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SUMMARY 

An investigation was made of a jihin-walled cylinder under axial 
compression and various internal pressures to stud,y the effect of the 
internal pressure on the compressive buckling stress of the cylinder. 
A theoretical analysis based. on a large-deflection theory was also made. 
The theoretically predicted. increase of compressive buckling stress 
due to internal pressure agrees fairly well with the experimental 
results.

INTRODUCTION 

The buckling of thin-walled cylinders under axial compression and. 
lateral pressure has been investigated by F1gge (reference i) who 
found that the effect of the internal pressure on the buckling load is 
negligible. F11igge t s conclusion is in contradiction to the results of 
a series of tests, made at the Langley Aeronautical Laboratory of the'. 
NACA, of two curved panels under axial compression and various lateral 
pressures. These test results, reported in reference 2, showed. an 
appreciable strengthening effect of the lateral pressure on the buckling 
load of the curved panels. The apparent discrepancy between these 
experimental results and the prediction by Fl?igge.' theory made it 
desirable to investigate this problem further. Consequently, additional 
tests were made of a cylinder under axial compression and various 
internal pressures for which results are presented herein. A theoretical 
analysis of this problem is also presented which differs from that of 
Fligge in that the present analysis is based on large, rather than small, 
deflection theory.
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APPARATUS AND PR0CEDtJP 

Test specimen.- The specimen used. for the tests was a cylinder,' 
32 inches long with a 15-inch inside radius, made of 24S-T aluminum 
alloy sheet of 0.02 119-inch average thickness. It was closely riveted 
around. two heavy steel rings, one at each end. The butt-joint of the 
two longitudinal edges was covered both inside and outside by straps; 

0.032 inch thick and 1 inch wide, along the total length of the cylinder. 

(See fig. i.) 

The two heavy steel rings were made of 1 by 14. -inch steel bar stock 

rolled to the diameter of the cylinder. Two - by 2-inch spreader bars 

were used to reinforce the ring as shown in figure 1. A ring with a 

flange, machined flat, was fastened to the - by 4--inch steel ring to 

provide an even bearing surface on which a steel cover plate was fitted. 
Three steel blocks were placed on top of the plate. The applied 
compressive load was transmitted from the machine head through the three 
steel blocks to the cover plate. The joint between the cylinder and the 
cover plates was sealed. 

Equally spaced along the inside circumference of the cylinder at 
midlength were 16 strain gages, and directly opposite to them on the 
outside were 16 more gages. These gages were placed to measure strains 
in the longitudinal direction. Six more gages, three inside and three 
outside, were placed to measure the circumferential strains. 

Test procedures.- The specimen was subjected to compressive load 
in the 1,200,000-pound universal testing machine of the Langley 
structures research laboratory. Compressed air was used to produce 
internal pressure, which could be maintained at any desired constant 
value. The pressure was measured by a manometer. The strains were 
recorded by standard electric strain-gage equipment and the end-
shortening was measured by dial gages. 

The cylinder was preloaded and the strain-gage readings were 
taken. The three steel blocks were so adjusted that all longitudinal 
strain-gage readings around the circumference of the cylinder were equal. 

The compressed air was then let into the cylinder until the 
desired internal pressure was reached. The axial compressive load 
was increased in increments until buckling was observed. At each load 
increment, all gage readings were recorded. The load was then decreased
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until the buckles disappeared and increased a secon5. time to check the 
reading obtained the first time. During all these steps the internal 
pressure was maintained constant. 

The axial load was then reduced anLl the internal pressure was 
changed to another value. For each value of internal pressure the same 
procedure was repeated.

EXP.FIRIMEINTAL RTJLTS 

A typical experimental result is shown in figures 2(a) and. 2(b) 

for the case in which the internal pressure was 	 psi. In figure 2(a) 

the compressive load is plotted against the strain-gage readings for 
four different pairs of gages, within the range where the load-strain 
relatior4 is linear. In figure 2(b) the strain-gage reading is plotted 
for all strain gages at three compressive loadings close to the buckling 
load. Figure 2(b) indicates that buckling occurs at a compressive load 
of 12,700 pounds between strain gages 22 and 23. (Note the intersection 
of the curves at two consecutive loadings.) A buckle at this location 
was observed. during the test. The compressive load at which this 
phenomenon occurs is considered the buckling load. 

