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SUMMARY 

Formulas have been obtained by means of the linearized supersonic
flow theory for the lateral force 'due to sideslip Cy~ , the yawing moment 

due to sideslip Cn , and the rolling moment due to sideslip Cz for 
~ ~ 

normal tail arrangements consisting of rectangular, triangular, and 
sweptback vertical tails of arbitrary taper and sweep mounted symmetri
cally on a horizontal tail of arbitrary shape. The results are restricted 
to cases where the leading edges are supersonic and the Mach line from 
the tip of the leading edge of the vertical tail does not intersect the 
root section. 

The effect of the horizontal tail on the derivatives was evaluated 
for the cases where the Mach line from the leading edge of the root 
section cuts the trailing edge of the vertical tail. 

A series of design curves is presented which permits r ap'id estimation 
of the lateral force due to sideslip Cy , the yawing moment due to 

~ 
sideslip Cn , and the rolling moment due to sideslip Cz • 

~ ~ 

INTRODUCTION 

With the advent of flight a t supersonic speeds the dynamic stability 
of airplanes has become a serious consideration. The conceptions and 
usage of the linearized theory of supersonic flow enable an evaluation 
of a first-order approximation of the stability derivatives. Stability 
derivatives are now available for various wing plan forms at supersonic 
speeds. (See bibliography of reference 1 and references of reference 2.) 
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Information on the stability derivatives contributed by the vertical 
tail, which have an important effect on lateral stability, is lacking. 
A theoretical analysis is presented in this paper to determine the 
lateral force, the yawing moment, and the rolling moment due to sideslip 
for a series of tail configurations that consist of vertical tails 
mounted symmetrically on a horizontal tail . The tail configurations 
considered herein are characterized by supersonic leading edges. The 
vertical - tail plan form may be either triangular, rectangular, or swept
back with arbitrary taper and sweep; whereas the horizontal tail may be 
arbitrary except for the rolling-moment derivative for which case the 
trailing edge must be swept at a constant angle . Consideration is also 
given to the magnitude of the end-plate effect of the horizontal tail on 
the values of the stability derivatives . From a knowledge of the deriv
ative for the vertical- and horizontal -tail combination and the end 
plate effect on this derivative , the derivative of a vertical tail with 
horizontal tail removed was obtained . These results are the limits of 
the case where the horizontal tail has subsonic edges, and the value of 
the stability derivative when the edges of the horiz0ntal tail are 
subsonic are expected, therefore, to lie between the values of the deriv
ative with the horizontal tail (all edges supersonic ) at tached to the 
vertical tail and the values of the derivatives for the vertical tail 
alone. 

The calculations of the loading distributions that lead to the 
sideslip derivatives for nonplanar bodies, such as a tail configuration, 
are somewhat complex in the large . For a range of Mach number for which 
the leading edges of the tail plan forms are supersonic the load distri
bution due to side51ip over the horizontal and vertical tail can, however, 
be determined rather simply . For a normal tail assemblage, this simplifi 
cation of the analysis results from the fact that the flow fields within 
the Mach cone from the apex of the system are physically separated by 
the horizontal and vertical tail surfaces and, therefore, do not inter
act . The load distributions for such systems may be determined by an 
application of planar methods together with the evaluation of the induced 
load effects if any. 

In order to facilitate the use of the formulas and charts presented 
herein for the estimation of the stability derivatives, a detailed method 
of procedure has been included in the paper. 

SYMBOLS 

A asp~ct ratio of vertical tail 

A' BA 

I 

~--j 
~------~ ~ 
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B - 1 

span of vertical tail 

span of wing 

root chord 

nondimensional pressure coefficient 

c chord 

J=A'(l+",) 

K 

I 

It 

Ly 

M 

m 

m 
a 

m' 

6P 

q 

Sv 

Sw 

Slope of leading edge 
Slope of trailing edge 

cot ATE 
cot A = A'(l + "') 

A'( l + "') - 2m'(1 - "') 

Bm 

1 V2 - P 2 

distance from z-axis to leading edge of arbitrary section 
of vertical tail 

distance from center of gravity to root section of vertical 
tail 

spanwise loading 

free - stream Mach number 

slope of leading edge of vertical tail 

slope of trailing edge of horizontal tail 

pressure difference across lifting surface 

area of vertical tail 

area of wing 

3 

u, v, w x-, y-, and z-components of perturbation velocity, respectively 

V free - stream velocity 

x, y, z rectangular coordinates (see fig. 2) 
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X 
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t:!2 

CL 

i3 

A. 

.A 

ArE 
p 

¢ 

Cy 

Cl 

dey 
Cy i3 := dT3 

Cni3 
:= 

den 
dTf 

Cl 
del 

i3 dj3 

NACA TN 2412 

rectangular coordinates (see tables I and II) 

distance along x -axis to center of pressure of vertical tai l 
in presence of horizontal tail (see fig . 2) 

distance along z -axis to center of pressure of vertical tail 
in presence of horizontal tail (see fig . 2) 

increment in X due to r emoval of horizontal tail 

increment in Z due to removal of horizontal tail 

angle of attack, radians 

sideslip angle , radians 

taper ratio of vertical tail 

sweep angle of leading edge of vertical tail 

sweep angle of trailing edge of vertical tail 

free - stream dens i ty 

perturbation surface velocity potential 

(La~era~ force ) 

2" pV Sv 

lateral- force coefficient 

yawing -moment coefficient (ya~ing moment ) 
2" PV2bv Sv 

ro lng-momen coe lClen I 11 0 t ff 0 0 t ( ROlling moment) 

2" PV2bvSv 

.: 
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CL 

CL ex. 

( CY)t 

(Cn)t 

( C1)t 

(CY)v 

( Cn)v 

(C1)v 

wing lift coefficient 

lateral-force coefficient of verti cal and horizontal tail 

yawing-moment coefficient of verti ca l and horizont al tail 

rolling-moment coefficient of verti cal and horizontal tai l 

lateral-force coefficient of vertical tail without hor izontal 
tail attached 

yawing-moment coefficient of vertical tail without hor i zontal 
tail attached 

rolling-moment coefficient of vertical tail without hor i zont al 
tail attached 
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Cy " Cn " CI 1 

~ ~ ~ 

6 (CYfj)t 

6(Cnfj)t 

6(CI fj)vt 

- - - - - - - --~-~------ -~-- -- -- - - --
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contribution of tail to sideslip derivatives about 
stability axes based on wing area and span; values 
apply to vertical- and horizontal-ta il combinations 
unless otherwise noted 

contribution to (C) of pressure difference across 
\ l~ t 

vertical tail in presence of horizontal tail 

contribution to (C2~)t of pressure difference across 

horizontal tail in presence of vertical tail 

change in (CYfj)t due to horizontal tail 

change 
in (C~)t due to horizontal tail 

change in (C 1 ) due to horizontal tail 
fj vt 

ANALYSIS 

Scope 

The tail configurations considered in this paper are sketched in 
figure 1. The orientation of the tail with respect to a body system 
of coordinate axes used in the analysis is shown in figure 2(a). 
Figure 2(b) shows a typical tail oriented with respect to the stability
axes system. The stability derivatives are generally evaluated in this 
system for stability studies. 

