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NATIONAL PDVtSORY CON t[]!Mi FOR AERONAUTICS 

TECHNICAL NOTE 2295 

CROPDWtSE AIW COMPRESSIBILITY CORRECTIONS 


TO SlENDER-WING ThEORY 

By Harvard Loinax and Loma Sluder 

Corrections to slender-idng theory are obtained by assuming a span-
wise distribution of loading and. determining the chordwise variation 
which satisfies the appropriate integral equation. Such integral equa-
tions are set up in terms of the given vertical induced velocity on the 
center line or, depending on the type of wing plan form, its average 
value across the span at a given chord station. The chordwise distribu-
tion is then obtained by solving these integral equations. Results are 
shown for flat-plate, rectangular, and triangular wings. 

INTRODUCTION 

The calculation of loading on three-dimensional lifting surfaces is 
a fundamental problem in aerodynamic research.. The complexity of the 
problem has lead to the development of certain simplified theories by 
means of which the loading on special types of plan forms can be esti-
mated quickly. The amount of error which these estimates contain is of 
considerable interest, as are methods which will tend to correct such. 
errors without undue labor. 

Slender-wing theory applies to one such simplified body of analysis. 
There are two basic assumptions of this theory: one, the angle of attack 
is small enough so that the vortex sheet does not separate from the wing 
and the boundary conditions for the wing can be projected onto a hori-
zontal plane parallel to the direction of the free stream; and the other, 
that either the chordwise gradient of velocity is small enou,gh or the 
free-stream Mach number is close enough to unity that the linearized 
partial differential equation which governs the fluid flow becomes 
Laplace t s equation in a plane transverse to the free-stream direction. 
References 1 through 5 are examples of recent papers developing slender-
wing theory.
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An indication of the inagni.tude of the error which is Introduced by 
the use of such a theory comes, in the subsonic case, by observing that 
solutions so obtained, violate the Kutta condition at the trailing edge. 
Proper inclusion of the chordwIse and. compressibility effects must 
result in solutions which satisfy the Kutta condition and make the load-
ingfall to zero at the trailing edge. It -is the purpose of this report 
to stu&y such modifications. 

The corrections due to the chordwise and compressibility effects 
are obtained in the following manner: First, an integral equation involv -
ing elementary horseshoe vortices is set up; second, this integral equa-
tion is solved under the assumption that the chordwise gradients are 
small or that the free—stream Mach number is unity; and finally, the 
integral equation is reinspected, this time with the spanwise lift dis-
tribution fixed at the shape just obtained and. with the chordwise varia-
tion as the unknown and the Mach nxnber terms included. 

Results are presented and discussed both for triangular and rectan-
gular, fiat—plate plan forms in both subsonic and supersonic flow. 

LIST OF IMPORTANT SY4BOLS 

a0	 velocity of sound in the free stream 

A	 aspect ratiO () 

Ar	 -reduced aspect ratio (Ar 	 A) 

b	 span of wing measured normal to plane of symmetry 

root chord of wing 

CL	 lift coefficient (lift 
\% qSj	 -: 

Cm	 'pitching—moment coefficient (Pitchi moment ) 
qSc0 

E	 complete elliptic integral of the second kind with modulus k 

E-- (Jlt2 
E(t,k) incomplete elliptic integral of the second kind with argument t 

- and modulus k. [E(t,k) rt /' dt] 
[	 J0J lt2



NACA TN 2295
	

'3 

F(t,k) incomplete elliptic integral of ' the first kind with argument t 

and modulus k F(t,k)	
t	 dt 

L	 Jo J(1_t2)(lk2t2) 

	

K	 complete elliptic iiitégral of the first kind with modulus 'k 

r	 P1 iK=I _________

L	 O /(1_t2)(1—k2t2) 

	

in	 for triangular wing, slope of leading edge relative to plane of 
symmetry 

	

M	 free—stream Mach number 0 

	

p	 static pressure 

p1—pu 

	

q	 free—stream dynamic pressure (1 0v02) 

	

s	 semispan of rectangular wing 

	

S	 area of wing 

	

u	 perturbation velocity component in the direction of the x axis 

u - u1 

	

V0 	 free—stream velocity 

	

w	 perturbation velocity component in the direction of the z axis 

—V0a. 

x,y,z Cartesian coordinates of an arbitrary point 

x1 ,y1 Cartesian coordinates of source or doublet position 

x/c0 

	

a	 angle of attack 

3m
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p0 	 density in free stream 

doublet weighting factors 

perturbation velocity potential 

Aq	 CPu_Wi

Subscripts 

1	 conditions on lower surface of wing (at z = 0—) 

u	 conditions on upper surface of wing (at z = 0+) 

THE IN9EGRAL EQUATIONS 


Subsonic 

Triangular plan form.— A general solution of Laplace's equation 
which is suited to problems in linearized subsonic wing theory (given 
e.g., in reference 6) is that which relates a velocity potential or per-
turbation velocity to the value of its jump across a given surface. 	 For 
a lifting triangular wing as shown in the sketch this can be written 

-	 2 c 0	 mx1 

u - 'I-it	
dx1 r

Lu dy1	 (i) 

o

where	 13 =J[jc2,	 u	 is the 
perturbation velocity parallel to 
the	 x	 axis and	 u	 is the jump 
in	 u	 over the wing plan form. y:mx
In linearized theory this jump car 

mx be related to the loading coeffi-
/

cient	 ip/q	 by the equation 

V0	 f/LpS\\	
(2) 

Further, the velocity potential tp 

can be found by the relation 

x cp=	 udx
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Operating on equation (i) in this manner and interchanging the order of 
integration gives

(A) dy	
[1+ q:i	

zV0	 Co	 pmx], 
dx1 I 8	

1	 [(y-yi)2+z2]

x—x1 

J (x-xi)2+132z2+132(y-y1)2 

which represents, physically, a distribution of elementary horseshoe vor-
tices. 

