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NATIONAL ADVISORY COMMITTEE FOK AERONAUTICS

TECHNICAL NOTE 2017

A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES

By Manuel Stein and J. Mayers
SUMMARY .

A small-deflection theory that takes into account deformations due
to transverse shear is presented for the elastic-behavior analysis of
orthotropic plates of constant cylindrical curvature, with considerations
of buckling included. The theory is applicable primarily to sandwich
construction, ) :

INTRODUCTION

The usual sandwich plate as used in aircraft construction consists
.of a light-weight, low-stiffness core material bonded or riveted between
two high-stiffness cover sheets. The elastic behavior of such plates
under loading cannot be analyzed by conventional plate and shell theories
. since these theories neglect deformations due to transverse shear, an
effect which may be of great importance in sandwich construction.

Many authors have considered transverse shear deflections in
analyzing the elastic behavior of flat sandwich plates by means of
small-deflection theories, (see, for example, references 1 to 4). Most’
of this work has been concerned with sandwich plates of the isotropic
type (e.g. Metalite, cellular-cellulose-acetate core). In reference 3,
however, sandwich plates of the orthotropic type are also considered
(e.g. corrugated core).

The treatment of curved sandwich construction in the literature
has not been as general as that accorded flat sandwich construction,
although several specific studies of the isotropic sandwich plate have
been published. These studies have covered (a) simply supported,
slightly curved isotropic sandwich plates under compressive end loeding,
(reference 1), (b) axially symmetric buckling of a simply supported
isotropic sandwich cylinder in compression (reference 1) and (c) a
nonbuckling small-deflection theory for isotropic sandwich shells which
takes into account not only deflections due to shear but also the effects
of core compression normal to the faces (reference 5).
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The need for a general theory for curved sandwich plates which is
applicable to orthotropic as well as isotropic types and which includes
both deflection and buckling effects has led to the development of the
theory presented in this paper. This theory, which takes into account
deflections due to transverse shear, covers those types of sandwich
plates having constant cylindrical curvature, similar properties on
the average above and below the middle surface, and essentially constant
core thickness.

SYMBOLS

flexural stiffness of isotroﬁic sandwich plate,

. Estgh®
inch-pounds 3}
2(1 - u2)

: 3
flexural stiffness of ordinary plate, inch-pounds ——-EEL——TS—
12(1 - u?)

flexural stlffnesses of - orthotropic plate in axlal and
circumferential directions, inch-pounds

twisting stiffness of orthotropic plate in xy-plane,
inch-pounds

. transverse shear stiffnesses of orthotropic plate in axial
and circumferential directions, pounds per inch

transverse shear stiffness of isotropic ‘sandwich plate,
pounds per inch

Young's modulus for ordinary plate, pounds per square inch

Young's modulus for faces of isotropic sandwich plate,
pounds per square inch

extensional stiffness of orthotropic plate iﬁ axial and
circumferential directions, pounds per inch

shear stiffness of orthotropic plate in xy-plane, pounds
per inch

Ig, LE'l, LD,-VQ, vu, v-h - mathematical operators defined in sectlon

entitled "Theoretical Derivations"
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My, My

By, uly

resultant bending moments on plate cross sections perpendi-
cular to x- and y-axes, respectively, inch-pounds per
inch '

resultant twisting moment acting on cross section perpendl-
. cular to x- and y-axes, inch-pounds per inch

resultant normal forces in x- and y-directions, pounds per
inch

resultant sﬁearing force in xy-plane, pounds per inch
lateral loading, pounds per square inch

résultant shearing forces in yz-plane and xz-plane,
respectively, pounds per inch

depth of isotropic sandwich plate measured between middle
planes of faces, inches

constant radius of curvature of plate or cylinder, inches
thickness of ordinary plate, inches
thickness of face of istropic sandwich plate, inches

displacements .in x-, y-, z-directions, respectively, of a
point in middle surface of plate, inches

rectangular coordinateé

shear strain

normal strains in axial aﬁd circumferential directions
Poisson's ratio for ordinary plate

Poisson's ratios for orthotropic plate, deflned in terms
of curvatures - :

Poisson's ratlos for orthotroplc plate, defined in terms
of normal strains :
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*  THEORETICAL DERIVATIONS

General Theory

In developing the equations of equilibrium for the orthotropic
curved plate element, shown in figure 1, the basic assumptions made are
that the materials are elastic, that the deflections are small compared
with the plate thickness, and that the thickness is small compared with
the radius of curvature. The last assumption implies that the shear
forces Nxy and Nyx are equal and that the twisting moments Mxy

and Myx are equal.

