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SUMMARY

The general equations of motion for an airplane with a number of
spherical fuel tanks are derived. The motion of the fuel is approxi-
mated by the motion of solid pendulums. The same type of derivation
and equations are shown to apply to any type of fuel tank where the
motion of the fuel may be represented in terms of undamped harmonlc
osc1llators. :

Motions are calculated for a present-day high-speed airplane and a
free-flying airplane model with two spherical tanks in the symmetry plane.
These calculations show that the normal airplane motion may be consider-
ably modified and that residual oscillations may result. The ratio of
the natural fuel frequency to the natural airplane frequency is shown to
- be the most important parameter for determining the effect of the fuel
motion on the airplane motion, The stabilizing effect of turbulence in
the fuel is discussed, and it is suggested that the stabilizing effect
of artificially induced turbulence be investigated experimentally.

INTRODUCTION

Small-gmplitude lightly damped lateral oscillations are a trouble-
some characteristic of certain high-speed airplanes. Several possible
explanations for these osc1llat10ns, which are adequate in specific

cases, have been offered. For example, reference 1 shows that nonlinear
aerodynamic derivatives could cause such oscillations, and it has been
shown that atmospheric turbulence is another possible cause. It has also
been suggested that a possible cause of such oscillations is the motion
of fuel in the tanks, In some recently de31gned airplanes the mass of
the fuel relative to the airplane mass is much larger than has been )
common in the past; therefore, the effects of fuel motion can be expected
to be relatively -more important. In fact, in several cases baffling the
fuel tanks was found to have considerable effect on the general handling
qualities of the airplane and sometimes actually eliminated the trouble-
some lightly damped lateral oscillations which had been present.
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An experimental investigation of the effects of fuel motion on the
lateral motion of a free-flying airplane model is described in refer-:
ence 2. The results indicated that the effects of fuel motion were
noticeable and caused the lateral motion of the model to be very erratic.

The present analysis treats each fuel tank as a pendulum oscil~-
lating in two degrees of freedom and applies Lagrange's equations of
motion to obtain the interaction between these pendulums and the air-
plane. Thus, for small motions the fuels are treated as simple harmonic
oscillators. The results are applied to obtain the general equations of
motion of this system and, in particular, the lateral motion of an air-
plane with internal fuel tanks in the plane of symmetry of the airplane.
Since the general solution of the equations is extremely complicated,
an attempt is made to evaluate the results by carrying out numerical
calculations for specific cases. This approach is shown to be adequate
in yielding the most general effects of fuel motion.

The discussion of the numerical application of the equations of
motion to specific cases is given in detail following the derivation of
the equations of motion. This discussion of results is understandable
quite independently of the derivation of the equations of motion.’

SYMBOLS

1]

X, Y, Z airplane stability axes with origin determined by
equations (13); also components of applied forces
along these axes .

L, M, N components of applied moments about X-, Y-, and
' Z-axes, respectively

i, j, k unit vectors along X-, Y-, and Z-axes, respectively
X, ¥, 2 components of translational displacement of airplane
i “vector translatlonal velocity of alrplane

(ix + jy + k2 = iUp + v)

Uo magnitude of steady-state velocity

u, v, w components of disturbance translational velocity of
airplane

v ~vector disturbance velocity of airplane

(iu + gv + kw)
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Iz, Ixz
I, 1y, Iy,
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Ixz vz Ixy
Ir, In

_ vector position of a point in airplane

(iRx + JRy + kRy)

vector position of -center of gravity of fuel in
a particular fuel tank

_ total vector velocity of a point in airplane

sideslip angle (tan-1 X
Uo

infinitesmal rotations of airplane about X-, Y-,
and Z-axes, respectively

vector rotatlonal velocity of alrplane
(1¢ + QG + kw)

components of angular displacement from vertical  of
line joining fuel center of gravity-to tank center,
taken on mutually perpendicular planes; ¢{ p051t1ve
in direction of positive roll and 1 positive in
direction of positive pitch

distance from tank center to fuel center of gravity

vertical displacement of fuel center of gravity from
equilibrium position

number of fuel tanks
mass
total mass of airplane and fuel

total moments and product of inertia of airplane
about X-, Y-, and Z-axes ,

rigid-body moments and products of inertia about axes
through center of gravity

fuel moments of inertia about ¢- and n-axes’ through
~ tank center
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fuel moments of inertia about {- and n-axes through
fuel center of gravity

. ' Iv
nondimensional radius of gyration in roll d——zé
mtb

I
nondimensional radius of gyration in yaw —Z_

m b2

-I
nondimensional product-of-inertia parameter (——%g
\mg

kinetic energy -
potential energy
period

time for exponentially damped or increasing oscilla-
tion to halve or double amplitude, respectively
time

]

. . ; Uot
nondimensional time parameter _E_

acceleration due to gravity

flight-path angle with respect to horizontal

air density

wing area
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b wing span

by ubf . lateral nondimensional mass coefficient

I _ oy
(“b ~ pSp’ Hbp = pSb

D differentiation operator (di)
1 : - s
' meg cos g .
CL trim 1lift coefficient -T—-—e—
) - = S
> DUo‘
Cy rolling-moment coefficient Rolling goment ’
' : L pU,Csb
2
' _ ‘ : Yawing moment
Cn yawing-moment coefficient
— % pUo2SDb
Cy - ' lateral-force coefficient Latiral‘force
Cy_ = =
Y [P
3P
2Uq
c aCy ,
np < P
1Y
5(#o_
' 2Uo
BCY -
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oC, o )
Cip = T : ) o .
o =— _ S .
2Up - _ :
oCy
Cnp = -
U,
. 3y
Y. = ———
SR 412
2Uq
oc
- 1
CzB SE-
oCp
CnB = aB
aCY
Cy ——
B o6
Subscripts:
f particular fuel tank or summation index over fuel
tanks (f =1, 2, .. . k)
a airplane without fuel
o ) initial conditions at t =0

DERIVATION OF EQUATIONS OF MOTION

Assumptions for Derivation of General Equations of Motion

As a first approximation, only the effect of the motion of the fuel
as a whole is considered; that is, only the fundamental mode of the wave
motion is considered, 'and this mode is approximated by rigid-body
motion. The main effect of the internal wave motion is to introduce
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damping into the fuel oscillation. This damping is caused by the con-
version of kinetic energy into heat through the turbulence caused by

the splashing of the fuel. A strictly analytic consideration of such
damping effects is extremely difficult; on the other hand, the damping
caused by the viscous tangential forces between the fuel and the tank

is completely negligible (see reference 3). The analysis of the problem
is therefore confined to the motion with no fuel damping and the effect
of the damping is considered in the discussion of the results. .

‘In a spherical tank the fuel can oscillate approximately as a rigid.
body if no splashing is assumed for small oscillations. The motion may
be pictured as the "rocking" of a spherical segment of constant shape,
The restraining force of the tank, which always acts in a direction
normal to the motion, is exactly analogous to the tension in a pen-
dulum. Thus, the small motions of the fuel in a spherical tank may be
represented quite well by the well-known. simple properties of small
pendulum motions. This approach is used in the mathematical analysis
of the problem, ' '

The effect of aspherical tank shape can be approximated by
replacing the tank by an equivalent harmonic oscillator with an arbi-
trary amount of turbulénce damping added even for small motions. For
example, the representation of rectangular tanks-as harmonic oscillators
is discussed in reference 4. Thus in this case also the most general
effects of the fuel motion on the airplane motion should be qualita-
tively obtainable by this type of analysis.