The effect of compressibility in a linearized study of lifting-
surface theory can only enter through the use of 3. Setting 

(x-xi) a = 1+ ________________	 (4) J	 2 2	 2 22 x-xi ) +13 (Y-Yi) +13 z 

it is seen that ci is the only term in equation(3) which contains 13. 
This term has an interesting interpretation in. the light of the study 
which has been made at sonic speeds. At M0 = 1 (i.e.,f3 = 0), ci has 
either the value 2 or 0, depending on whether x 1 is less or greater 
than x. Hence, equation (3) becomes	 - 

	

r	 ()	 (5) 

	

cp=Y.gjrx dxij
	

2 2 0	 •_1 ( y-yi) +z 

Now reversing the order of integration and using the definition implied 
by equation (2), namely,

q V011 

gives finally

r1 z	 cpdy1 
P =	 (y-yi)2+z2  - 

Equation (6) has been studied in. reference 5 as the fundamental equation 
for slender wings or wings flying at near sonic speeds. It is an equa-
tion which gives the solution for the velocity potential in a three-
dimensional flow in terms of two-dimensional doublets, the two dimensions 
being at right angles to the free-stream direction. A solution of such a 
nature is immediately implied by the physical chai'acter of both sonic 
wing theory, in which the Mach cone has degenerated to a Mach plane, and 
slender-wing theory, in which the wing is so slender that the chordwise 

(6)
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gradient of velocities can be neglected compared to the vertical and 
lateral gradients. 

By comparison of equation (5) with equation (3), it is seen that 
the term a can be interpreted as a factor which corrects the slender-
wing-theory results as given by equation (5) for the effects of chord-
wise gradients in velocity and compressibility. By consideration of the 
effect at one point of the distribution of doublets over the wing, this 
correction can be visualized as a reweighting of the two-dimensional 
doublets according to their position relative to the point. The sketch 
indicates the variation of a across the span at various chord stations 
for	 = 0.6. Observe that the 
doublets ahead of the point at 
which the potential is to be 
determined are stifl weighted 
far more heavily than those 
behind the point. The effect 
of considering	 different 
from zero, however, is to 
reduce the extreme difference 
in weight .occasioned at	 = 0

so that the doublets behind a 
given point do have some effect 
on the induced velocities there, 
and the doublets ahead of a 
point induce a somewhat smaller 
disturbance than before. Since 
the strength of these weighted 
two-dimensional doublets is given 
by the maiitude of the three-dimensional loading, their strength is 
zero everywhere off the wing plan form including the area behind the 
wing occupied by the vortex wake. 

Two different methods for the further reduction of equation (3) will 
be considered. The first method involves finding the vertical induced 
velocity for points along the x axis, while the second involves finding 
the average vertical induced velocity along the span at a given chord 
station. The first method must be discarded for triangular wings because 
of difficulties around the apex; the second, however, proves to be quite 
satisfactory. The simplification obtained by considering the vertical 
induced velocity for points along the x axle will be considered later 
In connection with the rectangular wing. 

Since it is easier to consider first the averaging process, the 
operator

Urn 1 

	

z-o	
-mx dy
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az/[(y-y)2+z2], of equation (3) is applied to the weighted doublets, 
with the result that

(Lp'\ 
V pC	 pi	 _______ 

w=--2 I	 dxJ	 dy1	 - 8it j0	 •—JX).	 m2x2—y12

22	 21 

E
,/(	 2 2	 2 

	

_________	
x-x1) ^ (mx—yi) ^ J( x-x1 ) -43 (mx+yi) I pCoffllq)	

mx+yi	 J 8tJ0	
() 

where	 is the average value of the vertical induced velocity along a

given span. 

The solution for tp/q obtained from slender-wing theory can be 
written1

= - 4wm2xi	 fi()	 (8) 

	

q	 0 Jm2xi2y2 

where in that theory fi (xi/c0 ) = 1. If the value of tp/q given by 
equation (8) is placed in equation (7), the resulting integral equation 
can be written in a simplified form if it is noted that 

1=r 1uxlhJ(x_xi)2+2(mx_yi)2 J(x_xi ) 2 -H3 2 (mx^yi ) 2l 2


	

I	 +	 ______


	

J- 1 L	 mx-r]	 ]flX+y1	 - J mx12.y12 

m(x+x) J (x—xi) 2+I32i 2 di) 

=mfm(x—x) i)J.m2(x2_xl2)+2Tpnx—i)2 

where for the first term in the brackets the transformation i) =—y 
was used and for the secoM the transformation 1) = mx+y1 . Eence, 
equatIon (7) finally reduces to the following 

	

/x1\	 /xf\ 
V0	 x irxjf1{ 

_)	 rcoxlhlflL.e_)	 1 --	 /	 dx1 + I	 dx1 I	 (10) 2itxL	 (x-x1) 

The solution of equation (10) will be discussed in a later section 
devoted to triangular wings. 

1This solution follows from an analysis of equation (6). See reference 5.
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Rectangular plan form.- If the plan form of the wing is rectangular 
as shown in the sketch, then. equation (3) is modified slightly to the 
form

tCo	 pS 

q:	 !2. /	 dx1/	
dy1

(II) 
Jo	 s	 (y-yi)2+z2 

L!J

It is possible in. this case to 
study the vertical induced 
velocity for points along the x 
axis; that is, to find q/z 
by equation'.(n) and then set 
both• y and z equal to zero. 
In order to do this a special 
notation must be employed. Thus, 
if the indefinite inte'al of 
f(y)/y2 can be written (where 
f(y) is bounded at y = 0) 

p (y) dy = -J(y)+C 

Then, by definition, 

f

r( y) 
dy J(s) -J(-s)	 (12) 

By means of this definition it can be shown that (reference 7) 

v0 pc0 

w - / dx1	 r	 ___________ 

j_s	 (qjy [ j(x_xi)2+2i2]	
(13) 

and if2
LP- - ____ 

-	 Vc 
2 ()/s2_Y2 	 (l4.) 

