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Page 33, line 2: The sign appearing at the beginning of this line
av
before the term (——l> should be plus instead of minus. Thus,
dx
Mb

the second line should be

av ) — q
4 (__%> cos(py —B1) | Vo (l + X=2L_) sin By — @, cos By | (60e)
ax /yip V1 v 2 sin®p;

Page 33, line 9: Citation of reference i should be reference 5.

Page 37, line 3: In equation (67), the first term should be

V2 V2
n n
foei===cl dnstead of Vp |2+ <=/
a2 a2




SORL T ATRY

r i’ﬂ mwmmér“mﬁ FHT A0Y 2OLTSIgATDARALD MO [CORTEN Fuw
NOPTTIOVIE ¥0 BATION v WO, 2THORRYE
G AQATIA N0- 2800848 JLAMB TA :

werrsl o ol S

~

SRR T S

£l ;
i ads

BT )‘?"'1 ad U S,

o biﬂ'{ﬂ‘i-’) s




¢20.1309

Un34

ERRATA

NACA TN 1809

THE METHOD OF CHARACTERISTICS FOR THE DETERMINATION OF
SUPERSONIC FLOW OVER BODIES OF REVOLUTION
AT SMALL ANGLES OF ATTACK

By Antonio Ferri

February 1949

Pages 32 and 33: Equations (59b),
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(594),

sindpy 1 98

2
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dV2

[ sin3p; 1 982 v

e T

dvp 7 i
— + tan =
1 By dep
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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1809

THE METHOD OF CHARACTERISTICS FOR THE DETERMINATION OF
SUPERSONIC FLOW OVER BODIES OF REVOLUTION
AT SMAIL ANGLES OF ATTACK
By Antonio Ferri

SUMMARY

The method of characteristics has been applied for the determination
of the supersonic—flow properties around bodies of revolution at a small
angle of attack. The system developed considers the effect of the vari-—
ation of entropy due to the curved shock and determines a flow that
exactly satisfies the boundary conditions in the limits of the simpli-—
fications assumed. Two practical methods for numerical calculations are
given.

INTRODUCTION

For the determination of aerodynamic properties of bodies of revo—
lution at supersonic speeds, two methods have been used: a method that
uses the small—disturbances theory and a method that uses the charac—
teristics theory. Both methods are successful in the determination of
the flow properties for bodles at zero angle of attack, but the precision
of the small—-disturbances theory decreases when a body of revolution at
an angle of attack is considered.

For bodies of revolution having supersonic flow everywhere, the
theory of characteristics can also be used at an angle of attack.

The method of characteristics for the determination of the flow

field around bodies of revolution at an angle of attack was first used

by Ferrari (reference 1) in 1936. Ferrari considers the flow as potential
flow and develops a method for the analysis of the flow field around a
body that in the approximation of potential flow appears to be general

and can be applied to bodies of any shape and with any angle of attack.

In the determination of the flow properties along the first character—
istic surface from which the analysis starts, however, Ferrarl analyzes
the flow around a cone of revolution; and in this part of the analysis
only small values of angle of attack are considered.

Sauer in 1942 (reference 2) considers the same problems and shows
that for small values of angle of attack, the analysis of the flow
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field around a body of revolution can be made by applying the charac—
teristics method only in one meridian plane; and, therefore, Sauer uses
characteristic lines in place of the characteristic surfaces considered
by Ferrari. Sauer, in the development of his system, is interested
essentially in the analysis of the flow around circular cones; and when
the method is applied to bodies of revolution of shapes different from
cones, the boundary conditions are no longer satisfied. The flow obtained
from the solution used, also at small angles of attack, wets a body that
is not a body of revolution. The body can be obtained from the body of
revolution considered initially by curving its axis of symmetry. Sauer
also assumes that the flow is potential flow. With this assumption, the
flow must be considered as potential flow for the case of the body at

zero angle of attack also; therefore, all the effects of entropy gradients
are neglected.

The flow field around circular cones at small angles of attack has
been analyzed in a more exact form by Stone. (See references 3 and L4.)
In his analysis, Stone considers the flow as rotational flow and, there—
fore, takes into account the effect of entropy gradients on the velocity
distribution. This effect exists only when the cone has an angle of
attack and, at low Mach numbers, is small but of the same order as the
effect of other parameters that are considered in the analysis.

Here, the method of characteristics is extended to the analysis of
the flow field around a body of revolution at small angles of attack for
the case of rotational flow. The effect of entropy gradients about bodiles
of revolution even at small angles of attack can be important because the
entropy gradients that exist in the stream for small angles of attack are
due to the variation of curvature of the shock existing at zero angle of
attack also, together with the fact that the shock surface does not have
axial symmetry with respect to the direction of the undisturbed velocity.

The method presented permits the determination of a flow that in
the assumption of small angles of attack exactly satisfies the boundary
conditions and, therefore, wets the body of revolution considered. This
method is given in a form that permits its application to practical
problems and requires either numerical or numerical and graphical calcu—
lations of the same type as the calculations used for the analysis of the
flow around bodies at zero angle of attack. The method can be applied
to cases in which the entropy variations can be neglected or are zero.
In these cases the terms that contain the entropy variations become zero.

SYMBOLS
X,¥,9 cylindrical coordinates (fig. 1)
r,y,0 polar coordinates (fig. 8)

v local velocity (function of x, y, 0)
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U, V,W

Vr,Vn,W

v

velocity components in cylindrical coordinates (u along
x—axis, Vv along y—axis, and w normal to meridian
plane)

'

velocity components in polar coordinates (v, along r,
vy, normal to r in meridian plane, and w normal to
meridian plane)

limiting velocity corresponding to adiabatic expansion to
zZero pressure

pressure
density
ratio of specific heats

speed of sound <§2 = 7%)

angle of attack of body

Mach angle (sin Bi= %)

angle between velocity V and x—axis

angle between the axis of the cone tangent to the shock
and the axis of the body

angle at the apex of the cone tangent to the shock

tangents to the characteristic surfaces in the meridian
plane 6 = Constant

velocity component normal to the shock surface

velocity component along the generatrix of the cone
tangent to the shock

velocity component tangent to the cross section of the
cone tangent to the shock

angle between the tangent to the shock and the ‘axis of
the body

entropy variation for unit mass
normal to the streamline in the plane 6 = Constant

normal to the surface of the shock




B, LK, Z
A

Q

D1,D2
A1 ,A0,P,Po,T

R

Subscripts:

(0]

il
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coefficients defined by equations (24)
coefficient defined by equation (41)
coefficlent defined by equation (45)

coefficients defined by equations (55)
coefficients defined by equations (60)

radius of the hodograph diagram

free—stream flow quantities

flow quantities for the condition of zero angle of
attack

flow quantities related to the effect of angle of
attack as defined .in equations (5), (6), and (8)

The prime (') represents quantities in front of the shock and the
double prime (") represents quantities behind the shock.

