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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO . 1824 

LINEARIZED COMPRESSIBLE-FLOW THEORY 

FOR SONIC FLIGHT SPEEDS 

By Max. A. Heaslet, Harvard Lomax, and 
John R. Spreiter 

SUMMARY 

The partial differential equation for t he perturbation velocity 
potential is examined for free- stream Mach numbers close to and equal 
to one. It is found that, under the a ssumpt ions of linearized theory, 
solutions can be found consistent with the theory for lifting-surface 
problems both in stationary three-dimensional flow and in unsteady 
two-dimensional flow. Several example s are s olved including a three­
dimensional swept-back wing and a t wo-dimensional harmonically 
oscillating wing, both for a ' free-stream Mach number equal to one. 

INTRODUCTION 

Much of the recent progress i n the theor etical analysis of 
compressible-flow ~ields is attributable to the successful applica­
tion of linearization methods. Although the basic assumptions used 
'in conventional linearized theory appear at first glance to be highly 
restrictive, it has been found that, j ust as in the analogous case of 
thin-airfoil theory for incompressible flow, the methods have many 
f i elds of ut i lization adequate for most engineering purposes. Since 
the basic methods are so well known and depend on such relatively 
s imple mathematical tools, it appears obvious that the range of 
applicability of the theory should be explored completely. Such is 
the purpose of t he present report . I t has been more or less tacitly 
presumed i n the past t hat such applications cannot treat cases for 
which the f light veloc ity is near t he speed of sound. In the study 
of two-dimensional steady-state problems in airfoil theory, this 
pre sumption i s certainly true. The Prandtl-Glauert and Ackeret rules 
f or variation of pressure coef f i cient wi th free-stream Mach number 
in the subsonic and supersoni c r egimes , respectively, are clearly 
invali d for Mach numbers near one , since perturbation velocities 
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become arbitrarily l arge. In this case, linearized theory therefore 
predicts its inability to treat such problems. On the other hand, 
if linear methods are applied to nonstationary two-dimensional 
airfoil and particular steady- state, three-dimensional, lifting­
surface problems at sonic speeds, a consistent theory results since 
solutions are found which yield perturbation velocities of the same 
order of magnitude as those calculated for free-stream Mach numbers 
of, say, 0.6 or 1.5. 

Unfortunately, arbitrary thickness distributions at sonic speeds 
cannot be studied by linear theory in the steady state since, in 
general, the theory predicts infinite pressure differences between 
the wing surface and infinity. In the particular case of a yawed, 
symmetrical wing of infinite aspect ratio, the results are, however, 
again consistent with the theory and yield pressure distributions 
which are the same as those determined by using only the component 
of free-stream velocity normal to the leading edge. The derivation 
of this latter result for a free - stream Mach number of one will be 
given. 

The difficulty of not being able to include thickness effects 
in general, together with the uncertainty of the magnitude of the 
viscous effects, leaves the question as to the limitations of such 
a linear theory in application to practical wing shapes. Such a 
question can certainly not be resolved by mathematical reasoning 
alone. The extent to which the fluid medium can be idealized at 
these speeds is left, for the time being, unsettled and it remains 
for experiment to determine whether the consistent mathematical 
results which are obtained from the linearized equations provide 
reasonably exact predictions. In this connection, it should be 
mentioned that the few experimental results available for the total 
lift on thin t riangular wings at Mach numbers near one tend to 
confirm the theory. But even if more detailed experimental results 
indicate that further refinements are necessary, there is still 
little doubt but that the linear potential solutions will provide a 
valuable basis for more exact extensions of theory. 

The present report is divided into three parts. In the first 
part, the linearizaticn of the partial differential equation for 
the velocity potential is carried out in some detail for steady­
state conditions. A by- product of this derivation is the nonlinear 
form of the equation for two-dimensional flow which was used by 
von Karman (reference 1) to determine his similarity rules for tran­
sonic flow. The equation for unsteady two-dimensional flow based on 
the same assumptions is also given. The second part of the report 

______________________ ~A~ __________________ _ 
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is restricted to two-dimensional unsteady problems for values of 
Mach number near one. The principal contribution of this section is 
the evaluation of the change with time of the pressure distribution 
over an airfoil starting suddenly from rest at a speed close to that 
of sound. Such an idealized problem involves a step function in 
velocity in which the airfoil has zero velocity for all negative 
values and near sonic velocity for all positive values of time. From 
these results the initial build-up of lift can be calculated for Mach 
numbers near one, although the eventual value of the lift cannot be 
found by linear methods. Further application can also be made to 
problems in flutter and gust loads. The third part of the report 
treats the steady-state three-dimensional problem. Both lifting 
surfaces and symmetrical nonlifting wings are considered and it is 
seen that in the former case consistent solutions are obtained by 
particularly simple means. These solutions represent the limiting 
case of both subsonic and supersonic lifting-surface theory and 
give, for example, the same value of lift-curve slope at the speed 
of sound that was obtained for the supersonic triangular wing by 
Stewart (reference 2). 

A list of symbols is given in the appendix. 

PART I - THE LINEARIZED EQUATIONS OF MOTION 

Steady State 

The nonlinear partial differential equation satisfied by the 
velocity potential ~ of an isentropic flow field can be expressed 
in the form 

( 1) 

where the subscript notation is used to indicate differentiation and 
a is the local speed of sound given by the relation 

1 

Mo2 
(')'- 1) Mo2 

2 

In this latter equation Vo and Mo 
and Mach number of the free stream, 

are, respectively, velocity 
')' is the ratio of specific 

--"-'-- - ---

(2) 
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heats (for air, ,=1.4), and V is local velocity. 

Introducing the perturbation velocity potential ~, where 

~ = ~o x + ill 

it is possible to express equation (1) in terms of the derivatives 
of Q and the parameters Mo and Vo' To begin the linearization 
of the resulting equation, the coefficients of the second ordered 
derivatives of ill are expanded in Maclaurin series with ascending 

powers of u v ..JL 
Vo ' Vo ' Vo 

The convergence is assured provided 

or, in a slightly modified form, provided 

If the assumption is now made that l v JL« 1 so that 
V ' V-' V 
000 

( 4) 

second and higher powers in the perturbation velocities can be 
neglected in comparison with one, the partial differential equation 
can be simplified to the form 

( 6) 

From this equation all the succeeding expressions will be derived. 

Two- and three-dimensional linear equations, Me ~ 1. - Since 

equation (6) is obviously nonlinear , additional assumptions must be 
made to reduce it to a linear form. Clearly, these assumptions must 
involve the r elative magnitudes of all the terms in order to determine 
which ones may be neglected. Perhaps one of the least restrictive 
set of conditions is that: 
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(a) The ratios of the perturbation velocities to 
the free-stream velocity are small enough to be 
neglected when compared to one. 