• Since the buckling occurs locally and not simultaneously at all 
the gages, the local buckling strain is obtained by dividing the buckling 
load by the slope of the linear portion of the load-strain curve corre-
sponding to the gage at which the buckling occurs. The corresponding 
stress is the buckling stress. The buckling stresses for various 
internal pressures were determined in this same way. 

The results are tabulated In table 1 and plotted. in figure 3 in 
terms of the two nondimensional parameters 

-	 UcrE 
cr	 E t 

- - 
P - E\tJ 

where Ucr is the buckling stress, p is the Internal pressure, R is 

the radius of the cylinder, t is the wall thickness, and E is 
Young t s modulus. Except for the first test corresponding to 5 = 0.1028 
In which the cylinder had undergone no previous buckling, all the tests 
were carried out on the cylinder with possible peruanent set.
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ThEORETICAL RESULTS 

A theoretical analysis for calculating the buckling stress of a 
cylindrical shell under axial com pression and internal pressure was 
obtained by a "large-deflection" theory for which details are given 
in the appendix. The large-deflection theory was first advanced by 
Von KL.rmen and Tsien (reference 3) in the study of buckling stress of 
cylindrical shells under axial compression (but without internal 
pressure). This theory was subsequently improved by Leggett and Jones 
(reference 11). In reference 3 the buckling stress was shown to depend 
on whether the load was applied by a rigid loading machine or by a 
dead-weight machine. In the present analysis, the loading machine is 
assumed to be rigid. 

The existing procedures for computation of the buckling stress by 
large-deflection theory involve the solution of four simultaneous 
nonlinear equations for each pressure loading. The numerical work 
Is quite lengthy. The method used in the present study introduces a 
fifth equation which governs the conditions at which the buckling 
occurs. The fifth equation is based on consideration of conservation 
of energy, which is an extension of Tsien's buckling criterion given 
in reference 5. Although a solution of five simultaneous equations 
is now necessary, the numerical work is actually reduced to a small 
fraction of that required if the existing procedures were used. This 
reduction in labor is made possible through a proper choice of the param-
eters. in the equations and the process of the computations. The results 
calculated by the present method are presented in table 1 and are 
represented by the solid-line curve in figure 3. The curve is cut off 
at a value of acr = 0.605, corresponding to	 0.169. This constant 
value of cr = 0.605 for j > 0.169 is the same that is obtained by 
the' classical' theory.

DISCUSSION AIW CONCLUSIONS 

From the theoretical and experimental results shown in figure 3, 
the internal pressure Is seen to have an appreciable strengthening effect 
on the cylinder. Although the two curves obtained from theoretical 
and experimental results do not coincide, both.show the same trends 
as regards the effect of internal pressure on the buckling stresses. 
If the increment of the buckling stress Mcr due to the presence 
of internal pressure (that is, the difference between the buckling 
stress with the pressure cr and that without the pressure (&cr) = 
Isplotted against the internal pressure, as shown In figure 4, a good 
agreement is-obtained between the theoretical and experimental results. 
These data Indicate that, although further improvement of the theory
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is necessary for the determination of the magnitude of the compressive 
buckling stress, the theory gives a fairly good. prediction of the 
increase of compressive buckling stress that may be expected as a result 
of internal pressure. The discrepancy between the theoretical curve 
and. the experimental curve of figure 3 is believed to be caused by such 
factors as manufacturing imperfections in the specimens, material 
irregularities, and. energy absorbed by the loading machine, which have 
not been included in the theory. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va.
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APPENDIX 

