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ix	 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2652 

APPLICATION OF A CHANNEL DESIGN METHOD TO HIGH-SOLIDITY 

CASCADES AND TESTS OF AN IMIULSE CASCADE WITH 

900 OF TURNING 

By John D. Stanitz and Leonard J. Sheldrake

SUVIMARY 

A technique is developed for the application of a channel design 
method to the design of high-solidity cascades with prescribed velocity 
distributions as a function of arc length along the blade-element pro-
file. The technique applies to both incompressible and subsonic 
linearized compressible (ratio of specific heats equal to -1.0), non-
viscous, irrotational, fluid motion. An impulse cascade with 900 turn-
ing was designed for incompressible flow and was tested at the design 
angle of attack over a range of downstream Mach number from 0.2 to 
choke flow. To achieve good efficiency, the cascade was designed for 
prescribed velocities with maximum allowable blade loading according to 
limitations imposed by considerations of boundary-layer separation. 

INTRODUCTION 

In order to obtain large pressure ratios per stage in axial-flow 
compressors and turbines, cascades of blade elements with large fluid-
turning angles are required. To achieve these large turning angles 
without serious shock losses due to supersonic peak velocities and without 
boundary-layer separation due to excessive blade loading, the cascades 
must be of high solidity. However, because friction losses increase 
with the ratio of wetted surface to flow area, it is desirable that the 
blades be as highly loaded as possible so that the solidity be no 
greater than necessary. Thus it is desirable to have design methods 
for high-solidity cascades with maximum prescribed velocities that do 
not result in shock losses and with maximum prescribed deceleration 
rates that do not result in boundary-layer separation. Such blade 
elements should have optimum efficiency for the prescribed turning angle 
of the fluid. 
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Two types of method are used for the design of blade elements in 
cascade: (1) airfoil methods, and (2) channel flow methods. Airfoil 
methods have been developed for incompressible and linearized compress-
ible flow (references 1 to 5, for example). These methods are exact 
for irrotational, nonviscous fluid motion but generally become difficult 
to apply if the blade-element solidity is large (1.5 or larger). 

For large blade-element solidities, channel-flow methods of design 
are used, in which the channel between blades is designed and the 
"islands" between adjacent channels (fig. 1) constitute the blade 
elements, with the nose and tail of the islands rounded off. Geometric 
methods for channel design based on the combination of several circular 
arcs have been used extensively (reference 6, for example), but these 
methods have no direct control over the velocity distribution along the 
blade-element profile. 

In reference 7 the shape of the mean streamline between blade-element 
profiles and the velocity distribution along this streamline are pre-
scribed together with the blade spacing, and the resulting blade-element 
profile and velocity distribution along it are determined. The method 
involves approximations that are accurate for high-solidity cascades 
but has no direct control over the velocity distribution along the pro-
file surface. 

Design methods for blade elements of high-solidity cascades with 
prescribed velocities along the blade-element profile are given in 
references 8 to 10. All of these methods involve approximations. In 
reference 8 the desired velocity distribution is obtained by trial-and-
error methods. In reference 9 the shape of one channel wall and the 
velocity distribution along it are prescribed so that, as in reference 7, 
the problem is overdeterxnined and therefore approximate. In refer-
ence 10 the manner in which various flow conditions vary across the 
channel of high-solidity cascades is assumed. 

A technique for application of the channel design methods of refer-
ences 11 and 12 to the design of high-solidity cascades with prescribed 
velocity distributions as a function of arc length along the blade-
element profiles is presented. herein. The technique applies to both 
incompressible and subsonic linearized compressible (ratio of specific 
heats equal to -1.0), nonviscous, irrotational, fluid motion and gives 
exact results except for the approximation resulting from rounding off 
the nose and tail of the blade element (which rounding-off, as will be 
discussed later, should be done with care to avoid local peak velocities 
and rapid decelerations). In order to investigate the validity of 
rounding-off the nose and tail and to investigate effects of compressi-
bility and viscosity, a high-solidity, 90 0 impulse cascade was designed 
and tested. To achieve good efficiency, the cascade was designed for 
prescribed velocities with maximum allowable blade loading according 
to limitations imposed by boundary-layer separation (reference 13). The
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cascade was developed for incompressible flow and was tested at the 
design angle of attack over a range of downstream Mach number from 0.2 
to choke-flow conditions. The data were analyzed and correlated by 
methods developed in the report. 