2The solution for the rectangular wing in s1ender-dng theory is that the 
load be zero across every spanwise strip aft of the leading edge. To 
find the chordwise correction to such a theory, therefore, a spanwise 
distribution must be assunied. Since, however, s1ender-ing theory also 
requires an elliptical span loading for the boundary conditions of a 
rectangular wing to be satisfied, a reasonable choice is that given by 
equation (i).
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Then, since integrating by parts gives
222 

	

12 = - (x_xi)2.f	 2 /	 s2—y2	
pS /(x_x1) -i43 Yl

dy1


	

J-s Yl A/ (x—xi)2+132y12 J_5J 	 s2—y12
(l) 

equation (13) can be written 

	

U0	 c0	 12 
it +	 f2.( - d-x1	 (16) U 

= 2c0	 ( x_xi).	 co j 

This integral equation has been derived previous1y by K. Wieghardt 
(reference 8) with regard to the rectangular-dng problem. The solution 
of equation (16) will be discussed in a later section devoted to rectan-
gular wings.

Super sonic 

Triangular plan form.- In passing from subsonic to supersonic 
theory, we pass from the. elliptic to the hyperbolic partial differential 
equation and in particular from Láplace t s equation to the wave equation. 
The solution which relates the perturbation velocity u at any point in 
the field to the loading on the wing can again be written in terms of an 
elementary horseshoe vortex distribution over the wing plan form. As in 
reference 9 this becomes 

rr	 (x—xi).iu dxj u =	
[ (y_yi)2+z2}Jxi)22(y_yj)22z2 T 

and since u = - and	 = 
q V0 

	

v z i r	 dXi dYir	 x—x1	 - q	 ____________ 
I () 

-"r (y-yi ) 2+z2 L J(x_xj)2-432(y_y1)2_432z2 J 

where r is the area on the wing bounded by the edges and the trace of 
the Mach forecone from the point x,y,z. Again the effect of compressi-
bility appears only in the term within the braces so that by defining 

	

c1= _______________	 .	 ( 18) 

Ji	 2 2	 2 22 -	 x—x1) -43 (v- r ) -{3 z
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contains all of the Mach nuither effects at supersonic speeds. At 
= 1, a = 1, and since, by the definition of ,-, x1 < x, it follows 

that at sonic speeds equation (17) also reduces to equation (5). Hence, 
the doublet distributions represented by equations (17) and (3) are con-
sistent at the speed of sound. 

In order that an exact parallel can be provided with the subsonic 
solution to the triangular wing, the average vertical induced velocity 
for point along a given span is again considered. It can be shown 
(reference 7) that in the plane of the wing 

1v0 p v0	 (x—x1) -fl--
w = - - - + - B.P. / d.x1 + d.y1	 _______________ (19) 

q	 (y_yi)2j(x_xi)2_32(y_yi)2 

where the order of integration must be indicated (i.e., the integration 
with respect to yi must be made first). The letters R.P. indicate the 
real part of the term is to be taken. Such a device can be used since 
the double integral must always be a pure real quantity in the area T 

(Lp/q is real everywhere on the plan form) and a pure imaginary quantity 
over the rest of the area indicated (see sketch). - The average vertical 
induced velocity along the , span may be obtained by applying to equation 
(19) the operator

p mx 
_i_i	 dy 
2rnxJ 

—mx 

and since 

=_	 11.wm2x1
(xi) (20) q	 VoJm2x12_y12 

equation (19) may be written in 
the form 

= iTf3niw0f3(x) + 
2 

rx x113f3(x1)dx1	
(21) 

ltx Jo	 x—x1 

13 has a derivation similar to that used for equation (9) and can be 
expressed in the final form as 
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m(x+xi)	 J (x-x1)2-432i2 
'5	 (22) I =mn.p.r	 _______________ 

• m(x-xj.)	 rJ[1n(xi-4-x)_1] [m(xi-x)+i] 

It is possible to find an exact solution for f 3(x) by means of 
equation (21), but the discussion of this analysis is reserved for a 
subsequent section. 

Rectangular plan form.- Equation (19) can also be used in the case 
of a rectangular plan form by an appropriate change in limits; thus, 

x	 s	 (x-x1) q
	

(23) + •R .P. r axif dy1 	 ______________ = -	

-s	 (y_yi)2J(x_xi)2_(y_yi)2 

where again it should be stressed that the order. of integration cannot be 
reversed. The region of integration and position of the wing with refer-
ence to the. axis is shown in the sketch. As in the case of the subsonic 
rectangular wing, the value of w will be obtained only along the x 
axis so that y in equation (23) can be set equal to zero. The loading 
will be assumed to have a form 

	

wo 	 (\ 
V0s3 4 jjJs2y2 (24.) 

which is similar to that used in the 
subsonic case except that the refer-
ence length is now the semispan. 
instead of the chord. Such a dif-
ference is reasonable since in the 
supersonic case the position of 
the trailing edge cannot effect 
the loading on the wing.	 pure 

Imaginary 
Finally, therefore, when y = 0 
equation (23) becomes 

w =

w	 I4f4() -Q-	 dx1	 (25) 
X—X 

where • I is given by the equation
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j j1 +1—q i )( 1 —1+111)
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1
dr1
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I = H.P. rs 
/x1)2-432yi2 

•	
dy1	 (26)	 - 

The solution to equation (25) is deferred to a sithsequent section. 

LOPDING ON Wfl'GS 

The previous section was devoted to the development of the integral 
equations which are to be studied for the two types of plan forms in 
subsonic and. supersonic flight. In order that this study can proceed in 
a natural nner, the arrangement of the presentation has been changed so 
that the plan form is the principal division and the speed is subsidiary. 

Triangular Wings 

Supersonic case.— The decision to solve for the loading on the 
supersonic, triangular, flà.t plate by analyzing equation '(21) was not an 
obvious one since the exact solution of the linearized partial differen-
tial equation forthis case has already been obtained. (See, e.g., ref er-
ences 10, II, and 12.) Thus it is known before starting that the value 

of f3(x) in equation (21) must be l/E where E isthe complete 
elliptic integral of the second kind with modulus ii232. However, 
these solutions were obtained by an entirely different procedure so that 
by solving equation (21) and comparing the two results a check on the 
accuracy of the method is obtained. Furthermore, when the subsonic 
problem is analyzed the same general procedure will be fllowed and the 
results can then be accepted with greater confidence. 