THEORETICAL ANALYSIS OF BUCKLING LOAD OF CYLINDRICAL SBELLS 

UTDKR AXIAL COMPRESSION MID fl'IT.ERNAL PRESSURE BY 

LARGE -DEFLECTION TUE ORY 

ack'ound of Theory 

The use of large-deflection theory for shells under axial compression 
was first advanced, by Von Krmn and Tsien (reference 3) in an attempt 
to explain the discrepancies between the buckling- loads predicted by 
classical theory and those obtained from experimental results. (See 
for instance, reference 6.) The results of reference 3 indicated that 
cylindrical shells can be maintained in equilibrium in the buckled 
state by a compressive load, considerably lower than that predicted by 
classical theory. A plausible explanation of this result is that, before 
the classical buckling load, is reached during a test, the cylindrical 
shell "jumps" from an equilibrium unbuckled state to an equilibrium 
buckled state. The physical phenomena of the jump were further examined 
in reference 5 by Tsien. 

The treatment of Von Krman and Tsien in reference 3 was left 
incomplete, however, in that the equilibrium positions at the buckled 
state were determined by differentiating the total potential energy 
with respect to some but not all of the physical parameters involved. 
The resulting equations gave a relation between the average compressive 
stress a and.. the end-shortening E in terms of the remaining parameters. 
A set of curves of a against E were thus obtained for various 
combinations of the remaining parameters. 

Improvement of Von Karmn and Tsien's theory was made by Leggett 
and Jones (reference 14 ) , who took the derivatives of the energy with 
respect to all the parameters and thus obtained a single curve 
between a and 6 representing all equilibrium positions of the 
cylindrical shell in the buckled state. The same result was obtained 
'by Michielsen (reference 'r) in a simtlar process. Such a curve is shown 
by BC of figure 5. 

Theoretically, when the cylinder is compressed, the relation 
between a and E follows the straight line ODA which represents 
the unbuckled state and will reach the point A if everything is perfect; 
the cylinder then buckles and the relationship follows the curve ABC 
which represents the buckled state. Before point A is reached, however, 
some external disturbance may possibly cause the cylinder to jump from
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the unbuckled state represented by the point D to the buckled state 
represented. by the point E. The positions of D and E on the respective 
curves depend on the actual physical conditions of the jump. 

If the physical condition which governs the jump is Imown or 
defined, the buckling stress corresponding to the point D can be 
obtained directly without going through the labor of finding the curve 
ABC. This procedure can greatly reduce the amount of numerical work. 

In reference 5, Tsien introduced a criterion which governs the 
jump DE for the condition of loading obtained. in a rigid testing machine, 
namely, that the strain energy. remains the same before and after the 
jump and that the jump occurs at constant end-shortening. According 
to this criterion the line DE must be vertical and. must cut the curve 
AB in such a way that the two shaded areas ADG and GEE are equal. In 
fact, the area A]JG represents the additional energy that is needed to 
assist the cylinder in jumping from a condition represented. by D to that 
represented by G and. the area GBE represents the energy that is given 
up by the cylinder when it arrives at the lower energy level, point E. 
The energy represented by the area ADG is very small, and therefore 
a slight disturbance from the surrounding air might assist the cylinder 
to jump from the unbuckled state to the buckled state at a compressive 
stress well below the classical buckling stress corresponding to point A. 

Since the external disturbance is required to assist the cylinder 
to jump from the state corresponding to D to that corresponding to G, 
a slightly larger external disturbance can well cause the cylinder to 
make the transition from the state represented by D' to that represented 
by B, except that in the case in which the cylinder jumps from D' to B 
the cylinder absorbs the energy of the external disturbance and does not 
reemit it. The buckling stress can be then as low as point D'. This 
fact was pointed out by Tsien in reference 8. 

