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SUMMARY 

A rap id method for designing turbomachine blades of a given turning 
and a desirable blade-thickness distribution for a compressible non
viscous fluid flow along an arbitrary stream filament of revolution is 
presented. The method utilizes the guiding effects of the blade shape 
on the mean streamline shape and of the blade thickness on the specific 
mass flow along the mean streamline. After the flow on the mean stream
line is determined, the extension of the solution from the mean stream
line to the blade surfaces is accomplished by the use of a power series. 
A number of blade profiles are obtainable for the total mass-flow 
requirement, and one is chosen for the best velocity distribution on 
the blade . The results obtained in the solution can be used for a 
d i rect check on the accuracy of series approximation and, also, for 
the more accurate determination of the velocity distribution along the 
leading and trailing edges of the blade. 

The method is illustrated with the design of several turbine cas
cades of highly cambered thick blades. The determination of the shape 
of the blades and the compressible flow past the blades was carried out 
by hand computation in 16 hours. One solution obtained by using three 
terms in the power series compared very well with an available direct 
solut i on and the blade circulation checks closely the specified turning 
angle. 

Because the surface of revolution, on which the blades are located, 
is completely arbitrary, the method can be applied to axial- flow, 
r adial -flow, and mixed- flow turbomachines. The variation in the normal 
dis t ance between the stre am surfaces of revolution can be taken int o 
a ccount, thus incorporating i nto t he design the principal effect of 
three-dimensional flow. The method is readily applied to the design of 
channels on a plane and on a general surface of revolution. 
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I NTRODUCTI ON 

~le increasing use of compressors and turbines in aircraft power 
plants during the past 10 years has led to considerable research in the 
direct and inverse problems of two-dimensional potential flow past an 
infinite cascade of airfoils . In the inverse problem, the design of 
blades is often directed at control of the pressure or velocity distri
bution on the blade . MOst of the methods are derived for axial- type 
turbomachines, in which the flow is assumed to take place on cylindrical 
surfaces (methods for incompressible and compressible flow are discus sed 
in references 1 to 7 and 8 to 11, respectively) . Methods for designing 
blades in a radial plane are given in references 12 and 10. 

In current axial- and radial- flow turbomachines, the flow surfaces 
are usually of a more general shape than either cylindrical or radial . 
Furthermore, the normal distance between adjacent flow surfaces varies 
along the flow path . A method was therefore developed at the Lewis 
laboratory for the design of b l ades for compressible flow along an 
arbitrary stream filament of revolution . Instead of the velocity 
distribution on the blade being the required result , the blade design 
is aimed at a desirable blade-thickness distribution required with 
respect to blade strength and Mach number in general and also the cool
ant passage requirement in the case of cooled turbine blades . The com
putation involved in this method is relatively simple and short, and 
the usual assumption of a linear pressure-volume relation for compres
sible flow is not required. 

For clar ity and simplicity the method will first be given for 
compressib l e flow on a plane or a cylindrical surface and wi l l be 
illustrated by a few examples. The method will then be given for the 
general case of compressible flow along an arbitrar y stream filament of 
revolution . 

SYMBOLS 

The following symbols are used in this report : 

B differ~ntiation coefficient 

H total enthalpy, 

relative total enthalpy, 

h static enthalpy 
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I 

L 

1 2 122 h+-W --(J)r 
2 2 

blade length projected on turbomachine axis 

1. ) c:p orthogonal coordinates on mean surface of revolution 

M mass flow 

P pitch or spacing 

P static pressure of gas 

r radial distance from axis of turbomachine 

S streamline 

t blade thickness in circumferential direction 

V absolute velocity of gas 

W velocity of gas relative to blade 

Y distance in direction of pitch for plane flow and equal to rep 
for flow on cylindrical surface 

z distance along axis of turbomachine 

flow angle on stream surface, 

p density of gas 

or 
Wc:p 

tan- l -
WI 

angle between tangent to meridional curve and axis) 

T .10rmal thickness of stream filament of revolution 

y ratio of specific heats 

W stream function 

(J) angular velocity of blade 

Superscript : 

* dimensionless value 

3 
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Subscripts : 

e exit 

i inlet 

2)~ meridional and circumferential components 

m mean streamline 

p pressure surface of blade 

s suction surface of blade 

T total or stagnation state 

y y - component 

z z-component 

DESIGNING BLADES FOR COMPRESSIBLE FLOW IN PLANE 

OR ON CYLINDRICAL SURFACE 

General Description of Method 

I n a recent investigation of compressible flow through a typical 
cascade of turbine blades (reference 13)) the following results were 
obtained : 

( 1) The shape of the mean streamline follows approximately that of 
the mean channel line of the cascade and has a lower curvature . 

(2) The variation of the ratio of the specific mass flow on the 
mean streamline to its inlet value follows the trend in the variation 
of the ratio of pitch to channel width (inside the channel the ratio of 
the specific mass flow is about 4: percent greater than the ratio of 
pitch to channel width). 

(3) The variation in fluid properties across the channel can be 
represented by a second- degree function for engineering accuracy . 

These results were used herein to develop a rapid method for 
designing cascade blades for either compressible or incompressible flow . 

This method of blade design starts with the calculation of the com
pressible flow on the mean streamline. With the flow angle upstream 

to 
C\J 
C\J 
C\J 
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and downstream of the blade determined by the velocity diagram and the 
pitch and the axial length of the blade given) a particular mean stream
line shape may be sketched by the designer . The designer may use the 
shape of the mean streamline itself as a parameter of the cascade or 
may specify the mean streamline shape according to figure 17 or refer
ence 13 (or even better according to any available relation of a SlIDl

lar blading) to lead to a certain blade camber line . (If only a number 
of pOints of this streamline are specified) it is important that the 
values given are numerically smooth) . In addition to the mean streamline 
shape the designer further specifies at a finite number of points along 
the mean streamline (such as zl .. . z18 in fig. 1)) the ratio of 

specific mass flow on the mean streamline to inlet value. The values 
of the specific mass flow on the mean streamline are determined by the 
blade-thickness distribution which is desirable from the consideration 
of blade stress and Mach number in general) and the consideration of 
the additional requirement of coolant passage in the case of cooled 
turbine blades ) and by a relation between blade-thickness distribution 
and specific mass flow on the mean streamline) such as shown in fig-
ure 19 of reference 13. 