The first step in the solution of equation (21), in which 	 has 

been set equal to w0 since the wing is a flat plate, is to change 

	

variables by the transformation	 = xi/x. This gives 

1 =	 f3(x) +	 r'hfs(xi)i i()	 (27) 
31! l—

In the equation for •I, •the transformation m 1 = 'q/x was used so that 
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which is completely independent of x. The partial derivative of both 
sides of equation (27) with respect to x gives 

(-3. 
f3'(x) = -, 2	 /	

12f3'(x1)d1 1
3 ()	 (28) 

l_1 
Equation (28) is a homogeneous linear integral equation. The solution 
to equation (28) is simply f 3'(x) = . O or, what is equivalent, f3(x) 
equals a constant, (f 3 ) 0 . say. By means of equation (27), this constant 
can be evaluated. Hence, 

(f3 ) 0 =	 + 1	 __________ 
[2	 ]-__1 

which represents the solution to the problem. The integral 1 3 was 
calculated analytically as in appendix A, and then the value of (f3)0, 
as given by equation (29), was determined-by numerical integration. 
For m = 0.8 the result of this. computation was 0.708; whereas the true 
value given by l/E is 0.705. 

Equation (27) can also be solved when the wing is slender with 
respect to the Mach cone by considering 13m to be small. Setting 
m=O yields

(29) 

(1]) 
313m=O = ( l—) I' 

and this is readily evaluated to give 

= ______	 (30) 
- 

The integral equation reduces to 

= r' 1f3(x1)d1 

which by a retransformation of variables x 1 = x 1 becomes 

!X xjf3(xi ) dx1


	

x= /	 ____ 

	

Jo	 f2_X	
(31)
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Equation (31) is a special form of Abel's integral equation, the unique. 

inversion3 of which is, in this case, f 3(x) = 1. This is easily yen—

fled. by direct substitution. 

The simplicity of this result is not accidental, of course, since 

the value of f 3(x) was originally introduced by equation (20) as a 
correction factor to the slender—wing—theory solution. 

Subsonic case.— The study of the triangular wing presented in the 
preceding section was made first at arbitrary supersonic Mach numbers 
and then at a Mach number equal to 1. In keeping with this order of 
decreasing speed, the subsonic flat plate will be studied first at sonic 
speed and then for general subsonic Mach nIunbers. 

An inspection of equations (9) and (22) is sufficient to show that 
(Ii)m..o is equal to ( I3)m_o s Hence, equation (30) can , be substituted 

into equation (10) and there results (since again 	 is set equal to wo) 

	

(Xl)	 Xi 

1	
X ix1f1	 d.x1	 çX itx1f1 (\ ) dx1 ] 

-	 _____ +1 _____ -	
[	 I x2—x2	

Jo I x2—x12 

and. this reduces immediately to
( X \ 

xifi)dxi	
(32) x=I	 ______ 

Jo 

It is now obvious that equation (31), which was derived from super-
sonic wing theory, and equation (32), which was derived from subsonic 
'wing theory, are identical. Clearly this establishes the continuity of 
the theory in passing from the supersonic to' the subsonic regimes. 

3 1f Abel's equation is written in the form 

f(x) = r X 
u()d 

'a 

its inversion is

;u(z) =i.; fZ() 
dZJa Ax
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The analysis for the general subsonic case leads eventually to the 
numerical solution of an integral equation. However, an idea of the 
qualitative form which this solutionmust assume can be gained by a 
rough preliminary analysis before resorting to the more tedious pro-
cedures necessary for a quantitative evaluation. 

The evaluation of I is given in appendix A, and a plot of 
against X1/X for (m) 2 equal to 0, 0 . 05, 0.10, and 0.20 is shows in 
figure 1. Subtracting from I . its value at m = 0, and denoting this 
difference by I, it follows that

X:Lx	

(33) 111=	

xi?x Ii 

and equation (10) becomes

x 2irxjf1 () dx1	 c0 x1111f1	
dx1 ]( 31) =	 [ L	 x—x1 

As a rough approximation, since Iii/21t is small and tends to zero as 
f3m goes to zero, consider C = Ij /2it to be a small constant which can 
be taken through the integral sii so that equation (311.) becomes 

x 
=f xifi()dxi + fc0 xif1() dx1 

-	 0	 ../ x.xj2	 0	 X—X:L 

For € equal to zero the solution to equation (35) is, of course, 
fi (xo)l as has already been discussed. For a small but finite value 
of , the second tern will not have much effect on f 1 (x0 ) near the 
center of the wing chord, but near the apex and. trailing edge it becomes 
domiii,t since the value f1 (x0 ) = 1 makes this term logarithmiáally 
in.finite at these two extremes. Thus, the second term must certainly be 
reckoned with in finding the solution for f1(x 0) even though € Is 
small. 

Now it is apparent that the right—hand term of equation (35) makes 
that expression a singular integral equation. Experience with the singu-
lar integral equation

	

f(y) =	
g(y1)dy1 

J0	 Y—Yi.
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which arises in subsonic lifting—line theory and two-dimensional airfoil—
section theory proves useful in the present problem. Thus, the solution 

to equation (35) is not unique unless the Kutta condition is specified 
at the trailing edge, and, furthermore, the value of f j (x0) tends to 
infinity as x approaches the apex and to zero as x approaches the 

trailing edge. 

One would, therefore, anticipate the shape of the solution for 

fi (xo) to be something like that shown in the sketch. Such qualitative 
knowledge is useful in setting up the numerical procedure used. for the 

correct solution to equa-
tion (10). The presentation 
of this procedure appears in 
appendix B and. the results of 
the analysis for Ar equal to 
0, 0.90, 1.26, and. 1.79 are 

I.	 given graphically by figure 2. 

The figure shows that the 
shape of fi(xà) which was 
sketched was fairly accurate. 
Further, the values in. the 
figure indicate that the center 
of pressure shifts forward with 
increasing values of m. A 
more comprehensive discussion 
of the integrated values of the 
loading will be given 'in a 
later section. 