EQUATTION OF MOTION FOR FLOW AROUND A BODY OF

Consider a cylindrical coordinate system in which the x—axis is

REVOLUTION AT A SMALL ANGLE OF ATTACK

coincident with the axis of the body of revolution, the y—axis is normal
to the x—axis in any meridian plane, and the position of every meridian

plane is defined by the angle

9 measured with respect to the meridian

plane that contains the direction of the undisturbed velocity (fig. 1).

FEuler's equations of motion for steady flow in cylindrical coordi-—

nates are:

1w,
s e SR e

Liop o ov - At o
p oy . OF L g oy it y 08 - y

V4 —— W+
¥y 67" ox oy y o8 v

(1a)

(1p)

(1c)
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The continuity equation in cylindrical coordinates can be expressed
in the form

o(pu) , olevy) , 3(wp) _
ox vy Oy vy 09

(2)

whereas the law of conservation of energy can be written in the form

2 (%8p _ P B_V ow
y—1 \p ox p2 a%) Gl (3a)
_Lléﬁ L > _+v_+w@ .
Ly 4 M T) e I W B i
y—1\pyd8 p°y ¥ 28, y 59 y 08 y 08 (3¢)
If the density is eliminated from.equation (2) by means of
equations (1) and (3) and the quantity a is introduced defined by
2 il
the following equation can be obtained:
du <; iR u2>_+ ov ol vé) 9 - we 5 z & du . ov |
X a2 oy a2, a2 _Z ay x,
5 ow A AR oW OV Bw AL
a2 \ox y o8 a2 \y e dy, ()

In this analysis only small angles of attack will be considered,
and, therefore, only the first—order effect of the angle of attack will
be determined; whereas the quantities of the same or higher order than
the square of the angle of attack will be neglected. In this approxi-
mation the velocity components of the flow around the body can be
expressed in the following form (references 1 to 4):

u] + aup cos 9 (5a)

]
I

= vy + avéicos ) (5p)

<
|
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W = awp sin 9 (5¢)

where u, v, and w are functions of the three coordinates X, y, and 9;
whereas uy, Vi, W, Vo, and wpo are functions only of the coordinates x
and y of any meridian plane. The quantity a is the angle of attack

of the body, the quantities with subscript 1 are the quantities

existing at the position (x,y) for the body considered at zero angle of
attack at the same Mach number, and the quantities with subscript 2 are
functions that take into account the effect of angle of attack.

It will be shown in the following considerations that the form
assumed in equations (5) for the velocity components permits the boundary
conditions to be satisfied in the simplifications assumed. From
equations (5), for small angles of attack,

P = p; + app cos O (6a)

p=p] + app cos @ (6b)

whereas equation (4) becomes

RS SRR T S LI

Equation (7) is similar in form to the corresponding equation for
the case of the body at zero angle of attack and differs only in the
term "‘EF‘ In order to analyze the differences between this expression

and the expression for the axial symmetrical case and in order to obtain
another relation that defines the quantity w, the relation between
rotation of the flow and entropy gradient will now be introduced.

For perfect flow the entropy variation at any point can be expressed
in the form

For small angles of attack, therefore, by the use of equations (6),

=1 AS V=l AS
1L
e R = e R /l + a —2 cos 9 — ya gg cos 9)
i
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or

AS = ASl + o ASp cos 9

and

where AS; and ASp are functions only of x

(8a)

(8b)

and y.

Between rotation of flow and entropy the following relation exists:

sl 2
curl V X V = 2 grad S
R

or for small angles of attack

a_s£=ua_v_a_u>
dy 7R ox Oy

B of _ ofow L@ Nooowy al
y 09 7R

dy y o8 y y o9

_

(92)
(9p)
dx (9¢c)

If n is the normal, in the meridian plane @ = Constant, to the local

tangent to the streamline, then

(10)
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whereas from equation (9c), when equations (5) and (8) are used, it
follows that

£A£a=v_a+za>+1wg+ up | Owp
oy y y y ox

YRy (ll)
or
dwp dwp YWD + VVO + uup &2
v + u = — - AS
oy ox y 7R 2 )

Equation (7) can be written in the following forms

bﬂ(l_ﬁ)+ﬂ<l_ﬁ>+z_2_uza_v+u_v_§+ - S
x 8/ dy 82/ y a2d VyRom Y 00

Equation (13) together with equation (12) defines the law of motion of
the flow around the body at small angles of attack. This equation will
be used as a basis for the calculation of the flow field by the method
of characteristics to be treated in a later section.

CONDITIONS AT THE SHOCK FRONT

Equations (5) and (6) represent a stream that wets a body of revo—
lution at a small angle of attack. In order to satisfy the boundary
conditions at the surface of the body, the functions wup, vp, and wp
must be properly selected. Equations (5) and (6) must, however, satisfy
the boundary conditons at the shock surface also in order to be a
solution of the problem. It is necessary, therefore, to show that a
shock surface can exist across which the undisturbed stream inclined
at a with respect to the axis of the body is transformed into a flow
represented by equations (5) and (6).

In order to show that the shock boundary conditions can be satis—
fied, the following procedure will be employed. A shock surface distorted
in a manner to be described is assumed. Then, the free—stream velocity
ahead of the shock will be resolved into three components: vy normal to
the shock, v tangent to the shock in the plane 6 = Constant, and w
perpendicular to the plane 6 = Constant. Similarly, the flow behind
the shock will be resolved into three components. In addition, each
component of the flow behind the shock will be divided into two terms:
one term for zero angle of attack and one term for the difference due
to the angle of attack (for example, u = uj + aup cos 9). Then,
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the conditions of equilibrium at the shock will be imposed, and it will
be shown that the terms wup, vp, and wo at the shock are independent

of 8 when the angle of attack is small as initially assumed; hence,

the distorted shock is consistent with the field of flow behind it. Such
a shock surface can be obtained by deforming the shock surface produced
by the body when the angle of attack a is zero in the following way

(rig, 2):

When a = 0, the shock surface is a surface of revolution in axis
with the body; therefore, if OP,0P' is the curve interseetion of the
shock with the meridian plane 6 = O, then for a = 0, the tangent AQ
at any point @ of the curve OP is the generatrix of a circular cone
having the vertex at a point A of the axis and tangent along the
circle QQ' to the shock surface. The shock surface, therefore, can be
considered as a surface envelope of circular cones having the axis
coincident with the axis of the body but having variable cone angle and
variable position of the apex A along the axis AB of the body. TFor
the case of a # 0 the shock surface is not a surface of revolution but
can still be considered, for small angles of attack, as the envelope of
the same circular cones considered for the case o = 0. These cones
have the same apexes and the same cone angles as the cases for a =0
but do not have the axis of symmetry AB coincident with the axis of
the body AB although they are rotated in the plane 6 = 0 with respect
to the body axis. The angle 17 through which each axis of the cones
must rotate in the plane 6 = 0 with respect to the axis of the body,
is not constant but varies for each cone considered. For example, the
cone AQQ* tangent to the shock surface for o = 0, when « # 0, must
be rotated by an angle 1 to the position AQlQl'; the axis ABq
remains in the plane 6 = O.