(b) The velocity gradients at a given point of 
the flow field are all of similar magnitude. 

With the aid of these assumptions, it follows that, to the 

5 

order of the approximations made , the perturbation velocity potential 
~ satifies the well-known linear equation 

(1 - Mo2
) <Pxx + CPyy + CPzz = 0 

In the case of two-dimensional flow, the equation is independent of 
y and thus may be written in the form 

(1 - Mo2) cp + cp = 0 xx zz ( 8) 

'l'\.TO- aHd three-dimensional nonlinear equations, Me = 1. -

The study of equation (8) in both subsonic and supersonic flow has 
shown that for arbitrary lifting surfaces or symmetrical nonlifting 
airfoils the value of the induced velocity u on the surface of a 

fixed geometric configuration is proportional to (11 _ Mo2 1)-1/2. 
In all airfoil problems, the value of u becomes infinitely large 
as Mo approaches one, either from above or below, and the basic 
assumptions are thus violated. Such a difficulty led Oswatitsch 
and Wieghardt (reference 3) and Sauer (reference 4) to abandon the 
restriction of linearity and to seek a more exact equation at Mo = 1. 
Retaining the assumptions under lying equation (6) and setting 
Vo = a* where a* is the critical speed of sound, it follows that 
at Mo = 1 the perturbation velocity potential satisfles the equation 

(,+1) 2 
~-*-'- <t>x <t>xx - CPzz + ""* 9 z CPxz = 0 a a 

Since CPx is much larger than CPz as the Mach number approaches 
one, equation (9) may be further simplified to 

(::1) CPx CPxx - CPzz = 0 (10) 

If, in three dimenSions, the perturbation velocities do not 
remain small, equation (6) again supplies the necessary form of the 
differential equation at Mo = 1. From the relation Vo = a*, the 

--------- --

--1 
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re~uired expression is 

Two- and three-dimensional linear equat i ons, Mo = l. 

Equation (10) has been used by von Kar~ (reference 1) to establish 
similarity rules for two-dimensional transoni c flow and is the basis 
f or work continuing at the present time. (See also reference 5. ) 
If at Mo = 1 the assumptions made in the ~inearization process still 
hold, it follows from either equation (10) or (8) that the differential 
equation reduces to the form 

CPzz = 0 (12) 

It is possible, however, to predict independently from this relation 
that linearized methods cannot be applied to the calculation of 
arbitrary airfoil pressure distributions. The range of applicability 
of such an equation is thus almost nonexistent. On the other hand, 
the linearized form of equation (11) or (7) at Mo = 1 is 

ana from this equation a class of nontrivial solutions can be 
obtained for particular boundary conditions. Both equations are 

(13) 

of parabolic form in the number of dimensions for which they are 
defined. In the present report, formal solut i ons satisfying the 
imposed conditions will be obtained in three dimensions for flat 
lifting surfaces with swept-back leading edges and for an infinitely 
long, symmetrical, swept-back wing. 

Unsteady State 

The derivation of the steady-state equat i ons for the velocity 
potential was developed in some detail because of the various results 
to be obtained. Similar methods can be used when unsteady conditions 
are to be considered, the differential equation for the velocity 
potential being now in the form 

- ~ (¢ttt' + 2¢x ¢xt' + 2¢y ¢yt' + 2¢z ¢zt') 

+ ¢xx ( 1 - ¢:: ) + ¢yy (1 - ¢S ) + ¢zz ( 1 - ¢a~2 ) 

- ;2 ¢yz ¢y ¢z - ;2 ¢zx ¢z ¢X - ;2 ¢X;V ¢x ¢y = 0 (14) 
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where t' represents time. The details of the derivation can, 
however, be avo i ded by referring directly to the equation satisfied 
by the velocity potenti al for the propagation of sound waves of 
small amplitude. (See reference 6, p. 492.) In this form of the 
equation the Cartesian coordinate syst em x, y, z is assumed fixed 
i n t he medium so t hat free-stream vel ocity is zero, while the wing, 
which moves in the direction of the negat ive x axis with velocity 

7 

Vo' generate s small pressure disturbances . As a consequence, the 
velocity potential of the field satisfies the well-known wave equation 
i n three space dimensions: 

Equation (15) is reducible to canonical form by means of the 
r elation 

and the three-dimensional form of the equation is therefore 

whil e in the two-dimensional case independence with respect to y 
y i elds 

PART II. TWCH)IMENSIONAL LINEAR PROBLEMS FOR Me NEAR ONE 

Unsteady State, Me ~ 1 

It was pointed out in the derivation of equation (12) that the 
l inear equation for the velocity potential is not applicable to air­
f oi l problems i n either the subsonic or supersonic regimes for Me 
near one. The possibili ty still remains, however , of analyzing 
unsteady flows during the period in which the perturbation velocities 
remain small. As an example of such a problem, consider the case of 
a f lat lifting surface at a small angle of attack a starting from 
rest at a velocity Vo near the speed of sound. The perturbation 
potential f or such a motion is equivalent to the change in potential 
brought about by an abrupt change a in angle of attack of an air­
f oi l f lying in a steady-state condition at velocity equal to Vo' 

1 
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The change in load distribution brought about by this maneuver is 
the so-called indicial load distribution and a knowledge of such 
indicial functions is important for applications using operational 
calculus. 

---- characteristic traces 

~~---x 

t 

(a) Supersonic wing. 

" " " 

""""'----x , 
" " 

t 

(b) Subsonic wing. 

, 
" " " " , 

Figure l.-Boundary conditions for 
two-dimensional unsteady-lift 
problem. 

Figures l(a) and l(b) 
furnish an insight into 
the nature of the boundary 
conditions for airfoils 
traveling, respect ively, 
at supersonic and subsonic 
speeds. The chord is ini­
tially on the x axis with 
leading edge at the origin 
and trailing edge at 
x = co. With increasing 
time, the wing section 
travels in the negative 
x direction and sweeps 
out a portion of the xt 
plane as shown in the 
figures (indicated by 
shaded areas). Through­
out this part of the 
plane the boundary condi­
tions require that the 
induced vertical velocity 
is -Vou, while elsewhere 
on the plane the induced 
velocities are continuous 
functions of z. In fig-
ure 2, sketches of the 

airfoil in the supersonic and subsonic cases are shown together 
with indications of the manner in which the disturbance field 
spreads. These wings are presented in xyz space with time as 
a parameter so that their coordinate system is not to be confused 
with that of figure 1. The airfoils are traveling from right to 
left at Mach numbers of 0.8 in the subsonic case and 1.2 in t~e 
supersonic case, and for a time corresponding to that required 
for the wing to travel a distance of one-third chord length. At 
t = 0 cylindrical waves are induced at each disturbance point, that 
is, at each point of the chord. These waves expand radially at the 
center of the expanding waves moves relative to the initial disturb­
ance point. At a given instant in time the entire disturbance region 
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of the airfoil is contained within the closed surfaces shown in the 
figures, the outer surfaces corresponding to the largest values of 

I 
/ 

I 
/ 

I 
I 

I 
I 

L-_--,I Subsonic 

I 
/ 

/ 

Supersonic / 
/ 

/ 

I 
I 

I 

/ 
/ 

I 
I 

/ 

Figure 2.- Sketch showing extent of disturbance fields after 
travel of one-third chord length. 