With these specified values) the velocity components and the density 
are very easily determined at the specified points on the mean stream
line. The variation of velocity components and denSity in the pitch 
direction are then obtained by using power series in that direction. 
The derivatives in the series are determined from the fluid state on 
the mean streamline by the use of equations of continuity and motion 
and the density- velocity relation for i s entropic flow. A number of 
blade profiles and their velocity distributions are obtained by inter
preting the starting mean streamline as dividing the inlet mass flow 
into two slightly different amounts in the channel . The velocity dis
tributions on the blades are compared and the best one is chosen. If 
the blade shape) the thickness distribution) or the velocity distri
bution around the blade obtained requires some modification) the 
values specified for the mean streamline should be modified and the 
process repeated . Because of the relatively short computation involved 
(in the illustrative examples of turbine blades) only 16 hours were 
required for the compressible solution by using the first three terms 
in the series and 6 to 10 stations inside the channel)) modifications 
of the solution for more desirable blade thickness or velocity distri
bution is practical . Families of blade elements can be built up very 
quickly this way for any particular application. 

Basic Relations 

The steady two- dimensional isentropic flow of a nonviscous fluid 
in a plane or on a cylindrical surface is governed by the following 
equations of continuity and irrotational motion) and the isentropic 
pressure-density relation: 
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o( pWz) a (pWy ) 
0 dZ + dy 

:= 

dWz dWy 
0 dy - dz := 

p := KpY 

I n these equations} the z coordinate is chosen along the machine axis 
and the y coordinate is chosen along the pitch direction (y := r~ in 
the case of cylindrical flow with r equal to a constant) . 

Consider first the gas flow along a streamline somewhere in the 
midpart of the channel formed by two neighboring blades} such as ab 

( 1) 

(2) 

(3) 

in figure 1 . The coordinates of the streamline and their differentials 
are related} respectively} by the following two equations : 

S(z}y) := 0 (4) 

dS dz dS d := 0 dz +dy Y (5) 

When the variation of the fluid state along the streamline is considered} 
any quantity q on the streamline is a function of z only} that is} 

q := q ~}y(z~ 

The total derivative of q with respect to z is 

But 

dy 
dz := 

Hence equation ( 7) may be written as 

( 6) 

( 7) 

( 8) 

(9) 

When equation (9) is used} the continuity and irrotationality relations 
can be written as 

[\) 
[\) 
[\) , 
tN 
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== 0 (10) 

and 

(11) 

The variation of density throughout the flow region can be most 
conveniently expressed in terms of its inlet value through the use of 
equation (3) as follows : 

1 

W2)Y-l 
2Rw (12) 

A tabulated general relation of pip . in equal intervals of W2/~ 
T) l 

can first be calculated) from which either a table for P/Pi in equal 
intervals of W2 or a gr aph can be .easily constructed for each indi
vidual case and used for the evaluation of density from the velocity. 

Along the chosen (mean) streamline) where the slope is known and 
pW is given at a number of stations) the density at these stations can z 
be obtained as follows : Rewrite equation (12) as 

or 

where 

2 
(p*Wz'" sec f3) 

1 -

W. 2 
l 

1 - 2~ 

W 
W • z 

z - ~ 
Z') l 

1 
y- l 

(12a) 

(12b) 
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Ei ther equation (12a) is used to prepare a table of p. for equal inter
vals of (p·Wz• sec ~) by an iterative process) or equation (12b) is 
used to compute p·Wz• sec ~ for a number of values p.) which are 
then plotted as a graph. After densities have been obtained from either 
a table or graph) the velocity components on the chosen (mean) stream
line are readily computed . The fluid state is then extended out in the 
pitch direction by the equations given in the next section ( compare with 
r eferences 14 and 15). 

Variation of Fluid state in Pitch Direction 

Equations (8)) (10)) (11 )) and (12) directly give the first-order 
partial derivatives of Wz ) Wy) and p with respect to y in terms 

of the known quantities on the chosen (mean) streamline as follows: 

The second-order partial derivatives of Wz) Wy) and 

respect to y can be obtained as follows : Differentiating 
tinuity equation (1) with respect to y results in 

o 

p with 

the con-

Equation (16) can be written through the use of relation (9) as 

d2 (PWy) 
- tan 

d2 (pW z) d d (pWz) 
0 

13 d} 
+ - 2iy = 

di 
dz 

which is expanded to obtain 

2 
dP dlly ~ d

2
11z d p dw z) d ( pWz) d Wy d 

0 p -- + 2 dv dv - p--+ 2 dy dy tan f3 +- 2iy dy2 Y Y dy2 dz 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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From equation (10) 

(19) 

Differentiating the irrotationality equat ion (2) with respect to y and 
using equation (9) yield 

(20) 

Substituting equations (19) and ( 20) into equation (18) results in 

clwy 2 d(pWz ) ap (d aWy a
2
Wy) d a(pWz) 

p ay2 - p dz dy - P dz dy - tan j3 dy2 tan j3 + dz dy = 0 

Transposing and combining t erms give 

• (21) 

After this equation is evaluated, the second partial derivative of Wz 
with respect to y is obtained by using equation (20): 

(22) 

A typical computation for these derivatives is presented in tables I 
and II. 

The 
obtained 

second-order partial derivative of p with respect to y is 
again from equation (12): 

t W2/WZ :> +Wy :> + (~;zl + (~;y)~ 
(y-l) ~-2 L . J 

(23) 

Third and higher order y-derivatives, if required, can be obtained 
in a simil ar manner. The complete variation of any fluid property q 
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across the channel can then be expressed by a Taylor ' s ser ies in (Y- Ym) 
from the various derivatives at the given streamline, such as the mean 
streamline 

q (y ) 

( 24) 

Determination of Blade Profile 

The blade profile can be obtained by a consideration of mass flow . 
At the chosen stations, mass flow across a constant z line from y 

m 
t o y is computed as a function of y according to the following equa-
tion : 

( 25) 

• 
The variations of mass flow M and the magnitude of resultant velocity 
W at each station are plotted against y (fig . 2). Because the con
dition on the suction surface is more critical than that on the pressure 
surface, the blade shape on the suction side is determined first. From 
the plot of mass flow against y, a number of y 's are chosen for a 

s 
number of mass flows in the neighborhood of one- half the inlet mass 
flow, thus obtaining a number of suction surfaces. The corresponding 
velocities on the suction surfaces are read from the velocity plots 
(fig. 2) . The one with the best velocity distribution is then chosen. 
After the suction surface is selected, the pressure surface and its 
velocity are determined in a similar manner by the total mass-flow 
requirement . If the shape or thickness of the blade or the velocity 
distribution on the blade obtained is not quite the one desired, the 
shape of and the flow on the mean streamline can be modified accordingly 
and the process repeated. Because each case takes a relatively small 
amount of computation, this modification is practical . Systematic 
building up of families of blades for various applications is also not 
difficult . 