The shock surface so generated is consistent with the flow repre—
sented by equations (5) and (6), and this can be shown in the following

way:
Consider a point P of the shock produced by the body at an angle

of attack, and consider the cone tangent to the shock at the point P

(fig. 3). Call ¢ the semiangle of the cone with respect to its axis

of symmetry. The axis of this cone is inclined at an angle 1n with
respect to the axis of the body and lies in the plane 6 = 0.

The uniform velocity V, ahead of the shock is decomposed in the
three components: vN' in the direction PB normal to the shock, vT'

in the direction AP along the generatrix of the cone, and w' in the
direction normal to the plane APB. These components are, at small angles

of attack,

VNl - VO gin g — VO(CL - T])COS o cos @ (ll"a')
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]

vp' =V, cos g + Vo(a — g)sin o cos @ (141v)

w? —~V(a — n)sin o (1k4c)

Strictly, in equations (14) ¥ must be written in place of 8;
but, for small angles of attack in equations (14), the difference
between  and 6 can be neglected. Indeed,

¥ =% + ot

where ® 1s of the order of a, and @' differs from 6 by a quantity
of the order of a.

The velocity components behind the shock are (fig. 3)

vy =usin g —v cos o + n cos 9(v sin ¢ + u cos g) (15a)
Vvp" =ucos g+ v ein g + n cos 9(v cos ¢ — u sin o) (15b)
w' =w+ n(u—-vcot o) sin @ (15¢)

where u, v, and w are the velocity components behind the shock in
cylindrical coordinates in axis with the body at the point P considered.

The velocity components wu, v, and w at the point P can be
expressed in the form given by equations (5), in which the components uy
and V) are the quantities obtained at the point P for the condition
of a =0 and are direct functions only of x and y. The point P,
however, is a point of the shock, and its coordinates x and y change
when the coordinate 6 changes; therefore, the velocity components uj
and vy at P also change with 63;. In order to separate the part of
the components wu, Vv, and w dependent on 9 from the part independent
of 6, the velocity components uj; and vi; at P will now be expressed
as a function of the flow properties at a point P; near P, having a
constant value of x and y for every value of 8.

Now, it has been assumed that the angle of the cone o tangent to
the shock at the point P 1is equal to the angle of the cone tangent to
the shock for the condition of zero angle of attack at the point Pj
(fig. 4). The point P; 1is obtained on the shock by rotating the
cone APQ tangent to the shock for the condition a = O through an
angle 1n around the axis AN normal to the plane 6 = 0 at the apex A
of the cone. Because for the condition of zero angle of attack the
velocity components u)] and vl are independent of the coordinate @,
the velocity components wu; and vy at P(xp,yp) (fig. 4) are equal
to the velocity components at Pg(xP,yP), in the plane APlC. Therefore,

If AN 18 the distance PoPj,

A ouy
ulp = ulPl + <£§%>Pl AN (16a)
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'avl
Vl = Vl 4+ | —
P Py oN/ p,

where (fig. 4)

S
Py

COoS o

AN = cos 9

(16b)

(17)

Substituting equations (5), (16), and (17) in equations (15) results

in
T s
vy" = (u; sin o — vy cos c)Pl
+ a cos 8(up sin g — vp cos c)Pl

+ n cos 8(u; cos ¢ + vy sin o)p

Ak
*p1" : ovy
T cos 6 E;— Ehua hfl o N cos o) py
155 :
vp" = (up cos o + vy sin G)Pl

+ a cos 9(u2 cos g + V, sin U)P
il

—n cos 9(uy sin g — vy cos o)Pl

g Y
P u ov
+ L cos g =< cos o + —= pin o P
ON ON 2L

n

w' o= awgPl sin 6 + n(uy — v1 cot G)Pl sin 6

(18a)

(18b)

(18¢)
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For the condition of zero angle of attack at Py

u; s8in o — vy cos ¢ (19a)

u; cos 0 + vy sin ¢ (19b)

and for the condition of the equilibrium at the shock at zero angle of

attack

VO CcoS o

le" Vo 8in ¢ = 2ol

At the point P for the case

Vi TV ")
( AR

T (20a)
2 n
o <%z vy ) (20b)
of a small angle of attack,
5 Yl <% Bk "2> 2la
|
|
= t
Voo (21b)
= wt (21C)
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If equations (19) are used, equations (18a) and (18b) can be
written in the form

(VN">P = (le">Pl + a cos 9<vN2">Pl + n cos 9<le"> Py

Xp. M N,
+ 1 cos 9<Bv L
cos @ oN Py

(v")p = <le")Pl e 9<VT2")P1 bk

Therefore, from equations (14), (20), and (21),

xP Tl a‘VN "
Sl s ofvy." + V., ein olavg." + nvm." + —= ——l—>
(@ — n)Vy co 0( N1 >Pl o °< N2 Lk 0 gin ¢ ON Py

.o Blr=1) Vozcos o 8in g{a — 1) (22a)
vy + 1

Xp. 1 < Ble">
& : " " b " A 22b
((1, n)VO gsin o (VT2 )Pl a T](VNl )Pl o SN Pl ( )

or

v, " VN " xP aVT "
T2> =< _l>sinc+ﬂ<—l—> el il . 81 (23a)
v, P, a R Py a sin g V, N Pl
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" T "
- AP CL T n i sk \ B8R @ e T el !
o
Vo P, tan ¢ i ol a Q Vo P,

X vy "
n L T N1>
e cline iy 1l L
i R Vo \ ON /P (230)

) e B SUl v cot o n
(RS e e N @50

In equations (23) the coordinate 6 does not appear; therefore,
for the shock considered, the functions wup, vp, and Wpo are independent
of @0, and equations (5) represent a flow condition in agreement with the
conditions at the shock.