The effects of large-amplitude fuel motions will be discussed
qualitatively after the discussion of the results of the mathematical
analysis. As usual in stability analysis all motions are assumed small
and second-order terms are ignored. : '

Derivation of General Equations of Motion

With the preceding assumptions the Physical problem can be con-
sidered as the interaction between two or more rigid bodies, namely the
airplane and the several fuel pendulums, with each fuel pendulum con-
sidered as suspended from the tank center. The only potential energy
consldered in the system is that of the pendulums. - If the inertial
characteristics of the airplane and the fuel are known, the kinetic
energy of the system can be obtained from the translational and rota-
tional velocities of the airplane and the fuels. With this information
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the interactions in the system can be obtained by using Eagrange's
equations of motion in the form (see reference 5)

OEp
dt(b 1> da;  dug * 9 , (1)

(i = l, 2, o o o n)

where qy is one of the n generalized cqordinates of the system cor-
responding to . the n degrees of freedom, qi is the corresponding
velocity, and Qj 1is the .corresponding generalized force., The q;
will be lengths and angles and the correspondlng Q; Wwill be forces
and moments, respectively.

The airplane itself introduces the customary six degrees of free-
dom, which are the three displacements of the airplane system along
axes fixed in the airplane (x, y, z) and the corresponding angles of
rotation of the airplane about these axes (@, 8, V). For small dis-
placements the pendulum motion can be described by two angles, ¢§ .
and 1, since the vertical motion can be neglected (see fig. 1). The
angle { "~ is measured from a vertical line through the tank center to
the projection of the line joining the tank center to the fuel center
of gravity on the vertical plane parallel to the Y-axis and 1 is the
corresponding angle in the vertical plane parallel to the X-axis. For
small angles, { and 1 may be represented as in figure 1. In effect
this figure makes use of the fact that small angles may be added vec-
torially. When the two additional coordinates { and 1 are used to
describe the pendulum motion, the whole system has two addltlonal
degrees of freedom for each fuel tank.

Expressions must be obtained for Ex and Ep in terms of the

coordinates of the system and their time derivatives in order to use
equation (1). The only potential energy is that of the fuel pendulums,
which can be written as follows for k fuel tanks

k
Ep =) meheg | (@)
=1

For the helght of the center of gravity.in each fuel tank, as can be
seen from flgure 1,

h = hC +'hﬁv%v2 - lcos cos = Z[l - (1 _%§2>(,1 - % 112)]
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or

(¢2 + +?) (3)

g
R
o] | o

Note that the vertical displacement h .is of second order in the small
quantities 7 and ¢{. This fact’ justifies the previous statement that
the vertical displacement could be neglected in describing the pendulum
motion only by the two coordinates 7 and ¢. As might be expected,
equations (2) and (3) indicate that each fuel pendulum is being con-
sidered as an undamped oscillator with two degrees of freedom in a.

~ horizontal plane.

The kinetic energy of the total system can be. written as the sum
of the kinetic energy of the airplane and the kinetic energies of the
fuels. Also the kinetic energy of each rigid body can be expressed as
the sum of the translational energy of the mass moving with the velocity
of its center of gravity and the rotational kinetic energy of the mass
about its center of gravity. Thus, when the inertial characteristics
of the alrplane and the fuels are known, the kinetic energy can be
‘obtained as a function of the generalized coordinates and velocities if
the translational velocity of each center of gravity and the angular .
velocities of the airplane and fuels about their respective centers of
gravity can be expressed in terms of these generalized coordinates and
velocities.

In order to obtain the required expressions for these velocities
a system of axes fixed in the airplane with the X-axis along the steady-
state velocity at t = 0 is used, as is customary in stability analysis.
For the present the origin of the coordinates will not be specified.
However, these stability axes are not inertial axes and Newton's second
law applies only in an inertial system of axes. The inertial axes may
be taken as axes fixed in the earth. Then in the equations of motion
the velocities and accelerations must be méasured with respect to the
earth, and their expressions in terms of components in the moving air-
plane axes may be obtained as shown in reference 6. These expressions
will .give the kinetic-reaction forces, Wthh for the case of a rotating
system are often referred to as "gyroscopic" forces. For the velocity,
referred to the inertial system, of any point.defined by the vector R
in the airplane axes (in particular, for the centers of gravity pre-
viously discussed)
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+
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where all vectors are given in terms of the airplane axes and

r=ix + Jy + kz = iU, + v

is the velocity of the origin of the airplane system with respect to
the earth, while v and o are the translatlonal and rotational dis-
turbance velocities of the alrplane axes. .

Equation (h),may now be used to express the inertial velocities of
the airplane center of gravity and the fuel centers of gravity in terms
of the generalized coordinates by inserting for R the values Rg
and R » where R, 1s the vector position of the airplane center of

grav1ty and Rf indicates the vector position of any particular fuel
center of grav1ty. The vector Ry 1is constant; therefore, Ba = 0.
To obtain B}, note that to first order

% . Bf._ iZf sin(yo +6 - ﬂf) - ;zf(gf - coé,yo - ¥ sin 70) +
kle cos(yd %fe - qf)
o Bf - ilglsin 74 + (6 -an)cos 7&] - ;zf(gf - @ cos 75 - ¥ sin 70) +

'.ng[}os 70‘- (6 - ng)sin 74}

where R. 1s the fixed position of the tank center. Since 7o 1s

constant, to first order

i §

R, = ilf(ﬁfA— é)éos>7o - ng(gf - ¢ cos 76 - V¥ sin %o) +

3¢ i - &)sin 76



NACA TN 2280 : : 11

Again keeping only first-order terms leads to the following equation:

®XRp x ®X Re + ilgb cos 74 - ;zf(é cos 7o + ¥ sin 70) + klg6 sin 7,

Now combining the last two equations gives

¢

' ' v L. ' Lo ; : .
@ X Bf + Rox © X Bf + i’]fzf €Cos Yo - _J_ngf + Elfnf sin 7,4 (5) .

This equation shows; as could be predicted physically since no viscous -
force is assumed between the tank and the fuel, that the airplane rota-
tion affects only the motion of the tank center.

From equations (&) and (5) the necessary translational velocities
can be obtained for the translational kinetic energies. The rotationsl
velocity of the airplane is simply . The spinning motion of the fuel
about the vertical axis is ignored; then, the rotatlonal velocity of
the fuel may be given by the components g and 1. The two corre-
sponding horizontal axes ‘of rotation through the fuel center of gravity
are principal axes of the spherical segment of fuel; consequently, no
product-of-inertia terms occur in the fuel rotational energy. Also,
since the airplane center of gravity is in the airplane symmetry plane,_
Iyz = Ixy = O and only the IXZ product of inertia w1ll appear in

the airplane rotational energy.

By use of equation (h), the airplane velocity can be shown to be
, .Y.a = }_(UO + u +. éRZa - 'llfRya) + A(V + {VRxa —¢Rza) +

k(w + PRy, - 6Ry,) : - | | (63)-

When equation (5) is substituted in equation (L), the velocity of any
particular fuel center of gravity is .

Ve = E(Uo +u o+ éRZf :_ﬁRyf + fiply cOS 70) + Q(v.+ &Rxf ‘_¢sz - éfzf) +

7

E(wﬁ+;¢RYfi‘iéRXf + figly sin 70) A (6b)
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If V 1is the magnitude of the translational velocity of the center
of gravity of a rigid body, I' its moment-of -inertia tensor about the
- axes through its center of gravity, and w the rotational velocity of
the rigid body, the kinetic energy is

1 ”) 1f;y 2 r D 1 D ' v ‘ v 1
By =3 mv= =+ §(Ix‘“x * LywyT + 1w, - 2lypanm, - 21y 0, - 2IXY“)x‘”y)

(1)

Thus, for the kinetic energy of the airplane, substitutibn of equa-
tion (6a) in equation (7) gives