The application of a channel design method to high-solidity cas-
cades reported herein was developed at the NACA Lewis laboratory during 
1951 and is part of a doctoral thesis conducted by the senior author 
with the advice of Professor Ascher H. Shapiro of the Massachusetts 
Institute of Technology.

CASCADE DESIGN METHOD 

A cascade design method based on the channel design methods of 
references 11 and 12 is developed for nonviscous, irrotational, incom-
pressible or linearized compressible fluid motion. 

Theory of Method 

Outline. - Consider the flow of fluid past the high-solidity cas-
cade in figure 2. Any two blade elements and their respective stagna-
tion streamlines upstream and downstream of the cascade constitute a 
flow channel. In the proposed high-solidity cascade design method the 
shape of this channel will be determined, except for regions in the 
vicinity of stagnation points, for prescribed variations in velocity as 
a function of arc length s along the channel walls between points 
corresponding to the nose and tail of the blade elements. The channel 
design methods of references 11 and 12 will be used to solve for the 
shape of this channel between high-solidity blade elements. 

The flow field of the two-dimensional channel between blade ele-
ments is considered to lie in the physical xy-plane where x and y 
are Cartesian coordinates for which the units are so chosen that the 
channel width downstream at infinity is unity. (All symbols are defined 
in appendix A.) 

At each point in the channel between blade elements the velocity 
vector (fig. 3) has a magnitude Q and a direction e where Q is 

the fluid velocity for which the units are so chosen that the channel 
velocity downstream at infinity is unity. For compressible flow, the 
velocity q is related to the velocity ratio Q by 

where q. is the velocity for which the units are so chosen that the 
stagnation speed of sound is unity and where the subscript d refers 
to conditions downstream at infinity.
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Solutions for two-dimensional flow are boundary-value problems. 
That is, the solutions depend on known conditions imposed along the 
boundaries of the problem. In the inverse problem of channel design 
the geometry of the channel walls in the physical plane is unknown. 
This unknown geometry apparently precludes the possibility of solving 
the problem in the physical plane and necessitates the use of some new 
plane. This new plane must be such that the shape of the boundaries 
along which the velocities are prescribed is known. It is also desira-
ble that the coordinate system of the new plane be orthogonal in the 
physical plane. A set of coordinates that satisfies these requirements 
is provided by the velocity potential lines of constant 0 and the 
streamlines of constant V (where 0 and V are defined In refer-
ence 12), which are orthogonal in the xy-plane and for which the geo-
metric boundaries are known constant values of V (equal to 0 
and it/2) in the 'V-plane. The distribution of velocity as a function 
of 0 along these boundaries of constant V is known because, if 

Q = Q(s) 

or

q = q(s) 

is prescribed, the definition of	 (reference 12) gives 

= (s) 

from which

= Q() 

or

q = q() 

The technique of the channel design methods developed in refer-
ences U and 12 is therefore to solve for the physical xy-coordinates 
of the channel walls in the 04r -plane where the prescribed boundary 
conditions for the two-dimensional flow problem are known. 

The channel design methods of references 11 and 12 are applied to 
the design of high-solidity cascades as follows: Along the upstream and 
downstream stagnation streamlines (fig. 2) the velocity will be assumed
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constant and equal to the upstream and downstream velocities, respectively. 
The stagnation points on the blade surface are ignored (which practice 
results in a cusped nose and tail that are rounded off as discussed 
previously) and the velocity at the nose and tail are assumed equal to 
the upstream and downstream velocities, respectively. Along the channel 
wall corresponding to the suction surface of the blade element the 
velocity accelerates from its upstream value at the nose to some maximum 
value after which it decelerates to its downstream value at the tail. 
Along the channel wall corresponding to the pressure surface of the blade 
element the velocity decelerates from its upstream value at the blade 
nose to some minimum value after which it accelerates to the downstream 
value at the tail. 

Because of the velocity difference over that portion of the channel 
walls corresponding to the blade element surfaces, the channel turns the 
fluid an amount LB that 'can be computed by equation (E5) of refer-
ence 12. If a specified value of AO is desired, the prescribed velocity 
distribution must be adjusted, by methods to be considered later, to 
obtain this turning. 