The ratio n/a which appears in equations (23) is independent
of a; therefore, for a given point P, n/a remaing constant in all
the range of angle of attack in which the simplifications assumed are valid.

(Indeed, up, Vo, and wo are also independent of the angle of attack
(equations (6)). The values of u,, V,, Wy, and n/a must therefore be
determined only for one value of the angle of attack.

METHOD OF CHARACTERISTICS FOR FLOW AROUND A BODY OF

REVOLUTION AT A SMALL ANGLE OF ATTACK

In this section the method of characteristics is applied to
equation (13) to establish equations which will permit the flow field
behind the shock to be calculated by a point-by—point process. If the
flow i1s anywhere supersonic, equations (12) and (13) permit the determi—
nation of the flow around a body of revolution at a small angle of
attack by using the method of characteristics. Equation (13) can be
written in the following forms

du ov ov -
H = + L o + 2K o +2Z =0
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- where
&
u2
T, [t el
& e
v2
T =220
a2
b (24)
D TR el -
al
Z:Hig.s_.'. aw +I
VYyRon yoo 3y

If ¢ 1s the angle between the velocity V and the x—axis
and B 1s the Mach angle,

T
tan @ =
u
sinB:%
or for small angles of attack
tan @ = i
u
and
a
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The tangent to the line intersection of a characteristic surface
with the meridian plane 0 = Constant is

¥ e J
Ag = t =82 - B
a an(e + B) =S K
\ ’ (25)
| Xb=tan(@—B)=§+%VK2—HL

where Ay 1s the tangent to a line corresponding to the characteristic
surface of the first family and ) 1is the tangent to a line corres—
ponding to the characteristic surface of the second family. The

terms A, and )y are solutions of the equations (reference 5)

Because u, v, V, and a can be considered to be given by an equation
of the type of equations (5), ¢ and B can also be written in the .
form

|
|
HA® —2K)\ + L. = 0 (26)

Q =@ + app cos 6

B =PBy +app cos 8

The characteristic surfaces are not, therefore, surfaces of revolution
but can be obtained, as was true for the case of the shock, as an enve—

| lope of circular cones with their apexes at the axis of the body and

| thelr axis of symmetry in the plane 9 = 0 and inclined with the axis of
the body. '

The determination of the u and v components of the velocity in
any point of the flow can be obtained by equation (13) by performing a
transformation in order to obtain a law of variation along the character—
istic lines (reference 5). Indeed, for every point of any meridian
plane (for example, of the meridian plane 8 = 0, or 9 = I[) two charac—
teristic lines can be obtained as the intersectio® of two characteristic 3
surfaces with the meridian plane. Along these lines the variation of
the u and v velocity components is determined by the equations of
characteristics that can be derived from equation (13). Assume that in
two points Py and Pp (fig. 5) of the meridian plane 6 = Constant
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<for example, 8 =0, or 9 = X) the velocity components are known.
From equations (25) the tangents to the characteristic surfaces in this
meridian plane can be drawn and the velocity components u and v at
the point p3, intersection of the two tangents, can be obtained in the
first approximation.

The equations of characteristics can be obtained by analyzing
equation (13) along the characteristic lines given by equation (25) in

the following way: If du and dv are the variations along the
characteristic lines,

FT = g_x o (ka,kb) g

or (see equation (10))

du _ ou ov a® 3
=l (ras\p) e (rasp) JRV on
dv _ ov ov
a = a—x 2 (Xa,lb) g:; (27&)
then
I SR - N
bl G ol e (27b)

If equatioms (27a) and (27b) are substituted in equation (13), and using
equation (26), along the characteristic line of the first family defined

by

%% = g = tan(p + @) (28a)

there results

du dv _ a2 ds /K v ow \ 1
au OF L ashe SUDG/AIL . Mo W =30 28b )
+ Ap <H ka>-+< ¥ 56) - ( )
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and along the characteristic line of the second family defined by

d,
1= = Mp = tan(e - B) (28c)

there results

du dv. a2 ds (K v ow \1
Etram R @m\E M *\F*rt7oe/5°0° (284)

Equations (28b) and (284) contain the term

5° but at small angles of
attack J

=-—5-cos 0 =¥cot g
&

oW
y 09
of the entropy is also known at the points P, and Pp and, therefore,
the value of %& can be determined (reference 5)

and, therefore, is known at the points P; and Po. The value

ASp, — ASp,

;s (29)
i sin B '

sin B
(XP3 Pl)[cos(B + Q) Py (XP3 —XPQ) cos(lcpn— B) Po

From equations (28) and (29) the values of u and v can be determined
in the first approximation for the point P3. In order to determine the

value of w at P3, the following procedure can be used:

If s 1is the proJjection of the streamline in the meridian plane
considered (fig. 5) and P3 1s a point near P; and Pp,

d ow ow
7%? = 7§§'Sin P + EE% cos @
owp owp u

Il
I

+
|
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or from equation (12)

Owp _  VWp + VVp + uwp 81n2pV ASo

os yv YRy (30)

Now (fig. 5)

a2 cos B
Vo =Wo_ +(— s b
S ey (*p3 7771 | Sos(s + 9 P, )
3 d.w) b cos B
W seal ok [ SER x x S, ] Y
= ol <ds Py ( 3 PQ) [cos(q) - B) :LZ (31b)

and

(‘1"2> i " (32)
favim 2 sin B i sin B
(xp3 x1"3.) [ cos(p + B) ]Pl + <1p3 x1"2> [ cos(p — B) :L,z

Therefore,
aw2>
g5 e Lk g —8in B
w2p3 Yas on /g <IP3 xPl)[COB(Q + B)]Pl (33)

The values of u, v, w, and AS are known at the points Py
and Pp; therefore, the values of up, Vo, Wp, and ASo, at the same

points can be calculated from equations (5) and (8). Indeed, wuy, Vi,
and AS; at those points are known from the determination of the flow

for a = 0; therefore, from equations (30) to (33) the value of wp
at P3 can be determined.

After the velocity components u, v, and w at Pz have been
determined in the first approximation, a second approximation can be
determined by assuming the average values between the corresponding
values at the points Pp and P3 or Py and P3 for all the coeffil—

cients., After the velocity components at a point P3 have been
obtained, the velocity components at any other polnt having the same x
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and y coordinates as Pz but a different coordinate 8 can be
calculated from equations™ (5).