Rectangular Wings 

The discussion of the triangular wing was divided according to the 
Mach number. The same division will be used for this section starting 
with the discussion of the 'results for supersonic speeds, then the results 
of both supersonic and subsonic theories at soiic speeds and finally a 
discussion of the subsonic development. 

SuDersonic case.— The solution of equation (25) will give the load-
ing on a rectangular wing flying at a supersonic Mach number. The evalu-
ation of the integral 14, is carried out in appendix A where it is shown. 
that 14 can be expressed in terms of complete elliptic integrals of the 
first and second kinds. Having the expression for 14, a numerical 
solution may be obtained for f4 (x/s13 ) when w = w0, that is when the 
wing is flat. (See appendix B.) Figure 3 shows a plot of f4 (a factor 
representative of the chord. lift distribution) as a function of x/s, the 
ratio of the distance back from the leading edge to the magnitude of the 
reduced semispan. The value of f4 given by equation (25) can be checked
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in the interval O < (x/s13 ) < 2 because the exact solution to the complete 
linearized partial differential equation can be readily obtained there. 
The comparison is given in figure 3. The fairly rough aeement shown 
is not surprising since equation (25) is derived on the assumption that 
the spanwise distribution of load is elliptical at every chord station, 
arid certainly this assumption is least accurate in the interval where the 
comparison with the exact results Is made. The area under the exact and 
approximate curves in figure 3, between the initial value and. that at 
which f 4 = 0, is nearly the same. (See the next section on Aerodynamic 
Characteristics.) The inteated value of f4 . as given by equation (25), 
therefore, should be sufficiently accurate for x/s1 3 > 2. 

As for the qualitative nature of the variation, figure 3 shows that 
the loading on a narrow rectangular wing flying at supersonic speeds 
falls linearly to zero, becomes negative, arid then oscillates between 
negative and positive values; the amplitude of the oscillation being so 
heavily damped that after the third change in sign the magnitude. is 
practicaUy zero. 

It should be noticed in studying the results of figure 3 that the 
entire resultant lift of the wing is concentrated in the interval 
O<(x/st3)<2. But as the Mach number approaches 1 this interval 
approaches zero, and the entire lift of the wing is carried in a ètrip 
along the leading edge. 4 Such a solution violates, in the vicinityof 
the leading edge, the assumption on which the theory is based and. should 
be considered only as a theoretical limit. 

Results for the lift and. pitching moment on the rectangular wing 
will be developed in a later section. 	 .	 - 

Subsonic case.— The study of the subsonic rectangular wing stems 
from equation (16). The first step. in the analysis of the equation will 
be to consider its solution at 135 = 0 and show that this is continuous 
with the supersonic results there. 

The value of 12 can be written (equation (15)) as 

1 Icx_xi)2^13252y2 
2=ri

l—y2 

and for 13 's = 0 this becomes

	

(x—x1)	 xi<x 
12

	

L_( x_xi)	 xi^x 

4This result also follows by inspecting equation (25) for the values 
13s=0.
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and hence equation (16) can be written 

w =	 fX () dxi	 ( 36) 

Equation (36) is identical with the form of the supersonic equation (25) 
at j3s = 0 so that once again the continuity of the subsonic arid super-
sonic theories at the sonic speed range is established. Furthermore, 
equation (36) shows that if w/w0 is constant then f2 (x0 ) must be zero 
everywhere except at points where it can be represented by a pulse the 
integral of which has a finite magnitude. From the èupersonic discussion, 
it is clear that one such pulse exists and is located at the leading edge. 

The evaluation of 12 for 3s>0 is given in appendix A. The 
numerical solution to equation (16), assuming the Kutta condition at the 
trailing edge, is given in appendix B for values of reduced aspect ratio 
Ar (defined as f3 times aspect ratio) equal to 0.33, 1.0, 1.5, and 2.0. 
For an aspect ratio equal to 2, these values correspond to Mach nubers 
of 0. 986 , 0.866, 0.662, and 0,. respectively. The results of the compu-
tations are showii in figure Ii- where the chordwise lift distribution 
factor f2 (x0 ) is plotted against x0 for the various values of A1.. 
By comparison of figure 1.1 with figure 3, it can be seen that in the 
subsoric case the loading drops monotonically from imfinity at the lead-
ing edg€ to zero at the trailing edge and does not oscillate in the after 
portion, as in the case of the supersonic wing. 

When 3 equals one, these results can be compared with those 
obtained by Wieghardt and presented in reference 8. The sketch shows 
the comparison for two values of the aspect ratio. Curves are also 

ri 

go



CL 
ciA

(38) 
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shown in the figure for the loading obtaIned by using the method given 
in the appendix of this report but by satisfying the integral equation 
at only six and three points. The latter curve is in better agreement 
with Wieghardt' S result and, since Wieghardt (although using a differ-
ent method involving Birnbaum functions) used only points, this may 
account for the discrepancy between the final results of this report and 
those of Wieghardt.

AERODYNAMIC CHARACTERISTICS 

The previous section presented solutions for the loading on trian-
gular and rectangular wings flying at subsonic and supersonic speeds. 
This section will be devoted to the conversion of these loadings to 
expressions for lift and center of pressure. 

Lift	 - 

By definition the lift coefficient can be written 

CL = ff 	 axdy	 (37) 

and this will be evaluated for the various cases for which the loading 
coefficient has been obtained. 

Supersonic triangular wing.— Since the exact linearized value for 
the loading on the triangular wing flying at supersonic speeds has been 
derived, the lift coefficient can be written in the form 

where A is the aspect ratio and E is the elliptic integral of the 

second kind with modulus k =Jl432m2. 