The physical coordinates of the channel are determined in the 
-plane for the prescribed velocity distribution according to the design 

methods of references II and 12. The "islands" between adjacent channels 
(fig. 1) ,in the physical xy-plane constitute the blade-element profiles. 
The cusped nose and tail of these islands are rounded off at the pre-
viously selected positions for the nose and tail of the blade-element 
profiles. 

Nose and tail positions in 07_p1ane. - Because the channel design 
is carried out in the 'I T-plane, it is necessary to determine the posi-
tions of the 'nose and tail on the pressure and suction surfaces of the 
channel walls in the fl-plane. Consider the flow of fluid correspond-
ing to the channel between blades (fig. 2). The change in velocity 
potential ' from the upstream boundary, at which conditions are con-
sidered uniform, to the nose must be equal along both upstream stagna-
tion streamlines so that

C - A = OD - 

from which

DCB(DA	 (i)
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where the subscripts A, B, C, D, and so forth, refer to positions defined 
by the velocity potential lines in figure 2. But, because conditions are 
uniform along the upstream boundary 

B	 A = tan e'

	

U
	 (2) 

where t/2 is the change in Lj( across the channel and where the angle 
0 1 is measured counterclockwise from the positive xt_axis of the 
x t ,y'-coordinate system in which the cascade lies along the y'-axis 
From equations (i) and (2)

D	 C =  tan 8tu
	 (3) 

Equation (3) determines the difference in ' on the two walls of the 
channel at the points in fl-plane corresponding to the nose of the 
cascade blade. Likewise, the difference in V on the two walls of the 
channel at the points in the I'-plane corresponding to the tail of the 
cascade blade is given by

(4) 

Equations (3) and (4) determine the relative positions on the channel 
walls in the ( -plane of points corresponding to the nose and tall of 
the blade profile, respectively. 

Prescribed velocity distribution. - In general the prescribed dis-
tribution of velocity as a function of arc length along the channel walls 
between blade-element profiles can be arbitrary for the proposed blade-
element design method except that the velocity is higher on the suction 
surface than on the pressure surface, the resulting blade-element profile 
must be practical, and the difference in velocity distribution on the 
two walls must satisfy equations (3) and (4). In addition the prescribed 
velocity distribution must result in the prescribed turning angle. This 
last condition can be determined by computing the turning angle from 
equation (E5) of reference 12 and, in general, the original velocity dis-
tribution must be adjusted by trial-and-error methods to achieve the. 
correct (prescribed) turning angle. Along the channel walls upstream 
and downstream of the points (and at the points) corresponding to the 
nose and tail of the blade element profile (fig. 2) the velocity is 
assumed constant and equal to the upstream and downstream velocities, 
respective1y.
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In the remainder of this report it is assumed that the velocity dis-
tribution is prescribed, for convenience, by loge Q (for Incompressible 
flow) as a linear function of 0 along the channel walls in the 

1V_p1ane (a typical example of such a velocity distribution is given in 
fig. 4). The velocity accelerates along the suction surface (1!t = 0) 
from the upstream value Qu at the nose O C to a maximum value 
at which it remains constant until it decelerates to the downstream 
value Q4 at the tail OE. The velocity decelerates along the pressure 
surface ( lit = i/2) from the upstream value Qu at the nose OD to a 
minimum value	 at which it remains constant until it accelerates 
to the downstream value Qa at the tail O F . The accelerating flow 
along the suction surface and the decelerating flow along the pressure 
surface near the blade nose and vice versa near the tail will, in 
general, result in a physically practical blade-element profile. An 
equation for the turning angle 69 that results from this linear dis-
tribution of loge Q and which must satisfy the prescribed turning 
angle is developed next. 

Turning angle L9. - From appendix E of reference 12 the channel 
or cascade turning angle LB is given by (for incompressible flow) 

	

Co

' 	 loge Q\ - ( loge Q) ]
d'	 (5) zo =	 /	

)	 0 t• J_ co	 [\ 

For linear variations in loge Q with 

	

loge Q	 u loge Q =	 = constant 

and for the type of linear velocity distribution given in figure 4, 
equation (5) integrates to give 

AG 1 [(loge Qmax)
	

cc) + ( lose	
) (
	 + ) - 

(lose	 D 
fl\ ( 

+ DD) - (lose	 (	
+	

(6)
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which is the cascade turning angle. For a prescribed value of E,O, 
equation (6) establishes a relation among Qmax, Qmin' QuI Qã' c' 'cc' 
D' DD, 0 E, 0 .EE' F' and 

O
FF . For linearized compressible flow, linear 

distributions of loge V (defined in reference 12) with 0 of the type 
shown in figure 4 could be prescribed in which case the turning angle L 

would be given by equation (6) with Q replaced by V. 