For practical calculations, equations (28) can be transformed in
the following form:

Ay = tan(B + o) (34a)

$ _au ven p-f(2ime., OV tans_sih25§ T
v ¥ yV 30 yR dn | cos(p + B)
(34b)

A\p = tan(e — B) (3ke)

av dp tan B — [(éin Q . ow )'tan B+ sin?p gg] sin B PR

v y vV o8 YR dn| cos(p — B)
(34d)
1 dwp 1V wo 8in2B ASp
S em—— DD e eme e o o— si — —
VvV ds SERa Vy G 7R Yy (3ke)
and
P =91 + app cos 9 (35)
where
R ) e
Po = il cos @7 7 sin @p (36)
and
V =V, + aVp cos 6 (37)
where
Vo = up cos @ + vp sin Q7 (38)

At the surface of the body the calculations are similar to the case
of zero angle of attack because the entropy at the surface of the body
is known in every meridian plane and the value of 6 is given.

Equation (3l4e) gives the variation of w2 along the body; therefore,
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the value of wp can be obtained directly from another point on the
body in the same meridian plane.

At the surface of the shock the system of calculations is similar
to the system for zero angle of attack. In figure 6 the point Py is
at the intersection of the tangents to the first characteristic surface
at P; and to the shock at Pp 1in the meridian plane 6 = Constant.
The equations of the shock and equation (34b) must be verified at P3,
which is assumed as a point of the shock in the first approximation.

In the plane 6 = 0, w 1is zero and the values of V, AS, and o
behind the shock are functions only of the value of €; and for any
value of §, the values of V, AS, and ¢ can be obtained from the
equations of the shock

cos(p — a) _ 1 V/VZ (39a)

V
cos(Q —@) Vo, Vo/V,

2
i Slgiee 1 ¥ - 1]ltan(Q — a) (39p)
tan(p — a) 2 MPsin?(Q —a) -1

- pe—" - S M. <csi o
NS g 08¢ 7(7 " l) o~ 8in (2 —a)

P (8.8 =2k y =117
2y ] [Mo2ein2(9— i ] (39¢)
and
2
Vo 7= 1M,

If the plane @8 = g is considered, the sign of « in equations (39)

must be reversed.

From equations (39) the values of V and AS can be determined
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d AS
do
evaluated. Now, if mPl is the direction of the velocity at Py, the

as a function of @; then %% and as a function of @ can be

velocity at P3 will have the direction
= +
Pp, = Op, + 40

Therefore, the velocity at P3 must correspond to a deviation across
the shock of @PB — a and can be expressed as

av
Vp V. + (—) A0
37 % \do op,
where V, is the velocity behind the shock corresponding to the

ke

direction Pp. - In a similar way,
s

Therefore, equation (34b) at the point P; becomes

4
_qi’l_lJrVL(a—V) 80 — tan Bp. O
VPl Pl aq)q)Pl

_ |fein @ , wpa cos e) sin B tan B
Vi

422

» 4 AS sin BPl 3 0

i AS@P ASPl +< i ) Pa%o) —_;E;—— 0 (40)
1l @Pl
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In equation (40), Ap is the only unknown and, therefore, can be
determined. From the value of @ - the value of S)P3 and the value

of VP3 can be determined; and a second approximation for the position

of P3 and its value of the velocity can be calculated if the corre—

sponding average values between P, and Pl are assumed for ¢, B, and
all the coefficients of equation (EO).

The value of w at P can be obtained from equation(23c) in
which 7 1is given by figure 6 as

n = N sin B

YP3

whéere 71 =0 —og for 8 =0 and n=0-8 for 8 = =. The value

n
2
of o corresponding to the point P, on the shock for a =0 is
given by the relation

B, 7B

g8in o i sin Q

and yPh = f UPM) is the curve that represents the shock for a = 0.

PRACTICAL APPLICATION OF THE CHARACTERISTIC SYSTEM

Graphical Numerical Method

The analytical part of the characteristic system used for
determining the flow field about a body of revolution at an angle of
attack is similar to the system used for a body of revolution at zero
angle of attack (reference 5), but the practical numerical application
is slightly more involved. In equation (3ke) the values of Vp

and AS, must be known in order to determine the value of wp and must
be determined from equations (37), (36), and (8), where the values of V1
and AS] are considered known in the entire flow field and given by the

determination from the case of zero angle of attack. In the practical
case, however, the values of Vy, @1, and AS; have been obtained with
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the characteristic system only in a finite number of points at the inter—
gections of the characteristic net; and the characteristic net for the
case of zero angle of attack is different from the net used for the case
of a body with a small angle of attack. In order, therefore, to obtain
the values of V; and AS] at the intersections of the characteristic

lines for the case with a given angle of attack, a complicated inter—
polation of the values V; and AS] would be necessary if the two

characteristic nets for zero angle of attack and for a given angle of
attack were constructed independently.

In order to reduce the numerical work to a minimum, the two following
methods can be used, the first of which is practical when a graphical
numerical calculation is performed, whereas the second can be more
convenient when automatic computing machines are used.

In both cases the calculations start with the determination of the
flow at an angle of attack around a cone when the body considered is a
pointed—nose body of revolution or with the determination of the shock
at the lip of the body if the body is an open—nose body of revolution.
(The tangent to the shock at the lip can be determined with the two—
dimensional theory.) The flow around a cone at an angle of attack has
been determined and tabulated in reference 3; whereas the flow for zero
angle of attack has been tabulated in reference 6. A different method
for determining the flow around a circular cone at an angle of attack is
given in the appendix. It can be assumed, therefore, that the flow
along the first characteristic line of the first family at the end of

the conical region in the plane 6 = Constant (for example, 0 = g)
is known (fig. T).

For the practical numerical calculations a value of the angle of
attack must be selected. In order to obtain higher precision, it is
convenient to select a relatively high value of the angle of attack
because in this way the differences between V and V; and AS and ASq

are large and, therefore, can be determined with sufficient precision.

Usually, when the determination of the flow field for the case of
zero angle of attack is made with a graphical numerical process, in
order to avoid numerical errors of computations, the value of the
intensity and direction of the velocity are plotted as a function of the
position along the characteristic lines for both families of character—
istic lines. The velocity distribution and the entropy—variation distri-—
bution along the characteristic lines and along the surface of the body
for the case of zero angle of attack can therefore be considered known.
If the distribution is not given, the values of V; and AS; must be

determined as a function of x along each characteristic line of a given
family (for example, of the second family) along the body.