Subsonic triangular wing.— In the case of the subsonic triangular 
wing, equation (37) becomes 

CL =
	 •1	 m2x	

fi () dy 
mc02	 L	 A/ In2X3T2	

Co 

and this becomes (since A = m)



= rXOfl(XO)XO	 (39) 
aA 

The numerical evaluation of equa-
tion (39) is not difficult since 
x0f i (xo) has the variation 
shown in the sketch. ru 

.8 

x0f 

.4

20
	

NACA TN 2295 

0	 .5	 .1 
xo 

Supersonic rectangular wing.— For values of c 0 <2s13 the exact 

value of the lift coefficient on a rectangular wing flying at supersonic 
speeds has been obtained and can be written in the form: 

For Ar>l	 C	 l.A-2 L_	 r	 (1s.) 
aA	 Ar2-

When Ar< l equation (37) must be used in connection with equation (21.) 
and there results

1 

	

CL	 r	
pS	

4	 Vy2. 

	

2sco Jo	 j_s s13 

which reduces to	 c 

	

CL =	 f 
0 

and. this can be written in the form

( Co 
EL. it	 I 
aA Arco Jo	 %coAr,)


•2x 
which becomes, if x2 =	 , 

c oAr 2 

CL for Ar<l	 -= 
ciA	 20	

f4 (x) d.x2.	 (41) 

Subsonic rectangular win,R.— The equation f or the loading on a sub-

sonic rectangular wing, equation (l1f), placed in the formula for lift 

coefficient yields
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CL= 1 
fCofs() 

2sc0 o	 J....5 C0 	 C0 

which becomes

	

f f2 ( xo) xo	 (42) 

The evaluation of equation (42) by numerical means requires thpecial 
consideration since f2 (x0 ) approaches infinity at the leading edge as 
shown in figure 4. To this end, rewrite equation (42) in the form 

CL

= . J f2• dx +	 dx0	 (43) 

and equation (B4) in the appendix (for the special case in which x0=1) 
in the form 

1 = Ff2xo)[ +	
+	

+	 ]o (44) 2it	 k(l—x0)	 2it	 k(1—x0) 

An application of the mean—value theorem yields 

j 
f2(xc) dx0 =	 1	 -[21t _f'f2(xo ) [	

A.E 
1c+ 

•0	
P A 0 1 L	 €	 [	 k(l_xo)]°}	

(4) 

[ k(l—O)J 

where E has the n]odulus k& which equals. Ar/J4 (l2)+Ar2 and where 
0< 9<Z€. The cobination of equations (43) and (45) yields an expression 
for the lift coefficient involving only the load distribution from a 
distance €/c0 back of the leading edge to the trailing edge. 

Pitching Moment 

By definition the pitching—moment coefficient about the apex or 
leading edge and based on the root chord can be written



.8 

2, xoI, 

.4 

C
0	 .5	 xo
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Cm=_ff xdy	 (6) 

Equation (Li.6) will be applied to the various loadings which have been 
studied. 

Supersonic triangular wing.— The exact linearized value for the 
pitching—moment coefficient on a triangular wing flying at supersonic 
speeds has been derived elsewhere and can be written in the form

(1.7) 
aA	 3E 

Subsonic triangular wing.— The derivation of the pitching moment 
on a subsonic triangular wing proceeds in the same manner as the deriva-
tion of lift and there results

1 
- = - i f xfi(x) dx0	 (!i.8) 

This expression can be easily integrated numerically since x02f1(x0) 
varies as the sketch indicates.	 - 

Supersonic rectangulr wing. —
For values of red.uced aspect ratio 

Ar greater than 1 the pitching—
moment coefficient on a rectangular 
wing is given by the equation, 

for Ar> 1 

C6Ar	 (19) 
aA	 3Ar2 

When Ar< 1 the solution to the 
integral equation must be used and 
the final expression can be written 

Cm	 r f2/Ar 

	

= - -:•-J -	 x2f4 (x2 ) dX2	 (50) 

Subsonic rectngu1ar wing.— The equation for the pitching—moment 
coefficient on a subsonic rectangular wing follows in the same mrniner as 
did that for the lift coefficient. 
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--	 .4

tience, 

C	 ("1	 x0f2 
- = - .!. I	 xof2 (xo)dxo	 (51) 
aA

S	 ' 	 • 2 

and, since the variation of 
xof2(xo) is as indicated in 
the sketch, the numerical 
integration of equation (51) 
is simple.

0	 .5 xo 

Center of Pressure 

Since the pitching moment is based on the root chord, the center of 
pressure of all wing plan forms can be written 

x	 C c.p. - m 
c0	 52 

Discussion of Results 

Figures 5 and 6 show the variation of the lift coefficient and 
center of pressure for triangular and rectangular wings for the range in 
which the reduced aspect ratio Ar is small. For the triangular, wing 
the differences between the subsonic and supersonic cases are not large 
in the interval of Ar shown; the subsonic wing develops somewhat less 
lift and the center of pressure moves forward as Ar increases. The 
characteristics of the rectangular wing, however, show a large variation 
in passing through the speed of sound. 

The subsonic rectangular wing has a variation of CL/ACL with Ar 
which is almost identical with that for the subsonic triangular wing. 
Unlike the triangular wing, however, the curve for x p/co on the 
rectangular wing shows that this lift is carried farther and farther 
forward from the quarter-chord position at M 0= 0 all the way to the 
leading edge at M0 1. 

As the speed is further increased and the rectangular wing enters 
the supersonic speed range, the magnitude of the lift oscillates about 
the curve for the subsonic case until a reduced aspect ratio of about 
0.5 is reached and then rises to a maximum at about the point where Ar 
equals 1. The exact curve (obtained by linearized lifting-surface 
theory) for values of Ar greater than one is shown as a dotted line for 
the purpose of comparison.
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The variation of the center of pressure on a supersonic rectangular 
wing indicates that the wing is unstable for, all positions of the pivot 
point behind the leading edge for values of Ar around 	 the center


of pressure, in such a range, having moved forward of the wing leading 
edge. As Ar increases past the value 0.5, however, the center of 
pressure moves back along the wing and rapidly approaches the midchord 
point, its location according to two-dimensional linearized theory. 