Allowable deceleration on suction surface. - In order to achieve the 
desired turning AG with the minimum number of blades, the difference 

-	 for incompressible flow or (Vm - Vmjn) for linearized 

compressible flow must be large; and the arc length over which 
and Qmin are prescribed should be extensive. However, the magnitude 
of Qmax is limited by shock losses (compressible flow) and cavitation 

(incompressible flow). Also, the arc length over which Qmax is pre-- 
scribed is limited (in percentage of total suction surface length) by 
the allowable rate of deceleration from Qmax to Q4 along the suction 
surface near the blade tail. This limitation will be considered next. 
The deceleration from Qu to Qmin along the pressure surface near the 
blade nose is not so critical because the boundary layer is thin in this 
region. 

The allowable deceleration without boundary-layer separation on the 
suction surface is determined by the ratio Qd/qmax and the blade-element 

Reynolds number based on blade chord (reference 13). This allowable 
deceleration can be expressed as a ratio of arc lengths ?, where ? 
is defined by

- SEE - 
SE_SC 

where the reference point for s is arbitrary. The maximum allowable 
value of 2 for given values of QJQmax and Reynolds number is given 

in reference 13. 

From equations (3) of reference 12 the arc length ( SEE - c) is 
given by

(SEE- SO

=
 PcOCd	 EE 

d -	 (8) 

(7)
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-	 where for the type of velocity distribution in figure 4 

loge Q = loge Q + ( loge Qmax - loge	 (c:50Scc) 

and	 (9) 

loge Q = loge %iax	 (cc^5!EE) 

From equations (8) and (9) 

It	 cc	 c -	 - ccQu) 
- c) =

	

	 maX	 +	 max loge 
Q 

and, likewise,

it	 EE /QdQnax\ 

loge d \dmax 2 

so that equation (7) becomes

( Qd
Qd loge  

-	 +	 - C	

+	
-	 j	 -	 (10) 

EE -5:1	 nax CC 
loge	

Qu	
EE 

QU 

Equation (10) determines the minimum value for OE If the maximum allow-

able rate of deceleration between OEE and OE Is not to be exceeded. 

The values for \ in reference 13 are based on maximum allowable 
safe rates of deceleration which decrease in the direction of flow as 
the boundary-layer thickness increases. Thus the required distribution 
Of loge	 along It is not necessarily linear as assumed in this 
report. However, as will be shown later, the assumed distribution of 
loge Q with 0 has similar characteristics to those required in 
reference 13 and is considered accurate enough fOr engineering purposes.
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Rounding-off nose and tail of blade-element profile. - After the 
prescribed velocity distribution has been selected to meet the conditions 
discussed previously, the channel shape is determined by the numerical 
methods developed in references U and 12. The islands between adjacent 
channels (fig. i) in the physical xy-plane constitute the blade-element 
profiles. Because the stagnation points are not considered in this 
design method the nose and tail of the blade element are cusped. These 
cusps are eliminated by faired curves (circular arcs, for example) that 
are tangent to the channel walls at the previously selected positions 
for the nose and tail of the blade-element profiles. 

Design Procedure 

The various conditions to be satisfied in the application of the 
channel design method to the design of high-solidity cascades of blades 
with prescribed velocity distributions along the blade contours have 
been discussed and the details of the numerical procedure for the channel 
design itself are the same as that outlined in references 11 and 12. A 
brief step-by-step outline of the conditions to be satisfied and the 
numerical procedure follows: 

(1) The cascade, or channel, turning angle Ae and the upstream 
and downstream velocities qu and cid are prescribed. (For incom-
pressible flow the upstream velocity Qu is sufficient because 
equals 1.0.) The cascade stagger angle is fixed by these prescribed con-
ditions and the equation of continuity. The flow may be incompressible 
or linearized compressible. 

(2) The solution for the equivalent channel wall coordinates will 
be carried out in the c lI-plane. The relative positions of points on 
the channel walls in the Y-plane, (D - c) and (F - E) in 
figure 2, corresponding to the nose and tail of the blade profile are 
determined by equations (3) and (4). 