Then the construction of the characteristic net for the selected
angle of attack must start by drawing the first characteristic
line POP2P5 over the design of the characteristic net for zero angle

of attack (fig. 7).
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From equation (34c), (34d),and (34e) the flow at Py can be
determined. From P, and P, the point P3 can be obtained in the
first approximation as the intersection of the tangents at Pp, and Py
to the characteristic lines. By using equations (34b), (34d), and (29),
V, 9, and AS can be obtalned in P3 as for the case of zero angle of
attack (reference 5). From the variations &V 4o ong 445 along the

. dx’ d.x’ d.x.

line P1P3 the values of V, ¢, and AS at the point P), can be

obtained, where ©P) 1is obtained from the intersection of the character—
istic line P,P3; with a characteristic line of the second family in

the net for zero angle of attack. At the point Py, V,, ASq, and P
are known; and, therefore, @p, Vp, ASp, and wp can be obtained. From

the values obtained from the first approximation a second approximation
can be obtained. From P) and Ps the point Pg can be determined
in a similar way, and the flow at P7 can be calculated. Proceeding in

a similar way, all the flow field can be analyzed.

Numerical Method

The equation of motion (13) can be transformed by means of
equations (6) and (8) in a system of equations that permits a numerical
determination of the quantities Vo, ¢o, and ASp,. This system is
numerically more involved; however, the characteristic net determined
for zero angle of attack is used. For a small angle of attack,

o LAMRP % l...u(ulug + V1vp)a cos @
Y a12 a12
where
y —1 _7"1 _7_1Yg=
WUs + VqVn) = ViV = A
a12 (uyup 172 a12 1'2 81n2p 3 (41)
Therefore

= —15 (1 + Ax cos 8)

p
&2 8
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Substituting equations (5) in equations (7) results in the following
expression if higher—order terms are neglected:

93.1_-1_1_11_2 +ﬁ l_v12 _ulvl aul_'.avl +E
ox a2 oy a2 a1 \ oy ox y

> o) 2 2
=_acosev_a+2_aul<u2ul+ulA>+Bu2<l_ul>

y y ox a12 ox a12
2 2
3 Bvl 2V2Vl + v°A f 6v2 s vy
Sy a;2 oy 8°

CyTA v, + <8ul 5 8Vl> oy <au2 . Bv2> (42)
ale oy ox 312 oy ox

Because the left—hand side of equation (42) must be zero for the
conditions at zero angle of attack,

2 2
.au_Ql_Bl_e_ +% 1_% +_V_2+W_2_ul\271 a112.§.a‘r2>.4.Q‘=0
ox ay oy a) y y a) oy ox

(43)
where
Q =— l_(éule £ avlé) 2u2 x ulé I av12 ] aul2 2vp + V1A
2.\ ox ox 8.12 2\ oy dy a12
L a“:L> Wy = Wo¥y i)
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or, from equations (10) and (36),

BVl 2u, + u)A _v, BVl 2v, + v A i PV BSl
2 2

R = W
ox a Jy ay 7R ong

(45)

The value of all the coefficients at the points P; and Ppr in

equation (43) can be considered known because %—rl and %Yl can be

x y
considered known from the calculations for the case of zero angle of
attack. Therefore, equation (43) can be considered an equation in which

the characteristic lines are equal to the characteristic lines for zero
g.ngleaof agtack becagse the coefficients of the partial derivatives
v, v
u2, u2, 2, and —2 are the same in both cases. Thus,
¢x oy ox oy
&) =y, = tan(p1 + B1)
| x) T Ma < P1 1 (46a)
(5) =gy = tanley ~ £1) (460)

Equation (43) can be transformed by introducing the entropy
gradient 8_2’ and the equation of motion along each characteristic line
n

can be obtained. From equations (8a) and (10) by means of equations (5)
and (37), the following relation can be obtained:

oS oS
Sl goacoss
s s Vi + Vo COS 6
=—<—i+———gacosa> 1 &
ox ox vV, + Voo cos 6

— 4+ —— Q CcoS 6

g oS, S, ) u; + upa cos 9
oy oy V1 + Voa cos 6
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or, for small angles of attack,

o8 881 . 082 0S1
e 9 +|— —= Vo
dn idny 7 on] ik ox (ve i
ds
% a1 (upVy — upVy) o cos 0 (47)
N V12

From equations (36) and (38)

up = Vp cos @7 — P2Vy 8in @) (48a)
and
¥y =V 8ln gy
u) = Vy cos @
Therefore,
oS oS o0S; u v
il il. - Ol feil sl Bt
— == (voV7 = vVs) + —= (V7 — 11 Vp) = — WV ¢ — — + — —
T e s ) - e e S
Because the term in parentheses on the right—hand side of this
equation represents the variation of entropy along the streamline,
which is zero, equation (47) becomes
oS oS oS
=2 =Ly Cqcoss (49)
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\
|

Then, from equations (10), (41),and (L49)

(50)

dv, du, a2 3\, <v2 .5 B
- = —-[(—+ A —
ox dy  7RV; ong v, > 7RV, on;

The equations of motion along the characteristic lines defined by
equations (46) can be obtained by means of transformations similar to
those of equations (27) and are

du, + le dvp, + Dg dx =10 (51)
d;
|
|
dup + Ay, dvp + Dy dx = O (53)
d;
- )‘]_b = a% = tan(q)l = Bl) (54)
where
2
g |

- oS
(T . N S _To 7=\
+< : - xl&) o sineﬁl ; N il <y (55a)
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y—1 BSl
sinQBl ony

i

(55Db)
I . |

In equations (51) and (53) the coefficients D; and D, contain the

oV
derivatives ?;l and
X

Y
case with zero angle of attack. Now,
of V,; along the characteristic line

%;l that must

of zero angle of attack is

(dﬂi) _ o
dx ox
Xla.

whereas along the characteristic line

dvy N §z;
—a;-x _ax
1b

be obtained from the analysis of the

for every point P +the variation
of the first family for the case

ov
& kla 'a?l (56a)
of the second family
oV
; TR L O
T Sy (56b)

At every point P given by the intersection of two characteristic

lines Xla and le

av,
and [ —= are known, having been
dxx

the following equations (reference 5):

dx

in the characteristic net, the values <%%%>

& - ), = tan(ey + B)

xla

obtained from the evaluation of

(57a)
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g0 (ﬂ) e (dcpl) _ sin ¢ sin B) tan By 1
¥V A\ dx %k dx cos(py + By) y

dSl i sin3Bl

= 57b
dny 7R cos(@l + B1) ( )
% = 2yp = tan(er — B1) (5Tc)
1 (EY;) + tan B (ggl>._ 1 sin @1 sin By tan By
Vi\ax/y,, i AR Y
= dsl l_ Bin3Bl &
dI'll R COB(CPl - Bl) (57(1)
Therefore, the values
Bvl 2 Al (dvl) % Mg (dvl) (58a)
0x Ay — My \OX/y Ay~ Mg dx xlb
and
L TR <1V.;L> 3 (d_VL)
O 7 Mla N 8x /\14 (58b)

can be calculated directly for every point of intersection of the charac—
teristic line (equations (57a) and (57c)