The analysis is limited to tail configurations having surfaces of 
vanishingly small thickness and of zero camber. The vertical tail is 
assumed to be yawed an infinitesimal amount (fj-40); whereas the hori
zontal tail is always at zero geometric angle of attack. Essentially 
then, the vertical tail produces the disturbance velocities (similar 
to a wing at an angle of attack) and the horizontal tail acts as a 
barrier or end plate to the propagation of the vertical-tail disturbances 
(similar to end plate attached to lifting wing). 

For the tail arrangements considered in this paper, the horizontal 
tail must completely shield the root chord of the vertical tail; thus, 
the leading edge of the root chord of the horizontal tail must at least 
coincide with or be forward of the leading edge of the root chord of the 
vertical tail and, similarly, the trailing edge of the root chord of the 
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horizontal t ail must coincide with or be in back of the trailing edge of 
the r oot chord of the vertical tail. The results to be presented in the 
following sections for the vertical tail completely shielded by the hori 
zontal tail and for the vertical-tail-alone case may be used, however, to 
obtain rough estimations of the derivatives for tail arr angements for 
which the horizontal t a il does not completely shi eld the root chord of 
the vertical tail. Estimates can be made in this manner by i nterpolation 
with a fai r degree of accuracy because the end-plate effect of the hori
zontal tail is relatively small even for the cases considered in this 
paper where the horizontal tail is a perfect end plate. 

The stability derivatives are valid for a range of Mach number for 
which the leading and trailing edges of the tail surfaces are supersonic; 
that is, the Mach number of the flow component normal to these edges is 
greater than 1. The results for the derivatives (CY~)t for the case of 

vertical-tail - horizontal-tail combinations have the added restriction 
that the Mach line from the tip of the leading edge of the vertical tail 
does not intersect the root section. The derivatives ( Cn ) and (C z ) 

. ~ t ~ t 
have the same restriction as mentioned previously and a further restriction 
which requires that the Mach line from the root section must intersect 
the trailing edge of the vertical tail. For the derivatives (Cn~)t and 

and (C2~ )t' however, values were obtained for the limiting case for which 

the Mach line from the root section is coincident with the leading edge 
of the vertical tail . From this result, together with t he results 
obtained when the Mach line intersects the trailing edge, an estimation 
of the value s of the derivatives (Cn~)t and (Cz~)t can be obtained for 

the range of Mach number 'where the Mach line from the root section cuts 
the tip of the vertical tail. The results for the effec t of the hori 
zontal tail (the so-called end-plate effect) on the derivatives are 
restricted to cases where the Mach line from the root section cuts the 
trailing edge of the vertical tail and to cases where the Mach line from 
the leading edge of the tip of the vertical tail does not intersect the 
root section . 

Basic Cons iderations 

The evaluation of the tail contribution to the derivatives Cy ~' 
Cn ,and Cz 

~ ~ 
essentially involves a knowledge of the lifting-pressure 

distribution over the t ail surfaces associated with sideslip (angle of 
attack of the vertical tail). The lifting-pressure coefficient can be 
determined from t he perturbation velocity potential by the well-known 

---~---~~~~--~ --~---~--.-~~ 
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(1) 

where 6¢ is the velocity-potential difference across the surface . 
Equation (1) is consistent with the small perturbati on theory only if 
the magnitudes of the perturbation velocities are equal across the 
lifting surface. When the magnitudes of the perturbation velocities 
are not equal across the lifting surface, equation (1) should contain 
differences in the squares of the velocities v and w. The squared 
terms lead to derivatives which are linear functions of e; therefore, 
these terms will vanish because the derivatives are to be evaluated as 
(3--,>0. 

The real problem of finding the pressure distribution over the tail 
surfaces is therefore to find the velocity potential on each side of 
each tail surface. The tail configurations considered, as mentioned 
previously, are of the nonplanar type and are, of course, unsymmetrical 
with respect to the y - and z-axes. The determination of the velocity 
potential or its derivatives for nonplanar systems of the unsymmetrical 
type is usually quite difficult, particularly when the leading and 
trailing edges of the- configuration are subsonic. For these same tail 
configurations, however, when the leading and trailing edges of the hori 
zontal tail are supersonic, linearized expressions for the surface velocity 
potential and lifting pressures may be easily ob"tained. If reference is 
made to the sketches of the tail configurations presented in figure 1, 
it can be seen that so long as the leading and trailing edges of the 
horizontal tail surfaces are supersonic, the horizontal tail acts as a 
reflecting plane. The flow over the lower surface of the horizontal tail 
is therefore undisturbedj hence, the component of perturbation velocity 
in the plane of the horizontal tail surface is zero . The solution for 
the potential in the region affected by the vertical tail is therefore 
the solution for a symmetrical lifting surface which is made up of the 
vertical tail surface and its reflection through the horizontal tail 
surface. The potential remains unchanged if the horizontal tail is 
altered outside the Mach sheet from the leading edge of the vertical tail. 

As stated previously, only the potential on each side of each surface 
is needed. The potential and pressure across the vertical tail surfaces 
considered herein can be determined directly from the results given in 
reference 3. Formulas for these potentials and pressures are presented 
for convenience in tables I and II, respectively. It should be noted 
that the potential and the perturbation pressure are zero on the lower 

-------
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surface of the horizontal tail. The potential and perturbation pressure 
on the upper surface of the horizontal tail were found from the potenti~l 
solution for a lifting surface made up of the vertical tail surface and 
its reflection in the horizontal tail. The source -distribution method 
presented in reference 4 was used to find these potentials and the corre
sponding pressures. The expressions for the potentials and pressures on 
the horizontal tail surface are presented in tables I and II, respectively. 

If the horizontal tail has subsonic edges in the region behind t~e 
Mach sheet from the leading edge of the vertical tail, the potentials 
and pressures for the horizontal tail given in tables I and II are no 
longer correct. Similarly, if the horizontal tail has a subsonic leading 
or trailing edge in the region behind the Mach sheet from the leading 
edge of the vertical tail and if the subsonic - edge disturbances affect 
the vertical tail, then the p~essure and potential given in tables I 
and II for the vertical tail are also invalid. 