The accuracy of the blade coordinates obtained depends mainly on 
the accuracy of series representation and the accuracy to which the 
partial derivations are evaluated. For high-solidity blades, such as 
those investigated in reference 13, the first three terms in the series 

tr) 
C\J 
C\J 
C\J 
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will give sufficient accuracy. For low-solidity blades, more terms may 
be required. It may be noted that accurate representation of the flow 
variation by the series is difficult to achieve in the neighborhood very 
close to the leading and trailing edges; but from a practical point of 
view it is satisfactory to fair in the nose and the tail according to 
some standard shape after the blade coordinates are obtained up to a 
short distance away from these regions. 

The application of this design method will be greatly aided by the 
availability of detailed flow variations in typical bladings such as 
those given in references 13 and 16 . If a typical solution of the type 
of blading to be designed is not available, either a direct problem may 
be solved first, or even better, the accuracy of the inverse solution 
can be ascertained in the manner described in the following section. 

Method of Checking Solution 

The inverse solution obtained by this method can be very conven
iently checked and improved, if necessary, by the relaxation method 
utilizing the fluid state obtained in the solution. Inasmuch as the 
velocities are available in the solution, the equation for irrotational 
absolute flow (equation (A9 ) of reference 13) is now written as 

d~ d~ (w dP W dp \ 
d z 2 + dy2 + Y dz - z dy) = 0 (26) 

The finite-difference form of equation (26) i s then 

(2 7) 

where the same notation used in reference 13 is employed. A gr id 
system is obtained by retaining the same z-stations used in the inverse 
solution and dividing the pitch distance into an appropriate number of 
divisions. The values of W, W, and p are most conveniently obtained 
by reading off the plots of integrated mass flow M, W, and p at 
each of the z-stations. The differentiation coefficients B's for 
equally spaced grid points as given in reference 17 can be applied 
throughout the domain for the present purpose by using the function 
values which are inside the blade but at equal spacing from the points 
in the channel (the first and last rows in tables III and IV). If the 
residuals obtained according to equation (2 7) require negligible change 
in ~, the solution is entirely satisfactory. If the residuals are 
large enough to necessitate one cycle of relaxation, the net effect 
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may be a slight change in the specified mean streamline flow and in the 
velocity distribution on the resultant blade . If the residuals are so 
large as to warrant a few cycles of relaxation, the flow variation for 
this type of blading is established, which makes the design of other 
similar bladings very simple. In general, for problems in which some 
knowledge of the flow is available, no relaxation should be necessary 
except, perhaps, near the nose and tail when accurate detailed velocity 
distribution i n these regions is desired. 

Special Case of Incompressible Flow 

When the density is constant, the channel width ratio p/(p-t) has 
a relation to Wz,m similar to the relation it has to (pWz)m in the 

compressible case (reference 13). A number of values of Wz are there
fore prescribed at a number of chosen stations along the mean streamline 
to lead to a desirable thickness distribution of the blade. The solu
tion of the incompressible problem continues in generally the same 
manner as it did for the compressible case with considerable simplifi
cation in the series terms and the integration process. In the incom
pressible case , of course, equations (12), (15), and (23) relating p 
and the velocities are unnecessary. 

The first- and second-order derivatives expressed by equations (13), 
(14), (21), and (22) for the compressible case are simplified to: 

dWy ( dWy 
dY = tan f3 - -y dz 

dWz ) 2 
-- cos dz f3 

dW (dW dW) 2 z Y 
~ = --- + tan f3 dZ

z 
cos f3 y dz 

2 [ _ ~ (dWz)] d Wy d dWy 
cos2 f3 - = tan f3 -(~) dz dy dy2 dz Y 

and 

for the incompressible case . The equation for obtaining mass flow 

becomes M = p ry 
Wz dy. 

JYm 

(28) 

(29) 

(30) 

(31) 
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I llustrative Examples 

The procedure outlined in the preceding sections has been applied 
to the design of several highly cambered thick turbine blades for either 
compressible or incompressible flow . 

First and second examples . - In the first example) the shape of the 
mean streamline and the variation of axial velocity obtained in the 
incompressible solution of the blade given in reference 13 are taken 
as the specified values in order to determine whether the original 
blade will be reproduced . The shape of the mean streamline is shown in 
figure 1 and the thickness distribution of the blade is shown in fig
ure 3. As a further check of the method) the z-stations chosen in this 
calculation correspond to every other z-station used in reference 13) 
so that the velocities obtained along these stations can also be com
pared with the solutions obtained in reference 13 . The given quantities 
were inlet angle ~i) 410 18'; exit angle ~e) - 520 57' ; axial chord 

L) 1.5 inches ; and pitch p) 1 . 017 inches . 

The same data are used in the second example in which a compres
sible solution for an inlet Mach number of 0 . 42 is obtained. The axial
velocity variation on the mean streamline used in the first example is 
now taken as the specifi~-mass- flow variation on the mean streamline. 
Thi s example is presented mainly to illustrate the difference in incom
pressible and compressible solutions for the same mean streamline shape 
and the same ratio of specific mass flow . 

The complete computation for the flow on the mean streamline and 
the determination of the first - and second- order derivatives of Wz ) 

W) and p in the pitch direction at the mean streamline for these 
y 

two cases is given in tables I and II. Only three terms in the series 
are used because the direct solutions given in reference 13 indicate 
that they will be sufficient for engine~ring accuracy. The central
point fourth-degree differentiation formula is used at the regular 
stations z3 to z16' Because the first and last stations inside the 

channel employed in reference 13 are not close enough to the leading 
and trailing edges) respectively) two extra points are computed at 
stations 6 . 75 and 12 . 25 by the use of the unequal interval differen
tiation formula given in reference 18. These two points are so desig
nated because they are located at a distance of a quarter of the regular 
spacing away from stations 7 and 12) respectively. This combination is 
unnecessary for other cases. 

The velocities and the densities used in the calculati on are non
dimensionalized as follows: 
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W 
W • Z 

= W Z z)i 

W ... ~ 
y w . 