CONCLUDING BEMABKS 

A theoretical investigation has been made of the correction to 
slender-Wing theory which -accounts for the effects of compressibility 
and the chordwise gradients in velocity. Integral equations were devel-
oped and nunerically evaluated for triangular and rectangular plan forms 

in both subsonic and supersonic flow. 

In the case of the triangular plan form, the value of 1he lift coef-
ficient predicted by slender-Wing theory was reduced by an amount which 
increased, with increasing aspect ratio as was to 'be expected. At a 
reduced aspect ratio of 1.0, this correction amounted to 6 percent for 
both subsonic and supersonic flow, but, at a reduced aspect ratio of 
2.0, th correction had increased to 21 percent in the case of subsonic 
flow and 17 percent in the case of supersonic flow. 

The center of pressure of a triangular wing in supersonic flow 
remained constant as predicted by slender-Wing theory; in subsonic flow, 
however, there was a slight forward shifting of the cen.ter of pressure 
with increasing aspect ratio which amounted to 6' percent of a root chord 
length at a reduced aspect ratio of 2.0. 

In the case of the rectangular plan form in subsonic- flow, the cor-
rection to the lift coefficient due to a consideration of the chordwise 
and compressibility effects was the same as for the triangular plan form. 
In supersonic flow, below a reduced aspect ratio of 0.5, the value of the 
lift coefficient oscillated about the constant value predicted by slender-
wing theory. Above this value the lift coefficient was increased, reach-

ing a maximum correction of 32 percent at a reduced aspect ratio of 1.0. 
At Ar = 2.0 the lift coefficient was again decreased by 9 percent. 

According to slender-Wing theory, the center of pressure of a rec-
tangular plan form is located on the leading edge. In the subsonic case, 
the corrections shifted the position of the center of pressure back from 
the leading edge as the aspect ratio was increased. This shift amounted 

to 19 percent of a chord length at a reduced aspect ratio of 2.0. In 
- the supersonic case, a consideration of the chordwise and compressibility 

effects indicated that the wing was unstable for a pivot point located at
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the leading edge around a reduced aspect. ratio of O.4. As the aspect 
ratio increased, the center of pressure moved back of the leading edge 
toward the midchord position. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, CalIf., Nov. 28, 1950.
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APPENDIX A 

EVALUATION OF SPECIAL. ThTEGRALS 

TBE INTEGRAL Ii 

The evaluation of I will be discussed first for the case in which 

x>x1 and second for the case in which x<x1. 

Case 1, x>xi 

It is possible to wiite Ii in the fori 

r4i' J 23222 I1 =rnJ	 di1	 (Al)


io 

where	 = m(x—xl) and p = m(x-i-x1 ). The linear term in the lower 
radical of the integrand can be eliminated by the transforniation 

= (c + ot)/(l + t). and the integral becomes 

-$ t i	 t2 
Ii ___________	 _________________ dt (A2) 

f( 0 )(i) Ja	
('^t)(+ot)Jl_	

(ot2 

where	 ______________________

(A3) 

and	

=	
(1) 

The expression for a and 8 may be combined to give the useful identi-
ties•

= -4:y832m2 

(i0-a)(8--sii) + (.i1-a)(6--j.i0) = 0
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Using fundamental properties of even and odd functions, equation (A2) 
may be reduced to the form 

________ r'
	 i	 ô/	 i Ii=2m ,	 j It	 -	 I—J (1—o)(0--o) 0	 l+5k22) 

5kt2 

2 1 JIJaw.. 

by the substitution

t 

and where

k2 - 

____________ 

-

2 
k2 

By introducing the Jacobian elliptic functions in the transforma-
tions	 = cnu, the integral reduces to 

Ii -	
/2+22m2	 K	 v12	 -.	 V	

dn2udu 
k / ( i)( i_ o) o 'l+vsn.0 l+V22sn2u " 

where
_(2.)k2 

v2-	 '"	 > o • 2	 2

(A5) 

(A6)
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and

S	 (\k2 
=	 >0 

2	 kt2^..k2 

The integration may now be completed and. 

2m ,i2I32m2 r	 ______ (. 
vi 

I.- kj(1)(0) [V1j2 G1 v
2^k2 - 

g. v /k2(	 V2 

:i l+v22 	 JV2^k2 

-2m[(	

vi	 V2 

-	 JVi2+k2) J 1	 J22 Dl	 (A8) 
where 

•	 G(x) =EFt(x) --KE'(x) —I'F'(x) 	 • 	 (A9) 

the modulus of theefliptic integrals being k or Ic'. 

Case 2, x <Xl 

The procedure for obtaining the solution for I . in this case is 
identical to that followed in case 1 except that in order to fulfill the 
condition that t>—1,	 and 5 must be defined in the foflowing manner: 

=	 (no) 
3 2m2 ( ILl+ILo)

(A7)
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a =
	 (	 )	 Ji2) (22i2)	

(Au) 

In this case It can be shown that In equation ( A5) v1> 0 and. 
—1, and. the solution for I. is 

vi .	 __ 
= 2m {
	 22)	 oi 

a k	 K}	 (Ai2) 
J(.'i—a)(a—sL0) 

where G(x) Is defined as In equation (A9). 

TEE INTEGRAL 12 

Writing 12 in the form 

12 = 21/7x_x1)2+Y22 dy
1	 (A13) 

and. setting
3s 

k= __________ = cnu,	
Jx_xi)2 + 2s2 

	

12 can be Integrated to give 	 . 

12 =
	 dn2udu = 23E	 (Alli.) 

TEE INTEGRAL I 

Case 1, e01< I.i0<I.Li 

Writing 13 in the form
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•	 I_i- . 