In addition to the two criterions just mentioned, there are still 
others that might be used. In view of the fact that the choice of the 
buckling criterion is a much less important factor in the determination 
of buckling stress than are such other factors as, for example, the 
initial imperfections, Tsients criterion of reference 5, as represented 
by the line DE, Is as reasonable as any other, and the choice of this 
criterion greatly simplifies the numerical work. 	 - 

Tsiens criterion of reference 5 cannot be applied directly to the 
present analysis, however, because with the presence of the internal 
'pressure the strain energy is no longer the same before and after the 
jump. In addition, the criterion is applied herein in quite a different 
nanner from that of reference 5. In reference 5, a series of values of 
wave number n and aspect ratio 3 were chosen and the criterion was 
applied to each pair of values of n and 13; the pair of values of n
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and	 which gave the minimum value of buckling load was considered to 
correspond to the buckling condition. In the present analysis, since the 
variation of a with E can be plotted only as a single curve, this 
criterion need be applied only once for each internal pressure. The 
results correspond to the niniinum_ potential-ener r condition.	 - 

I-n the derivation of the present analysis, the basic equations in 
reference 3 axe first extended to include the effect of internal pressure, 
Tsien's criterion governing the jump for rigid machine loading 
(reference 5) is modified, and the buckling stress is finally obtained. 

Symbols 

A list of symbols follows. Most of the symbols used in the present 
paper are the same as those in reference 3; exceptions are the use 
of .i for Poisson's ratio, X for wave length, and 13 for aspect ratio 
of the buckled waves. 

Xa half wave length in longitudinal direction 

half wave length in circumferential direction 

2 parameters used -in deflection function 

m number of waves in longitudinal direction within 
length equal to circumference of cylinder 

n number of waves in circumference

p	 internal pressure 

t	 thickness of cylinder wall 

x,y	 - coordinates measured in longitudinal and. 
circumferential directions, respectively 

11	 component of displacement of a point on median 
surface of shell in x-direction 

w	 component of displacement of a point on median 
surface of shell in radial direction 

measure of average circumferential stress per 

wave length in longitudinal direction 

e	 end-shortening of cylinder 
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a	 average compressive stress 

=	 aspect ratio of buckled waves 

Poisson's ratio 

0	 total potential energy 

E	 Young 's modulus 

*	 strain energy 

B1,B2,...B6 1
certain functions of 

B1 t , B2t,... B6j 

D1, D2 ,... D5	 certain functions of p anxi 

(D) =	 (D represents the functions D1, D2 ,... D7) 

(D) =	 (D represents the functions D1, D2 ,... D5) 

B	 radius of cylinder 

elastic extensional energy 

bending energy 

work done by applied compressive load 

work done by internal pressure 

Nondimensional parameters: 

p
fi 

= fI• 
t 

n=n 

t\t)
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-	 W	 W2, W3, and. WD are defined in the same 
EtXaXb	 manner.) 

tXX 

'if 

EtXaXb 

&t =( 
Subscripts: 

o	 pertaining to buckling con1ition 

u	 unbuckled state just prior to buckling 

cr	 buckling condition 

Ddrivation of Basic Equations 

Three basic equations are derived in the following analysis to 
include the effect of internal pressure. They are the expression for 
the total potential energy, the expression for the strain energy, and. 
the relation between the end-shortening and the average compressive 
stress. 

In order to calculate the total potential energy, the work done by 
the internal pressure should. be included in addition to the energies W1, 

and W3, which are given by equations (27), (26), and (27) of 

reference 3 as: 

Wi 

EtXaXb = [ - 2)
	 2 + n( 12 +	 +	 2) + 

1 fo + i) - 2n2(l2 +	 1f2 +	 22)(0 +
	 + 

[2 B2	 C2	 __________ +	 +	 H2 1 

	

+ 8 + ( 1 + p2)2 + (1 + 92)2	 (9 + 22 16(1 + 2)2j W
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_____ -	 1 
- 6(1 - 2)()	

{f12 [(i + p2)2 + (
i +•	 + 

	

(1 +	 )f1f2 + (1 +	 )f22}	 (2) 

W3 - 
tXaXb - 2(1 -
	

+ 2	 + 2 )( 12 + lf2 + 

	

2(fo	

')1	
(3) 

where a, b, p., and v have been changed to Xa, Xb, 3, aM p., 
respectively, to aee with the notation of the present paper and. where 

A = fi2n2 - (fi + f2) 

B= 

C = in2(r1 + f2\ - 

D = in2(fi + f2) 

G = in2(i + 

	

(1	 \2 
= n2 r1 f2) 

'The work done by the internal pressure is, for a complete wave panel, 

Xa (b 

wp wpd.xd.y 

do Jo

and.
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The negative sign is introd.uced because the radial deflection w is 
considered. positive inward. 

