oscillations were reported to be more stable in conditions 
of large atmospheric turbulence than in slightly turbulent atmospheric 
conditions. 

A more important conclusion is that the fuel can be used to sta-
bilize the airplane motion by introducing turbulence, by use of appro-
priate baffles for instance. 'This can be seen by noticing that the 
early part of the 13 motion in figures 2 and 5 is very stable. But 
if most of the energy fed into the fuel in this part of the motion were 
converted into heat through turbulence, then as has been pointed out 
this energy could not be fed back into the airplane motion and the 
residual oscillations would not appear. Since the amount of energy lost 
in turbulence cannot be calculated analytically, it would seem that an 
experimental investigation of the effects of honeycomb or other
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turbulence-inducing baffles on the airplane stability would be desirable, 
especially in cases where the airplane and fuel natural frequencies are 
approximately equal. 

Finally it is possible in a strongly unstable case of residual - 
oscillations, such as shown in figure 5, that the fuel may lose just 
enough of its energy in splashing to reduce its amplitude to where the 
motion is again smooth. Then, because of the instability of the system 
for small motions, the amplitude might again begin to build up. In 
this way continued oscillations of a more or less regular nature would 
occur when the calculations neglecting splashing show unstable motion. 
This result is important because it shows that somewhat irregular small-
amplitude oscillations can be expected when the ratio of the airplane 
natural frequency to the fuel natural frequency approaches unity, even 
for moderate fuel masses of the order of one-tenth the total mass or 
less.

EFFECTS OF ASPEERICAL TANKS 

The calculations have been carried, out for rigid-body motion in 
spherical tanks only. Actually this assumes that for small oscillations 
the fundamental wave motion in spherical tanks approximates rigid-body 
motion. This approximation only applies when the tanks are one-half full 
or less. This restriction is not too serious, however, since the fuel 
motion will generally have its greatest effect in this range. 

It is important to note that the potential energy of the fuels is 
simply the potential energy of a set of harmonic oscillators locat 'ed at 
the positions	 . Thus, the same general analysis will apply whenever 

the fuel motion in the tank can be represented in terms of harmonic 
oscillators with given effective mass and spring constant. Reference 
has already been mentioned as obtaining such a representation for the 
fundamental mode of a rectangular tank. Usually the fundamental mode 
will be the most important and involve the greater effective mass. It 
is conceivable that for long tanks the second mode might be of a fre-
quency closer to that of the airplane, and in that case might be more 
important. In such a case each mode might be represented by a separate 
oscillator. As has been pointed out, the damping is mainly due to 
turbulence and will be more important for aspherical tanks. For small 
motions, however, the damping may still be neglected. 

From the general derivation of the equations of motion, the most 
important result was the effect of fuel distribution on the coupling 
of lateral and longitudinal motions. It is plain that these results 
apply strictly only to spherical tanks. Consider for example a tank
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of triangular planform located in the symmetry plane and oriented sym-
metrically with respect to this plane. Because of the symmetrical 
orientation it can be seen that, although sideslip motion will give 
rise to forward and rearward forces (because the pressure forces are 
normal to the diagonal surfaces), the forward and rearward motion will 
give antisymmetrical lateral forces which will cancel. In this case 
the result wou1dbe to feed energy from the lateral into the longitudinal 
motion; this condition would be favorable since the longitudinal motion 
is generally well-damped. For an unsymmetrically oriented tank of this 
type, energy could be fed back again from the longitudinal to the 
lateral motion and the problem would be quite complicated. 

In general, theresults on coupling for spherical tanks would be 
valid to first order for such symmetrical plan forms as the rectangular 
or the diamond-shape ones. For any simple symmetrically oriented shape 
in the plane of symmetry, a loss of energy from the lateral to the 
longitudinal motion might occur. This condition would be favorable. 
Finally, for tanks outside the plane of symmetry the same considerations 
would be valid if the tanks were symmetrically placed with respect to 
the symmetry plane and symmetrically shaped with respect to the plane 
through the tank center parallel to the symmetry plane. 

CONCLUSIONS 

The following conclusions may be drawn from the theoretical analysis 
presented: 

1. Considerable disturbances of the normal airplane motion can be 
caused by fuel motion. 

.(a) The most important factor determining the effect is the 
ratio between fuel and airplane frequencies. When these are equal 
even moderate amounts of fuel (one-tenth the total mass or less) 
may cause considerable disturbances. 

(b) The most usual type of disturbed motion is a somewhat 
irregular small-amplitude oscillation and the type of motion is 
strongly dependent on the initial conditions. 

(c) The effects of splashing will be to make the motion 
more stable, and the loss of energy in fuel turbulence may make 
it possible to increase the stability by artificially intro-
ducing turbulence in the fuel.
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2. The fuel motion may cause coupling between lateral and longi-
tudinal motions. 

3. The derivation of the equations of motion for spherical tanks 
may be applied to any tanks where the fuel motion may be represented 
in terms of harmonic oscillators. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., November 21, 1970
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APPENDIX A 

A STEP-BY-STEP SOLUTION OF THE EQUATIONS OF 

MOP ION IN MATRIX NOTATION 

A matrix method for solving the equations of motion is given in 
reference 9. The first step in this method is to reduce equations (19) 
to a set of first-order equations by introducing as new variables DØ, 
D41, D 1, and D 2 . as described in reference 9 for DØ and D*. This 

transforms the equations of motion into a set of nine linear first-order 
equations in the nine variables. In matrix notation the equations may 
then be written as follows when there are no applied forces C, C, 

or C2:

A(Dq) + Bq = 0	 (Al) 

where A and B are ninth-order square matrices and q is the column 
matrix (or vector.), the elements (components) of which are the nine 
variables. In partitioned form, 