Z)l 

p. = ..E... 
Pi 

The mass flow M*) being divided by p.W .) has the dimension of 
length: 

1. Z)l 

M* = 
M 

p.W . 
1 Z)l 

2 
For the compressible case) the ratio of Bw to Wz i is equal 

) 

to 25. 78) which is the value used in the construction of the two density 
graphs involved in the calculation, the reduced versions of which are 
shown in figures 4 and 5 . 

The values in columns 2) 5, 8 ) 9) 12) and 13 of table I and 7) 8, 
13) 14) 22) and 23 of table II are used to compute the variation of W 
and W in the pitch direction by the power series . The calculation Z y 
of density follows directly as does the integrat ion across the channel 
for mass flow, the mass flow being determined numerically. Because the 
specific mass flow pWz was made dimensionless with its inlet value, 

the numerical value for the mass flow is equal to the pitch) the height 
being considered unity . This indicates that the integration for mass 
flow along the pitch direction starting at the mean streamline was con
sidered to be complete in either the plus or mi~us direction when a 
value equal to one- half the pitch distance or one- half the total mass 
flow was reached . Thus the channel flow and the blade coordinates 
were obtained. This calculation at one station, 10, is shown in 
tables III and IV for the two cases , respectively. 

The blade profile obtained by interpolating Ys and yp for 

one-half of the inlet mass-flow value is shown in figure 6 . Because of 
the same mean streamline shape and the same variation of specific mass 
flow on the mean streamline prescribed in the incompressible and com
pressible cases, the blades obtained for these two cases look quite 
similar except that the compressible one is somewhat thicker and the 
suction surface of the compressible solution is situated farther from 
the given mean streamline ; these results are consistent with the direct 
solutions given in reference 13 . The velocities obtained in the two 
cases (fig. 7), however) are quite different. Those in the compressible 
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solution are, in general, higher than those in the incompressible case, 
principally because of the high velocity on the mean streamline result
ing from the use of the same (pWz)m and a decreasing p along the 

mean streamline in the compressible case . 

The blade coordinates obtained in the incompressible solution are 
compared with those of the original blade in figure 8 . The velocities 
at the six regular stations in the channel are compared (figs. 9 to 11) 
with the values obtained in the relaxation solution of the original 
blade reported in reference 13. These four figures show that, in 
general, the present solution is satisfactor y . The relatively large 
differences near the leading and trailing edges are partly due to the 
inaccuracy in the seco~d-degree polynomial approximation in the present 
calculation and partly due to the inaccuracy of the numerical solution 
obtained in reference 13 caused by the relatively coarse grid used in 
these regions. 

As a check of the consistency of the solution, an integration of 
the velocity along the blade profile obtained in the same example was 
made and compared with the circulation value computed from the inlet 
and exit tangential velocities and the pitch. The two are in agreement 
wi t hin 1 percent . 

Third and fourth examples. - In the previous two examples, the mean 
streamlines and specific- mass - flow distributions prescribed were not 
entirely arbitrary, having been obtained from the results of a direct 
problem for incompressible flow . The possibility of obtaining an 
unrealistic blade shape was, for this reason, largely eliminated. Con
sequently, in order to give the method a still more rigorous test, the 
thickness distribution (fig. 12) and mean blade line _(fig. 13) for the 
hub section of an experimental cooled turbine blade were arbitrarily 
chosen from which a mean streamline and specific mass flow were estima
ted by means discussed in the section "General Ilescription of Method." 

In addition to the mean blade line and thickness distribution, the 
following data were used: inlet Mach number, 0.42; inlet angle, 36.20

; 

exit angle, 42.70 ; axial chord, 1. 8 inches; and pitch, 1 . 176 inches. 
The mean blade line was fa ired into the inlet and exit directions 
(fig. 14) with modification to obtain a mean streamline according to 
the information obtained for a typical turbine blade in reference 13 
(see fig. 8). The thickness distribution was used t o obtain the 
specific-mass-flow distribution along the mean streamline (dashed curve 
in fi g . 15) according to results obtained in reference 13. After the 
fl ow on the mean streamline was calculated, it was then extended out 
from the mean streamline across the channel by means of power series as 
before. 

Both compressible and incompressible solutions were completed, the 
incompressible case being considered first becaus e of its relative 
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simplicity. The results of the incompressible case served as a guide to 
obt aining better prescribed values for the compr essible case . The bl ade 
obtained in the incompressible solution has a s l ightl y higher thickness 
distribution than was wanted and, because results obtained in the first 
two examples indicate that the compressible blade will be thicker than 
the incompressible for the same specific-mass-flow distribution, this 
distribution was depressed by a linear pr oportioning (fig . 15 ) in order 
to obtain better starting values for the compressible case and conse
quently a thinner blade (fig . 14). The same mean streamline numericall y 
smoothed to give small fourth differences was used. in both cases . 

As a check of the accuracy of the last solution, a grid having t he 
same spacing in the z- direction used in the inverse solution (0 . 18) and 
a grid spacing of 0 .147 in the y- direction is chosen, and the residuals 
a t the grid points are computed according to equation ( 27) using the 
central point second- degree differentiation formula . As shown in 
table V, the residuals are rather small when they are compared with the 
magnitude of the coefficient at the points ( -154 . 3) . As an indication 
of the percentage error in the velocity, these residuals are f irst 
divided by -154 . 3, resulting in an approximate change in the W value 
at each point. Then the probable error in dW/oy or pWz is calcula
ted. The result is shown in table VI, which indicates that the solution 
obtained is sufficiently accurate for ordinary purposes . 

DESIGNING BLADES FOR COMPRESSIBLE FLOW ALONG ARBITRARY 

STREAM F I LAMENT OF REVOLUTION 

Basic Relations 

The blade design method presented in the section "Designing Blades 
for Compressible Flow in Plane or on Cylindrical Surface" can be very 
easily extended to the more general case of flow along an arbitrary 
stream filament of revolution having a varying normal thickness 
(fig . 16). When only an average value in the stream filament of revolu
tion, as represented by the flow on the mean stream surface of revolu
tion described by a set of orthogonal coordinates 7, and cP (fig . 16 ) , 
is considered, the equation of continuity for steady relative flow and 
the equation of irrotational absolute flow are given in reference 13 as 
follows: 

o(TpW7, r ) 
+ 

o (T pWcp) 
= 0 

d 7, dCP 
(1' ) 

OWcp 1 OW7, W sin cr cp +2w sin cr = 0 "Cf'L - r dCP + r 
( 2 ' ) 

to 
C\J 
C\J 
C\J 
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where primes in equation numbers indicate equations similar to those of 
the cylindrical case . 