If the same deflection function given in equation (16) of reference 3 i used, that is, 

(fo +	 +	 cos	 cos	 +cos	 +cos	 + 

(cos+coe)	 () 

the work done by the internal pressure becomes 

wp = PaXb(f0 +	 (7) 

If the total potential energy 

0 = Wi + W2 - W3 

is differentiated with respect to f 0 ansi the derivative is set equal 
to zero, the following expression Is obtained 

f0 +	 = 12(f12 + fjf2 + f22) - 	 -	 (6) 

E Et 

Substitute this expression Into equations (i), (2), (3), ann. (7) for 
W2 , W3 , an.. W, respectively, and the following equations are obtained: 

+ 2t 
EtXaXb	 [E)	 (E)Et) 

n(Bjfi1 + B2f13f2 

2 [(2B + ) 13 + 

l\ 2 1 [(2B + )fi +

+ ( 21 + 
Et,Jj 

+ B3f12f22 + Bf1f23 +	 - 

(B + ) f12f2] + 

+ p22]	 (1)
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.w2 
EtXaXb - ()2(B5r12 + B6f1f2 ^ B6f22)n	 (8) 

w 3 	 - 

EtXaXb - E2()2 
+	 a)	

) 
+	

+ 12 + f2]	 (9) 

wp	 - 8F(\ 2 +	 - 2\ 1ff 2 
EtaXb - [Et)	 E)Et)	 1 +	 + f22)]	 (io) 

where

___	 ^	 + 
=	 8	

.(1 + p2)2	 (1 + 92)2. (9 + p2)2] 

1 1:2 3!	 _____	 1 
B2	

[2 (1 ±2)2 + (1 +9p2 ) 2 + ( + 2)2j 

i[u	 ________	 j31 1 B3	
(1 + p2)2 + (1 ^92)2 + (9 +	 )2j 

1 ________ 

8 (1 + p2)2 

= 6(1	
2)[8(1 + p2)2 + *( i + 

B6 =
6(i	 2)(1 

+
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Equations ('i) to (10) may be expressed. in terms of the nondimensional 
parameters	 ,	 , p,	 ,	 , and. W as 

=	 + 2)+ 2D2 + 3( D3) + 2D	 (ii) 

= 22D5	 (12) 

+	 + äi 2D1	 (13) 

+ 8 2 -	 (i1i) 

where 

D1 = 2( + p + 2) 

D2 = B1 + B2p + B3p2 +Bp3 + 

D3 = (2B14. + .) ( i + 2p) 

D=(2B+)+(P+P2) 

D5 = B5 + B6(p + p2) 

The nond.imensional total-potential-energy parameter 0 is 

=cil + W2 . 4 3 -W 

= - (ä2 + 2	 + 2) - ( -	 2D + 

- r 3D3 + 2D + 22D5	 (15)
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The nonilimensional strain-enerr parameter	 is 

	

=	 + w2 

= (ä2 + 2i& + 2) + 2 'D2 - 

i 3D3 + 2D + r22D5 

The relation between the enâ-shortening € and. the average compressive 
stress can be determined from equation (23) of reference 3 by integrating; 
thus,

	

€=-j	 dx 

Jo 

'a	 + 1 22(f12 +f 2 + f 

where a./E, as determined, from equation (2 1 ) of reference 3, together 
with equation (6) herein is

E - Et 

Therefore, the relation between 	 and & in nond.imensional form 
becomes

=
t 

=	 + LP + .i 2D1	 (ii)
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Equations (15), (16), and (17) are for cylinders in the buckled state. 
For cylinders In the unbuckled. state, the corresponding equations are 