A rough qualitative estimation of the effect of the subsonic edges 
of the horizontal tail on the derivatives considered herein was obtained 
by the evaluation of the so-called end -plate effect of the horizontal 
tail, that is, the change in the values of the derivatives for the complete 
configuration when the horizontal tail with all edges supersonic is 
completely removed from the vertical tail. The values of the stability 
derivatives when the edges of the horizontal tail are subsonic are expected 
to be s omewhere between the value of the derivatives with the horizontal 
tail (all edges supersonic) attached to the vertical tail and the values 
of the derivatives for the vertical tail alone. The expressions for the 
potentials and pressures for the vertical tail alone were obtained by an 
application of Evvard's method (reference 5) and are presented in tables I 
and II. Illustrative plots of the chordwise and spanwise pressure distri
butions across the vertical tail with and without the horizontal tail are 
given in figure 3. Figure 4 shows illustrative plots of the chordwise 
and spanwise pressure distributions of the induced pressure on the hori
zontal tail. Illustrative plots of the spanwise loadings for the vertical 
and horizontal tails are presented in figure 5. 

The nondimensional lateral force due to sideslip derivative may be 
expressed as 

Lateral force 
a~ 

The lateral force can be obtained by integrating the pressure distribution 
over the vertical tail surface in sideslip. (See table I.) The pressure 
distribution over the vertical tail in the presence of the horizontal tail 
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is the same as that for a wing which is composed of the area of the 
vertical tail and its reflection in the horizontal tail . The magnitude 
of the derivative (CY~) t of the vertical tail, therefor e, is the lift-

curve slope CLu of a wing of which the vertical tail is one panel 

( semispan of wing). Formulas for (CY~)t were obtained by transformi ng 

the results for CLa presented in reference 3. Since the vertical tail 

is a duplicate of one panel of the wing, the transformation merely con
sists in replacing the aspect ratio of the wing by t wi ce the aspect ratio 
of the vertical tail. The resulting expressions for (CY~)t in terms of 

the aspect ratio of the vertical tail are as follows : 

Mach line from the root section coincident with leading edge: 

For an arbitrary taper r atio, 

-4A' { K y' K - l 
rrB (1 - 1e)2(K + 1) y' K [

cos -1 (21e - 1) - cos - l ~l _ 
+ 1 KJ 

Ie V Ie(K - 1) 
-:-:( 1--- le-:-) -V---r:'( l===-=Ie=:')~( K= +=l=) + 

K - 1 
+ 

K(l - 1e)2 (K + 1) 

[2K - Ie(K + Ij] 2 cos - l 2K + Ie(l - 3K) } 
2 -/2(1 - \,)2(K + 1) /K J K + 1 2K _ \'(K + 1) (2) 

For a taper ratio of 1, 

-=.L [(1 
M'B 

+ 2A , )2 cos - l 2A' - 1 + 
2 2A ' + 1 

- - ----------



Mach line from the root section cuts the tip: 

For an arbitrary taper ratio, 

• 

(
Cy ) == -1 

~ t ,.-----;<;' (

2 [2m' K + A' (K - 1)] 
2 

{ 1 -1 1 - cos - + 
1 A I (K2 - 1) K m I 

[ 
1 -1 KJm,2 ,~~ l _ cos - Km' 

1- - . 
cos-1 2Km' (2A ' 

2Kro ' 

- 1) - A' (K + 3)J} _ 
+ A' (K - 1) 

[2m 'K - A'(K - lj]2Jm' + 1 

A'(K - l)JK J Km ' + 1 

1 2Km' (1 - 2A ') + A ' (3K + 1) cos - . + 
2Km I - A' (K - 1) 

@n I K + A' (1 + 3K fl 2 V m I - 1 2Km' (2A' - 1) + A I (K -
-_:-_~;==--r='.J=====:--- cos-1 

A ' (K+ 1 )..{KJKm' +1 
~) 

2Km I + A I (3K + 1.) 

l' 

( 4) 

~ 
~ 
1-3 
~ 

I\) 
+" 
f-' 
I\) 

f-' 
f-' 
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For a taper ratio of 1, 

- 2) m,2 

(CYf3)t 
-2 { m· 2 (m· 2 

cos-1 J:... 
== lTA'BJm,2 _ 1 - m,2_ Vm,2 -

+ 
1 m' 1 

[m. 2 (m' - 2) J m' - 2A' (m' - 1) . + 2A'm' cos-1 
2(m' 1) - m' 

(m' + 2A,)2/m, - 1 1 m'(2A' - 1) 
----~r=7=~~--- cos- + 

2Jm' + 1 2A' + m' 

m' J A ' [m' - A' (m' 
1m' - 1 

- l)J } 

Mach line from the root section cuts the trailing edge: 

For an arbitrary taper ratio, 

1)J2 (1 -1 1 - cos -- + 
K m' 

+ 

KJm'2 - 1 -1 _1) -1f@<m' - .A'(K - lD2Jm' + 1 
-r====---r==~ cos --IKm' - lv'Km' + 1 Km' A'(K - l)jKJKm' + 1 

( 6) 



", 
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For a taper ratio of 1, 

(CYf3 )t 
-2 {- m,2(m,2 - 2) 

cos-l ~ 
m,2 

= 
rrBtl. ' J m ,2 -

-
Jm,2 - + 

1 m,2 - 1 m' 1 

@,2(m, _ 2) 
2(m' 1) + 2A'm'l} 

For an arbitrary taper ratio where K 00 or 0, 

-ItA' {l 
B-(-1--- A,-) J- - <)] } 

For rectangular vertical tails, 

The effect of the horizontal tail on the derivative (C
Yf3

)t was 

evaluated by integrating the pressure distribution over the vertical 

13 

(7 ) 

(8) 

tail that is induced by the horizontal tail . The induced pressure distri
bution was obtained by subtracting the pressure distribution of an 
isolated panel at an angle of attack (or sideslip) from the pressure 
distribution of the vertical tail with horizontal tail attached. The 
corresponding nondimensional increment to the lateral- force deriva tive 
is given by the following equations: 



L 

Mach line f r om the r oot section cuts the trailing edge : 

For an arbitrary taper ratio, 

6 (CY(3 )t 16m ' [ 
B1tJ(l + \) ( 

-K 
_ K2) I 2 cos -1 1 m' - 1 - + m' 

K2 re K3 -1 -1 
-:----;:;-:---;::====---;::::==== co s -

2(1 - K) JK v (m 'K - l)(m ' + 1) 

For a taper ratio of 1 , 

4m ,2 
6(CY(3 )t 

reBA ' ~ 2 - m, 2 - 1 1 
----- cos -

2(m,2 _ 1)3/2 m' 

( 1 - K2 ) yKIn ' + IVKIn' - 1 KIn ' 

1 -,---- + 
2(m,2 - 1) 

rr (m ' + 2) 

4(m' + 1) r;;;: 2 J 
For an arbitrary taper ratio where the leading or trailing edge is perpendicular to the f r ee 
str eam direct i on, 

6 (CY(3 h B{l ~ A) f. -VA' + 1 } 
2( 1 - ).)] 1 + ). 