By, - “’g_a[(uo b GRgy - VR P (v 4 iRy - Ry )2 ¢

: Lo I I, .
(v + Ry, - GRxa)e] ¢ 2P TP B2l ()

and, for the kinetic energy of each fuel, substitution of equation (6b)
in equation (7) gives

mf I3 ' . - 2
Ekf = ET[KUO + u + Gsz - WRyf + Tplp .cOS 70) +

. (v + waf -.¢sz - éflf)g + (W + ¢Ryf - éRxf + ffly sin 70)%] +

If I |
£ ¢ e - '
2 Pt W o (8v)
. k -
- For the total kinetic energy, Ej = Eyg + zz: Exp; therefore,
=1

equations (2), (3), and (8) may be used in equation (1) to obtain the
(2k + 6) equations of motion. However, it must again be recalled that
the coordinate system is rotating. The whole system is therefore sub-
Jject to an additional gyroscopic acceleration since the time-derivative

‘



NACA TN 2280 A 13

operator contains an additional gyroscopic term (see reference ‘6) when
the components of the velocity (or any vector) are taken in the rotating
system: ‘

*

I~
I

EL e + W X
5t = @

Thus the gyroscopic acceleration acting on the whole rotating system is
@xr=0x (i +y)n (@xi)o= 3jUo - kbU,

The effect of this acceleration can be brought into the equations of
motion by considering the inertial reaction of the total mass to this
acceleration as an additional applied force. If the total mass is

. k .
my = mg + E mf, this reaction has the follbwing components:
f=1 : : ‘

Y'

1]

- thd¢ '», (%)
: 9
z = m U0

In addition there is the inertial reaction torque M% " on the fuel; this

torque acts about the tank center and is caused by the acceleration of
the tank center. For each tank, the vector reaction torque is

My = (B - Re) x meo(-37 + 19)
= meo[Kiilf siﬁ fo + klp cos 70) X (}Q¢'+ Eé) + Second-order ferm%]

~ mflon(i¢ cos 7o + J6 sin yo + ki sin 70)

. v ' . ’ v o
Since M, = (Mf)x cos 79 f'(Mf)z sin 7y, and Mﬂ = (Mf)y%
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My = mplpUg¥(cos? 12y0) = meleUgb
¢ = meleUo¥lcos™yy + sinyg) = melel, .- (10a)

M;] = mfoer sin 70 o (lOb)

The forces and moments in equations (9) and (10) must be added to
the weight and aerodynamic forces to obtain the Q; in equation (1).

For convenience, the results of equations (2), (3)A, and (8) are
as follows:

~

Ep=36 Z mele (62 + ng) © (11a)
o=l : ,
Ey = —-[U +u+ 6Rzy - YRy, P + (v + YRy, - PRz, )

(w + §Ry, - éRxa)e] + Z m-g-[(Uo +u + ORgp - \izRyf + Tglp cos 70)2 +

K 4
I I I p

X 2 Y .2 7 .2 vy 1l 1 2 v oo 2 ;
FHFC w1 na)  om

Equations (9), (10), and (11) may now be used in equation (l) to
obtain the equations of motion., It should be noted that

i =9 . é—, _Q = é—, and - _B_ = -é- " For example, to. obtain
k) B(UO + u) du By Aav dz Bw
the equation of motion in the x-direction, note that

OEy _ OBp _

dx. - ox
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Then, equation (1) may be written as follows:

= ma(ﬁ + 6Rg, - #Rya) Yy mf(ﬁ + BRzp - YRy, + Tple cos 70)

]
&
e
+
©
I
&
o
N
)
+
B
%
N
N

. -k
- "’(maRya * 12:1 mfRYf> ¥

fgmple cos 7, : ‘ (12)

The position of the origin of airplane coordinates has not yet been
specified. Equation (12) and the similar equations obtained in the
other degrees of freedom suggest that the position of the origin be
determined by the follewing three conditions:

k |
mRe 1§1 meRy, = O | (13a)

- mgRy, mfRYf =0 B (13'1’)‘

i: e =0 : - (13¢)

H

Equations (13) imply that the origin is at the position of the total
center of gravity when the fuel mass is treated as being concentrated °
at the tank center.. This choice of the origin greatly simplifies
expressions such as equation (12). The physical reason for this choice
is again that the fuel does not rotate with the airplane; thus, a force
acting on a line through this point, the center of gravity where the fuel
reaction is assumed concentrated at the tank center, will produce no
rotation of the airplane.
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The following substitutions will also greatly simplify the writing
of the final equations of motion:

—
>4
i
—
<
+
| =]
Q<’JU
)
+
';U
N
m
f\)
I_—I
I
l__l
t<’JU
)
p g
+
—~
=)
N
H
~——
—_

> (1ka)

]
Iyg = Ixz *+ TaRx Rz, + fZ_l meRx Rz

- -

Note that the quantities defined by equations (l4a) are the total moments
and product of inertia about the origin of the airplane coordinates

when the fuel mass is assumed to be concentrated at the tank center.
.Finally, the necessary moments of inertia of each fuel pendulum about

the tank center are

2

Icf Iéf + mele
S  (1kb)

I, = I. + mplel
e = " T BEL

Without loss of generality then, equations (13) and (14) dre used in
the equations of motion obtained by substituting equations (9), (10),
and (11) in equation (1). The general equations of motion can now be
given as follows:
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- ) . .-\‘

k )
e 3 ngtgi cos 7, - X | |
f=1 . .

k
mt(v'r - Uoé) + fZl melefe 5in 7, = Z

. i .. i .“
Iy6 - (maRxaRya + fgl mfRXfRYf)é - (maRzaRYa * ot mfszRYf)‘k *

i f (15a)
sz cos 7g - Rxf sin 7o)mflqu =M
f=l
Inlﬁl + mlzl [gql + 1 cos 74 + (w - er)sin Yo * Ry1¢ sin %, +
§(Rzl cos 7, - Rx, 5in 70) - -Ryl"J; cos 70] =0
-’
, ~~
me(¥ + UoV) - é mplele = Y
IV - Iz - (maRyaRza + ; mfRyfsz)e -
k . - v '
Z mfzf(Rngf + R}’fnf cos 70) =N
f=1 : .
& (15v)

‘ k “”
Iyf - Ixg¥ - (maRxaRya Z meRy o Yf)e
i lo(Rople + ne 8in y,) = L
- mf £ Zf§1; Ry Ne o)

I;l.él + mlll(ggl - ‘-’ - Uoik + Rxl.“:"' Rzl¢) =0
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In equations (15a) and (15b) only the fuel equations for the first fuel
tank have been written. 1In each set there are k similar fuel equa-
tions. As has been previously stated, the forces on the right-hand sides
of these equations are the applied forces and the weight and aerodynamic
forces. ‘ .

Simplifying Assumptions

The equations of motion have been separated into what would gen-
erally be considéred the longitudinal motions, equations (15a), and
the lateral motions, equations (15b). In the ordinary six-degree-of-
freedom case, as can be shown from considerations of symmetry, no
- cross-coupling terms exist between these motions in the aerodynamic’
forces (see reference 7). Although such terms are known to.exist in
practice, they are small and generally neglected. However, many cross-
coupling terms occur between equations (15a) and equations (15b) because
of the fuel motions, even when the aerodynamic coupling forces are
ignored. The magnitudes of these fuel forces can be seen to depend on
the masses of the fuels, the vector positions of the fuel tanks, the
"pendulum length" (i.e., the radius of the tank and the height of the
fuel), and the accelerations involved in the fuel motion. Increasing
the magnitude of any of these parameters will increase the effect of
fuel motion. - For most airplanes these fuel forces will be relatively.
small, but the present investigation is priqarily concerned with all
first-order fuel effects. In any particular. case, the actual magnitudes X
of these forces may of course be obtained by inserting the values of
the previously mentioned parameters.