(3) The prescribed velocity along the channel walls upstream of 
OC and OD are equal to the upstream velocity. 

(4) The prescribed velocity along the channel walls downstream of 
OE and OF are equal to the downstream velocity. 

(5) The velocity distribution along the suction surface of the 
blade-element profile, between the points OC and OE (fig. 2) on 
the channel wall in the transformed04r-plane is prescribed as an 
arbitrary function of arc length. Usually a practical blade shape 
results if the prescribed velocity increases from the upstream value 
at the nose (c) and then decreases to the downstream value at the 
tail (E)•
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(6) The prescribed velocity along the pressure surface of the 
blade-element profile, between the points IDD and OF (fig. 2) on the 
channel wall in the transformed tI-plane, is prescribed as an arbitrary 
function of arc length along the blade profile. Usually a practical 
blade shape results if the prescribed velocity decreases from the 
upstream value at the nose (OD) and then increases to the downstream 
value at the tail (F) 

(7) In order to obtain an efficient high-solidity cascade the dif-
ference in prescribed velocities on the channel walls corresponding to 
the suction and pressure surfaces of the blades should be large so that 
the blade spacing is large enough to prevent serious friction losses. 
But the maximum prescribed velocity on the suction surface should not be 
so large that losses result from shock or that serious boundary-layer 
separation losses result from rapid deceleration to the downstream 
velocity at the blade tail	 in fig. 2). 

(8) The prescribed velocity distribution on the channel walls must 
satisfy the prescribed cascade, or channel, turning angle 6D. This 
angle is determined by equation (E5) of reference 12. If the prescribed 
velocity distribution does not satisfy the prescribed turning angle, the 
velocity distribution is adjusted by trial-and-error methods, or for the 
type of linear velocity distributions given in figure 4 the proper 
adjustment in velocity can be determined directly from equation (6). 

(9) After the prescribed velocity distribution that satisfies the 
conditions just outlined has been selected, the channel design is deter-
mined by methods outlined in references 11 and 12. 

(io) The cusped nose and tail of the islands that result between 
adjacent channels in the physical plane (fig. i) are rounded-off by 
faired curves (circular arcs, for example) that are tangent to the 
channel walls at points corresponding to the nose and tail of the blade 
element (OC through OF in fig. 2). Finally, if desired, the dis-

placement thickness of the boundary layer can be estimated by boundary-
layer theory and subtracted from the preceding contours to obtain the 
final blade profile. Thus the high-solidity cascade design is complete. 

Numerical Example 

In general as the percentage reaction decreases and as the blade 
camber (or turning angle) increases the cascade efficiency decreases 
(reference 14, p. 232). The problem selected is therefore to design 
an efficient impulse cascade (zero percent reaction) with large turning 
angle.
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Prescribed conditions. - An impulse cascade with 900 of turning was 
designed for incompressible flow with the following prescribed conditions: 

(i) e' u = it/4	
it 

t	 L8==90° 

(2) 01d = -it/4 J 

(3)Q=Qa=1.0 

Prescribed velocity distribution. - For convenience the velocity 	 c.i 
distribution has been specified by linear variations in loge Q with 0. 

The following conditions were arbitrarily selected: 

(l)=l.5 

(2) 'c = 0 

(3) OCC - 'C	 DD	 DF	 FF 

(4) = it 

The quantities (D - c) and (F - E) are obtained from equa-
tions (3) and (4) and are equal to it/2 and -0/2, respectively. The 
quantity OE (fig. 2) is given by equation (10) with X equal to 0.5, 
and is equal to 3.75 it/2. (The value of 0.5 for X was obtained from 
fig. 5(a) of reference 13 for Q/04	 equal to 0.667 and for a blade 
Reynolds number equal to oD, which Reynolds number gives the minimum, 
and therefore safest, value of ).) The value of Qmin was obtained 
from equation (6) with A9 equal to it/2. 