9 

time. In the supersonic case, the pressure distribution over the 
wing reaches a steady-state value as soon as the wing moves ahead of 
the expanding cylindrical wave produced at t = 0 by the leading 
edge. In the subsonic case, the wing never leaves the disturbanc~ 
field of the cylinders and, as will be seen later, the steady-state 
pressure distribution is approached asymptotically. 

It is apparent from equation &17) t hat the characteristic cones 
have semivertex angles equal to 45 and that the cones with vertices 
on the xt plane have traces with slopes equal to ±l. These cones 
determine the upstream boundary of the f ield of influence of the 
vertex point and their cross sections i n the plane t = constant 
are the disturbance regions of the cylindrical waves arising at the 
vertex . Thus, perturbations in pres sure produced initially at the 
leading edge of the wing section are confined at later time, in the 
modified coordinate system, to the cone with ver tex at the origin 
and traces x = ±t . 
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The solution of equation (17) for boundary values of the type 
under discussion has been indicated in reference 7 through considera­
tion of an analogue problem in supersonic lifting-surface theory. 
Thus, the shaded areas in figures l(a) and l(b) are thought of as 
swept-forward lifting surfaces situated in a stream directed along 
the positive t axis at a Mach number Me = J2. The boundary values 
remain the same; that is, q>z ="W = -Voo, on the "Wing and CPt, q>y, q>z 
are continuous functions of z elsewhere in the xt plane. In 
lifting-surface terminology, the unsteady case for supersonic speed 
becomes a wing with supersonic leading edge, while the case indicated 
in figure l(b) involves a subsonic leading edge. 

The solution for the wing traveling at supersonic speed has been 
given in reference 7 in a form valid for all Mach numbers greater 
than or equal to one. The expressions for load coefficient 6P/q, 
where 

differ analytically in various regions of the xt plane. These 
expressions are: 

~= 
q 

Region A (between lines x -Mot, x 

~ 4a. 
q 

jMo
2 -1 

Region B (between lines x =-t, x = 

Region C (between lines x = t, t 

6p 4a. -=-
q Mo 

-t) 

(18a) 

t, and x = co-Mot) 

(lBb) 

0, and x 

(18c) 

From the pressure distributions it is possible to calculate the 
indicial lift coefficient CLa,(t) as a function of Me and t. 
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Since 

c 
1 10 

bop CT. (t) = - - dx 
--a. Co qa. 

o 

the following results are obtained: 

First time interval O<t<~ 
l+Mo 

C n <t< C n Second time interval --¥- --¥-

l+Mo Mo-l 

Third time interval ~ < t 
Mo-l 

4 

11 

(19a) 

(19b) 

(19c) 

These results have been discussed in reference 7 for values of 
Mo greater than one. They still hold, however, for sonic flight 
speeds and, in fact, can be reduced to the expressions: 

First time interval O<t<~ 
2 

~-------~--.~---------- ------
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Second time interval Co <t 
2 
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(20a) 

C~(t) = ~(~ + arc sin c~-t + 2)2:-;:0) (20b) 

The indicial lift coefficient is seen to be constant and equal to 4a 
Co 

up to the time t' = --- or up to the time required to travel one-half 
2ao 

chord. Following this first time interval the indicial function rises 
monotonically, reaching an infinitely large value as time increases. 
The growth of CLn(t) is, of course, in agreement with the fact that 

the steady-state load coefficient becomes infinitely large in linear 
theory for MO=l. This means that the theory cannot be used to predict 
the complete extent of the Cta(t) variation with time but that 

during the earlier part of the motion the assumptions remain valid. 

Figure 3.- Indicial-lift-curve 
slope for Mach numbers between 
o and 1.4 shown to time required 
to travel 12 half-chord lengths. 

In figure 3, curves of CL (t) 
a. 

are plotted as functions of ~ 
Co 

for values of ~=l as given by 
equations (20a), (20b), and 
Mo=1.2, Mo=1.4 as given by equations 
(19a), (19b), and (19c). Also 
included in the figure are variations 
of CL (t) for Mo=O as calculated 

a. 
from Wagner's results (reference 8) 
by R. T. Jones (reference 9) and 
also for ~=O.8. The derivation 
of results reading to the MO=O.8 
curve will be given subsequent~y 
in this paper. The value of CLa(t) 

at Mo=o.4 for a short interval 
of time is also drawn. The dashed 
portions of the curves were not 
calculated but were drawn to agree 
with the known asymptotic value 
of the lift function. 
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Application of the indicial lift function at MQ=l.- Once the 

i ndi cial l i ft function is known, it is possible to determine the 
l ift corresponding to a given variable motion. Consider, as an 
i dealized example, the case 
where the airfoil experiences 
an abrupt rising and sinking 
mot i on at regular time inter­
vals. Such a motion involves 
abrupt plus and minus angles 
of attack without rotation or 
p itching so that a(t l ) i s 
gi ven by the meander or square-
Wave function shown in figure 
4(a). In this example the 
variation of a is such that 
t he curve for CL(t') can be 
calculated easily. In figure 
4 (b ) CL(t') is shown for the 
case in which the discontin­
uities occur at intervals of 
t ime equal to co/Vo' that is, 
a fter each chord lengt h of 
t ravel. The principal point 
of interest in this example 
i s the fact that such a 
motion yields no excessive 
value of lift or perturbation 
velocities and the entire 
analysis is within the frame-
work of linear methods. 

a{t') 

r---------'j r-
I I I 

----~----;_---;----~--~-----f 
I I 
~ 

(a) Impressed angle of attack. 

~(t') 

i--i r---
I I : 
I I I 

____ -+ ____ ~--~I----~I----~I-----t' 
I I 
I I 

L--..J 
I 
I 

I I 

~ 

(b) Resulting variation of lift. 

Figure 4.- Lift resulting from 
square-wave angle-of-ettack 
variation. 