When the fluid flow along a streamline S(L)~) = 0 on the mean 
surface of revolution is considered) it is convenient to write any 
quantity q on S as a function of L only . Then the total deriva
tive of q with respect to L) following the streamline) is 

(9 1
) 

when 

tan 13 

When the preceding relation is used) the continuity and irrotationality 
conditions can be written as 

o (10 1 
) 

and 

dW~ 1 dWL tan S dW~ (W~ ) en - r d"CP - - r- d"CP + r + 2m s in a = 0 (111 ) 

The variation of density throughout the flow region) in general) 
is obtained from the velocity by using the following equation: 

1 

1 2)Y-l 
"2W 

(121 ) 

In order to obtain the density on the starting (mean) streamline) equa
tion (121) is written in the following form (compare with equation (7a) 
of reference 13) ; 

(12a 1 ) 

where 
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and 

Once the general relation between l: and 4> is available) the evalua
tion of p* for certain given values of p*W2• sec ~ along the chosen 

(mean) streamline is made simple if auxiliary tables or graphs giving 

~I + ~ (l)2r2)- Y:l and ( WI) i 2) (I + ~ (l)2r2)- ~~i 
as functions of r h

l
· 2 h . h . 

l l 

are first obtained . 

The determination of the flow along the starting (mean) streamline 
(fig . 17) proceeds very much the same as in the case of plane flow or 
flow on a cylindrical surface . The shape of the streamline gives 
sec~. The variation of p*wI * is obtained from the blade-thickness 
variation along the mean surface of revolution as follows: If the 
value of pW

2 
on the mean streamline represents its average value in 

the circumferential direction 

T( pWI ) m (p-t) (TpW1P)i (32) 

But 

Pi r i 
(33) p= r 

hence 

T(pWI)m r P (34) (T pW l r) i = P-t 

Although there is always some deviation from this simple relation) 
espe cially around the leading and t railing edges) a relation between the 
two terms i n equation (34) similar to that between (p*Wz*)m and 

t<) 
C\J 
C\J 
C\J 
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p/(p-t) in the previous cylindrical case can be expected. Then) from 
T*( P*W7, *) m r *) (p*w7, *) m is calculated and combined with sec [3 from 

19 

which Pm* is obtained by equation (12a'). After Pm* is determined) 
W * and then Wrn '" are easily calculated . 7,)m 't")m 

Variation of Fluid State in Pitch Direction 

The first-order partial derivatives of W7,) Wcp' and P with 

respect to ~ are readily obtained from equations (10')) (11')) and 
(12') as: 

dW7, _ I ~ tan [3 d( TpW7, r) J 2 
dCP - ~ d7, + T P d7, + (Wcp + 2mr) sin cr cos [3 (13' ) 

sin 

1 dp 1 

P dcP = - (y-l) (I + ~ (.l)2r2 _ 
(15' ) 

In a manner similar to that of the case of plane or cylindrical 
flow·the second-order partial derivatives of W7,) WCP) and pare 
obtained as follows: 

1 

(Y-l)(I + ~ (.l)2r2 

(21' ) 

(22') 

(23' ) 
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After the variation of fluid state in the circumferential direction 
is determined) the mass flow across a constant I line from ~ to ~ 

is computed by m 

(25' ) 

from which the blade coordinates are determined as in the previous case . 
If checking is desired) the following equations are t o be used : 

~ QB~ o n J 
j:::O 

n 

(
sin a + ~

r 

L~~ 
. 0 n J 
J= 

( dp WI dp .) 
~ <IT - r dq> + 2(J)p Sln a = 0 

(26' ) 

L· k 
~~ P + 2(J)(p sin 

(2 7 ' ) 

where the same notation used in reference 13 is employed. 

SUMMARY OF RESULTS 

A rapid method for designing turbomachine blades of a given turning 
and a desirable blade- thickness distribution for a compressible non
viscous fluid flow along an arbitrary stream filament of revolution is 
presented . The method utilizes the guiding effects of the blade shape 
on the mean streamline shape and of the blade thickness on the specific 
mass flow along the mean streamline . After the flow on the mean stream
line is determined) the extension of the solution from the mean stream
line to the blade surfaces is accomplished by the use of a power series. 
A number of blade profiles are obtainable for the t otal mass-flow 
requirement) and one is chosen for the best velocity distribution on the 
blade. The results obtained in the solution can be used for a direct 
check on the accuracy of series approximation and) also) for the more 
accurate determination of the velocity distribution along the leading 
and trailing edges of the blade . 

to 
N 
N 
N 
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The method is illustrated with the design of several cascades of 
airfoils. I n each case either some indication of the accuracy of the 
solution is given or the relation between the incompressible and com
pressible problems are shown . I n the first case, the results obtained 
in an incompressible direct solution were used as prescribed values for 
the inverse problem to show that the original blade can be relatively 
easily reproduced with adequate accuracy . The variation of the velocity 
and its components acr oss the channel was shown to compare favorably 
with those obtained in the direct solution and an integration around 
the blade for the circulation checked with that obtained from inlet and 
exit values within 1 percent . I n the second problem, the same mean 
streamline and specific-mass-flow distribution along it were used; but 
this time the density was allowed to vary as in compressible flow and a 
comparison was made between the blades obtained in the first two cases. 
In the third and last problem, an arbitrary mean streamline and specific
mass-flow distribution were chosen, the blade obtained, and the solution 
checked by calculation of the residuals as in a direct relaxation solu
tion. Because the r esiduals were small the solution was considered to 
be reasonably accurate . A computation designed to give some indication 
of the accuracy of the velocities by dividing the derivative of the 
error in the stream function W by the derivative of W itself showed 
them to be accurate generally within 1 percent except near the blade 
boundaries where an end-point formula was necessarily used to obtain 
derivatives. 