= _'i(&2 + 2I.L&	 + 2)	 (18) 

= I(2 +	 + 2)	 (19)

(20) 

Equilibrium Positions of Cylind.ers in Buckled State 

The equilibrium positions of cylinders in the buckled state can 
be obtained by differentiating the total potential energy of equation (15) 
with respect to each of the parameters r, , p, and	 and. by setting 
the derivatives equal to zero. Four simultaneous, nonlinear equations 
are thus obtained: 

= 0 = - [( -	
l - 2 ( ) 2D2 + ( )D3 - 2112D5] (s) 

=	 -(a -	 - 2(i) 2D2 + l .5( r )D3 - D 

= 0	 - 

= 0 = [(; -	 - () 2(D) + ()(D3 ) - 

(Di	 ii2(D5) +

- 2D5](2) 

- (i) 2(D2 ) + (i)(D3 ) - (Di) -

(21)
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where 

(Di) = 12( + 2p) 

(D2) = B2 + 2B3p -f 3Bp2 + 2Bi1p3 

(D3) = 2(B + 

(Di1. ) =	 + 2p) 

(D5 ) = B6(1 + 2p) 

(D1) = 2( + p + 2) = 2D1 

(D2) = B1 ' + B2 'p + B3 'p2 + B1 'p3 + 

(D3 ). =	 + 2p) 

(Dj	 = 2Bj7 

(D5 ) = B7 T + B6 t (p +p2) 

	

.11 _________	 t31 B1' =
	 +	

(i + p2)3 + (1 +. 92)3 + 99 + p2)3] 

B t=1F2 _____ ______	 3Il. 1 
+9 2	 [2 (i	 2)3	 (i + 92)3	 (9 + 23j 

iril _________	 t311.	 1311- 	 1 

=	
(1 + 132)3 + (1 + 9132)3 + ( + 132)3j 

1	 r1 
B11-'=

2	 + 132)3

and.
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1	 2(j + 332) B5 ' =
6(1 - 2) 

B6'=	 &.l. 
6(1 - 2) 

Let

=	
- 

The four simultaneous equations (21) become 

= (i)2 (2D2 ) - (i)D3 + 2r 2D5	 (22a) 

= ()2() - ()(1.5D3) + Di.. + r 2D5	 (22b) 

= [()2(D) - ()(D3 ) + (D) + 2(DS)1D1	 (22c) 

=	 )2(D) - ()(D3 ) + (D	 + 2(D5)] -	 l	 (22d) 

Theoreticafly these four simultaneous equations can be solved, for , 
, p, an1 J3 in terms of & for a given pressure. If they are 

substituted. into equation (17), a relation between end.-shortenin.g 
and the compressive stress	 Is obtained which represents all 

equilibrium positions at the buckled state. In fact, this solution 
is essentially that obtained, by Leggett and. Jones (reference ) and. 
Michielsen (reference 7) for cylinders with axial compression but no 
internal pressure. 

Practically, however, the solution of the four simultaneous 
equations (22) requires a long and tedious numerical process. If only 
the buckling stress Is required, calculation of only one point on 
the curve of & against	 rather than the whole curve Is necessary. 
This solution can be obtained by the introduction df one more equation 
which governs the condition at buckling.
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Buckling Criterion 

In reference 5, Tsien gave the following criterion which governs 
the condition at buckling: That the strain-energy of the buckled. 
cylinder is the same as the strain energy of the unbuckled. cylinder 
when the cylinder is tested. in the rigid testing machine so that the end-
shortening does not change during buckling. This criterion is apparently 
established from congid.erations of conservation of energy. Although 
other physical criterions can be used (for instance, see reference 8), 
the criterion of reference 5 was chosen and extended to include the case' 
f or which. the internal pressure is present. The choice of this criterion 
simplifies the numerical work. 