When the variable motion is more complex in character the lift 
coefficient can be expressed by means of Duhamel's integral. Corre­
sponding to the angle-of-ettack variation a(t') as a function of 
t ime, the lift coefficient CL(t') i s given by the expression 

(21) 

I n analysis related to equation (21) it i s convenient to employ 
t echniques associated with the use of the Laplace transformation. (See 
r eference 10.) Thus, if the Laplace transform 1(s) of the function 
f (t) is defined by the relation 

- I 
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f(s) = foo e-st f(t) dt 
o 

then equation (21) can be rewritten in the form 

(22) 

Consider now the case ~f a lifting flat plate oscillating 
harmonically without pitching at a frequency w and maximum angle 
of attack equal to a . Setting :max 

imt :1.cJ:e. t' aCt) = ~ e = ~ e 0 

then equation (22) yields 

Cr.(s) 4 (J!;. --ac~ /d') -----= -- -- -erf 
~ s-1oo coJ( Fa 2 

By straightforward manipulation, the inverse transformation of 
equation (24) can be shown to give 

where 

----------

(24) 
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m' is true impressed frequency 
im't' 

(a = ~ e ). 

C(mt-v), S(mt-V) are Fresnel's 
i ntegrals (reference 11). 

N1 (mt,v), N2(rot,v) are integrals 
defined in the appendix . 

If the response to a cosine 
variation of a is required, 
only the real part of equation 
( 25) is used. Such a response 
i n the early stages of the 
maneuver is shown in figure 5. 
For very large values of time 
CL as given by equation (25) 

approaches the value 

-4 

Figure 5. - Lift resulting from 
cosine-wave angle-of-attack 
variation. 

15 

CL -irot (M i V ) -- = 4e -- e - er f,fiV Cl.max irr V 
(26) 

from which both the amplitude and phase shift of CL resulting from 
either an impressed sine or cosine variation of a can be readily 

6 

"initial value 

1_ i 2 3 4 5 6 7 8 9 (VC
Q 

- - ~ - ~ - - ~'---:-::-=-:-':-=-=-:-=-=-=-' -=----...:.' ,-,,-=-:-=-.::.-.;,,:..-:..=_::..._=-.....:..' ___ d-:'_=-=_"':~=-=_ 

3 final value 

01t-------
Figure 6.- Amplitude of oscillatory lift resulting from a cosine 

angle-of-attack oscillation (without pitching) at Mo = 1. 

~--~--~---------------- -----------------------------~~------~----~---
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determined. 
sponding to 

cos wt 
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Figure 6 shows the amplitude of lift oscillation corre­
continuous angle-of-attack oscillation, as determined 

£rom equation (26), plotted as 
w = 0 a funct ion of V 

_ mco 
- 2' It is 

apparent that as m approaches 
zero, CL approaches infinity; 

that is, as the impressed wave 
approaches the "step" function 
(fig. 7), the lift coefficient 
approaches infinity. This 
result is in agreement with 

Figure 7.- Variation of cos mt 
with t for various values of 

equation (20b) as t approaches 
infinity. As the frequency 
parameter V is increased, 
however, the value of C~x/~x m. 

is reduced and reaches a minimum of about 3.4 for a value of V = 0. 9 . 
For a speed of sound around 1000 feet per second and a wing chord of 
6 feet, this would correspond to a frequency of 47.7 cycles per second, 
a value well within the range of practical flutter frequencies. It is 
interesting to note that figure 6 also shows that as the frequency of 
oscillation becomes large (Le., v>3) the value of C~/C1zna.x 

approaches the value 4. This is the same as the value for CLu(t) 

in the early stages following a step variation of a. 

Unsteady State, Mo < 1 

It has been pointed out that, in the determination of the 
indicial lift function for a wing traveling at subsonic speeds, the 
lifting-surface analogue involves the calculation of load distribution 
over a swept-forward wing with subsonic edges. This means that 
recourse cannot be made in the solution to the simple source distri­
bution method used in reference 7 to treat the Me ~ 1 case. Since, 
however, a portion of the leading edge in the present case is still 
supersonic, the problem is particularly adapted to lifting-surface 
methods developed by Evvard in reference 12. Figure 8 indicates, as 
in figure l(b), the geometry associated with the boundary conditions. 
In the Evvard analysis the solutions, as in the previous case, are 
calculated for various regions. As an aid in identifying the different 
results the sketch denotes these regions by Roman numerals. 

-------- - -- . .. ---
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The load distributions 
and indicial lift functions 
will be given here for values 
of t up to the time when 
the characteristic from the 
trailing edge first crosses 
the leading-edge trace, that 
is, for 

or 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

-t=~ 
f -Mo 

t 

" , 

17 

x 

" , 

This period covers the time 
in which the wing travels 
2Mo/(1~) half chords and, 

Figure 8.- Regions used in the 
study of subsonic unsteady lift. 

since the present analysis 
is concerned with values of Mach number near one, will in some cases 
extend beyond the range of the linear theory. 

The following results are obtained for load coefficient: 

Region 1. (between lines x=t, t=O, and x=c -t) o 

Region II (between lines x=-~t, x=t, and x=co-t) 

l>p 8a (Me ~-x J~t+X) - = -- --- + arc tan 
q n:Mo 1 +~ ~ t+x t-x 

Region III (between lines 

t = l~) 
and 

( 27a) 

(27b) 

- -, 



, 
18 NACA TN No. 1824 

(27c) 

Region IV (between lines x~t, x=co~t, and x=co-t) 

~ := Sa, arc sin 
q n:Mo 

Region V (between lines 

20. -- arc n:Mo 

20. 
- - a.rc 

n:Mo 

where 

k' =Jl-k2 

J 2co 
k = 1 - --~---:-

( t+x ) ( 1 +Mo ) 

-----

(27d) 

Co '\ 
a.nd t = -1=Md-

(27e) 
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where 

u = ~ (t-x) 
j2 

v = l (t+x) 
J2 

F(ljr,k) } incomplete elliptic integrals 
E(Ilt,k) 

K, E complete elliptic integrals 
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In figure 9(a) the growth of pressure distribution with time is 
shown at subsonic speed for the period of time covered by equations (27). 
For purposes of comparison, 
pressure changes calculated 
from equations (IS) are shown 
in figure 9(b) for supersonic 
flight velocities. 

Equations (27) suffice 
to determine the initial 
growth of indicial lift coeffi­
cient at subsonic speeds. 
Such results were given in 
figure 3 at Mo=O.S along 
with the calculated growth 
for about one chord length 
of travel at Mo=o.4. The 
value of CLa, (t ) at t=-o 

is, for all flight speeds, 
equal to 4/~. 

(a) Subsonic. (b) Supersonic. 

Figure 9.- Pressure distribution on 
wings receiving sudden angle-of­
attack change at t = O. 