'. 

(10) 

(11) 

(12) 

t--' 
+:-

~ 
:x> 

~ 
f\) 
+:
t--' 
f\) 
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For rectangular vertical tails, 

1 

AlB 

15 

(13) 

Data taken from reference 2 were used to obtain curves for B(CY~)t 
for taper ratios of 0, 1/2, and 1 for various values of sweep angle, 
Mach number, and aspect ratio. These data are presented in figure 6 . 
Ca l culations for the effect of the horizontal tail on the derivative (CY~)t 

were made. These calculations are presented in figure 7 for taper ratios 
of 0 , 1/2, and 1 for various values of sweepback angle, Mach number, and 
aspect ratio . 

Figure 8 presents some illustrative variations of the derivative 

with and without the horizontal tail for various values of Mach number, 
aspect ratiO , sweep angle, and taper ratio. 

C ' Y~ 

Since the derivative (CY~)t and the effect of the horizontal tail 

on this derivative are based on the area of the vertical tail) both (CY~)t 

and 6(CY~)t must be multiplied by the ratio Sv/Sw before they are used 

in stability calculations . Since the lateral force is the same for both 
body and stability axes, then CY~ ' and (CY ~)t are related by the 

e qua ti on Cy f3' = :: 0Y f3 ) t . 

It is convenient to express the yawing moment due to sideslip of the 
vertical tail relative to the body axes, the origin of which is located 
at the center of gravity of the airplane a distance 2t from the leading 

edge of the root section of the vertical tail. The yawing moment of the 
vertical tail in the presence of the horizontal tail is then given non
dimensionally as 

(14) 



where X is the x-component of the distance of the center of pressure of the vertical tail 
from the leading edge of the root section, and Zt is the distance along the x-axis between 
the center of gravity of the airplane and the leading edge of the root section of the vertical 
tail. 

The distance X was calculated in the usual manner fr~ a consideration of the moment due 
to pressure distribution over the vertical tail surface. The resulting equations for the 
distances X are as follows: 

Mach line from the root section coincident with the leading edge: 

For an arbitrary taper ratio, 

X = 
2bvG!3(K - 1)2 - 6J2K(K - 1) + 12JK2] rr4K(l - 4K2) + 

(Cy13) t
3m<2(1 + ,,)(,,2 + " + 1) \}3(1 _ K2)2 

[!2(K _ 1)2(2K2 + 6K + 7) - 4JK(K - 1)(4K2 - 3K - 16) + 12K2(18K2 - K - 2)J J2K + J(l - K) 

1532(1 - K2)2 J J(l + K) 

cos - cos - -4K3(1 + 2K2") (-1 J(l - K) + K -1 l)~ 
~, ~.~ i 'K _ 1 K K 

212i<4JK + J - lBK)/(4K - 2JK + 2J)3 _ 21\2(4 - J) - (JK - J - 21\)f(J + 21\ - 3KJ)J21\ - JK + J_ 

\" 30 Gr(K + 1)] 5/2 JK(l + K) 2 [?J(K + lU 3/2 

(JK + J + 2K)2Kl/2 cos-l 3JK - J - 2K})~ (15) 
8J(1 + K)3/2 JK + J + 2K ~ 

'. 

I-' 
0'\ 

~ 
~ 

~ 
r\) 
+0-
I-' 
r\) 
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For a taper ratio of 1, 

x == 1 ( . -2bv 14(36&,2 + 20A' + 9) - ~J + 

( Cy ) 45nA'~ ,-
~ t _ 

4bv j2 [9 - 5A' 2A' - 5 ~ 2A' _ 1) _ 

3rrVA' L15A' 16A' L 

(2A' + 1)2 cos-1 2A' : ~J}) 
2J2A' 2A' 

(16) 

Mach line from the root section cuts the trailing edge: 

For an arbitrary taper ratio, 

1 K3m'/m,2 - 1 
cos-1 - + -------- + 

m' 2(K2 - 1)(K2m,2 - 1) 

[2mtK _ J(K - 1)]2rr 1(1 - 4mtK2 + 2mtK - 3K)Jm' + 1 _ 

8 L6m'(K - 1)2(1 + m'K)JK:Jl + mtK 

J(3K + 2m'K2 + 2m'K + l)Jm' + 1 l1 
12Km,2(K - 1)(1 + m'K)JKJl + m'KJ~ 



lS 

For a taper ratio of 1, 

x = 

A'(2m ,2 + m') 
+ 

(m' + 1) I../m'2 - 1 

----~=-~ 

, 1 
cos- l ~ -

m' 

6m, 6 _ Sm 'S _ 17m ,4 + 2m'3 + 

12 (m I 2 _ 1) 2 V m ,2 - 1 
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(lS) 

An expression for X in a somewhat different form from the preceding 
equations is presented in reference 6. The values of (CY~)t used in the 

preceding equations must or course be valid for the particular Mach line 
arrangement over the tail for which the distance X is to be determined. 

The resul~s for the derivative ( C ) are given relative to a system 
n~ t 

of body axes located at the leading edge of the root section. (See 
fig. 2.) The transformation formulas for conversion from body axes to 
stability axes are given in reference 7. To the first order in ~ 

(small angles of attack) the formula for the contribution of the tail to 
the derivative Cn ', based on the wing area and wing span, is given by 

[3 

(19) 

where the prime refers to the stability axes with the origin located at 
the center of gravity of the airplane. 

The end-plate effect of the horizontal tail on the derivative (Cn~)t 

may be expressed in terms of the change in the center-of-pressure 
distance X and the c~nge in (CY~)t. The change 6X in the center-

of-pressure distance X is equal to the difference in the distance X 
with the horizontal tail a ttached to the vertical t ail and with the 
vertical tail alone. Mathematically, the increment in X is given by 

x ( 20) 

_. 



where the quantities X, (CY~)t' and the change in (CY~)t due to the horizontal tail, have 

previously been determined. The quantity 6(Cn~)t depends upon the plan-form geometry and Mach 

line location. For the condition where the Mach line from the leading edge of the root ~ection 
cuts the trailing edge, 6(Cn~)t is given by the following expressions: 

For an arbitrary taper ratio, 

(I ) 32rnt2K3 [ 3K2 - 1 
6\C~ t = 3nAt2(1 + A)3Vmt2 _ 1~2(1 _ K2)2 

-1 1 ~t2 - 1 cos -- - + 
mt (m'2K2 - 1)(1 - K2) 

(2rn'2K4 - K2 - 1)vm'2 - 1 -1 -1 
-;--~:-:::--:---:::-:::---:-;:======--;:::====== cos - + Vffi' - 1(3K + 2Km' - 4K2m' - l)~ (21) 

4K(1 - K)2(m'K - l){K/ID'K - 1 J (1 - K2)2(m'2K2 - l)Jm'K + IVm'K - 1 Km' 

For a taper ratio of 1, 

4m,2 [ 3m,4 - lOm,2 + 4 6.(C ) '" -::t--_---.:~ __ _ 

~ t 3A'2nVm'2 - 1 4(m'2 _ 1)2 
COB~l ~ 3m,2 

m' 4(m'2 _ 1)3/2 + 

For a straight trailing edge, 

n(6m,3 + 14m,2 - 3m' - 5il 
16(m'2 - l)(m' + 1) J 

(22) 

6.(C ) = 16 { 1 _ 1 } ( 23) 
~ t ~ (1 - ).) A' (1 + A.) 2 (1 + A) VA' (1 + A) [!t, (1 + A) + 2 (1 - A TI . . 