Because the surface of revolution, on which the blades are located, 
i,s completely arbitrary, the method can be applied to axial- flOW, radial
flow, and mixed- flow turbomachines . The variation in the normal 
distance between the stream surfaces of revolution can be taken into 
account, thus incorporating into the design the principal effect of 
three-dimensional flow . The method is readily applied to the design of 
channels on a plane and on a general surface of revolution. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, May 31, 1951. 
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TABLE I - C<X>IPUTATION OF FLOW ON MEAN STREAMLINE AND FffiST- AND SECOND-ORDER y -DERIVATIVES AT THE MEAN STREAMLINE OF FIRST EXAMPLE 
(INCOMPRESSIBLE FLOW) 

(l) (2) (3) (4) (5) (6) CD @) ® Q.l} OJ) O-~ O-~ 

Station W~,m tan 13m sec 2 13m W;,m 
d W~ m d Wy, m (OW~) (~) MOW~) ~(~1 (~t 02W~) z Ym ~ 

dz dz Oy m oY m dz Oy m dz oy oy2 \ or m 

@ @2+ 1 ®® <!® .@ (2:t@ + G: @ (7) - (§) g® ~ @Q3)- 69 @-oo dz dz dz ® ® dz dz ® 
1 -1.4084 - 0 . 3728 1.0000 -------- ------- -------- -------- -------- -------- -------- -------- -------- -------- --------

2 -1.1541 - .1494 1.0000 -------- ------- - -- ----- -------- -------- -------- -- - ----- -------- -------- -------- --------

3 - . 8999 .0740 1.0000 0.89108 1.79402 . 89108 -------- -------- -------- -------- -------- -------- -------- --------

4 - .6456 .3060 . 9990 .93556 1.87527 . 93462 ------ -- -------- -------- -------- -------- -------- -------- --------

5 - . 3914 . 5517 . 9771 1.03618 2 .07367 1.01245 . 25467 .40963 0 . 32479 0.08187 -------- -------- -------- --------

6 - .1371 .8178 1.1500 . 93615 1.87638 1.07657 1.01252 - . 39092 .29682 - . 73465 -------- - ------- -------- --------
6 . 75 .0535 . 9684 1.3659 . 65622 1.43062 .89633 1.08548 -1. 67726 - . 67450 -1.52810 - 5 . 42823 0.65833 4.09629 - 2 . 02974 
7 .li71 1. 0070 1.4310 . 54290 1.29474, .77689 . 83681 -1.76538 - 1.01262 -1.38656 - 5 . 49465 . 43023 4 . 42423 - 1.97168 

8 . 3714 1.0922 1.5410 . 15759 1.02483 . 24285 . 20256 - 2 . 15563 - 2.07225 - .52913 -1. 74154 4 .16951 2 . 34050 3.80067 

9 .6256 1.0905 1.5520 - . 17470 1.03052 - . 27li3 - .08784 -1. 93581 -1. 86359 . 41341 2 . 12073 3 . 07270 - 2 . 57882 2 . 62218 

10 .8799 1.0050 1.5000 - .48718 1.23734 - .73077 - . 36054 -1. 65736 -1.19750 .94394 2 . 91580 1. 20754 - 2 . 83195 - .17213 

11 1.1341 . 8424 1.3710 - . 80665 1.65068 - 1.10592 - . 63199 -1.31032 - . 48497 1.02319 2 . 60927 - . 55502 -1. 30950 -1.61133 

12 1.3884 .5938 1.1930 -1.15578 2.33583 -1.37885 - .73497 - .70788 . 06061 . 66491 1.48324 - 2 . 66657 .68444 -1.87551 
12.25 1.4519 .517.0 1.1430 -1. 24560 2 . 55152 -1.42372 - . 76104 - .57670 .14550 . 57980 1.12891 -1.97290 . 52068 -1. 32434 
13 1.6426 . 2620 1.0242 -1. 42353 3 . 02644 -1.45798 - . 46772 . 06181 .24042 - . 12547 -------- -------- -------- --------

14 1.8969 - . 1ll9 .9680 -1. 43337 3.05455 -1. 38750 - .00544 . 23739 . 08027 - . 10962 -------- ------- - -------- --------

15 2.15li - . 4600 . 9980 -1.36644 2.86716 -1. 36371 ------ -- -------- -------- -------- -------- --- ----- -------- --------

16 2 . 4054 - .8090 1.0000 -1.34897 2 . 81972 -1.34897 -------- ---- ---- -------- -------- -------- ------- - -------- --------

17 2 . 6596 -1.1458 1.0000 -------- - ------ -------- ----- --- -------- -------- -------- -------- -------- -------- --------

18 2.9139 -1.4826 1.0000 -------- ------- ------- - ------- - -------- -------- -------- ---- - --- -------- -------- --------
- -~-

~ 

,~ 

~ 
~ 
~ 
N 
~ 
(Jl 
(Jl 

N 
(Jl 



~ ® ® ® 

Station z Ym (p· l{)m tan 13m sec2 13m 

@ ®2+ 1 
dz 

1 -1.4084 - 0 . 3728 1.0000 -------- ---- - --

2 - 1.1541 - .1494 1.0000 -------- -------

3 - .8999 .0740 1.0000 0 . 89108 1. 79402 

4 - . 6456 . 3060 . 9990 . 93556 1. 87527 

5 - . 3914 .5517 . 9771 1. 03618 2.07367 

6 - .1371 .8178 1.1500 . 93615 1.87638 

6.75 .0535 . 9684 1.3659 . 65622 1.43062 

7 . li71 1. 0070 1.4310 . 54290 1. 29474 

8 . 3714 1.0922 1.5410 . 15759 1.02483 

9 . 6256 1.0905 1.5520 - . 17470 1.03052 

10 . 8799 1.0050 1.5000 - . 48718 1. 23734 

II 1.1341 . 8424 1.3710 - . 80665 1.65068 

12 1. 3884 . 5938 1.1930 - 1.15578 2 . 33583 
12.25 1.4519 . 5170 1.1430 - 1. 24560 2.55152 
13 1 . 6426 .2620 1.0242 -1. 42353 3.02644 