	

=	 /_	

-	

(A15) 
3	 0J	 1) J (-i)(--s) 

and. making the transformation

	

2	 ______ 
sn2u =	 (il6) 

(l-602 )k2 + 

where

	

= 2e	 I.'i - I.Lo	 (A17)

i—eu 

reduces equation ( A15) to the form 

1 3 = (l+e0)k /2ii
0	 / K	 du	 K	 e0d.0 

	

J e0(1)	 1+	 k2sn2u 1 1—	 k22u) 
The integration may now be completed and.

11+00) -


	

I 3 =°k S (la)K+	 __ 
1-1Lo	

•	 e0
20 

J2 [(J1i 
j°0k2 L \	 2

_EF(J'°)]} •(A18) 

Case 2, 0•<'p 0 <O0i1 

In this case

0 

1 3 = 

J 0 J
	

(A19)



NACA TN 2295
	 31 

and. the transformation

Sfl2U	
2 

1•ø0+.2. 

60 

is made where
i-to 

—e I i -
0 _____ 

2	 11-j.L0 

Equation (A19) then becons 

1 3 = (1+oo)j	
2.i0	 ( K	 du	 KO0du 

1+ 1-00 sn?u -	 1-

	

20o	 2 

The integration can be completed so that 

2k2	 Jo(1_0o2) j i—o0 ) 

1 3 = (l+e) /	 _________ 
__________	 ___________	 ___________	

16+2 60k2 
e(0) {0K (1o+26ok2 )	 1-00+200k2	 1+00	 - 

o J2(16o) [
	 ) EP (	 )] }	

o) 
1+00 2k —1+80 	 k	 2	 k	 2 

TEE INTEGRAL 14 

Case 1, Oi^x-3s 

The integral 1 4 can be written 

1 4 = 2 P/(x-x1)y1 
dy1	 (A21) J/

I.
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When the tiansformation snu = yi/ s is made, the expression may be 
inte'ated to give

rK 

	

1 4 = 2(x—xi) / dn2udu = 2(x—x1 )E 1	 (A22) 
U0 

where

2 (x—x) 

Case 2, x-43sx1x 

In this case 1 4 can be written 

	

14 = 2f 
X1j/(x_x1)2_t32y12 

dy1	 (A2Ii) 
o	 62Y12 

The transformation snu = I3yi/(x—xi) applied to equation (A2 11.) yields 

•	
•	 K(x—x)2 

	

1 4 = 2 r	
1 

cn2udu = 2k2(x—xjjB2	 (A25) 

	

Jo	 f3s	 - 

where

	

k2. =
	

(6) 

and

B2 =	 (A27)
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APPENDIX B 

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS 

SUBSONIC TRIA1'TGULR WING 

Since the integral I. is a function only of the ratio x1/x, 
equation (10) can be written for 	 =

Co 
3. 
r 
fi_)d	

1	
I1(ft)f1(-\a	 (Bi) +/ 

	

LIO	 \c) 

where	 = x1/x. It is now assumed that f(x/c0 ) may be considered 
constant over small intervals. This reduces the solution of the integral 
equation to the elementary problem of solving a system of simultaneous 
algebraic equations. Onthe basis of such an assumption equation (Bi) 
becomes 

1=	 f1(21)[fi1 g()d ]
	

(B2) 

i=l	 2j—].	 j=1,2,3 . . . fl 

where

= ____ + - i() O< <1

(B3) 

	

g0() = j '()	 1<< 

The function g0() can be integrated by numerical means, and it is 
convenient to make a plot such as is shown in the ske .tch in which each
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ordinate represents the value of g 0() inte-ated over the interval 0 
toe.	 .	 .	 - 

8

Co	
I	 2	 3	 4	 56	 7	 8	 9 

Systems of simultaneous equations were obtained for values of. n 
equal to 3, .6, and 9. Solutions were found using the Gauss—Seidel 
method (for which the simultaneous equations were well suited) and the 
convergence was rapid as the sketch indicates. 

1.2

0 3points 
1.0	

A 6 points 

D 9poin/s .8

S. 

.6	 A' 
•0 ' 

A,I	
t3. 

.2	

-	 -	 - - - - - _ - 

0	
4	 .6	 .8 0	 .2	
.

0
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SUBSONIC RECTANGULAR WING 

Substituting the value of 12 given by equation (A1 1#) into equa-
tion (16), one has for w = w0

(Bk) 

	

c0	 c0	 cG 

where

(x–xj\	 'ArE gi	 I =n+ 
\ C0 J	 (x_x1' k 

\ CJ 

and. where	 - 

________ = __________ 
j(x_xi ) 2+32 s2 	 J1i.(x_1)2+2 

A satisfactory numerical solution of equation (B 1 ) requires the solution. 
of the system of simultaneous equations of the form 

{f2(o)g(2o) +2 [f2()g(21)+ 

/2 \ /2 i1 2\	 /n–i \ /2 i–i n–i '\ 1 
f2( – lg(	 --i-i-... +f2t — lg(	 --n	 2n	 n	 - n	 2n	 n 

f2(l)g (2i_a - i) }.
	

0	

(B5)
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The convergenpe of the solutions to equation (B5) is indicated in the 
sketch where the value of n was successively taken td be 3, 6, and 9. 

1.2 q4 

' 1.0 I.	 Q.A	 0 

8	
0 3 points	 .. 
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.2 
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0	 .2	 .4	 .6	 .8 
xo 

SUPERSONIC BECTANGULAR WING 

Equation (25) can be written when w = w0 as 

1 = f4 (j.) 
+fX 

g1 
(X_X1) f ,	 (B6) 

where from equations (A22) and (A25)

X_X>11 

	

(x_xl ) =	

k2B2 X-Xi	

(Bi) 

	

and where	
S
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s13	 X-X1 
k1 =	 k2= 

x—x1	 s3 

By the application of the trapezoidal rule for numerical inteation' to 
equation (B6), it. is possible to write f 4 (x/s3) explicitly as 

f4 () =l() [gi(o+2	 gi()' f()]	 (8) 

where zx(x/3s) is the interval of the trapezoid.
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Figure 2.- Variation of chordwise correction factor f 
for .iubsoic triangular wiflg.	 GLAjXoI1'x'.dxo, 
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