~ 
~ 

~ 
I\) 
+" 
I--' 
I\) 

I--' 
\0 



20 NACA TN 2412 

For a leading edge which is perpendicular to the free-stream direction, 

6.(C \ == ~ (_1 { 1 _ 
\ ~)t 3 1 - ' A. A'(l + A.) 

(1 - A.) + A' (1 + A.) }) 
-=[?-( -1 ---1.-) -+-A-'-( l-+-A.--=D-Jr~=,=( 1=+=1.=) =~=( 1=-=1.=) =+=A=' =( 1=+ =A.=U (24) 

For rectangular vertical tails, 

2 

As previo~sly indicated, the derivative_(Cn~)t may be expressed in 

terms of the derivative (CY~)t and an arm X. Calculations· for the 

distance X were made for taper ratios of 0 and 1 for various values of 
sweep angle, aspect ratio, and Mach number. These results are presented 
in figure 9. Since the formulas for X for the case where the Mach 
line from the root section of the vertical tail cuts the tip were not 
found, the curves ~or X were faired through tpis region. The faired 
parts of the curves are dashed in figure 9. The change in the dis
tance X due to the horizontal tail was calculated for taper ratios 
of 0 and 1. The results of these calculations are given in figure 10. 
Figure 11 presents some illustrative variations of the der1vative C~1 

with and without the horizontal tail for various values of Mach number, 
aspect ratio, and sweep angle. 

Derivative (c ) 
L~ t 

The rolling moment due to sideslip may be calculated by integrating 
the moment of the pressure loading about the root chord of the vertical 
t ·ail. Although the pressure distribution over the horizontal tail does 
not contribute to the lateral force or yawing moment it does affect the 
rolling moment due to sideslip. The integrations of the first moments 
of the pressure for sideslip were therefore performed over both the vertical 
and horizontat tail surfaces. 
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The total rolling-moment derivative may be written as 

(
C2 ) = (C2 ) + ( C2 ) = ((Lateral fOrCe)z) + (C 1 ) ~ t ~ vt ~ ht q8vbv ~ ht 

The first term of the preceding expression, which gives the vertical
tail contribution to the rolling moment, has been expressed in terms of 

(26) 

a force ( CY~ )t and an arm Z. The rolling-moment arm Z was determined 

by evaluating the rolling moment (due to sideslip) about the x body 
axis and dividing the mome nt by the lateral force. For the condition 
where the Mach lines from the leading edge of the root chord are coin
cident with the leading edges, Z is given by the f ollowing expressions: 

For a taper r a tio of 1, 

-8by t2A
' 

- 1)(2A' + 1)2 2A' - 1 1 
Z cos-l +-+ 

A ,2n:BC 64 2A' + 1 15 
y~ 

U-32A ,2 - 20A' - 15J J2A' } 
480 

For an arbitrary taper ratio, 

J(l - K) 
cos- l 

K 

+ KJ + _f2X_Q_(_l _+_K_) _-_2K_U_I!--::(=l=+=K_) _+ _2K_~_2 J (3K - 1) - 2K 
cos - l + 

128(1 + K )2Jl+K J( 1 + K) + 2K 

K C!2 (1 - K) 2 ( 1 + K) (7K + 3) + 8JK2 (1 - K2) - l2K2 ( 1 + K ) 2J 
96(1 - K2 )2 . 

J Q- (1 - K) + 2K J} (28) 
1 + K 



For the configuration where the Mach line from the leading edge of the root chord c~t8 the 
trailing edge of the vertical tail, Z is given as follows: 

For an arbitrary taper ratio, . 

z == 
-16bv " { 2K2m'3(1 + K2) 

3J2(1 + A)B( CYf3
)t rr(l - K2)2~ - 1 

2K 4m,3(-3 + 2K2m,2 + K2 ) 

rr J Km + 1 J Km - 1 (K2m' 2 - 1) (1 _ K2) 2 

1 
cos- l - + 

m' 

- 1 - 1 2K4m' 3 cos - _ + 
Km' rr ( l - K2) (K2m ' 2 - 1 ) 

J ( l - K) + 2m ' K [J2(1 _ K)2(3K _ K2 + 3K3 + 2K~ ' + 8K3m ' + 
JK J (1 + m'K)(m' - 1) 

8m'2J<:3 + 6m'K + 3) + 4K~ ' J(1 - K)(m ' + 1)(2m'K2 + 3K2 - 4K + 3) + 

4K2m,2(3K - 71<2 - 10m'K2 + 31(3 + 2m ' K3 - 4m ,2K3 - 3)J 1 } (29) 
32K(1 - K)2(1 + m'K)2 

For a taper ratio of 1, 

Z == -by ~m ' 3(4 - 2m , 2 + m,4) 

A'2B (CYf3)t L 3 rr(m,2 - 1)5/2 

1 1 m'3(m ' 2 - 4) 
cos - -- + + 

m' 3 rr (m ' 2 - 1)2 

- 6m' - llD} (30) 
m'I}4A ' 2(m'2 - 1)2 - 12A'm' (m' + l) (m' _ 1)2 + m, 2( _2m , 4 + 7m'2 

- - 12 (m , 2 _ 1) 5 72 

, I . 