Expressions for C~(t) are as follows: 

First time interval 
o o <t< ....:.2.-

l+Mo 
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---------- ~ - -

Second time interval 

2co-t(l-Mo2
) 

2t(1+1\,)-2co 
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(28a) 

t( l+Mo)-cQ l-Mo I ( ) 2 
--:--->-"-:-- - -- '" c t 1 +M -c 
t( l+Mo) l+Mo 0 0 0 

+ [2co - t(l+1\,)] arc tan 

(28b) 

where (~) is given by equation (27e ). 
V 

PART III - THREE-DIMENSIONAL LINEAR J?ROBLEMS FOR Me NEAR ONE 

Steady State 

General solutions for arbitrary Mach numbers.- Two methods of 
attack are available for the solution of linearized problems at sonic 
speeds. In the first place, solutions to equation (13) can be 
written formally and the extent to which these solutions satisfy the 
original assumption can then be investigated. In the second place, 
general solutions of equation (7) can be studied in the limit as Mo 
approaches ·1. Since this latter method furnishes added information 
concerning the variation of the variables with Me, it will be used 
first. 
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In linearized theo~y the boundary-value problems of wing theory 
are concerned with two separate properties of the wing: the thickness 
effects and the effects produced by the twist, camber, and angle of 
attack. The first is called the nonlifting case and the second is 
the lifting case. Solutions of equation (7) for ~~ 1 are given 
in reference (13) as follows: 

In the nonlifting case 

where ~ =~Mo2-1 and 6Wo = 2wo where Wo is the vertical pertur­
bation velocity on the wing and therefore related directly to the 
slope of the wing surface relative to the x axis. The integration 
region T is the area on the wing within the Mach forecone from the 
point x, y, z. 

In the lifting case 

1 
cp(x,y,z) = 2n 

where 6CPo is the jump in the value of t he velocity potential in 
the plane of the wing. The sign I denotes "finite part" of 
the integral and introduces special integration techniques. (See 
reference 13.) 

Equation (29) expresses the velocity potential for the symmetri­
cal wing in terms of an integral involving supersonic source distri­
butions while equation (30) employs doublet distributions. In the 
two cases the distributions are determined from the geometry and the 
l oad distribution over the wing,respectively. 

Source and doublet distribution effectiveness at infinity.- It 
i s well known that the lift, drag, and pitching moment of a given wing 
may be calculated either from direct integration of the local pressures 
on the wing or by means of momentum considerations where the induced 
velocities of the wing are determined at an infinite distance and 
the desired forces are related to an integration over a control surface 
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enclosing the wing. In the three following sections the latter 
approach will be considered and the limiting value of drag at Mo=l 
computed. The initial portion of this theory requires the evaluation 
of source and doublet effectiveness at infinity and the concept of 
equivalent source position, an idea which appears to have been given 
first by W. D. Hayes in reference 14. 

ConSider, as in figure 10, a point P with coordinates x , y, Z 
lying within the induced field of a supersonic wing. The Mach fore­
cone from P is given by the relation 

where xl, Yl, Zl are running coordinates of a point on the surface 
of the cone. Introducing polar 

z __ P(X,Y,z) z P 

r 
x y 

Figure 10. - Coordinates used in 
study of supersonic source. 

coordinates 

y = r eo s e, Z = r sin e 

and rewriting the abscissa of 
P in the form 

it follows that the trace of 
the forecone in the Zl=O 
plane is, in the limit as r 
approaches infinity, 

It is, moreover, possible to show that the effect on the velocity 
potential at the point P as r approaches infinity is the same 
for all points (Xl' Yl, 0 ) for which Xl-(3YICOS e = constant. The 
value of this effect is 

and follows from the asymptotic evaluation of the supersonic source 
potential 

cp 1 

J 
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f or large values of r. The potential at P for the source at 
(Xl' Yl, 0) is thus the same as for the source shifted along the 
trace to (Xl-BY1COS 8, 0,0), the intercept of the trace on the x 
axis. For Mach numbers near one, equat ion (33) can be rewritten 

23 

and is equivalent to the potential at P for the source at (Xl' 0, 0). 
The induced velocities at P due to a source at (Xl' Yl, 0) follow 
immediately, for arbitrary Mo and for Mo near one, from the 
gradients of ~ in equations (33) and (34). It is important to note 
that equation (33) is a function of the azimuthal angle of P so 
that, in general, a source does not have a fixed equivalent position 
with respect to its potential at infinity; equation (34), however, 
is independent of the azimuth e. 

The source-sink potential is applicable to the study of 
symmetrical nonlifting wings. When lifting surfaces are to be analyzed, 
the doublet potential 

must be considered and the question of equivalent doublet position 
with respect to the potential at infinity arises. In this case the 
doublet position can again be shifted parallel to the trace of the 
Mach cone from P at infinity and the potential at P is given by 
the expression 

~ 

and, for Mach numbers near one, 

~ 

Momentum relations.- The vector ial force ~ on an aerodynamic 
body inside a control surface S is given by the surface integral 
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where vector notation is used and 

o subscript indicating free-stream condition 

p ,p local static pressure and density 
-;. ...... 
V local perturbation velocity vector 

For the purposes of the present report, equation (37) will be 
modified according to the assumptions of linearized theory and the 
surface S restricted to a semi-infinite circular cylinder of 
radius r, its ax i s of symmetry lying along the x axis, and with one 
f ace in the x=O plane while the other face is at x=const ant . (See 
figure 11. ) 

From linearized t heory, 

.2.. 
Po 

and 

p - Po 

z 

Vo r - x 

-y 

Figure 11 . - Surfaces used i n study 
of momentum , 

• 

The end faces of the cylinder 
may be denoted, as i n the 
fi gure, by I, II, and the 
curved surface by III. Then in 
supersonic flow, if a distribu­
tion of sources is restricted 
to a region downstream of I, 
the drag D on the body corre­
sponding to the source distribu­
tion is glven by the expression 
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where vr is the radial component of the perturbation velocity. No 
loss in generality results, moreover, if the surface II is moved 
infinitely distant downstream and the radius of the cylinder is made 
arbitrarily large. The notation II and III will henceforth refer to 
this particular configuration. 

If the drag of a lifting surface is to be calculated, the 
surface and its vorticity wake are replaced by doublet distributions 
and in that case the integral over region II in equation (38) is 
called the vortex drag of the body while region III yields the 
wave drag. It has also been shown (see, for example, reference 17) 
that the vortex drag of a supersonic wing is a function only of its 
span load distribution and is equal to the induced drag at subsonic 
speeds for the same span loading. If a finite nonlifting body is 
considered, each of the velocity components in region II is attenuated 
in such a manner that its contribution t o the vortex drag is zero. 
The integration over region III again provides the wave drag for the 
nonlifting body. 