After substituting the expressions of equations (48) and (58) in
equations (51) and (53) after some simplifications and trigonometric
transformations, the following equations can be obtained:

b
= 2L = tan(p; + By) (592)
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e APy i B : ¥
e dp, tan Bl + —;ﬁ—-dx-— T VI sin @ + @, cos P + VI dx

+ — =0 (59b)
sin By cos2Bl cos(Bl EE @l)
Ap = 3L = tan(e - By) (59¢)

av. P V.
L8 ¢ Ay, ten B, - oo e ) sin @, + @, cos @, + 2 ax
2 1 1t % LS

(i
& - = (594)
sin B, cos<p; cos(p; — By)
where
_ tan Bj sin B3
- cos(py + By) (60a)
tan By sin By 6
= Ob
- cos(@; — By) s
Py = 882 cos B, &8ln B .§é 1+ =4 cos B, 8in B ] BSl
17 %, 1 170y, sin231> 1 Y. Ve an, (60c)
b i e,
P, = §§g cos B, sin B, — 21 ' cos By sin B, + @, §§l (604)
ony N s1n2p) 1
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T = < ) e cos(ﬁl + @) zi<% + EZ;E;_E— sin By + @p cos Bﬁ

av cos(p1 — B1) [, ¥ el
N4 2 g it
<dx>*1b vy |_vl< R e Bl:l i

: ds
The coefficients A, and A, and the value of —=% have been
g

determined for the flow at zero angle of attack and

So, —Sp
S, P> Py

L sin By - A sin By
( P3 P2> cos(py — B1) 4 < P3 P%) cos(P; + By)
2

Bs . B
_ 48 °pp °py
- dmy slP - slPJL

(61)

The practical use of equations (59) is identical to the use of the
corresponding equations (57) for the case of zero angle of attack.
(See reference L.)

CONCLUDING REMARKS

The method of characteristics has been applied to bodies of
revolution at a small angle of attack. Only the first-order effects of
the angle of attack have been considered. The system developed takes
into account the effects of the entropy variations on the flow phenomena
and determines a flow that exactly satisfies the boundary conditions
within the limits of the simplifications assumed.

The application of the method to practical problems has been
discussed and two systems are given. The first method is numerical and
analytical and requires less numerical computation but requires the
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construction of another characteristic net, whereas the second method is
only numerical and uses the characteristic net and some of the numerical
computations made for the calculations for zero angle of attack.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
langley Air Force Base, Va., November 22, 1948
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APPENDIX

DETERMINATION OF FLOW PROPERTIES AROUND A CIRCULAR CONE

AT A SMALL ANGLE OF ATTACK

Assume a polar coordinate system r,y,8. Call vy, the velocity

in radial direction, v, the velocity in normal direction to r in
the meridian plane O = Constant, and w the component normal to the
meridian plane (fig. 8); that is,

Vi =

N =

If the phenomenon is conical,

ov
or

vy
or

e = 0

Therefore, Euler's equations are

Vo S ys A oy vn2 + Wl
o i AL
r oV 1r sinV 09 r

=0 (62a)

Ve . W OFe . L SR Vet = wlcot ¥ _ 0
oV r sin V¥ 00 pr oV r

(62b)

HL;I
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o 8l W iw_ " l. _83 VW + VW cot ¥ s (620)
ro¥  reiny 08 rp sin ¥ o9 r

The continuity equation is

NACA TN No. 1809

vy
2pvrsinﬂ,!+v s:m\fép-+p51n\ll—+Vpcos\l!+w§9-+§E=o

oV oV 08 08 (63)
and the energy equation is
y ia__P_@B)__( G AT i) 6
7—1<pae 0 8 o gl g g i
Wit B T AR _< vy, i)
7-—l<p e B\lr> v, 5W+vn 5W+Wa‘l’ (64Dp)

Combining equations (62) to (64) results in

2wV  Ovp Wn/ cvn

a2 \8111 ¥ o8

a2 sin V¥ o9

For small angles of attack the
in the form (references 1 and 3)

e 1 Y
" l"l

v =vnl+

W = awp 8in 6 J

W2> ov ( v 2> S We
e Y oot ke s f s PR LT 5 ——>
vn< + "2 cot ¥ + = " + o 89( 7

ow ¥
ﬁ—wcot \{1)—0 (65)

velocity components can be expressed
av cos 9
e

cr.vn2 cog8 ¢ (66)
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when the second and higher order terms of the angle of attack have been
neglected. Equation (65) at small angles of attack becomes

V- 2> BV V. 2 aw
vol2 Bty voent ¥ 0] =B )4 =0 6
r( a2 = oV a2 sin ¥ 080 {0
At small angles of attack,

P=pl+CLp2COSG

©
|

= pp + app coOS 8

The shock is a circular conical shock having 1ts axis inclined at an
angle n with the axis of the cone. The quantities with subscript 1
are the quantities corresponding to the case of zero angle of attack.
(Indeed, the cone is a particular body of revolution; and, therefore,
the considerations made for the case of bodies of revolution are still
valid.)

From equations (62a), (62b), and (64b), there results at small
angles of attack

=0

Lo B
2K

S
P

g

In the meridian plane 6 = Constant, therefore, the transformation
behind the shock is isentropic for small angles of attack. If a ASp cos 9

is the variation of entropy in a direction normal to the meridian
plane 6 = Constant,

oS

—_— A ASHTCOER0
r sin ¥ 08

Because the shock at small angles of attack has circular cross section,

-1 b
5 LMoo = < 722 = Constant
R 151 Py
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and from equations (62c) and (6k4a)
—231n¢+w2 (vp sin ¥ + vy cos ¥) +

If the variation of entropy is small and the term A82
equation (68) becomes

wy 8in ¥ = —vr2

Equation (67) can be written in the following form:

Fn COLOY —

awp cos 8
sin V¥
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V.. V.