Symmetrical fuel distribution.- Some of the terms in equations (15a),

for example, the ¢ and ¥ terms in the 6 equation, are essentially
product-of-inertia terms arising from unsymmetrical distribution of the
fuel about the y = O plane (i.e., the plane of symmetry). That this
is so can be seen if the fuel tanks are assumed to be distributed
symmetrically with respect to the symmetry plane; that is

\

k k. k
) mR Ry, = ) mfR; Ry =} meRy_ =0 (16a)
= B R S ot =1 f :

and from equations (13)
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therefore, these terms vanish for symmetrical fuel distributions. In
most cases the fuel will be symmetrically distributed, and substitution
of ‘equations (16) in equations (15) yields the equations of motion for
symmetrical fuel distribution: ' ' ’

k
mu + }: meleilp €OS 7o = X
f=1 .
. k
mt(w - er) 4+ 1;1 Ipflf'qf sin 75 = 2

k
Iyé + 12:1 (sz cos 7o - Rxf sin 7o)mflfﬁf =M

> (17a) -
Inlﬁl +m 1y l:gr‘l + 1 cos 7 +,(€z - Uoé) sin 74 + Ryl¢ sin 7, +
é(Rzl cos 74 - Rxl sin 70) - Ryl'\[r cos 70] =0
. o )
L E s
m_t(v + Uo\lf) - 1; m.flfg'f =Y
IV - Iy - 1; mfzf(Rxfgff Ry fig c0s 75) = N
4 B v ‘ b (170)
Igh - Ixgb + ) ‘mflf(szCf + Ry Tig sin 70) =L .

=1

Iglgl + mlll(gcl—\} - UOW + Rxl\lf - Rzla) =‘O

. ’ | - | J
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In equations (17) even though the terms arising from unsymmetrical fuel
distribution have vanished, some cross-coupling terms still remain
between equations (17a) and (17b). These terms occur in the 17 equa-
tions of set (17a) and in the § and V¥ equations of set (17b). - The
significance of these terms is evident since each contains a factor Ryf

Thus, these terms arise when the airplane has fuel tanks with centers not
in the plane of symmetry, even though they are symmetrically distributed
with respect to this plane. For example, they would arise for wing-tip
tanks. Physically, these terms clearly give the interaction between’

the longitudinal fuel motion Ng 1in the wing-tip tanks and the airplane

rotation about the vertical axis, which consists of the lateral
motions ¢ and V. For example, assume for simplicity that Y0 = 0;

then, a yawing acceleratlon of the airplane will cause a longitudinal
fuel acceleration nf in the wing-tip tanks, and vice versa.

From this discussion the 1 motion appears to couple the lateral
and longitudinal airplane motions even for the perfectly symmetrical
fuel distribution described by equation (16a). However, the fact that
this coupling does not occur can be seen by considering any pair of
symmetrically placed and loaded tanks. Designate the 1 motion in
this pair of tanks by Uiy and e Then, the 1n equations in equa-

tions (17a) show that a longitudinal horizontal acceleration of the

tank gives rise as expected to 7 accelerations. Since the system

is linear this portion of the 1 motion may be considered 1ndependently,
and because of the symmetry of the two tanks it is seen_ that nl = n2

for the portion of the n motion arising from the longltudlnal motion.
Therefore, in the ¥ and $ equations of set (17b) the effects of
this 3 will vanish since Ryl =‘—Ry2. In a similar manner the laterally

caused 1 motion can be shown to have no effect on the longitudinal
motion. Essentially the argument is that the 1 motion for each pair
of tanks can be split up for perfectly symmetrical fuel distribution
into symmetrical and antisymmetrical motions. The symmetrical portion
of the n motion for each pair of tanks couples only with the longi-
tudinal motion; the antisymmetrical 1 motion couples only with the
lateral motion. Thus, for perfectly symmetrical fuel distributions
the n equations of set (17a) could be combined with set (17b),
only lateral degrees of freedom in the 1 equations being used (since
the symmetrical portion of the 1 motion .is of no interest); or

the 17 equations may be used as shown with equations (17a), the lateral
‘ degrees of freedom in the 1 equations being ignored.

Fuel tanks centered in symmetry plane.- Many airplanes have large

internal fuel tanks which are centered 'in the airplane symmetry plane.
For such airplanes the equations of motion may always be separated into

independent lateral and longitudinal modes since Ryf = 0. . Using this
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value "in equations (17) gives the equations of motion for tanks'centered

in the symmetry plane:
k
mu + Z melefp COS 74 =X
=1 :
- ‘ k
mt(w - UOG) + fgl'mflfnf sin Y0 = 4

k .
Iy6 + ) (Rgp cos 74 - By, sin 7o) melep = M
£=1

Iﬁlﬁl + myly [g'ql + U cos 7o t (ér - Uoé) sin 7, +

(Rzl cos 7o - Ry, sin 70)'6)] =0 .

. k . §
m (v + UY) - igl melefe = ¥

’ k ..
IV - Iy - fZl mpleRy Sp = N
. o .. k .
Iy @ - Iyxgh + 1; meleRy lr = L

-

I G +miy(ety -V - Uol Ry V - Ry ) =0

¢ (18a)

> (18b)
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Each set of equations, (18a) and (18b), contains (k + 3) variables;
the two sets can be seen to be independent of each other since the
{ motion of each tank couples with only the lateral motion and the
n motion couples with only the longitudinal motion.

For the case of a single fuel tank at the airplane center of gravity
the modification of equations (18) is obvious. Then R, = Ry = 0, and

all coupling between the rotational motion and the fuel motion vanishes;
that ié, all the fuel terms in the rotational equations vanish and all
rotational terms in the fuel equations vanish. For an aspherical tank
the rotational coupling in this case will be small.

Limitations Inherent in the Approximations

Before proceeding to the application of equations (18b) it is
appropriate to consider somewhat more explicitly the assumptions involved
in the indiscriminate dropping .of all second-order terms which appeared
during the derivation of the equations of motion. In this connection
the correction, arising from. the airplane accelerations, to the constant
acceleration field g dinvolved in the pendulum potential energy should
be considered. The assumption which is implied in neglecting these
accelerations is that the accelerations of the tank centers are small
with respect to g. ‘ '

Considering this and previous approximations, it can be seen that
three essential assumptlons were made in dropping second—order terms' !

(1) The fuel and airplane angular displacement variables are small
enough so the angle approximates its sine., However, this approximation
sometimes took the form that the angle was much-less than 1 radian.

‘(2) The disturbance velocities are much less than Uy, and products
of the linear or angular velocities can be ignored.

(3) The accelerations of the tank centers must be small compared -
to g. '

Strictly speaking then, the statement that the equations of
motion (15), and also the simplified equations, are accurate equations
of motion to first order is to .be taken to mean that the motions to
which these equations apply are restricted by the preceding three con-
ditions. Thus, the equations would appear to remain accurate at least
at the beginning of a disturbance. Moreover, when the motion becomes
large enough that these assumptions break down, the fundamental physical
assumption that the fuel may be considered to move as a rigid body also-
breaks down; therefore, nothing can essentially be gained by keeping
higher-order terms in the mathematical expressions.
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Since the pendulum motion is little changed even up to angles
of 30°.to 409, it could be expected that aside from splashing effects
these equations should remain a good to fair approximation even at such
angles. On the other hand, even the splashing effects, dlthough they
would introduce somé damping and change the inertial characteristics
of the pendulum somewhat, could certainly not be expected to cause the
general assumptions to break down completely for fuel motions up to
angles of 30° to 40®, Therefore, the equations of motion derived are
assumed to present a fair picture of the disturbance motion even up to
fuel displacements of this magnitude.