The combination of the results given in this and the last 
section provides a method for finding the wave drag of an arbitrary 
body. The first step is the determination of the source-sink or 
doublet distribution corresponding to the body and then, by means of 
the principle of equivalent positions, the sources or doublets are 
moved to the x axis. The wave drag is .then calculated from equa­
tion (38) once the induced velocities on the control surface are 
known. In the next section the wave drag will be written in a 
different form and the drag at sonic speeds will be investigated. 

y 

xl. 

Figure 12.- System of axes in 
transformation equation (39). 

This analysis will also provide 
some insight into the range of 
validity of the sonic theory. 

Evaluation of wave drag as 
Me approaches one.- In order to 
study the drag of a symmetrical 
body at zero angle of attack, it 
is convenient to consider the 
general expression for the velocity 
potential given in equation (29). 
Introducing first the trans forma­
-'-;ion (fig. 12) 

--~~------~-~---



26 NACA TN No. 1824 

~ = - Yl tan ~ 

'T) = Yl sec ~ 

where 

tan ~ = j3 cos e 

equation (29) becomes 

111 cp(x,y,z) = - 211: 
T 

Since, however, it has been shown that cp evaluated infinitely far 
away from the wing does not change if a source is moved along the 
line g=constant, it follows that the source strengths can be 
integrated along these lines. The second integration is then along 
1']=0 where, from equation (39), g=Xl and the value of the potential 
at an infinite distance is 

Setting 

it follows that 

(40) 

and this is the same as the potential for a body of revolution with 
source strength per unit length given by f(Xl). The induced velocities 
corresponding to the potential in equation (40) are found to be, after 
first integrating by parts and using the notation O/OXl f(xl'~) = 
ft(xl'~) together with the relation f(O,~) = 0, 
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(41) 

and 

( 42) 

Asymptotic values of the velocity components for large values of r 
are readily seen to be} after first sett ing x=xo+~r, 

1 Xo f'(X l,j..l)dxl u 
2n: J2i3r.[ J xo-xJ. 

(43) 

and 

x 
1A 0 f' ( X1,\J. )dx1 

vr = - 2J'1: 2rl JXO-X1 
(44) 

0 

E~uations (43) and (44) may be used together with equation (38) 
to give for the value of drag the expression 

As suming that the body is of finite length so that f'(x)=O for 
x> 1- reversal of the order of integration yields the relation 
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If equation (46) had been derived for a body of revolution, then 
f(x) would have been independent of the angle ~ and in that case 
the expression for drag would reduce to the form 

(46a) 

, , 
This expression was given by von Karman in reference 15. 

For the study of the drag of a lifting surface, consider now the 
general expression for the velocity potential given by equation (30). 
The doublet distribution occupies in this case both the wing plan form 
and the wake since the jump in ~ exists also in the vortex wake. 
By use of the transformations in equation (39), equation (30) becomes 

~ (x,y,z) [32z 1 J cos ~ 6Cp(~,T})d~dT} 
211:,. -[ -( X-_-X-1.-)-2-(3-'-2-(-'y-"_ ..... yJ.-1. ...... ) ~"--''-2-JZL....2'':'"] 3-/-2 

and, exactly as in the case of the source distribution, this can be 
reduced to 

Setting 

it follows t hat 

[32r sin e 
cp( x,r,e) . = 

211: 1 
x-[3r 

-- -.-~-



NACA TN No. 1824 29 

Integrating by parts and using the f act that g(O,~)=O 

dcp 
u = - = dX 

and 

sin e 
2nr 

s:in e 
2nr 

x-{3r i3 2r 2g' (Xl,\-l )d.xl 
[(X-Xl)2-{32r2] 3/2 

( X-Xl)g'(Xl ,~)dxl 

j (X-Xl) 2-j32r2 

(48) 

where g'(Xl,\-l) indicates ~d g(Xl , \-l ) . Setting x = xo+i3r and 
OXl 

l etting r approach infinity, the asymptotic expressions for 
equations (47) and (48) become, if g '(O ,\-l) = 0, 

x 
-sin e fo f 0 g"(Xl,\-l)d.x1 u 

2n 2r JXO-Xl 0 

and 

sin e 
i3 /ir f Xo g ' '(Xl,\-l )dxl 

vr 2n JXo- Xl 0 

The relations just derived may be used in conjunction with 
equation (38) to give the wave drag of a lifting surface. This 
r esult takes the form 

(50 ) 
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In the wake of a lifting wing the function g"(Xl'~) = 0 and if, 
moreover, 

o 

reversal of integration in equation (51) yields the simpler expression 

It is possible to draw some general conclusions from equations 
(46) and (52) regarding the wave drag of wings and bodies of 
revolution without the necessity of detailed applications to particular 
configurations. It is apparent immediately from equation (46a) that 
the wave drag of a body of revolution at zero angle of attack i~ 
independent of Mach number. This conclusion does not apply, however, 
to the nonlifting wing since the distribution function f(x,~) in 
equation (46) contains th0 variable ~ which, in turn, is a function 
of both e and ~ . As Mo approaches one, the study of the non­
lifting wing is divided most conveniently into two parts,depending on 
the behavior of f(x,~). 

Consider first the more general situation in which f(x,~) is 
not zero; that is, the case in which the number of sources does not 
equal the number of sinks along the line s = constant. This means, 
when Me is 1, that an unequal number of sources and sinks appear in 
the transverse or yz plane and, if equat ion (46) is applied, either 
a finite or an infinite value of drag can result. The limiting value 
of drag at sonic speed, obtained from integrations of surface pressures, 
was given by Stewart and Puckett in reference (16) for several wing 
plan forms, all of which had nonvanishing values of f(x,~). If the 
pressure distribution is calculated, however, the local pressure 
coefficients are seen to become infinitely large as sonic speed is 
reached, even for the body of revolution, so that the assumptions 
of the linear theory are violated and the reliability of the drag 
predicted by equation (46) can in no case be assessed even though 
the predicted values remain finite. Equation (43) shows also that 
when control~urface methods are used to compute drag at Me = 1, 
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the x component of induced velocity increases indefinitely when 
f(x)~) is not zero and that the theory is) therefore) no longer 
consistent. 

31 

In the very special second case, that is, when f(x,~) vanishes 
for all values of e, the analysis just presented breaks down at 
equation (40). It is clear, however, that in this case there are 
equal numbers of sources and sinks in the ~::: constant plane and 
the behavior of the flow field at infinity is, therefore, exactly 
t he same as that which would have been produced by a distribution 
of doublets. Equations (49) and (50) give the velocities induced 
at infinity by an arbitrary doublet distribution. These induced 
velocity components are, in terms of ~, one degree higher than the 
similar components for the nonlifting case. The values of both 
u and vr can thus be expected to approach zero for all values of 
Mo as r approaches infinity for any flow field generated entirely 
by doublets or by an equal number of sources and sinks. It follows 
then that the linearized theory for lifting surfaces (generated 
entirely by doublets) and for bodies with thickness distributions 
such that f(x, ~ ) vanishes (generated by an equal number of sources 
and sinks in all ~::: constant planes) i s entirely consistent as 
Mo approaches one and, in particular, for Me equal to one. This 
being true) it follows immediately from equation (52) that the wave 
drag of a lifting system is zero at sonic speed. 