I\) 
I\) 

~ 
[;; 

~ 
I\) 
+:
f--J 
I\) 
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An expression for Z in a different form for the cases given by equations (29) and (30) is 
presented in reference 6. The consideration regarding the contribution of the horizontal tail 
to the rolling moment due to sideslip (C 1 ) requires special emphasis~ Because of its end-

~hl 
plate effect, the horizontal tail induces a pressure on the vertical tail. The vertical tail in 
turn induces on the horizontal tail a pressure field that is bounded by the trace on the hori
zontal tail of the Mach cone springing from the leading edga of the root section of the vertical 
tail. This pressure on the horizontal tail induced by the vertical tail gives rise to the 
rolling-moment contribution of the horizontal tail . For positive sideslip (positive angle of 
attack), the perturbation flow over the right-side surface (outw~d normal to surface in direction 
of positive y-axis) of the vertical tail induces a downward force on the right panel of the 
horizontal tail and, similarly, the perturbation flow over the left-side surface of the vertical 
tail induces an equivalent upward force on the left panel of the horizontal tail. For sideslip, 
the rolling-moment contributions about the body axes of the vertical and horizontal tail are of 
opposite signs and tend to counteract each other. The quantity (C2~ )h was found by integration 

and is given by the following expression for an arbitrary taper ratio (including a taper ratio of 1): 

B2mo2V m,2 - 1 ( C l~) ht == ~-4c.-::....
r

3 -;Illo~2m=' = { 
Svbv3rrB Vm ,2 - 1 ~ - 1) [m'2 - B2mo2(m'2 - lD 

- lU ( 
_ B2ffie2(m t2 _ lD2 sin-

l B2mo2Jm t2 _ 1@~2 _ 3mt2(B~2 

V B2m 2 _ 1 (B2m 2 _ 1) 1m t 2 
o 0 L: 

m t 2 ~ t 2 + B2mo 2 (m ,2 - 1 U 
~'2 _ B2mo2(mt2 _ 1)]2 

cos- l 
ml 

l} &2 _ 

m'2rr 
+ + 

2(m' - BmoVm,2 _ 1)2 

;) ---+ 
1 

Bffie 

(31) 

s; 
~ 
8 
!Z 
f\) 
+=
t--' 
f\) 

f\) 
w 
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The results for the rolling-moment derivative were given relative to a 
system of body axes located at the leading edge of the root section. 
(See fig . 2. ) The transformation formula for conversion of the rolling
moment derivative from body axes to stability axes is given in reference 7 . 
The rolling-moment derivative about the stability axes based upon wing 
area and wing span is given by 

C ' 
2[3 

bySv 

bwBw 

when only first - order terms in a are retained. 

The end-plate effect of the horizontal tail on the derivative ( C2[3 ) t 

is made up of three effects : The change in ( CY[3 )t' the change in the 

distance Z, and the change in the rolling moment due to the horizontal 
tail (C 2 ) . The change in (CY ) and the change in the rolling 

[3 ht [3 t 
moment due to the horizontal tail_have already been evaluated; hence ; 
only the £hange in t he distance Z remains to b~ evaluat ed . This 
change 6Z in the center - of-pressure distance Z can be written mathe
matically as 

Z 

where 
6(C 2j3) vt 

is the change in the rolling moment due to the vertical 

tail. 'I'he quantity was found by integration and is given by 

For an arbitrary taper ratiO, 

KVm,2 - 1( - 3K + 2K3m,2 + K3) cos - l __ -1 __ + 
-3jrin=' =K===+==l:-( l---="':'-.!..-K-;:2;7) ;:;-:2 (~m"':;' ;;-2K-;:2;---_ --=1-:-) V-;m=;'~K=-===::l Km ' 

nvm' - 1( - 2K3m,2 + 5K2m' - K3m' + K2 - 3K)J 
12(m'K - 1)2(1 - K)2/KJKm' - 1 J (34) 

" 
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For a taper ratio of 1, 

cos - l ~ + 
m' 

25 

Equation (26) indicates that the derivative (CZ~)t can be expressed 

in terms of the derivative ( CY~) t' an arm Z, and a moment due to the 

horizontal tail . Figure 12 shows calculated values of the arm Z for 
taper ratios of 0 and 1 . The dashed parts of the curves of figure 12 
are faired since formulas were not found for this region. Figure 13 
shows calculated values from which the moment due to the load on the 
horizontal tail may be evaluated . 

The change in the distance Z due to the hori zontal tail was 
calculated for taper ratios of 0 and 1 for various values of sweep angle , 
Mach number, and aspect ratio. These calculated data are presented in 
figure 14. Figure 15 presents some illustra tive variations of the 
derivative CZ ' with and without the horizontal tail for various values 

~ 
of Mach number, aspect ratio, and sweep angle . 

DISCUSSION • 

The calculated results for the derivatives of the combination of 
the vertical and horizontal tails show the expected trends ; however, a 
few results concerning the end-plate effect of the horizontal tail may 
warrant discussion. Figures 6 and 7 indicate that maximum decrease in 
(CY~)t due to removal of the horizontal tail is from 25 to 30 percent 

of the value of (CY~)t' This maximum appears to occur at a taper ratio 

of 0 for low values of the parameter BA . From this maximum the end
plate effect decreases to values which are negligible compared to the 
values of (CY~)t for large values of the parameter BA . The effect of 

the horizontal- tail on the derivative ( Cn~)t depends on 6(CY~)t and 

on the length of the arm (It + x). Generally, the length Zt is 

somewhat larger than the length Xj therefore the change in X due to 
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the horizontal tail has a small effect on the arm (It + x). In these 

cases the effect of the horizontal tail on the derivative (Cn~)t has 

the same trends as those of the derivative (CY~)t. The end-plate effect 

of the horizontal tail on the derivative (Cl~)t is made up of the change 

in the distance Z, the change in the lateral force 6(CY~)t' and the 

rolling moment due to the horizontal tail. The rolling moment caused by 
the load on the horizontal tail opposes the rolling moment due to the 
load on the vertical tail so that it is possible for (Cl~)t to be 

increased or decreased by removing the horizontal tail. This effect is 
shown in figure 15(b) or 15(c). 

PROCEDURE FOR CALCUIATION OF STABILITY DERIVATIVES Cy , C 1 , 
~ ~ 

AND FOR GIVEN TAIL ARRANGEMENT AND MACH NUMBER 

The results of the preceding analysis of the sideslip derivatives 
may not be conveniently presented in a form from which values of the 
derivative can be directly obtained. The purpose of this section is to 
set forth in detail a procedure for the calculation of the stability 
'derivatives for a given tail arrangement and Mach number. 