“

APPLICATION TO SEVERAL CASES

Nondimensional Equations for Tanks in Symmetry Plane

The equations of motion (18b) have been applied to the lateral

motion in several cases with two fuel tanks in the plane of symmetry.
In these cases the lateral motion can be considered independently. The
applied forces are the weight, the usual aerodynamic forces linear in
the disturbance velocities, and any disturbing forces that may be
present. In order to put the equations in nondimensional form, the
nondimensional lateral airplane equations are used as obtained in refer-
ence 8. The fuel equations are made nondimensional by making the
standard transformation to nondimensional time derivativg, as in the

. : 1a0 - .
airplane equations, and then dividing through by EE;%;E_‘ The resulting
nondimensional expressions in the following eyuations are defined in
equations (20):

p_-1Llc 1 1 152
(ubD -5 CYB)B + (pr - 5 Cg, tan 70)11; - 508 - by 5 D% -

1
2 L2

1R
1 252 1 X1

ZeRx2

b2

Kby, D%, = Cn _ ' (19b)
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. ‘ R
1 2 _ 1 172y
LoR; . : o
Wb, b22 0%, = : (19¢)
(R R o
B - (% D2 + D)q; =y (1{121)2 " G) £, = 0 (194)
R R |
—DB—<%2-D2+D>W+-%D2¢+(K22D2+G)§2=0 (19e)
where
G-:bi Kf24= If Ie =1 : (20)
0.2 ol h £= "y

The derivatives Cy and Cy  were assumed to be zero,
P r

Methods of Solution

In the present case the two fuel -degrees of freedom introduce two
additional oscillatory modes into the characteristic solution, in
addition to modifying the original airplane mode, The motion will
therefore be a combination of three oscillations (aside from the less
important exponential modes), but just knowing the three oscillatory
roots is insufficient to indicate the type of motion since the relative
magnitudes of the oscillatory modes must also be known. For this
reason motions must be calculated in order to see the actual effects
of the fuel motion. However, in several cases the characteristic roots
were also found in order to facilitate the interpretation of the motions.
‘These cases will be discussed subsequently. i
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The most convenient method for the analytical solution of a set -
of linear ordinary differential equations such as equations (19) is
probably the Laplace-transform method (see reference 8). However this,
method is extremely cumbersome and difficult to check since it- 1nvolves
the expansion of fifth-order determinants in which the elements are
often quadratic functions of the characteristic root. Therefore, it
seemed preferable to use some step-by-step method which would be more
amenable to machine computation.

Reference 9 gives a matrix method for getting the step-by-step
solution of a set of linear ordinary differential equations. When
applied in the present case to equations (19) this method results in
a simultaneous solution for the motion in each of the five degrees of
freedom and also for the motion in D@, Dy, DCl, and DC The cal-

culations were -carried out on the Bell Telephone Laboratories X-66T4k
relay computer in use at the Langley Laboratory. The essential details
of the method are given in appendix A. :

Solutions for Several Cases

The two basic cases for which motions were calculated were case A,
a present-day high-speed airplane with two fuel tanks satisfying the
conditions for equations (19), and case B, which corresponds essentially
to case B of the model used in reference 2. The essential parameters
for these two cases are given in tables I and II. Table II gives the
. conditions for case A when both tanks are one-half full (A;) and when

the fuel height equals one-half the radius (Ap) and for case B when the
fuel heights in both tanks are 2 inches (B,), 3 1nches (B3), and
k4 inches (BY).

In case A the tanks are spherical, somewhat over L4 feet in dlameter,
and centered on the body axis approximately 4 feet in front of and behind
the airplane center of grav1ty. The flight conditions are given in
table I. The fuel weight in the half-full condition is approx1mately
25 percent of the total -weight.

In case B the tanks are spherical, centered in the plane of sym-
metry slightly less than'5 inches below the airplane axis and 4 inches
in front of and behind the model center of gravity. The diameters are
8 inches and the total fuel weight in the half-full condition is
approximately 46 percent of the total welght The flight conditions

are the same as in reference 2.
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Motions were calculated for certain subcases of the basic cases
which were obtained by varying certain significant parameters. By
comparing the resulting motions an attempt was made,to evaluate the
effect of varying such factors as amount of fuel, position of -tanks,
and relative natural fuel and airplane frequencies on the disturbance
of the airplane motion caused by fuel motion. Also various initial
conditions were considered to show the effect of initial conditions on
the resulting motion. In some cases an initial disturbance in sideslip
was assumed, and in other cases an initial fuel disturbance was assumed,
An initial sideslip of 5° and a fuel displacement of 10° were arbitrarily
chosen as standard. Since the equations are linear, multiplying the
initial displacements by a common factor simply multiplies the resulting
motions by the same factor. In this connection it must be emphasized
that, if at any time the calculated motion in any degree of freedom
becomes too large to satisfy the equations, the following motion is
meaningless For example, if a 5° displacement in B gives rise to a
fuel motion much greater than 30° to MOO, the accompanying B motion is
meaningless because the assumption of small displacements is violated.
However, if multiplying the fuel motion by some arbitrary factor, for
example 2/5, will bring its peaks down to less than 30° to MOO, then
the B motion resulting from an initial B disturbance of 2° can be
obtained by simply multiplying the previous B motion by 2/5 also, The
effect of large fuel displacements must be discussed qualitatively.

The motion in sideslip and the motion of the two fuel pendulums in
the various subcases are shown in figures 2 to 12. Comments on these
motions are presented to facilitate interpretation of the figures. The
period of each fuel pendulum is called the natural fuel period. The
period and damping of the airplane, the fuel being disregarded, are
called the natural airplane period and -damping. )

Case Aj,- The natural fuel periods for case Ay (half-full tank)

are approximately 1.66 seconds and the natural period of the airplane
alone is 1.40 seconds. Damping to half-amplitude occurs in 2 cycles.

The motion in figure 2 is for initial By = 2°. The early [ motion
seems to have more damping than the natural asirplane mode. The disturb-
ance arising from the fuel modes is evident after 2 cycles. That the
irregular residual oscillation of amplitude 1/4° to 1/2° is essentially
due to the fuel modes is seen from the fact that the dominant period in
the later motion is approximately 1.6 seconds. Notice that in this case
. a 59 initial Bo would almost immediately cause fuel displacements of

over 800, so-that the following motion would be radically changed.

The motions shown in figure 3 for (Cl)o = (CE)O = 10° are quite _
regular and indicate one dominant mode in each motion. The fuel period
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is 1.6 seconds. The airplane period starts at 1.4 seconds and builds
up to 1.7 seconds and averages 1.6 seconds. The amplitude of the side-
slip motion is very small. The largest such motion which could occur
for this type of disturbance would be for initial (gl)o = (§2)o = 300

and would give B amplitude slightly more than 0.1°,

The small amplitude of the sideslip motion in figure 3 was sur-
prising. It was conjectured that for this fuel configuration the fuel
displacement (Cl)o = 10° and (g2)0 = -lOo, corresponding essentially
to an initial yawing moment, might be more effective in inducing an
airplane oscillation. (See fig. k4.) Apparently, this configuration is
more effective inasmuch as the sideslip motion now builds up to an
amplitude of approximately 0.4°, The energy necessary to induce this
considerable "snaking" type of oscillation seems to be obtained initially
from the rear-tank motion, which is in the proper phase relation with
the sideslip motion to feed energy into it at the start of the motion.

The fuel periods'in the regular motion are slightly over 1.6 seconds.
The airplane period increases from 1.5 to 1.8 seconds and has an average
- period of 1.6 seconds.

Case Ap.- The natural fuel periods in case AD are approximately

1.52 seconds and the natural airplane periqd is 1.49 seconds. Damping
to half-amplitude occurs in 1.3 cycles,

The motion in figure 5 is for initial Bo = 0.5°. The early side-
slip motion seems to be of greater damping than the natural airplane mode,
The residual airplane motion arising from the fuel modes sets in very
quickly and is & regular unstable motion of very large relative amplitude,
with a period of. approximately 1.7 seconds. Both fuels start with a
period of approximately 1.5 seconds, which increases to 1.7 seconds.

In figure 6, (£;), = -10° and (tp), = 10°% The sideslip builds
up to a fairly regular oscillation of 0.L° amplitude, with the period
increasing from 1.5 seconds to 1.7 seconds. The fuel motion has a
period somewhat under 1.7 seconds, with amplitude quickly building up
to the limits where splashing must become important.