Thickness solutions at Me::: 1.- A swept-back wing of constant 

cbord and infinite aspect ratio is an example of a practical aero­
dynamic shape for which an equal number of sources and sinks occur 
i n every yz plane. (See fig. 13.) Consider the case in which the 
wing cross section is diamond shaped with a slope equal to ~ in a 
plane normal to the leading edge. Then) in a transverse plane) 
( section BB of fig. 13) Wo equals ±Vo~ cos~, the minus and plus 
s igns applying, respectively, to the left and right of the ridge line. 
Accordingly, the solution of the problem can be written in terms 
of a distribut i on of sources, thus 

,J[) cot 1V 

Vo~ cos ~ In [(Y-Yl)2+Z2] dYl 



32 

tan 81 = ACOS '" 

Sect ion A-A 

t on 82= A sin '" 

Section B~ B 

y =(x --k..)co t .1. cos", ., 
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Y= lx + c~ ~ ljI )cot IjI 

"r----ll---''rl---r- ---- y 

B 

x A 

Figure 13 .- Views of infinite swept wing showing coordinates. 

The value of c~/cx can immediately be found to be 

r +z2} {[ y- (x- 2 ~~s *) ta~~ ] 2 +Z2} 

{ [Y-( ta: ~ ) r +z2 } {[ y-Ca: v) r +zt4) 

from which it is apparent that as r = J y2+Z2 becomes infinitely 
large, c~/cx approaches zero . In the plane of the airfoil, that 
i s, for z = 0, c~/cx becomes 
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( ) [ 
(y tan 'IT-x- ko sec 'IT) (y tan 'IT-x+ leo sec 'IT) ] 

OCP = V p).. cos 'IT In _______ 2 _ _________ 2 ___ _ 

ox 0 l'( tan 'IT (y tan 'IT-X)2 

and, using the definition for pressure coefficient, Cp 
t h is becomes 

('~ __ 2)" cos 'IT 7.n riC ~co )2_ J 
-~ l'( tan ~ LYSin ~ - x cos ~ J 

Equation (55) can be derived by ent irely different methods. 
Perhaps the most direct of these alternative der ivations is the one 
introduced by R. T. Jones in reference 18. The general statement used 
i n that report is that the component of translational velocity of a 
cyl i ndrical body in the direction of its long axis has no effect on 
t he motion of a f rictionless fluid. Hence, the pressures over the 
wi ng shown in figure 13 are the same as those over a wing moving 
normal to a free stream with a velocity Vo cos 'IT. Using the Prandtl­
Glauert correction to the thin airfoi l solution of a two-dimensional, 
d i amond-sbaped, nonlifting section exposed to a free stream with 
velocity V 0 cos ~, one obtains, for Me cos ~< 1, 

(56) 

where Wo is the vertical induced velocity on the upper side of the 
z = 0 plane and x' is measured normal to the leading edge. If 
t his solution is referred to the axial system of figure 13 by the 
transformation 

x ' = x cos 'IT - y s in t 

and t he integration is performed aft er t a king the partial derivative 
with respect to x, the resultant expres sion for pressure coefficient 
i s 
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At sonic speed this equation reduces immediately to 

2). cos t 
1{ tan 'ljr 

1 

In [(-x 2_c
O 

--=- )2 -1 ] 
cos t - y sin t (58) 

which is identical to equation (55). The result expressed by the two 
equations is, of course, not new. The significant point is that the 
same variation in pressure coefficient was obtained by two widely 
different avenues of approach and that the result obtained from the 
particular methods applicable to sonic speed theory is in agreement 
with that derived from more conventional analysis. 

Lifting-surface solutions at MQ ~ 1.- It should be mentioned at 

this point that Robinson and Young (reference 19) have shown by means 
of linearized theory that supersonic triangular wings and subsonic 
elliptical wings of the same aspect ratio have values of lift-curve 
slope which approach a common and finite limit as Me ~ 1. The 
present section of this report is concerned only with the study of 
lifting surfaces at a fixed sonic velocity but the results to be 
obtained are in agreement with the limiting values of reference 19. 

A further application of the results in this section can be 
made to the case of very low aspect ratio wings at arbitrary Mach 
numbers. This viewpoint of the theory was first presented by 
R. T. Jones in reference 20 and applied to triangular wings while 
in reference 21 extension was made to include poi nted wings on 
slender bodies of revolution. This duality of interpretation, that 
is, to all aspect ratios at sonic speed or low aspect ratios at all 
Mach numbers, applies to all solutions of three-dimensional problems 
obtained from equation (13). In the subsequent analysis, attention 
will be confined to swept-back plan forms of lifting surfaces with 
pointed vertices and thus doublets will be used exclusively. 

In application, the two types of boundary conditions to be 
considered are as follows: 

1. Boundary-val~e problem of the first kind, loading specified.­

It is given that ~uo = llu-ul = 0 over the xy plane except for 
the region occupied by the wing where 2llu = -2uI = ~uo = f(x,y), 
the function being determined by the specified loading. Over all 
of the xy plane, the imposed conditions are ~wo = O. 
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2. Boundary-value problem of the second kind, surface specified.-

Over the xy plane, the imposed conditions are 6wo = 0 every­
where and, except for the region occupied by the wlng, 6uo = O. 
Over the region occupied by the wing Wo = Wu = wl = f(x,y) where 
f( x ,y) is determined by known camber, twist, and angle of incidence . 
(The delta notation again indicates the jump in the value of the 
variable at the z = 0 plane. 
Subscripts u and 1 indi­
cate conditions on the upper 
and lower surface, respec­
tively, of this plane.) 

The nature of the differential 
equation shows that the value of ~ 

is a consequence of boundary condi­
tions along lateral strips. If, as 
in figure 14, the two leading 
edges are given by the expressions 
y = b1 (x ) and y = b2 (x), the 
velocity potential is express-
ible in the form 

~(x,y,z) 

x 

Figure 14.- Swept-back plan 
form with curved trailing 
edge. 

If the boundary-value problem i s one of the first kind, the 
general expression for ~ follows f rom a direct integration after 
noting that 

y 

6~ (x,y) = 1 y 6u (x,Yl)dyJ. 
o bl 0 

(60) 

Since, moreover, load coefficient 6P/q is related to 6uo by means 
of the equation 

it follows that the velocity potential ~ can be found for any 
prescribed load distribution of a given plan form. The value of 
vertical induced velocity, evaluated at z = 0, then suffices to 
calculate the twist ancl angle of attack of the wing. 
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If the boundary-value problem is one of the second kind, the 
vert ical induced velocity is given on the wing and the load distri­
bution is to be found. In this case the use of equation (59) leads 
to the consideration of an integral equation . Since, however, this 
integral equation is a common one in aerodynamic theory, certain 
established methods may be applied t o it. 