Eleven basic equations.- As in ordinary curved-plate theory, eleven
equations exist for orthotropic curved plates (considering deflections
due to shear) from which the displacements acting in the plate can be
determined. The eleven equations consist of five equilibrium equations,
three equations relating resultant forces to strains, and three equations
relating resultant moments with curvatures and twist.

The first five eQuationé, expressing force equilibrium in the x-
and y-directions, moment equilibrium about the x- and y-axes, and force
equilibrium in the z-direction, are

ONy = ONgy _
el > - 0 (1a)
oN, ON



NACA TN 2017 5

It should be noted that in these equations, higher-order terms have
been neglected in accordance with conalderatlons similar to those of
reference 6.

For the orthotropic curved plate, the relations between the
resultant middle-surface forces and the middle-surface strains are
(see appendix)

Ex ou , [ov W ‘
Nx = 1 - “'x“'y%{‘f H y(gy' - ;ﬂ (23-).
E .
7y fov _w . . Ou
Ny = 7= “'x“'y(a Tt Hx &) - (2p)

= G <g¥ + gE> : (2c)

From reference 3, the corresponding relations between resultant
moments and curvatures and twist are

My = - - ST i (3a)

1- “x“y_éxe DQx ox

[ 3
-My Dy BEW _ 1 aQy . }J.x< W - l QX] (3b)

1 - pxpy|oy2 DQ,y oy

Dx .Sgw 1 OQx (Bew 1 :]

| 1 £y 19 1 Ry |
Mxy=§%y<2m'm;§1'@$> (3¢)

Equations (1), (2), and (3) are the eleven basic equations necessary
for determining the forces, moments, and deflections acting in the plate.
The number of equations can be reduced to five, however, by .substituting
equations (2) and (3) into equations (1). In this manner, five
differential equations are obtained for determining the resultant
transverse shear forces Qy and Qy eand the displacements u, v, and w.
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The eleven basic equations presented are not restricted to
deflection problems alone but may be applied to buckling problems as
well by considering the changes that occur during buckling and modifying
equations (1) accordingly. For equilibrium of the curved plate element
after buckling equations (1) can be written with Ny ny, ¥ Qx s Qy,
Mx, Mxy, My, and w replaced by NXO + le, nyo + nyl, < 4.5 WO+ VL,

respectively, where the subscript O refers to values prior to buckling
and the subscript 1 refers to changes in these values that occur
during buckling. For equilibrium of the curved plate element prior to
buckling the following equations apply:

ONx,  ONxy,
+ =0
ox dy .
MNyo |  Meyg
& T °
Mg, Mayo
'on " % + S5 =0
BMyO auxyo )
QYO T Jy + ox 0
anO aQyo v BEW 1 aewo Fwo _

Subtracting the previous equations from equations (1) (aé modified)
gives the following equilibrium equations which apply to buckling
problems:

S5t 5 =.O (La)
N N
1 Y1, © (4b)

Sy T Tx
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My, M
Wy -ty o (ke)
Q i) i 0 (4a)
Y1 ~ 9y _ ox

» anl aQ’yl | bzwl 82 Vo + Wl! Bewl

T W-FNXO +le axe +Nyoay2+.
!wo + wl Be(wo + w1)
2
In equation (4e) the terms Nx; :i;l, Ny, :y;l, and Nyy; g;zg— may be-
Pa _ Pa

neglected since they will be small compared to XO ax2 B Nyo ayz
52wl
and NX Yo 8;—5— Also, if the deflectlon prior to buckling is zero or

constant as occurs for many problems (e.g. axial compression, hydro-
static pressure), all derivatives of Wo vVvanish. For this type of

problem equation (lUe) becomes

R Qy Pw Pw, N R ' L
i “ vy Wy vy =

The six equations relating changes in middle-surface resultant’
forces with buckling strains and changes in moment with buckling distor-
tions are identical with equations (2) and (3) with the subscript 1

added to Nx, ny, Ny, Qx, Qy, Mx, M}w, My, u, Vv, and w.