Case Bo.- The sideslip motion shown for case Bé appears to be a

normal damped oscillation for the first 4 seconds (fig. 7, By = 5°),

but then the peaks show a slight irregularity instead of damping smoothly.
The period of the early sideslip motion appears to be somewhat over

0.9 second and the motion damps to half-amplitude in less than 2 cycles.
This motion is very close to the undisturbed airplane mode (period of

0.92 sec and damping constant of l% cycles). The natural fuel. periods
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are 0,61 secdnd. The fuel motion is very irregular and obviously con-
tains considerable amounts of at least two characteristic modes.

Cases B3 and B).- The motion in cases B3 and B) shown in figures 8

and 9, respectively, for By = 5° 1is very much the same as in the pre-
vious one, except that the disturbance of the airplane mode in the
sideslip motién appears somewhat more pronounced as the amount of fuel
increases.

Figure 10 (case By, (¢1)o = (t2)o = 10°) shows that the motion in

sideslip resulting from the fuel displacement is much more irregular
than in case A. The dominant mode corresponds to a fuel frequency, but
apparently the airplane mode is present with considerable amplitude.

The maximum oscillations are approximately *1/4°. The sideslip motion

in this case was much more irregular than for the corresponding initial
conditions in case A. It was conjectured that this might be caused by
the fact that in this model both tanks are below the X-axis, so that the-
coupling of the fuel motion with yawing and rolling motions does not

have the same phase relationship as in case A where one tank is gbove
and one below the X-axis. Therefore, in case Bha shown in figure 11, the

front fuel tank was assumed t0 be above the X-axis, all other conditions
remaining as 1in case By, 1In this case the general type of motion does
seem to resemble that in figure 3. The sideslip, which builds up
to +l/h°, shows a snaking at the fuel frequency.

In case A the fuel natural perlods are very close to the airplane
period. In case B, however, the fuel period is approximately two-thirds
of the airplane period. In case By, shown in figure 12 for B, = 59,

the value of CnB of the model has been arbitrarily changed to give

the model a period very close to the fuel period of 0.66 second. Com-
parison with figures 2 and 5 shows that the motion in this case is very
much like the motion in case A.

Transverse accelerations.- In evaluating pilots' reactions to

snaking oscillations, the magnitude of the transverse accelerations
involved in the oscillations has been found to be.an important factor. -
Acceleration amplitudes above 0.025g are found to be bothersome, and
amplitudes above 0.08g are considered very unsatisfactory. Calculations
of the transverse accelerations involved in several of the previous
motions were carried out. The magnitudes of the acceleration peaks in
the residual oscillations were found to. be approximately 0.0kg to O. 05g.
The actual motions are not shown since all the airplane oscillations are
essentially of the same type as the B motions.
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DISCUSSION OF RESULTS

The motions described in the preceding section are sufficient to
give a fair picture of the types of possible fuel effects. Moreover,
since each motion is just a superposition of the characteristic modes
of the total system, these motions are often easier to understand if
the characteristic roots are known. Physically it is clear that the
characteristic modes will not differ much from the natural (uncoupled)
modes when the interaction between the airplane and fuel is small,
Comparison of figures 2; 5, and 12 with figures 7, 8, and 9 indicates
that the interaction between airplane and fuel is strongest when the
frequency of the airplane is close to that of the fuel, as might be
expected from comparison with the resonance phenomena exhlblted by an
oscillator driving a system at its natural frequency. For this reason
the characteristic modes of the total system were calculated in cases A

and By, where the frequency ratio between airplane and fuel natural

frequencies was practiceally unity. The. natural modes are given for
purposes of comparison. The results are given as follows in terms of
periods and times to halve or double amplitudes, in seconds:

Case Ap, natural modes:
.Pa_= l.)+9, Tl/2 = 1.91; Pl = P2 = 1.50
Case A2,>total system:
P, = 147, Tl/2 = 61; P; = 1.29, Tl/2 = 1.3k; P, = 1.67, T, = 4,56
Case By, hatural modes:

P, = 0.66, Ty/p = 1.29; Py = Py = 0.66

Case B, total system:

]

P, = 0.65, Ty, = 30; Py = 0.54, T, = 1.5; P = 0.71, Ty/p = 0.18

In these cases of large interaction it is difficult to identify
one of the characteristic modes as the airplane mode. The character-
istic mode in which the period is changed least from the natural air-
plane period has been called the airplane characteristic mode.’ However,
in figures 5 and 12 this mode is not obviously the domlnant one, as the
airplane mode is in figures 7, 8, and 9.
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The most important effects to be noted in these particular cases,

. where the fuel and airplane frequencies are equal, are that a charac-
teristic mode which is very lightly damped with a frequency close to
the natural airplane frequency exists and that an unstable mode appears.
In connection with the first of these effects, it would seem that,
theoretically, certain initial conditions might be found that would
excite mainly this lightly damped mode in the characteristic solution
for B, so that the resulting motion would be a typical snaking. Of
course the required initial conditions might or might not be practical
ones.

The total characteristic modes were also calculated for cases Bu
and B, to investigate the changes in motion caused by a hypothetical

shift of one of the fuel tanks. The natural modes and the characteristic
modes of the total system are given as follows for comparison:

Cases B) and B),, natural modes:
Py = 0.84, Ty /5 = 1.64; Py = P; = 0.66

Case By, total system:

Py = 0.88, Ty/p = 1.91; P; = 0.63, Ty/p = 5.45; P, = 0.53, T1/2 = 1.61
Case B),, total system:
Py = 0.86, Ty /p = 1.14; Py = 0.61, Ty /p = 19.5; Py = 0.60, Tp = 10.2

It is interesting to note that both fuels in figure 10 and also in
- figure 11 seem to follow the more stable fuel mode in the part of the
motion shown. The B motion in figure 11 seems to show the effect of
the unstable mode. It appears in this case that, when the fuel tanks
are in front of and behind the center of gravity, the configuration with
one tank above and one below the X-axis gives rise to an unstable mode,
whereas the configuration with both tanks below the X-axis makes both
fuel modes stable. o

A comparison of figures 2 to 4 or figures 5 and 6 clearly shows
that the initial conditions can have a very important effect, since the
least stable mode does not necessarily become dominant for a long time.
The B disturbance was chosen as a typical airplane disturbance. On
the other hand the disturbance of the fuels as an initial condition
. would seem to be completely artificial. However, these motions are
believed to give a rough idea of the residual oscillations caused by
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fuel motion, at least insofar as magnitude is concerned, since, if the
fuels were still displaced after the airplane motion had practically

died out, the remaining motion might be considered:to be the type caused
by a fuel displacement. From this point of view figures 4, 6, 10, and 11
seem to indicate that residual oscillations of the order of magnitude )
of l/lto to l/2° might be expected in these cases. Actually, figures 10
and 11 would show oscillations of the order of 3/4° for 30° fuel
displacements.

Because of the lengthiness of the éalculations, only cases Ay, Ap,
and Bhb were carried out far enough to show the residual oscillations

following a B disturbance. It is evident that the motion in case Bhb

(fig. 12) resembles the motion in case A (figs. 2 and 5) much more than
it resembles the unmodified case B motion (figs. 7 to.9).‘ The reason
for the smaller relative fuel motion in case Byy is probably the fact

that the relative fuel mass is considerably larger than in case A. In
case Ap (fig. 5) the residual oscillation dominates the motion almost
immediately. These results show that the importance of the residual
oscillation depends mainly on the closeness of the natural airplane and
fuel frequencies, that is, on the parameter which might be called the
frequency ratio. Inasmuch as the previous discussion of the character-
istic modes indicated that the frequency ratio was also the most impor-
tant factor affecting the characteristic modes of the system, the
frequency ratio generally can be seen to be the most important factor
determining the disturbance of the normal airplane motion caused by the
fuel. Moreover, case A indicates that for spherical tanks the fuel
frequency may easily be of the same order of magnitude as the airplane
frequency. Reference 4 indicates that the same is true for rectangular
tanks and for arbitrarily shaped tanks of reasonable dimensions. Thus,
even though the residual oscillations might occur at fuel frequencies,
these frequencies would not be distinguishable from the normal airplane
frequency in the cases where the fuel effect is most pronounced, since
in these cases the frequency ratio approaches unity.