After noting that 6~J x,y) = 0 at the leading edge, integra­

tion by parts and introduction of the relation 

6vo 

yields for perturbation potential the expression 

In the limit as z approaches zero the derivative of 
to z reduces to the form 

(61) 

cP with respect 

(62) 

For a given distribution of Wo over the plan form of t he Wing, 
equation (62) represents an integral equation to be solved for 
6vo( X'y) subject only to the condition that the Kutta-Joukows ki 
condition is satisfied at all subsoni c trailing edges. Once 6vo( X'y) 
is determined it follows that 

and 

6 p _ ~ e6~o 
q - Vo ex 

(64) 

In the present report the solution to the wing plan form shown 
in figure 15 will be presented. The value of 6q>o which satisfies 
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equation (62) is, in region 1 

,6,cp = -2wo jx2 tan2 e_y2 

and in region 2 

,6,cp = -2wo x tan e[ E(to, ko ) - kO '2 F(to,ko ) ] 

where E and F are defined in the appendix and where 

1lro 

ka' 

The equat ion y = al.(x) of 
the trailing edge for which 
equation (66 ) is valid is 
gi ven by the formula 

which expresses al. expli-
citly as a function of 

arc sin 

x tan e 

x2 tan2 e-r 
x2 tan2 e-a.1.2 

../1-ka2 

Regions 
f 
1 

2 
t 

y = a, (x) 

x 

37 

(66) 

( 68) 

.y 

( a 1
) This partic­x tan e • 

ular choice of trailing­
edge shape was used to 
simplify t he analysis. The 

Figure 15 .- Dimensions and regions 
used in discussion of swept-back 
wings. 

resulting plan form approaches a const ant-chord wi ng as the span 
increases. The variation of al. with x is given in figure 16; and 
figure 17 shows the relation between aspect ratio and span. 

The loading coeffic i ent is gi ven in the two regions (defined in 
fig . 15) as f ol lows : 

__ J 
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Figure 16.- Graph showing trailing­
edge position of the swept-back 
wings studied. 
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/17 

/V 
V 

/ 

1.4 1.8 
~. 
Co tanB 

17 
7 

/ 
/ 

2.2 2.6 

Figure 17.- Relation between 
aspect ratio and wing semi­
span. 

~p 4x tan2 e 
go. J X2 tan2 e-y2 

Region 2 

This load distribution is shown in figure 18 for a triangular and a 
swept-back wing. It is seen that the loading at sonic speed bears 
a close resemblance to those found at higher Mach numbers. Two 
similarities of note are the discontinuity in the pressure gradient 
at the Mach wave originating from the trailing edge of the root 
chord and the satisfying of the Kutta condition only where the 
trailing edge is subsonic. The lift and induced drag coefficients 
are given, respectively, by 

---------- --. 
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and 

where 

1C A 

a, tan e '2 tan e 

y 
.1p 
qa y 

Figure 18. Pressure distributions f or t r i angular and swept­
back wings at Mo = 1. 

a,2 tan e 

39 

These coefficients are plotted as a function of A/tan e in figure 19· 
It is shown that the values of CDi/a,2 t an e and CLi/a, tan e for 

finite aspect ratio swept-back wings are always less than the corre­
sponding values for the triangular wing (A/tan e = 4) . 

- . ) 
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When the span of the swept-back wing becomes very large, the 
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o 
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----
4.4 

CL 

v/ a tane 

COl 
/ a"f. tane 

-L 

4.8 5.2 5.6 
A 

tan e 
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slope of the trailing edge 
approaches asymptotically the 
slope of the leading edge . It 
follows that for infinitely 
large aspect ratio the limiting 
value of the load distribution 
on the outboard sections should 
approach the value given by 
s imple sweep theory for an 
infinitely long swept-back 
l ifting surface with constant 
chord. This result is, in 
fact, a consequence of equa­
tion (71). 

Figure 19.- Variation of l ift 
and drag with aspect ratio for 
a swept-back wing at Mo = 1. 

Ames Aeronautical Laboratory, 

a 

a* 

A 

National Advis ory Committee for Aeronautics, 
Moffett Field, Calif. 

APPENDIX 

LIST OF IMPORTANT SYMBOLS 

y coordinate of trailing edge, y 

free-stream speed of sound 

local speed of sound 

critical speed of sound 

aspect ratio [ ( span) 2 ] 
(wing area ) 
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C(u) 

D 

erf(x) 

Kn 

Kn' , En 
, 

~ 

k ' n 

l 

'--~~~~.- -- - --

Fresnel's cos ine integral ([ Ucos ~ x2 dx ) 

wing root chord 

lift coefficient [ ( l ift ) ] 
q wing area 

indicial lift coefficient 

I Di ] induced drag coefficient L (. - ) 
q w1.ng area 

drag 

induced drag 

G2 IX '}.,2 ) error funct ion of x ;{ 0 e - d).. 
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1jrn 

elliptic integral of second kind (1 Jr-l_-~-:2=-S-i-n-::2~cp d cp ) 

E(~, ~) 

elliptic 

elli ptic integrals with moduli 

modulus of ellipti c f unctions 

length of body 

k' n 
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q 

r,e 

S 

s 

t' 

u,v,w 

v 

NACA TN No. 1824 

free-stream Mach number ( Vao

o
) 

f .ra;; [ cos x2S(rot-x2) + 

rv 
sin x2 C(rot-x2) ] dx 

loading coefficient (pressure on lower surface 
minus pressure on upper surface divided by free­
str eam dynamic pre s sure) 

free- stream dynamic pressure (~po V
0

2 ) 

polar coordinates in yz plane (y = r cos e, z 

Fresnel ' s sine integral (1 u sin ~ x 2 ax ) 

operational equivalent of t 

wing semi span 

time 

at' o 

maximum distance measured parallel to y axis from 
x axis to trailing edge (fig. 15) 

r sine) 

per turbation veloc i ty components in x,y,z directions, 
r espectively 

local velocity 

free-stream velocity 
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Vr radial component of perturbation velocity 

x,y,z Cartesian coordinates 

a angle of attack in radians 

ratio of specific heats, for air 1 = 1.4 

discontinuity in component in z = 0 plane 

e semi vertex angle of swept back wing 

v 

Po free-stream density 

total velocity potential 

cp perturbation velocity potential 

(j)' impressed frequency (reference to true time) 

(j) 
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