The proper use of the formulas derived in the previous section 
requires the following consideration of the radical sign. The radical 
sign vr--- is defined as the positive root of the quantity under the 
r adical; thus if a is a positive number, 

J (±a)2 = a 

However, note that 

Lateral -Force Coefficient for Vertical 

Tail in Presence of Horizontal Tail 

The derivative (CY~)t may be determined as follows. First, the 

products BA and Bm are evaluated. The second step depends upon the 
value of the taper ratio of the vertical tail together with the degree 
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of accuracy desired. If the taper ratio of the vertical tail is 0, 1/2, 
or 1 the value of (CY~)t may be obtained directly from figure 6. If 

the value of the taper ratio is not 0, 1/2, or 1 and if extreme accuracy 
is not desired the values of (CY~) t may still be determined from 

figure 6 by interpolation. If greater accuracy is desired the position 
of the Mach lines on the vertical tail must be determined. The values 
of ICy) may then be evaluated from equations (2), (4), (6), (8), or (9) 

\ ~ t • 
depending on the plan form of the vertical tail and on the Mach line 
configuration. The conversion of the lateral- force coefficient from body 
axes to stability axes and the conversion from a coefficient based on 
the vertical-tail area to ,a coefficient based on the wing area is given 
by the expression 

c ' Sv (C ) y~ = Sw y~ t 

Lateral-Force Coefficient (CY~) v of Isolated Vertical Tail 

The lateral-force coefficient for a vertical -tail alone (CY~)v 

may be determined for the case where the Mach line from the center section 
cuts the trailing edge of the vertical tail . The lateral-force coeffi
cient is given by (CY~)v = (CY~)t + 6(CY~) t The procedure for eval-

uating (CY~)t has been discussed previously . The procedure for eval

uating 6(CY~)t is as follows. For taper ratios of 0, 1/2, or 1 the 

values of 6(CY~)t may be found from figure 7; if, however, the taper 

ratio is not 0, 1/2, or 1, good approximations to the value of 6(CY~)t 

may be determined from figure 7 by interpolation . If greater accuracy 
is desired, the value of 6(CY~)t must be calculated from equations (10), 

(12), or (13) depending on the plan form under consideration . The 
conversion of the lateral - force derivative for a vertical tail alone from 
body axes to sta~ility axes including the conversion of the derivative 
based on the wing area is given by the formula 
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Yawing-Moment Coefficient for Vertical Tail in 

The derivative 

Presence of Horizontal Tail 

(C~)t may be expressed in terms of the quantities 

X/bv as follows: 

The geometric quantity It/bv is known. The procedure for finding the 

quantity (CY~)t has been given previously. The evaluation of the 

quantity Xfbv may be determined as follows. First, of course, the 

products EA and Bm are evaluated . The next step depends upon the 
value of the taper ratio of the vertical tail. For vertical tails which 
have a taper ratio of 0 or 1, X/bv can be obtained directly from 

figure 9. If the taper ratio of the vertical tail is not 0 or 1, inter
polation may qe used to obtain X/by if the degree of accuracy desired 
is not great. When greater accuracy is desired the procedure to be 
followed depends upon the Mach line configuration of the vertical tail. 
If the Mach line from the root section cuts the trailing edge, X/bv 
may be evaluated from equation (17). For the cases where the Mach line 
from the root section is coincident with the leading edge, X/bv can 
be evaluated from equation (15). If the Mach line from the root section 
cuts the tip, X/bv cannot be directly evaluatedj it can be approxi
mated however, by interpolation between the values of X/bv for the case 
where the Mach line from the root section is coincident with the leading 
edge of the vertical tail and for the case where the Mach line from the 
root section cuts the trailing edge. 

The conversion of the yawing-moment coefficient for a vertical tail 
in the presence of a horizontal tail from body axes to stability axes 
(including the change in the coefficient so that it is based on the wing 
area and span) is given by 

C 1 

nf3 

where ~,of course, is assumed to be small. 

, 
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Yawing-Moment Coefficient for Vertical Tail Alone 

The yawing-moment coefficient for a vertical tail alone was 

investigated for the case where the Mach line from the root section cuts 
the trailing edge. This derivative can be expressed as 

The procedure for evaluating the quantity (CY~)v has been given 

previously. Once the products Bm and BA are evaluated, the quantity 
~/bv may be found directly from figure 14 for taper ratios of 0 and 1. 

For other taper ratios between 0 and 1 the quantity 6X/bv can be esti
mated by interpolation by use of figure 14. 

If greater accuracy is desired in the evaluation of (Cn~)v' the 

following procedure may be used. The derivative (Cn~)v can be expressed 

as 

The method for calculating the quantity (C~)t has been set forth 

previously. The quantity ~(C~)t can be evaluated from equation (21). 

The conversion of the yawing-moment coefficient for a vertical tail 
alone from body axes to stability axes and from a coefficient based on 
the vertical-tail area and span to a coefficient based on the wing area 
and span is given by 

C ' 
~ 

where ~ is assumed to be small . 
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Rolling-Moment Coefficient for Vertical-Tail 

and Horizontal-Tail Combination 

The rolling-moment coefficient for the vertical-tail and horizontal
tail combination (CZ~)t can be expressed as 

The procedure for finding the quantity (CY~)t has been considered 

previously. Once the products Bm and AB are evaluated Z/by may 

be found from figure 12 for taper ratios of 0 and 1. If the taper ratio 
of the vertical tail is not 0 or 1, approximate values of Z/bv can be 
obtained by interpolation. For accurate evaluations, the Mach line 
configuration on the vertical tail must be determined. For cases where 
the Mach line from the root section is coincident with the leading edge 
Qf the vertical tail, values of Z/bv can be found from equation (28). 
For cases where the Mach lines from the root section cut the trailing 
edge, values of Z/bv can be found from equation (29). If the Mach line 
from the root section cuts the tip, Z/bv can only be approximately 

evaluated by interpolating between the values of Z/bv for the condition 

where the Mach line from the root section is coincident with the leading 
edge of the vertical tail and for the condition where the Mach line from 
the root section just cuts the trailing edge. 

The quantity (C z ) was investigated for a horizontal-tail plan 
~ ht 

form for which the trailing edge is swept at a constant angle, for 
Mach numbers for which the Mach line from the root section cuts the 
trailing edge of the horizontal tail, and where the Mach cone from the 
leading edge of the tip section of the vertical tail does not intersect 
the horizontal tail. For this case, the quantity (C Z ) can be found 

~ ht 
with the use of figure 13 or it may be calculated from equation (31). 

The conversion of the rolling-moment derivative for the vertical-tail 
and horizontal-tail combination from body axes to stability axes (including 
a change in the derivative so that it is based upon the wing area and 
wing span) is given by 

where a is assumed to be small. 
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Rolling-Moment Coefficient for Vertical Tail Alone 

The rolling-moment coefficient for ver.tical tail alone (C Z!3)v was 

investigated for the case where the Mach line from the root section cuts 
the trailing edge of the vertical tail. The derivative ( CZ!3)v can be 

expressed as 

(36) 

or 

The procedure for the determination of (Cy ), Z/bv , and (C Z ) !3 v !3 vt 
has 

been given previously. For taper ratios of 0 or 1 the quantity 6Z/bv 
can be found directly from figure 14. Thus, (CZ!3)v can be found from 

equation (36) . If the taper ratio is not 0 or 1 the value of 6Z/bv 
may be estimated from figure 14 by interpolation. For precise evalu-
ations, the quantity ~(CZ) may be evaluated from equation (34). 

\ !3 vt 
Thus, (CZ!3)v can be found from equation (37). 