The effects of unstable modes cannot be understood without con-
sidering the nonlinear effects due to splashing of the fuel. For linear
systems the presence of an unstable mode would imply that the total system
is unstable. It has been shown, however, that in an actual motion if the
coefficient of the unstable mode in the solution for the airplane motion
is very small compared with the coefficient of one of the stable modes,
then the unstable mode will not appear in the early part of the motion,
Now even in cases where the interaction is weak, one of the fuel modes
(with no natural damping assumed) may be unstable. In such cases the
unstable mode in the airplane motions will be relatively very. small,
‘while the unstable mode may be dominant, in one of the fuel motions.

Then this fuel moticn may become very large tefore the eéffect on the
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airplane motion can be observed. At this point splashing will set in
and the equations of motion no longer hold. Actually the energy lost
in splashing may damp out the fuel motion so that the effect of this

fuel motion - and therefore of the unstable mode - may never appreciably
appear in the airplane motion.

4

In case A,, however, the interaction is large, and figure 5 shows

that the unstable mode does soon become very important in the f motion.
Here again the effects of large-amplitude fuel motion and, in particular,
the nonlinear effects of fuel splashing should be considered qualitatively.
In cases Ap and Ap, because of the strong interaction, a sideslip of 5°

would very quickly give rise to fuel displacements of the order of magni-
tude of 90° or greater. Physically, it is clear that the airplane motion
is feeding energy into the fuel motion in this early part of the motion.
Because of the large amplitudes of the fuel motion, a large component of
this motion is in the vertical direction, so that a considerable part

of the energy in the fuel motion will go into creating longitudinal air-
plane motion. Because of the symmetry conditions previously cited this
energy will not be fed back into lateral motion, so that the fuel tends
to stabilize the lateral motion by feeding some of the energy from the
lateral into the longitudinal motion., Also the turbulence due to
splashing will absorb energy which will then be lost altogether from

the motion. ' . ~

One conclusion which can be drawn from this discussion. is that the

motion following large disturbances may be more stable than that following
small disturbances, For example, the initial disturbances in figures 2
and 5 have been adjusted so that during the motion shown there is little
splashing, and considerable residual oscillations are shéwn. But if the
initial disturbances in these cases had been 5° or more in B, the .
~energy lost in splashing in the early motion would possibly be so great
that the residusl motion in B would be smaller than that shown here.
This might explain why some airplanes which definitely showed trouble-
some fuel oscillations were reported to be more stable in conditions

of large atmospheric turbulence than in slightly turbulent atmospheric
conditions. :

. A more important conclusion is that the fuel can be used to sta-
bilize the airplane motion by introducing turbulence, by use of appro-
priate baffles for instance. This can be seen by noticing that the
early part of the B motion in figures 2 and 5 is very stable. But
if most of the energy fed into the fuel in this part of the motion were
converted into heat through turbulence, then as has been pointed out
this energy could not be fed back into the airplane motion and the
residual oscillations would not appear. Since the amount of energy lost
in turbulence cannot be calculated analytically, it would seem that an
experimental investigation of the effects of honeycomb or other
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turbulence-inducing baffles on the airplane stability would be desirable,
especially in cases where the airplane and fuel natural frequencies are
approximately equal. :

Finally it.is possible in a strongly unstable case of residusl -
oscillations, such as shown in figure 5, that the fuel may lose Jjust
encugh of its energy in splashing to reduce its amplitude to where the
motion is again smooth. Then, because of the instability of the system
for small motions, the amplitude might again begin to build up. In
this way continued oscillations of a more or less regular nature would -
occur when the calculations neglecting splashing show unstable motion.
This result is important because it shows that somewhat irregular small-
amplitude oscillations can be expected when the ratio of the airplane
natursl frequency to the fuel natural frequency approaches unity, even
for moderate fuel masses of the order of ome-tenth the total mass or
less,

EFFECTS OF ASPHERICAL TANKS

. The calculations have been carried out for rigid-body motion in
spherical tanks only. Actually this assumes that for small oscillations
the fundamental wave motion in spherical tanks approximates rigid-body
motion, This approximation only applies when the tanks are one-half full
or less. This restriction is not too serious, however, since the fuel
motion will generally have its greatest effect in this range.

It is important-to note that the potential energy of the fuels is
simply the potential energy of a set of harmonic oscillators located at
the positions Rp. Thus, the same general analysis will apply whenever

the fuel motion in the tank can be represented in terms of harmonic
oscillators with given effective mass and spring constant. Reference L
has already been mentioned as obtaining such a representation for the
fundamental mode of a rectangular tank. Usually the fundamental mode
will be the most important and involve the greater effective mass. It
is conceivable that for long tanks the second mode might be of a fre-
quency closer to that of the airplane, and in that case might be more
important. In such a case each mode might be represented by a separate
oscillator. As has been pointed out, the damping is mainly due to
turbulence and will be more important for aspherical tanks. For small
motions, however, the damping may still be neglected.:

From the general derivation of the equations of motion, the most
important result was the effect of fuel distribution on the coupling
of lateral and longitudinal motions. It is plain that these results
apply strictly only to spherical tanks., Consider for example a tank
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of triangular plan form located in the symmetry plane and oriented sym-
metrically with respect to this plane. Because of the symmetrical
orientation it can be seen that, although sideslip motion will give

rise to forward and rearward forces (because the pressure forces are

. normal to the diagonal surfaces), .the forward and rearward motion will
give antisymmetrical lateral forces which will cancel. In this case

the result would.be to feed energy from the lateral into the longitudinal
motion; this condition would be favorable since the longitudinal motion
is generally well-damped. For an unsymmetrically oriented tank of this ,
type, energy could be fed back again from the longitudinal to the
lateral motion and the problem would be quite complicated.

In general, the-results on coupling for spherical tanks would be
valid to first order for such symmetrical plan forms as the rectangular
or the diamond-shape ones. For any simple symmetrically oriented shape
in the plane of symmetry, a loss of energy from the lateral to the
longitudinal motion might occur. This condition would be favorable.
Finally, for tanks outside the plane of symmetry the same considerations
would be valid if the tanks were symmetrically placed with respect to
the symmetry plane and symmetrically shaped with respect to the plane
through the tank center parallel to the symmetry plane.

- CONCLUSIONS

The following conclusions may be drawn from the theoretical analysis
presented:

1. Considerable disturbances of the normal airplane motwon can be
caused by fuel motion,

. (&) The most important factor determining the effect is the
ratio between fuel and airplane frequencies. When these are equal
even moderate amounts of fuel (one-tenth the total mass or less) -
may cause considerable disturbances,

(b) The most usual type of disturbed motion is a somewhat
irregular small-amplitude oscillation and the type of motion is
strongly dependent on the initial conditions.

(c) The effects of splashing will be to make the motion
more stable, and the loss of energy in fuel turbulence may make
it possible to increase the stability by artificially intro-
ducing turbulence in the fuel.
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2. The fuel motion may cause coupling between lateral and longi-
tudinal motions.