043LM = 0.66687 

The resulting prescribed distribution of loge Q with '' Is given 
in figure 5(a). The corresponding distribution of Q with arc 
length s along the suction surface can be obtained from the definition 
of (Z) in reference 12 and is given In figure 5(b). The velocity dis-
tribution between Qmax (1.5) and Qã (1.0) is similar in shape to 
that resulting from the maximum allowable safe rates of deceleration in 
reference 13, so that the assumed linear variation in loge Q with 
satisfies approximately the conditions on which the results of refer-
ence 13 are based.
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Cascade design. - The channel shape corresponding to the prescribed 
velocity distribution in figure 5(a) was determined, by the relaxation 
methods used in reference 11 and is plotted in figure 6 together with 
the resulting high-solidity cascade of blades formed by rounding-off 
the cuspea nose and tail of the islands formed between adjacent channels. 
For the experimental investigation a cascade of these blades with a 
chord of 5.5 inches was constructed and the coordinates for this blade 
profile are given in table I. The blade profile was not adjusted to 
provide for the displacement thickness of the boundary layer. The 
characteristics of the resulting cascade are given in figure 7 on the 

LQ

	

	 x'y' -plane in which all linear distances are dimensionless, being 
divided, by the blade chord c. The reciprocal st/c of the cascade 
solidity '(where s' is the blade spacing) is 0.6130. The maximum' blade 
thickness is approximately 18 percent of the chord, the trailing edge 
thickness is approximately 2.8' percent 'of the chord, and the radius of 
the circular arc at the blade nose is 3.7 percent of the blade chord. 
The average angle 'nose of the blade surfaces tangent to the circular 
arc at the blade nose is 46.30 so that the blade is overturned 1.30 at 
the nose (fig. 7). The average angle 	 tail of the blade surfaces 

tangent to the circular arc at the blade tail is -46.7 0 so that the 
blade is overturned 1.7° at the tail. The blade profile Is very 
much like the best shape developed in reference 6 by combination 
of circular arcs.

CASCADE TESTS 

An experimental investigation was. made on the blade profile just 
designed in order to determine if the rounding off of the cusped nose 
and tail has a serious effect on the resulting agreement between the 
prescribed velocity distribution on the blade surface and the distribu-
tion measured by test and to determine if the design procedure taking 
into account present knowledge of boundary-layer separation results in 
efficient blade shapes. In addition, the blade profile, which was 
designed for incompressible flow, was tested over a range of downstream 
Mach number from 0.2 to choke flow in order to determine effects of 
compressibility.

Description of Apparatus 

Flow tank. - As indicated in the line drawing of figure 8 the cas-
cade of 90° inipu.lse blades was attached to a short tunnel of straight 
parallel walls that was mounted on a rounded approach at the flow test 
tank. Dimensions of the tank and piping are given in figure-8. The 
tank contained a honeycomb of square cells (2 by 2 in.) 8 inches deep.
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Immediately upstream of the honeycomb were three screens; one 28X30 mesh 
and two 40X60 mesh with the mesh oriented 900 apart. The tank pressure, 
and therefore the flow rate, was controlled by a valve upstream of the 
tank. The maximum flow rate through the tank during the tests was 
88 pounds per second. The rounded approach to the tunnel was elliptical 
in cross section. A photograph of the test setup is shown in figure 9. 

Tunnel. - The tunnel consisted of straight parallel walls that could 
not be adjusted to account for boundary-layer growth or to simulate the 
shape of the stagnation streamlines upstream of the cascade. (For high-
solidity cascades the position and shape of the upstream tunnel walls 
have little effect on flow conditions in the channel between blades 
where the character of the flow is almost exclusively influenced, by the 
shape of the blades.) The tunnel length was short to prevent large 
boundary-layer growth on the tunnel walls. The cross section of the 
tunnel normal to the direction of flow was 11.91 by 16.50 inches. 

Cascade. - The blade element profile is described in table I and 
the cascade characteristics are given in figure 7. Six blades with a 
chord of 5.5 inches and an aspect ratio of 3.0 were used (see refer-
ence 15, p. 3). The blade span was therefore 16.5 inches. Based on a 
blade chord of 5.5 inches the Reynolds number Re was approximately 
related to the downstream Mach number Md by 

Re 3X106 Md 

Thus for the minimum test value of Ma equal to 0.2 the Reynolds 
number was 600,000, which is well above the critical values indicated 
in reference 13. A photograph of the assembled cascade is shown in 
figure 10.

I 

Instrumentation 

Tank. - The total pressure upstream of the cascade was measured by 
a static tap downstream of the honeycomb in the tank (fig. 8). The 
total temperature of the air was measured by a thermocouple in the tank. 