14 1. 8969 - . li19 . 9680 - 1.43337 3 . 05455 

15 2 . 15ll - . 4600 .9980 - 1.36644 2 . 86716 

16 2 . 4054 - . 8090 1.0000 -1.34897 2 . 81972 

17 2.6596 - 1.1458 1.0000 -------- ---- ---

18 2.9139 - 1.4826 1.0000 - ------- - ------
'----

TABLE II - CCMPUTATION OF FLOW ON MEAN STREAMLINE AND FIRST - AND SECOND- ORDER 

® ® ® ® ® @ © ~ 

(p -w; sec 13)~ P~ W~ ,m W;, m 
d W;,m d (p '"w~)m 1 1 d (p-W~ ) m 

P~ P:' dz dz dz 

®2 
From@ 

~ ®CV cl® d® 1 ® and 
® 

-
® @@ 

fig. 4 dz dz 

-- --- ------ ------- -------- -------- -------- ------- --------

- - --- --- --- ------- -------- ---- - --- -------- ------- ----- - --

1. 794 0 . 9989 1.00ll0 0 . 89206 -------- ----- --- - - --- -- --------

1.872 . 9942 1. 00483 .94008 -------- - --- - - - - -- - ---- --------

1.980 .9875 . 98947 1.02527 0 . 51913 .25467 1.01266 0 . 25789 

2 . 482 .9528 1. 20697 1.12990 - . 29567 1.01252 1.04954 1.06268 
2 . 669 . 9381 1.45603 .95548 - 1.78473 1.08548 1.06598 1.15710 
2.651 .9397 1.52283 . 82674 - 1.86758 . 83681 1. 06417 . 89051 

2.434 . 9564 1.6ll25 . 25392 - 2 . 28571 . 20256 1.04559 . 2ll79 

2.482 .9528 1. 62888 - . 28457 - 2 . 05532 - . 08784 1. 04954 - . 09219 

2 . 784 . 9287 1. 61516 - . 78687 - 1.87747 - . 36054 1. 07677 - . 38822 

3.103 . 9000 1.52333 - 1. 22879 -1.61583 - . 63199 1.1llll - .70221 

3.324 . 8773 1. 35985 - 1.57169 - .82525 - .73497 1.13986 - . 83776 
3 . 333 . 8763 1 . 30435 - 1.62470 - . 63878 - .76104 1.14ll6 - .86847 
3 . 175 .8927 1.14731 - 1.63323 . 25782 - . 46772 1.12020 - . 52394 

2.862 .9222 1.04966 - 1.50455 . 36881 - . 00544 1.08436 - . 00590 

2 . 856 .9225 1.08184 -1.47827 -------- - -- - ---- -- ---- - ------ - -

2 . 820 .9257 1.08026 - 1. 45724 -------- - - -- --- - - - ----- --------

----- - ---- - ------- -------- - - ------ -------- ------- - -------

- - - - - ---- - - ------- -------- -------- -------- ------- --------

~ 

£222 

I 

I 

C\) 
(J) 

~ 
~ 
C\) 

It>
U1 
U1 
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y-DERIVATIVES AT THE MEAN STREAMLINE OF SECOND EXAMPLE (C<MPRESSIBLE FLOW) ~ 
~ ---@---

6 @ ~ Portion of Portion of (~) Portion of equation ( 21) ( O2~~) equation (15) equation (15) oy m N 
oy m "'" Gl@+@ ~-~ ell Q3\ + @ QA) . 2 [0-2 +@2J @ ~ ~ 

CJ1 

®@ +(i)@ 2@@ - @ @ -@@ 
CJ1 

® ® @ - 10 . 312 @ dz dz 

------- - , - - ------ , ------ - - - ---- - -- -------- -------- - - - - ---- -------- I -------- -------- --------

-------- , -------- , --- ----- --- ----- I ________ I -------- --- - ---- ------- - --- ---- - -------- --------

------ - - -------- --- --- - - - ------- -------- -------- -------- -------- -------- ------ - - ---- - ---

------- - I _ _______ , --- - ---- -------- ------ - - -------- - ------- -------- ------ - - -- --- --- --------

0 . 37921 0 .13504 0 .50725 - 9. 90595 -0 . 05121 0.32380 I _______ _ I __ __ _ ___ I - - ------ ----- - -- - -------

. 37261 - .71386 - .34002 -9.76531 . 03482 .39705 ------- - - -- - - --- - -- - ---- -------- - -------
- .71676 -1. 62746 - 2.43778 -9 . 70541 . 25118 - . 30667 - 4 . 34319 0 . 68130 4 . 92447 3 . 98182 -1 . 93165 
-1.06903 -1. 47089 - 2. 67250 - 9.71150 . 27519 . 58550 -4 . 48125 . 30905 4 . 97137 4 . 21565 -1.97963 

- 2.19776 - . 55814 - 3. 52228 - 9 .77988 . 36016 -1. 52163 -1. 62207 4 . 42590 1. 77463 2 . 49116 4 . 03332 

-1. 97882 . 43789 - 3. 18986 - 9.7 6515 . 32666 -1.35333 1. 78075 3. 34414 -1. 84098 - 2 . 44188 2 . 91754 

-1. 36449 1.05297 -2 . 81622 -9.66642 . 29134 - . 79664 2 . 41248 1.60341 - 2 . 63869 - 2 . 92758 .17715 

- .63573 1. 21503 - 2.21530 -9 . 54591 . 23207 - . 21864 2 . 05021 - . 62334 - 2 . 37613 -1.29481 -1.66780 

. 06123 . 76699 - .98451 -9 . 4481 2 . 10420 . 19541 1.14733 - 2. 64875 -1.32192 . 66553 -1.87954 

.17362 . 65221 - . 73012 -9 . 44380 . 07731 .25298 .7 8433 -2 . 17306 - . 91861 . 65000 -1.36342 

.33163 . 05185 . 26406 -9 . 51525 . 02775 . 32788 -------- - - ------ - - ------ ----- - -- --------

.12351 - . 17114 . 35701 -9 . 63891 - . 03704 . 07502 1-------- 1 ________ 1 ------- - -- ------ --------

-------- - -- ----- -------- -------- - - -- - --- -------- 1-------- 1-------- , -------- -------- - -------

--- - ---- ------- - -------- -------- -------- -------- ------ - - -------- ----- - -- -- - ----- ----- - --

--- - ---- ----- - -- -------- - --- ---- -------- ---- - -- - 1-------- 1--------
1 

- ---- - -- -- ------ ---- - ---

--- - ---- -------- -------- -------- -------- -------- -------- ----- - -- ---------------- --------

~ 
[\) 

--.J 

--- --



Sta-I 
G) 

I 

tion 
ooy Y 

Ym + n(6l) 

4L\y
P 

1.5383 

~YP 1.4050 

26yp 1. 2717 

6yp 1.1383 

Ym 1.0050 

6ys .9057 

26ys . 8063 

~Ys .7070 

4L\ys .6077 

TABLE III - COMPUTATION OF VELOCITY COMPONENrS AND MASS FLOW AT STATION 10 OF THE FIBST EXAMPLE ( INCOMPRESSIBLE FLOW) 