3. The derivation of the equations of motion for spherical tanks
may be applied to any tanks where the fuel motion may be represented
in terms of harmonic oscillators.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 21, 1950
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APPENDIX A

A STEP-BY-STEP SOLUTION OF THE EQUATIONS OF

MOTION IN MATRIX NOTATION

A matrix method for solving the equations of motion is given in
reference 9. The first step in this method is to reduce equations (19)
to a set of first-order equations by introducing as new variables Dg,
DV, D&y, and Df{,. as described in reference 9 for DJ and DY. This

transforms the equations of motion into a set of nine linear first-order
equations in the nine variables. In matrix notation the equations may
then be written as follows when there are no applied forces Cy, C

or CZ:

n’

A(Dg) + Bg = 0 (A1)
‘where A and B are -ninth-order square matrices and q 1is the column

matrix (or vector), the elements (components) of which are the nine
variables, In partitioned form,

A= ——=1--= B=|-—"~1—-- q= [§2~)§1:¢:w:B:DCE)DC]_JDQS’D"V]

where 1I) is the identity matrix of fourth order; 045 and OSh are zero
matrices of order (4 x 5) and (5 x L), respectively; and

r— -

By, -ubelz/b -pblll/b 0 0
0 -ubelszg/b2 ‘ﬁbllexl/b2 HpKyz “szé
Ass =1 0 _“b2zéR22/b2 “blZlel/b? hpKy “ﬁsz
-1 0 K;° . Ry b ~Rxy [b
| -1 K52 0 Rz, [ “Rip[?]
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- . -
0 0 - % CL - % CL, tan 74 - % CyB
0 0 0 0 -%—CnB
Ces = [ O 0 0 0 -0y .
55 = 5> Cig
0 G 0 0 0
G 0 0 0 0
0 0 0 by ]
1 1
0 0 -Lc -=C
L Tp y Pr
1 1
E = 0 0 -=C - =C
5k L lp L ly
0 0 0 -1
0 0 0 -1

Equation (Al) may be solved for Dq by multiplying through by the
inverse of A:

Dy = -A"1Bq = Pq | B (a2)

~

Equation (A2) shows that, when there are no applied forces, the dif-
ferentiation operator with respect to nondimensional time may be

replaced by premultiplication with the matrix P = fA‘lB. For example,

note that D2q = D(Dq) = P(Dq) = P2q and that similar relations would
result for higher powers.

Now, by Taylor's expansion, the value of q(s + As) may be obtained
from the value of q(s) by the series

A 2
a(s + As) = q(s) + %s,- Dq(s) + (2?) DPq(s) + . . .




38 . ' , NACA TN 2280

By use of equatioh (A2), this equation can be written

| 2 :
q(s+As)=E9+[f—fP+%LP2+---]q(s)- - (A3)

'
©

which is the fundamental recurrence relation used in the step-by-step
calculation. 1In equation (A3), 19 is the ninth-order identity matrix.
The set of initial disturbances qg being given, the magnitude of the
step As will determine the number of powers necessary to obtain a
given accuracy in the solution. Because of the relatively high fuel
frequencies and because it was desired to obtain the motion to a rather
large number of periods with reasonable accuracy, the series in equa-
tion (A2) was used to the sixth power with As approximately 1/20 of
the airplane period. Thus, the matrix relation (A3) was

a(s + &s) = Qq(s) | (Ak)

where

2 (As)6
Q_219+%!§P+(§f) P2+..’.+(Z6Xf) pb .




NACA TN 2280 39

REFERENCES

Sternfield, Leonard: Some Effects of Nonlinear Variation in the
Directional-Stability and Damping-in-Yawing Derivatives on thé
Lateral Stability of an Airplane. NACA TN 2233, 1950.

, ‘Smith, Charles C., Jr.: The Effects of Fuel Sloshing ‘on the Lateral

Stability of a Free-Flying Airplane Model. NACA RM L8C16, 1948.

Lamb, Horace: Hydrodynamics. Reprint of Sixth ed. (first American
ed.), Dover Publications (New York), 1945, pp. 637-638.

Graham, E. W.: The Forces Produced by Fuel Oscillation in a Rec-
tangular Tank. Rep. No. SM-13748, Douglas Aircraft Co., Inc.,'
April 13, 1950. .

Whittaker, E. T.: A Treatise on the Analytical Dynamics of Particles
- and Rigid Bodies. Fourth ed., Dover Publications (New York), 194k,
p. 37. ’ :

Page, Leigh: Introduction to Theoretical Physics. Second ed., D. Van.
Nostrand Co., Inc., 1935, pp.. 97-105. '

Von Mises, Richard: Théor& of Flight. McGraw-Hill Book Co., Inc.,
1945, pp. 5T72-5Th.

.Mokrzycki, G. A.: Application of the Laplace Transformation to the

Solution of the Lateral and Longitudinal Stability Equations.
NACA TN 2002, 1950.

Fossier, M. W., Bratt, R. W., and Dill, D. G.: Comparison of
Analytical and High-Speed Mechanical-Calculator Solutions of the
Lateral Equations of Motion of an Airplane, Including Product-of-.
Inertia Terms. Jour. Aero. Sci., vol. 17, no. 5, May 1950,

P. 271-276 296.



NACA TN 2280

STABILITY DERIVATIVES AND MASS AND GEOMETRICAL

" CHARACTERISTICS FOR TWO CASES CONSIDERED

Parameters

Case A

Case B

Cnp .+ v - -
C L[] L] . . .
lp_
C . o .

Ny

Czr s e e . .

Weight of airplane alone,

S, sq ft . .
b, ft . . . .
Yo, deg . . .
‘0, slugs/cu ft
Uy, ft/sec .

e o o o o o

e & & s o o

-1.042
o 0.17

-0.126 -

-0.01552
-0.3k2
-0.28
0.0796
6970
130

28
0

0.00136
“TOk4

-0.80
20,17
-0.1k
b_0.040
-0.30
-0.16
0.30

11.25

2.67

4,0

. -11

. .0.002378
61.5 to T4.25

8In case By, CnB = 0.29.

bActually, slightly different values of Cnp were used for each

" of the subcases of case B.
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TABLE IT
FUEL DEPENDENT PARAMETERS
Parameters Ay As. B, B3 BL
Radius of forward tank, ft . . | 2.15| 2.15| 0.333] 0.333] 0.333
Radius of rear tank, ft 2.12 2.12] 0.333] 0.333] 0.333
Fuel height in forward tank, . ‘
£ . .| 2.15] 1.075]0.1667| 0.250] 0.333
Fuel height in rear tank, ft . 2.12{ 1.06{ 0.1667| 0.250| . 0.333
N e 3.5 3.5 0.333| 0.333] 0.333
P T -4,1 -k.1] -0.333] -0.333] -0.333
Rzp, £ o 0 v 0 oo L 0.0123| 0.0123| 0.407] o0.4%07| o0.k4o7
Rops T6 « v v v oo v e -0.014k4[-0.0144 | o.407| o0.%07| 0.407
Weight of forward fuel, 1b . . 1480 ve2 | 1.51]  3.07| 4.85
Weight of rear fuel, 1b . 1068 334f "1.51 3.07 4,85
Total weight of airplane and
“fuel, 1b . . . ... ... 9518 7766 | 1h.27| 17.39 20.95
CL + ¢ o o o o o v o o e v u s 0.19| 0.19| 1.062( 1.178( 1.17%
Iy, slug-ft2 . . . . . . . .. 1360| 1360 | 0.1081| 0.1243} 0.1k28
|1z, slug-£t2 . . . ... ... 7340 | 7708 0.2098| 0.2206| 0.233
Iyz, slug-ft2 . . . . .. .. 262 277 0 0 0
R 0.806| 1.4 | o0.225| o0.174] o0.125
o, Tt . . . . .. e e e e 0.795| 1.43}| 0.225( 0.174| o0.125
Ip, slug-ft2 . . . . . . . .. 85.2| 140.0 [0.00315{0.00507{0.00668
Tp, slug-ft® . . . . . . . .. 59.7|  28.1 0.00315|0.00507{0.00668

“!ﬂ‘!"’
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Jank center

= \_Horzok)

e Vertical _ N

7

Figure 1.- Decomposition of horizontal fuel motion in terms of angles (
and 7 1in vertical planes.
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Figure 6.- Present-day high-speed a

the tank radius (case Ap).

10°.

initial fuel disturbance, (§1), = -10°, ({,),
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50

-====%, front TanK

—%,s rear fank

25 32 2

8
A
Q

A

N

B 20 27
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Figure 9.- Free-flying airplane model with tanks one-half full
Sideslip and fuel motions following initial sideslip,

(case BY).
Bo.= 50- ) .
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