The eleven equations given by equations (4), and equations (2)
and (3) (with subscript 1), apply to buckling problems in general
- (with equation (ke) or (4e') as required) and can be used to obtain .
the critical values of the loads acting on the plate. As is shown in
the next section, however, for the case in which the deflection prior
to buckling is zero or constant, the eleven equations can be suitably
combined to yield three equations in w, Qx, and Qy, a form convenient
for application to plates of sandwich construction.
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Reduction to three equations for buckling problems in which the
deflection prior to buckling is zero or constant.- The reduction of the
eleven equations to three equations in w, Qx, and Qy is achieved in
several steps as follows:

By differentiating equation (lc) with respect to x, equation (4d)
with respect to y, and adding the results to obtain the relationship

- 2
Ny . 3y, ] P, B aQMxyl . 52Myl
R ox 3y T 32

equation (ke') may be rewritten as

2 2 2 2 -

1
.————axg -QBXBV+By2+r+NXO_8x2 +Nyo_8y2 +2N>Q,Om=o

(ker)
Next, equations (2) and (3) (with subscript 1) are substituted
into the equilibrium equations (4a) to (L4d) and (Lke'') to give
Puy Fvy W'y v -G u Fv > -
1 Pyl ot ! Xy 1 1 - :
%2 ML A * (l HoxH }’> E, <By2 * ax Jy © (5)
Bzvl 1 awl ' Beul Gy Rv azu
S ' uty! y(Z_ 1 1) _
dy2 rg}r—+“?‘§x$+(l l'lxp‘y)}:'ly ax2+5x8y—o (6)
2 | 2

o Dx /B3wl ! onl+“ 3w Hy aQY1>+

U T\ T Dg, a0 Y oy Do, X Oy

LogeZa_ 1 P a1 o (7)

2 ax 32 Do 2 Doy 9% O
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Dy 53Wl ) 1 aerl N B3wl } My 82Q:X_‘]_
W Ty \a T De, &2 M SRy T Dex % O

P 1 P 82Qb’l) (8)

1 —_
2 DXY(% 3x2dy B Dq, X oy Qy 3x2

Ey ov w ' du ’ oW oW
Lol - r(l - H'x“'y)<5y r , * Sx‘> i <Nx0 c® ° 8y2

o, W1 1| Dy a3Q><1 wxDy o By |
Yox 3y| Do |1 - MxHy &3 1 - gy V] 3y2 |

3 3
1 Dy ° kil + < MyPx o Uy
Doy|t - mxty 3y3  \ - kxiy 2

=0 (9)

+ o)

where Lp is the linear differential operaﬁor defined by

Dx Bu . HyDx
- 1- HxHy Bxu 1- HxHy

wdy \_ 3% . _ oy @
1- uxuy/ax_%y? 1 - gy 3yt

+2Dx-y+

At this pbint, six equations have been eliminated leaving five equa-
tions, (5)) (6): (7)) (8)) and (9) in uj, v, wi, QXl: and le-

A further reduction In the number of equations and unknowns is
effected by first solving equations (5) and (6) to obtain relations
from which Uy and v, can be determined, and then substituting

for w, and v, in equation (9). The expressions obtained by solving

equations (5) and (6), in accordence with the rules governing the
multiplication of linear operators, are
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rLEu; = p' (10)
v Ey 3 By x dy°
and
rlgvy = (1 - u! ny)83wl + Ggy'a3w1 (11)
BT ( "V B SBsy | Bx \5y3 ,

where Ly 1is the linear differentiasl operator defined by

o | b )
Iy = Gxy 3% | (1 S ny> 3 Oxy d
dx29y2 Ex Byh

The relationships given by equations (10) and (11) may be written
in a form more suitable for substitution into-equation (9) by differen-
tiating equation (10) with respect to x, equation (11) with respect

du o
to Yy, and then, symbolically solving the equations -for SEL and Sgl,

respectively, to give

dul ; l(__l Gxy Buwl _ Gxy - Buwl ) (12)
x r Ey it TEx 3x23y2
i R dhy oy o
—= = Lg + - (13)
oy r dx2dy2  TEx oyt

where LE-l is defiﬁed by LE'l<LEwl) = LE< 'lwl) = wl. The inverse

operator Ly~ -1 s 51milar to the inverse operator V~ h: defined in

reference 7, and, as is shown subsequently, LE'l‘ reduces to V"~ -4 -for
the special case of the isotropic plate. Substituting the expressions

ou v
for B;L and 5§£ from equations (12) and (13) into equation (9) and

W
replacing % by Lg 1<LE ;%) results in the following equation:
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Gy 1 O aewl Ry Ry |
Ipiy + 3 Lg —zr + Ny g;e— + Elxyg %)

1 l- Dx a3Qxl < mly D~>83QX1
Doy li_' Hxhy  3x3 1 - ughy ) oy

1 Dy 83le < KyDx 5 >8 1

— + =0
Doy (L - Bxby 5y3  \l - My o 2|

(14)

At this stage, the original 11 equations have been reduced to the three
equations (lh (7), and (8), in the three unknowns wj, Qxy, and Q.