[Z10 = 0 . 8799 ; Ym = 1.0050; 6yp = 0 . 13333 ; 6ys = -0.09933~ 

-(2) I 6) @ @ ® (j) @ ® @ @) T @ 
( Y- Ym) 2 

Wz: m (0 :y~ ( 02w~), Wz' Wy~m ( 00~Y1 (~~ I W • I W· Y - Ym - 2-- Oy2 m Y 
n 2 

@+@@+@.:ID @+@:ID+@@ fjJ +@2 nt:,y "2 (6y)2 

M' Bl ade Y 

f(J)dy coor dinate 
ob t a ined 

Ym f or 
M' =W . 5085 

0.53333 0 . 14222 0 . 83686 - 0 . 63010 1.04755 0 . 62534 

. 40000 . 08000 1.00723 - . 57975 1.16216 . 50236 1.41120 

. 26667 .03556 1.17454 - . 57975 1. 30983 . 35688 

. 13333 . 00889 1. 33881 - .63009 1.47967 

1.5000 -1.19750 -0.17213 1.50000 - 0 . 73077 0 . 94394 -2 . 83195 - . 73077 1.66854 

- . 09933 . 00493 1.61810 - . 83849 1.82236 

- . 19867 .01973 1. 73451 - .97418 1.98936 - . 32141 

- .29800 . 04440 1.84921 -1.13780 2 . 17121 - . 49941 . 70208 

- . 39733 . 07894 1. 96221 -1.32938 2.37013 - . 68873 

~ 

£222 

N 
en 

~ » 
~ 
N 

""" (}l 
(}l 



sta- l Q) 
tionl 
nl1y Y I 

Ym + n(l>y) 

4l>yP 1. 5383 

3l>yP 1.4050 

2l>y
P 

1 . 2717 

l>yP 1.1383 

Ym 1.0050 

l>ys . 9057 

2l>ys . 8063 

3l>ys . 7070 

4l>ys . 6077 
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TABLE IV - COMPUTATI ON OF VELOCITY COMPONENTS AND MASS FLOW AT STATION 10 OF THE SECOND EXAMPLE ( COMPRESSIBLE FLOW) 

[Z10 = 0 . 8799 ; Ym = 1.0050; l>yP = 0 .13333; l>ys =-0.09933J 

® @ ® @ ® (f) ® ® @ @ T @ © @ @ @ 
I (y-ym)2 (00~z1 ( 02w;) (0 WY) (~) I Wz: m W· Wy;m W· W' Y - Ym --2 - ~m z oy m oy2 m y 

nl>y ~ (l>y)2 :!> +@®+@® :ID+®®+@@ JGj +@2 
2 

p·Wz• 
Blade y 

p' M' coordinate 
From@ 

r~dy 
obtained 

and f or 
fig. 5 0© Ym M' =t o . 508S 

0.53333 0.14222 .91263 - 0 . 64165 1.11562 1.0272 0 . 93745 0 . 65975 

. 40000 . 08000 1.08354 - . 59989 1. 23852 1.0116 1.09611 .52412 1.39070 

. 26667 . 03556 1. 25759 - . 61018 1.39780 . 9910 1. 24627 . 36783 

.13333 . 00889 1.43481 - . 67250 1.58459 . 9636 1.38258 

1.61516 -1. 36449 0 .17715 1.61516 - 0 . 78687 1.05297 - 2 . 92758 - . 78687 1. 79664 .9285 ' 1.49968 

- .09933 . 00493 1. 75157 - .90589 1.97196 . 8973 1.57168 

- . 19867 . 01973 1.88974 -1. 05382 2 .16370 . 8603 1. 62574 - .31165 

- . 29800 . 04440 2 .02964 -1. 23064 2.37359 . 8176 1. 65943 - . 47499 .68679 

- . 39733 .07894 2 .17130 -1. 43635 2 . 60339 .7684 1. 66843 -. 64051 

~ 

~ 
:t> 

~ 
[\) 

It>
Ul 
Ul 

[\) 

CD 
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TABLE V - RESIDUALS OBTAINED IN COMPRESSIBLE SOLUTION OF THIRD EXAMPLE 

~ 0 .18 0 . 36 0 . 54 0 .72 0.90 1 . 08 1.26 1.44 1.62 1. 80 

1 .176 0 . 2093 0 . 7716 - 0 .0361 - 0 . 2726 0 . 0989 
1 . 029 -1. 2212 - .1610 . 3052 . 3007 .1913 .1127 0 .0752 - 0 .4316 - 0 . 0797 

.882 -1. 0128 - . 2084 .1641 .0091 .1671 .0279 - .3206 . 2230 - .2538 -0.2408 

. 735 - .3648 . 2068 - . 0093 - .1896 - .1197 - .1168 - .2642 - .1612 - .1942 .3271 

. 588 .1086 .2642 .0211 - . 0233 . 2706 . 0586 . 5123 .1244 .1099 .4335 

.441 - . 3708 - . 3869 .6299 - .1013 - .1494 . 0229 - .0189 - .9797 .0698 . 2336 

.294 - .5373 - . 0003 . 2631 - .2363 - .3507 

.147 - .4918 . 0368 
0 . 3491 

TABLE VI - ESTIMATED PERCENTAGE ERROR IN O'df/Oy or pWz 

N 0.18 0 . 36 0 . 54 0.72 0.90 1.08 1.26 1.44 1.62 1. 80 

1.176 - 0 . 01005 -0 .01217 0 . 01223 0 . 01342 0.00119 
1.029 - 0 . 00022 - .00771 - .01115 .00081 .00779 - .00128 0 .01148 0 .02231 - 0 . 00597 

.882 . 01599 . 00644 - . 00541 - . 00830 - . 00524 - .00392 - .00599 . 00498 - .00226 0.01664 

. 735 . 01997 . 00785 - .00228 - .00051 .00162 . 00049 .01381 - .00177 . 00691 .01366 

. 588 - .00010 - .00952 .00941 . 00128 - .00043 .00210 .00393 - .01441 .00496 - . 00190 

. 441 - .00107 - .01544 . 01228 - .00268 - . 01121 - .00199 - . 00795 .00236 - . 00650 - .01598 

. 294 - .00015 . 00437 . 04036 - . 01052 - .00394 

.147 - .00432 .01379 

0 .00555 
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Figure 2. - Determination of blade coordinate and velocity on blade. 
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Figure 16 . - Flow on arbitrary surface of r evo lution and stre am filament of revo lu t i on. 
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