A
[OD i . A55
	 B	

[c1 E5)4J
	 q 

where Ij is the identity matrix of fourth order; 	 and	 are zero


matrices of order (1 x 5) and (5 x ), respectively; and 

-ib1 2 1/b 0 0 

O	 b212Rx2/b2 _b1hlRx1/b2 bKXZ bKZ2 

A55 0	 b222Rz2/b2 blhlRzl/b2 1LbKX2 bKXZ 

-1	 0 K12 .	 Rz1 /b -Rx1/b 

-1	 2 0 Rz2/b _Rx2/b
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C77

0	 0	 -CL	 -CLtany0 

0	 0	 0	 0 

0	 0	 0	 0 

0	 G	 0	 0 

G	 .0	 0	 0

- . Cy 

I - . cn3 

-	 l 

0 

0 

o	 0	 0	 I-tb 

0	 0	 C 
4 p 	 1. 

E7jm 0	 0	 _tCz 

0	 0	 0	 -1 

0	 0	 0	 -1

Equation (Al) may be solved for Dq by multiplying through by the 
inverse of A:

Dq = -ABq Pq	 () 

Equation (A2) shows that, when there are no applied forces, the dif-
ferentiation operator with i-espect to nondimensional time may be 

replaced by premultiplication with the matrix P -A-B. For example, 

note that D2q = D(Dq) P(Dq) = P2q and that similar relations would 
result for higher powers. 

Now, by Taylor' s expansion, the value of q( s + s) may be obtained 
from the value of q(s) by the series 

q(s + s) = q(s) +	 Dq(s) + ()2
	

q(s)+ 
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By use of equation (A2), this equation can be written 

q(s +	 )	 ['9 +	 P +
	 s) P

2 + . . .]q(s) .	 (A3) 
2'. 

which is the fundamental recurrence relation used in the step-by-step 
calculation. In equation (A3), 19 is the ninth-order identity matrix. 

The set of initial disturbances q0 being given, the magnitude of the 
step Ls will determine the number of powers necessary to obtain a 
given accuracy in the solution. Because of the relatively high fuel 
frequencies and because it was desired to obtain the motion to a rather 
large number of periods with reasonable accuracy, the series in equa-
tion (A2) was used to the sixth power with is approximately 1/20 of 
the airplane period. Thus, the matrix relation (A3) was 

q(s + s) = Qq(s)	 (A1) 

where

Q	 9 +	
P + ()2	 +	 •	 + ( ) 6 6
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TABLE 'I 

STABILITY DERIVATIVES AND MASS AND GEOMETRICAL 


CHARACTERISTICS FOR TWO CASES CONSIDERED 

Parameters Case A Case B 

l.O1l2 -0.80 
o.i a017 

................ -0.126 _o.l!. 

................ -0.01752 

Cy	 ..................

-O.32 -0.30 

....................

-0.28 

0.0796 0.30 

C1	 ..................

Weight of airplane alone, lb	 .	 . . .6970 11.25 
130 2.67 

Cj	 ..................

S, sq ft	 ................
28 
0 -11 

b,ft .................
y, deg .................

0.00136 .	 0.002378 p, slugs/cu ft	 ............
U0, ft/sec	 ..............7Oi- 61.5 to 7i-.25

aln case 4b'	 = 0.29. 
bActually, slightly different values of 	 were used for each 

of the subcases of case B. 



NACA TN 2280
	

41 

TABLE II 

FUEL DEPENDEI1T PARAMETERS 

Parameters A1 A2. B2 B3 B4 

Radius of forward tank, ft 2.15 2.15 0.333 0. 333 0.333 
Radius of rear tank, ft 	 . 2.12 2.12 0.333 0 .333 0.333 
Fuel height in forward tank,

2.15 1 . 075 0.1667 0.250 0.333 
Fuel height in rear tank, ft 2.12 1.06 0.1667 0 .250 0.333 

ft	 ................
35 3.5 0 .333 0 .333 0.333 

-4.1 -4.i -0 .333 -0.333 -0.333 ft	 ..............
0.0123 0.0123 0.407 0.407 0.407 

Rx1 ,	 ft	 ..............

-0.0144 -0.0144 0.407 0.407 0.407 
Weight of forward fuel, lb . l480 462 1.51 3.07 4.8 

Rz1 ,	 ft	 .............

Weight of rear fuel, lb	 .	 . 1068 334 1.51 3.07 4.8 
Total weight of airplane and 

R,	 ft	 ............

9518 7766 14.27 17 . 39 20.95 
0.19 0.19 1.062 1.178 1.174 
1360 1360 0.1081 0.1243 0.1428 

fuel,	 lb	 ..............
7340 7708 0.2098 0.2206 0.233 

CL	 ..................
262 277 0 0 0 

1x	 slug-ft2 ..........
1z'	 slug-ft2 ..........
1xz.	 slug-ft2	 .........

0.806 1.45 0.225 0.174 0.125 2 1,	 ft' .............
0.795 1.43 0.225 0.174 o.i 2 2,	 ft	 ..............
85.2 40.0 ) .003l5 0.00507 0.00668 I,	 slug-ft2 ..........

12, slug-ft2 59.7 28.1 ) .00315 0.00507 0.00668

11 
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Figure 1.- Decomposition of horizontal fuel motion in terms of angles 
and. r in vertical planes.
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Figure 6. - Present-day high-speed airplane with fuel heights one-half 

the. tank radius (case A2). Sideslip and fuel motions- following 
initial fuel disturbance, (l)o = 10,	 = 10°.
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Figure 9.- Free-flying airplane model with tanks one-half full 
(case Bj1 ). Sideslip and fuel motions following initial sideslip, 
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