For most problems, equations (14), (7), and (8), together with
proper boundary conditions, can determine the elastic stability criteria

- for an orthotropic curved plate subjected to middle-surface loadings.

It should be noted, however, that the three equations are not sufficient
if boundary conditions are specified on the displacements u; and vy.
For boundary conditions on uy and. v], as well as wy, equations (10)
and (11) must also be employed. When boundary conditions are not
specified on ul and v1, (the case when only equations (14), (7),

“and (8) are used) certain boundary conditions are implied, nevertheless,
by equations (10) and (11), consistent with the expression for wjy. A
discussion of similar implied boundary conditions on uj; and v] is
included in reference 7.

Special Cases of Buckling Equations

Isotropic curved sandwich plate with non-direct-stress-carrying
core.- For the isotropic sandwich plate with non-direct-stress-carrying
core, the physical constants bear the following relationships to those
of the orthotropic plate,

F
i
;:
5
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Ex = Ey = 2Ests

Egts
Tl 4+

These relationships permit equation (14) to be simplified as follows:

)

L 2 : ' 2
L 2tgEg _ -4 O wy w1 32w1 dwy )
AV, v -| N + N + 2N -
gv w1 + r2 _S;H_ ( X0 8x2 YO 5 XyO 5;‘5;
Dg oQx oQ >
) 1 Y1 | .
5g ¥ (w*“a— =0 (15)
where
o ¥ P
Ve =5+ 5
2 oy?
B R
g 2.2 T L
ox. x“oy®  dy

and v -% is defined by v'”(vhwl) = Mv-they) = .

In this case, however, equations (7) and (8) are not needed to

anl OQyy . ‘
= + —S;—, since this quantity can be found more

conveniently from equation (4e'). From equation (l4e'), therefore,

obtain the quantity

0Qx;  OQy; Ny, Py Py Py )
= + —sg_ = - ';T'+ NX{)S;E_ + NYO 355_ + 2nyo "

, Rx, Oy,
Substituting for =t in equation (15) gives
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o-b 1 Ds N
* r2 uaxh I’;sz(\ Z‘l>

DgV w1 +

(l " Dq v2>< %0 axe o a—eyz_l + My g%) o (19

The term -NYl/r, which appears in equation (lh) for the orthotropic

Cxy . -1 0wl 2tshs -k 8 W]

plate as —=*= Lg I reduces to \% __H— for the case of the
e ax+ 7 2

isotropic plate. If this result is used in equation (16), the equation

of equilibrium for the isotropic curved sandwich plate with non-direct-

stress-carrying core becomes

D5V4W1 + <l - gﬁ V2>{%%§ES Vﬁu Bhwl -
T

Q Bxh

r

(NXO 82wl bgwl 82w1 > -0 (17)

Tz + yoy“c‘l“xyora—

If the radius is taken infinite, equation (17) becomes equivalent
to equation (71) of reference L.

Isotropic curved plate, deflections due to shear neglected.- The
present theory can be reduced to a known theory for ordinary curved
plates by appropriate substitutions for the physical constants. For an
ordinary plate, the physical constants become

D, = DQy = (no shear deflections)

-y =y' =nu! =
Hx“l-ly"ux'p'y"

De = Dy = D(1 - u2)
Dyy = D(1 - )
E, = E, = Bt

Et

Cxy = 3T + )
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Upon substitution of these constants into equation (1k4), the-
resulting equation becomes independent of equations (7) and (8) and
the equilibrium equation of the ordinary curved plate, therefore, is
given by

DV b v ahwl N Gl + N 2%y + 2N aaw =0 (18)

X

Equation (18) is equivalent to the modified equilibrium equation for
ordinary curved plates presented in reference T.

CONCLUDING REMARKS

A theory has been developed for analyzing the elastic behavior of
orthotropic curved plates, that takes into account the effect of
deflections due to shear and requires the use of 12 physical constants
to characterize the plate. Seven of the physical constants appearing
in the equations of equilibrium are directly associated with the flat-
orthotropic-plate theory presented in NACA Rep. 899. The remaining
five physical constants are included in the present theory to account
for the stretching under loading of the middle surface of the curved
plate.