When internal pressure is pzesent in the cylinder, work is done by 
the pressure during buckling. The strain energy in the buckled state 
is no longer equal to that in the unbuckled. state, but

	

•	 (23) 

where	 is the work done by the pressure during buckling, 

-	 1	 R[ 
Xa b

p(w - w ) dc dy 
= tXaXb(t) 

L 0 JO 

	

= p -	 (2k) 

Equation (i} ) can be rearranged as follows: 

= 8(2 +	 - -i 2D1	 (25) 

Therefore, for the unbuckled state, the last term is eliminated and 

= 8(2 +	 (26) 

Then, from equations (214.), (25), and (26) 

= 8( - &) - -- 2D1	 (27)
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The buckling criterion becomes (equations (23) and. (27)) 

=	 +	 -	 ) 

or, from equations (16) and (19), 

+	 + 2) + 2 'D2 - r 3D3 + 2Di4. + r22D5 

= )4.(t52 + 2IL&	 + 2) + 
8( - &uhL _12D1	 (28) 

Since the end.-shortening remains unchanged. during buckling, that is, 
the following relation Is obtained from equations (17) and. (20). 

= & +	 2D1	 (29) 

If this relation is substituted. in equation (28) and. if the reiation 

=	
-	 Is used., the buckling criterion becomes 

= ()2(	 -	 Di2) - ()D3 +	 +	 (30) 

The solution of the five equations (22a), (22b), (22c), (22d), and. (30) 
gives the buckling stress for a given Internal pressure. The following 
section presents a very simple method for the solution of these five 
simultaneous equations.

Method of Solution 

From equations (22b) aiiil (30 ) and. equations (22a) and (22b), the 
following equations are obtained.:

D3 
=

2(D2 + gD12)	 (31) 

D - D3(i) 
= (32) D5
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For a preassigned value of f3, assume various values of p and. 
compute	 and. 2 from equations (31) and. (32). Substitute these 
values In equations (22a) and. (22c) to obtain 6•'a and. 

respectively. Plot both (ã')a and. (') against p. The intersection 

of these two curves determines a pair of values &' and. p which are 
called.	 and. p0 . The corresponding (i) 0 and. (,2) are, computed 
and. substituted in equation (22d) from which the pressure S can be 
calculated.. For each assigned value of , there are obtained 
corresponding values of	 and . A curve of &	 against 

can thus be determined.. If the following relations are used., 

t o = (iD1)0(&0 - 

&cr =	 = &o + 

the relation between acr and p is obtained as shown in figure 3. 

Cut-Off Buckling Stress 

When equation (31 ) is derived. from equations (22b) and. (30), a 
factor () = 0 is also obtained. 1±' this relationis used instead 
of equation (31), it can be shown that the buckling stress cr 

can never exceed. the classical buckling stress 0.605 which Is independent 
of pressure.
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TABLE 1 

BUCKLING STRESS FOR VARIOUS ITTERNAL	 SURES 

Experimental	 - Theoretical 

cr a cr 

0 0.1936 0 0 0.376 0 
.01715 .252 .058 .02 •li.lidi. .o68 
.0325 .277 .083 .Oli. .li.80 .10k. 
.05114 .309 .n6 .o6 .506 .130 
.0685 .350 .156 .08 .528 .152 
.0856 .363 .170 .10 •517 .171 
.1028 .O7 .213 .12 .189 

__________ _________ _________ .11k. .581 V	 .205
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Figure 1.- Test specimen and strain-gage positions.
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(a) Linear part of. load-strain curve for four typical pairs of 

strain gages. 

Figure 2.- Typical experimental result. internal preesure,l psi.
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-	 -	 Figure 2.- Concluded. 
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, 4.) 

I 

Figure 3. - CoinpariBon of theoretical and experimental results of the 

buckling stress at various internal pressures.
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E \t 

Figure 11. Theoretical and. experimental result8 showing.the increment 

of buckling stress due to internal pressure.
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Figure 5.- Relation between the average compressive stress a axid the 

end-shortening €. 
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