1t AN "nVn,

(68)

can be neglected,

(69)

(70)

By use of equation (A7) and by considering the conditions for zero angle

of attack, equation (70) becomes:

ov. v_ 2
LRy e
T v 8,2
2V Vp, + Vp. cot ¥
= —v_|cot ¥ + 1B B - 1
2 A 2
al al 1 an
k=
2
25
W R R
et o sl ol Ve V' e
ro L - 2 TH[ R gin V¥
a
) 1— é

(R
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Equations (68), (70), and (71) permit the determination of the flow
around the cone at an angle of attack by means of a step—-by—step calcu—
lation when the calculation for a = 0 has been performed. Consider
the hodograph plane uv, and consider the variation of velocity

components v, and v, in a meridian plane @ = Constant (fig. 9).

Assume that for a given value of V¥, and 8, the velocity

components Vp, Vp,-and w are known. Point P, of the hodograph
diagram represents the velocity vector OPg corresponding to the velocity

at every point of the space of coordinate V4 in the plane 64, = Constant;

whereas 0Qg represents the values of (VH>P and QgPg represents the
a

values of OGD Now, the radius of curvature R, of the hodograph

Py’
diagram is along the line QgP, &and has a value given by (reference 1)

R = (v + éXﬁ)
a ;& aWP

a

and, therefore, can be determined from equation (70). At P the values
of Vrl and vnl are known from the calculation for a = O;

therefore, uvrz and av can be determined from equations (66).
Equation (71) can be used in place of equation (70) in the following way:
The vectors 0Qg and QaPa represent the values of vn2 and vr2

at Pa; the vector OPa in the hodograph dlagram gives the values

of Vé; and ,therefore,

can be obtained from equation (71).

Now at any point P, the radius Ry, given from equation (70), 6r
the radius Rp , given from equation (71), is known; therefore, from the
a

quantities at P, the quantities at Py of coordinate V¥, = LR
can be obtained by constructing a circle of center Cg <§here CaPa = Ry
or Rp > through the point P, until the point Py along the line C,

a
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which is a straight line from Cqo is inclined by Vg + AV with the

u—axis. Therefore,

(Vn)wﬁaw 2 (vn)w.COS An + (R - vr)w sin An

(vr)v+ AY (vn)w_sin An— (R —-vr)w cos An + Ry

Inasmuch as the values of v, and v, at P, have been obtained,

the values of vrg and vn2 can be determined by differences from the
values for a = O with the use of equations (66). (If equation (71) is
used, the values of vr.2 and vn2 are obtained directly.) With

ow:
equation (68) the value of ?ﬁ? can be calculated at P,, and the value

of wp at P, can be obtained. Indeed, ASy, 18 constant and has been
determined from the conditions at the shock. In a similar way, all the
hodograph diagram can be constructed. If necessary, for every point ik

a second approximation can be determined.

The calculation of all the flow field must start at the shock. For
the calculations it is convenient to choose a coordinate system having
the axis of the conical shock as the axis of polar coordinates. In this
case, the velocity components v,, v,, and w behind the shock can still

be expressed in the form of equation (66). Indeed, from equations (15)
and (19),

n avn]
V. = |V + a cos 9\v + =
g i Po. "o oF
b
=V + av cos 9 (72a)
n
1g nes
V. =| W + a cos @|(v + 3 V.
Ts =1 L S .
= vrl 3 avrz cos @ (72p)
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LM sin G/QQ - L 4 Vn >
\ sin¥ o "1/
= oy sin @ (T2c)
where vns, vrs, and wg are the components referred to the axis of the

conical shock, whereas the components vrb
to the axis of the body. Indeed, n/a is constant.

. vnb, and wy, are referred

The calculations start at the shock. After determining the flow
field for zero angle of attack, the angle of the conical shock Vg is

known and the velocity components Vny and Vrqy with respect to the axis

of the shock for every value of V¥ are also known. In order to determine
the flow for the case of a small angle of attack, the direction of the
undisturbed velocity must be rotated at a small angle o — n Wwith respect
to the axis of the shock (fig. 10). The value assumed for a — 7 fixes
the value of a for which the calculations are performed. (This value

of a 1is not yet known but is obtained as a result of the calculation.)

For the value of a — n chosen, the components vrs and wg behind
the shock can be determined from equation (1Lb) (Vr = vT'> and
8

equation (1lkc) (w' = wg); whereas g tioe be determined from equa—

tion (21a) (vns ="VN"> and vy' 1s given by eguation (lhka). The

value of entropy o ASp, cos 8 can also be determined from the equation
of the shock, for example, from the difference between AS and AS).
When V.. 5 V5 oo wes, and AS, are known behind the shock, all the flow

8 s
field can be obtained by means of equations (68) and (70) or (71). The
T

hodograph diagram can be constructed, for example, in the plane 6 = e

The axis u has been chosen in the direction of the undisturbed
velocity for zero angle of attack that corresponds to the axis of the
shock for a = O. For a the undisturbed velocity has been rotated
at a — n with respect to the u—axis (fig. 10); therefore, the axis of
the shock has not been changed. The velocity OP, behind the shock of
figure 9 must be decomposed (1) in a component P,Qq inclined at *s

corresponding to Vrg if equation (70) is used or to Vro itGi
s

equation (T71) is used and (2) in a component 0zQa corresponding to vnB
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In this way, the values of vrl and vnl
equations (68), (70), and (71) are the values obtained from the calcu—
lations for zero angle of attack at the same value of V
(that is, ¥ =1V, for P,). Because the calculations start at the
shock, the construction of the hodograph diagram must be performed in
the direction of decreasing values of V¥. At the surface of the body
for o = %3 the component v, must be zero; therefore, when the radius

that must be used in

of the hodograph diagram passes at the origin of coordinates u and v,
the corresponding value of V¥ 1s equal to V¥, + n where VYo 1s the
angle of the cone (fig. 10). Because Vo 18 known, the value of q
and, therefore, of a can be determined.

The components v and v, 1in the plane 8 =0 or 6 =

r do not

A

change when, for the axis of reference, the axis of the body is assumed;
but the corresponding value of + 1is increased at 1 (fig. 10). The
value of wp changes; the value of wy, " can be determined from the

value of Wp by means of equation (T2c).

For practical calculations it is convenient to use nondimensional
coefficients obtained by dividing all the velocity components by the
limiting velocity Vl' The expression a/Vl can be:obtained from
equation (394).

For small values of a, the values of Vrys Yoy V2 and n/a are

independent of a; and, therefore, the flow for every other value of a
can be obtained from this determination. The calculations can be
graphical or analytical.
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Figure 5.— The analysis of the flow with the characteristics system.
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Characteristic net for
a small angle of attack

Characteristic net
for zero angle of attack

Figure 7.— Scheme of the characteristic net.
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