For each type of orthotropic plate, the 12 physical constants may
be evaluated either from the geometry of the cross sections and the
properties of the materials used or by direct tests conducted on sample
specimens. Because two reciprocal relationships exist (see appendix),

only 10 of the constants need be determined independently.

The theory presented in this paper does not take into account the
compressibility of the sandwich plate in a direction normal to the
faces. Such an effect does not enter into flat-sandwich-plate theory
but might be of importance in certain types of curved sandwich plates
where the elastic constants of the core material are very low compared
with those of the face material.

For practical sandwiches of the end-grain-balsa or corrugated-core
types, order-of-magnitude considerations lead to the conclusion that
the effect of core compressibility will be negligible as regards both
buckling loads and deflections. For sandwiches with less stiff cores -
for example, cellular cellulose acetate - thé effect of core compressi-
bility will be more important. Even for such cores, however, in the
case of all the numerical examples given in NACA TN 1832, the effect
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of core compressibility is negligible in comparison with the effect of
transverse shear deformations for sandwich-type circular cylindrical
shells. The present theory, in which the core is assumed to be

~ incompressible in a direction normal to the faces, appears, therefore,
to be applicable to most practical sandwich plates.

Langley Aeronautical Laboratofy
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., November 22, 1949
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APPENDIX
DERIVATION OF MIDDLE—SURFACE FORCE-DISTORTION RELATIONSHIPS

The orthotropic curved plate (effects of transverse shear being
considered) is characterized by 12 physical constants, seven of which
are associated with flat plates, as presented in reference 3. The
remaining five constants enter the present theory because of the
additional stretching strain developed under loading in the middle
surface of the curved plate. In this appendix the five additional
constants are defined, and expressions for the resultant forces,
involving these constants, are derived.

Physical consfants.- The seven flat-plate constants are the
flexural stiffnesses Dx and Dy, the flexural Poisson ratios px

and py, the twisting stiffness Dyxy, and the shear stiffnesses Dy
and DQy' As derived in reference 3, the first four of these constants

are related by

HyDy = HyDx

The five additional constants appearing in the curved-plate theory are
the extensional stiffnesses per inch Ey and Ey, the extensional
Poisson ratios u'y and p'y, and the shear stiffness ny. The first
four constants are found by a procedure similar to that used in refer-
ence 3 to be related by

WixBy = plyEx

As a result of these two reciprocal relationships, only 10 of the 12
physical constants need be determined independently. . :

The five additional physical constants are defined in the same
manner as the flat-plate constants of reference 3; that is, by
considering the effect of imposing particular loading conditions on
the element shown in figure 1. To obtain Ey, for example, only the
middle-surface forces Ny are assumed to be acting on the element.
As a result of this loading, the strain €y 1is induced in the middle
Ny

€

surface. The stiffness Eyx 1is then defined by the relation Ex =
. . : X

when only N, is acting.
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The Poisson effect of the forces

to introduce & strain €y negative with respect to

surface. The constant u'y

_ when only Ny is acting.

In a sim%lar manner, Ey, u'y, and ny are defined as Ey =

€

when only gy is acting, p'y - E§
and ny=7—xz,
Xy

Resultant forces.- The relations

is then defined by the relation W',

17

Nx acting on the element is
€y, in the middle

N.

when only y

is acting,

between the elastic mid&leésurface

strains and forces, satisfying the foregoing definitions, can be written

as
Ny
€X=—-
Ey
oo
y Ey
Yy
ZJQ'-—G;‘Y-

The three straln equations can be solved for Ny, Ny, and ny

terms of the strains to give

E
Nx -1 - “"x“'y
N = E
Yy 1 - utxu.ty
Ny = Cxy7xy

N

(A1)

J

in
\

)

' E

<€x+“yy

(e ¥ + “'xex
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Substituting the expressions for the middle-surface strains of a
cylindrical section in terms of middle-surface displacements

into equation (A2) gives

By du , [OV _w
Ny = 1 - “ixuly[&"‘ M y(yy "I'.'H

N = Bv_z_'_u ) ),
y l'“x“ys; x&

~N

(A3)

Ny - ny(% * %) )

These equations are used in the derivation of- the equilibrium
equations.
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Figure l.— Forces and moments acting on curved plate element.
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