The conversion of the rolling-moment coefficient for a vertical tail 
alone from body axes to stability axes and from a coefficient based on 
the vertical-tail area and span to a coefficient based on the wing area 
and span is given by 

C I = Svby ftc ) + a,,(C ) J 
Z!3 Swbw ~ Z!3 v \ n!3 v 

where a is assumed to be small. 

CONCLUDING REMARKS 

The linearized theory has enabled an evaluation of a first approxi
mation to the lateral force due to sideslip CY!3' th~ yawing moment due 

to sideslip C~, and the rolling moment due to sideslip CZ!3 for a 
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number of tail configur ations. The influence of the wing on these tail 
derivatives has not been considered . 

The suitability of the results for full-scale flight stability 
calculations is necessarily limited because of the restrictions of the 
linearized potential-flow theory. 

Langley Aeronautical Labor atory 
National Advisory Committee for Aeronautics 

Langley Field, Va., Febru&ry 2, 1951 

REFERENCES 

1 . Jones , Arthur L: The Theoretical Lateral -Stability Derivatives ~or 
Wings at Supersonic Speeds. Jour . Aer o . Sci., vol. 17, no . 1 , 
Jan . 1950 , pp. 39-46 . 

2 . Campbell, John P., and McKinney, Marion 0 .: Summary of Methods for 
Calculating Dynamic Lateral Stability and Response and for Estimating 
Lateral Stability Derivatives. NACA TN 2409, 1951. 

3 . Harmon, Sidney M., and Jeffreys, Isabella : Theoretical Lift and 
Damping i n Roll of Thin Wings with Arbitrary Sweep and Taper at 
Supersonic Speeds. Supersonic Leading and Trailing Edges . 
NACA TN 2114, 1950 . 

4 . Puckett, Allen E .: Supersonic Wave Drag of Thin Airfoils. Jour. 
Aero . Sci., vol . 13, no . 9, Sept. 1946, pp. 475 - 484. 

5 . Evvard, John C.: Distribution of Wave Drag and Lift in the Vicinity 
of Wing Tips at Supersonic Speeds. NACA TN 1382, 1947 . 

6 . Lagerstrom, P. A., Wall , D., and Graham, M. E. : Formulas in Three
Dimensional Wing Theory. Rep. No . SM-11901, Douglas Aircraft Co ., 
Inc ., July 8, 1946. 

7. Glauert, H. : 
Airp!ane. 

A Non-Dimensional Form of the Stability Equations of an 
R. & M. No . 1093, British A.R. C., 1927 . 



5 NACA TN 2412 

Region 
(aee aketchea) 

1 

E 

3 

4 

5 

1 

2 

3 

4 

1 

2 

3 

-

TABLE I. - FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO SIDESLIP 

I 
I 

Vertical tail 
" 

- - - M.ach lines 
x 

Horizontal tatl 

Vertical tail "ith horizontal tail, ~(x,O+,z) 

vjl (mx - z) -
'./B2,.2 - 1 

_ v~ ~mx _ 
n VB2m2 ' - 1 

z)co.-1 " - B2,.z + 
B{ mx - z) 

( ) - 1 x + B2,.z ] mx + Z COB - ( ---) 
B mx + z 

va ~ 1 IIlXa + Zs{2Bm + 1) ~ -~ (1IlXa - z.)coa- _ + 2 V-mz.( Xe. + Bz.){Bm + 1) 
f( B m - 1. IIlXe. za 

- vjl f ~ -1 IIlXa + za{2Bm + 1) - 1 -1IlXa + B2m2z. + bv(B2m2 
- 1)] + 

<VB2m2 _ 
1 (mxa - za) coa IIlXa _ Za - coa Bm(1IlXa - za) 

(mxa + 2bv + za)coa-1 IIlXa + B2,.
2z

a + bv(B2,.2 + 1) + 2 V-mZa(x". + Bza){Bm + 1) } 
Bm(mxa + Zs + 2bv ) 

va ~ mxa + za{2Bm - 1) + 2by 
(mx. + z. ~ 2bv )coa - 1 2b + 2 V-Za(mxa + Bmza + 2bv )(Bm -

<VB2m2 _ 1 mxa + z. + v 
1)] 

Vertical tail Vi thout horizontal tail, ~(",O+,z) 

vjl(mx - z) -
VB2m2 - 1 

_ v~ [(mx _ - z(2Bm - 1) 
+ 2 Vzm{x - Bz ){Bm - I)J I z)coa-1 mx 

n VB2,.2 - 1 (mx - z) 

_ va ~ IIlXa _ za)cos- 1 mxa + za(2Bm + 1) + 2 V-mz.( Xe. + BZa ) (Bm + 1) ] 
< VB2m2 - 1 lllXa - Za 

va f l 1 mxa + z. (2Bm + 1) 
-.~ (1IlXa - za) coa- mxa - z. 

1 za (2Bm - 1) + 2bv (Bm - 1) - mxa] 
- cos" + 

tILXa ... Za 

2 -J(za + bv} [rnx. + b v - Bm(z. - bv)](Bm - 1) + 2V-Zam(x". + Bza)(Bm + 1)} 
Upper surface of horizontal tatl, ~(".y , O+) 

0 

-va ~ - 1 (2 - m2a2 )x2 + B2y2(B2,.2_ 1) 
< "~cmx coa B2,.2,,2 _ B2y2(B2,.2 _ 1) 

- By VB2,.2 _ 1 coa - 1 B2z2(B2,.2 + 1) - B2,.2x2] 
B 2,.2,,2 _ B2y2\ B 2m2 - 1.) 

va [mx coa - 1 (2 - m2B2);: + B2y2(B2,.2 - 1) _ ByVB2m2 _ 1 coa-1 B2y2(B2,.2 + 1) - B2,.2x2 j 
n VB2,.2 _ 1 B2,.2x2 - B2y2 (B~2 - 1) B~2,,2 - B2y2(B~2 - 1 ) 

33 
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TABLE II. - FORMULAS FOR PRESSURE- DIFFER!:NCE COEFFICIENT DUE '.l\) SIDESLIP 

y 

- Mach lineB x 
x 

Vertical tail Horizontal tail 

Region Vertical tail Vi th horizontal tail (see sketches) 

~m -1 
VB2m2 - 1 

2 
- - lIim _ rOB-1 x - B2m. + COB- 1 x + B2mz J 

nVB2m2 _ 1 B(mx - z) B(mx + z) 

~m mxa + za(2Bm + 1) 

3 - cos- 1 
nVB2m2 _ 1 mxa - "a 

~ -1 -[=a + za(2Bm + l)J + CO B-1 =a - B2m2za - (B2m2 - l ) b y 
+ - - coe 

On >1 82m2 _ 1 mxa - ZB Bm(mxa - ZB) 
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(a) Taper ratio, I. (b) Taper ratio, O. 

x 

(c) Arbitrary toper ratio . 

Figure 1.- Types of vertical tails treated. 
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