Tunnel. - Static pressures on the tunnel walls were measured at the 
eight tap locations indicated in figure 11. The static pressure used to 
determine flow conditions upstream of the cascade was measured at tap 3. 
The variation in static pressure along the tunnel wall at taps 1, 2, 
and 4 from the pressure at tap 3 is shown for the entire range of down-
stream Mach number Md in figure 12. In this figure pt is the total 
pressure (assumed equal to the measured tank pressure) and subscript 3 
refers to tap 3. The position of the cascade relative to the tunnel



NACA TN 2652	 15 

walls could not be adjusted to result in equal pressures at corresponding 
taps (5 and 7, for example) on opposite walls. The resulting difference 
in static pressures at taps 5 throi.gh 8 and the variation in pressure 
with downstream Mach number is shown in figure 13. The higher static 
pressures at taps 7 and 8 than at taps 5 and 6 resulted because the 
cascade was positioned relative to the tunnel walls in such a manner 
that the blade directly downstream of taps 7 and 8 projected slightly 
into the tunnel thus leaving space for some boundary-layer bleedoff 
into the room and at the same time causing the upstream stagnation 
streamline to turn, as it would for an infinite cascade, in the opposite 
direction to the cascade turning. 

Cascade. - Static pressures at midspan on the blade surfaces of the 
center channel in the cascade were measured at 48 locations indicated 
in table II. In addition total pressure and flow direction surveys were 
made at midspan across the center channel between blades in a plane 

l . inches downstream of the exit plane of the cascade. (The flow 

direction was essentially constant in the survey plane.) The total 
pressure probe was unshielded and the yaw probe was of the wedge type. 
The static pressure Pd, used to determine flow conditions downstream of 

the cascade, was measured at a wall tap located approximately l . inches 

downstream of the exit plane of the cascade and was for all values of 
Ma approximately equal to atmospheric roam pressure. 

Test Results 

Static pressures on the blade surfaces of the center channel in 
the cascade were obtained for eight values of the downstream Mach number 
between 0.2 and 0.79. (The cascade choked at a downstream Mach number 
between 0.75 and 0.79.) In addition, total-pressure surveys were made 
and the flow direction was measured downstream of the cascade for five 
values of the downstream Mach number between 0.3 and 0.7. The results' 
are plotted in figures 14 to 17. 

Piessure coefficient P. - The pressure coefficient P is plotted 
in figure 14 as a function of the coordinate Xh/C along the blade 
surface (fig. 7). The pressure coefficient P is defined by 

- 
P=
	

(ii) 

where p is the static pressure and where Pt,ã is the total pressure 
downstream of the cascade exclusive of the wake and is therefore equal
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to the upstream total pressure. For incompressible flow the pressure 
coefficient P, defined by equation (ii), reduces to the usual definition 
for pressure coefficient, that is, pressure difference divided by down-
stream, or upstream, velocity head. The pressure tap corresponding to 
a given data point can be determined from the value of x'/c and 
table II. For incompressible flow P is related to Q by (appendix B) 

P = 1 - 

The variation in P with X'/C for the design variation in Q is 
given by the regular solid lines in figure 14. 

In figure 14(a) the results are plotted for the downstream Mach 
numbers between 0.2 and 0.6. For these Mach numbers the flow is every-
where subsonic. The agreement between the measured and prescribed 
(design) values of P is good for Md equal to 0.198 but becomes 
progressively worse because of compressibility effects as Ma increases. 

In general, the discrepancy between the measured and prescribed values 
of P at Md equal to 0.198 can be attributed in part to the lower 
than design flow rate that results from the reduced effective flow area 
due to the wake displacement downstream of the cascade. That is, the 
channel between blades turned a slightly smaller quantity of fluid than 
designed for, and therefore required slightly less pressure difference 
on the blade surfaces. The important discrepancy between the design and 
experimental value of P on the pressure surface at the nose (XI /C 
equal to -0.393) results from rounding-off the blade nose and will be 
discussed later. 

In figure 14(b) the results (p against X'/C) are plotted for 
downstream Mach numbers of 0.70, 0.75, and 0.79. For these Mach numbers 
it will be shown that local regions of supersonic flow exist on the 
suction surface of the blade and shock phenomena result as indicated by 
the rapid fluctuation in pressure. For all three of these values of 
downstream Mach number two regions of shock appear on the suction sur-
face; one at Xt/C approximately equal to -0.275 and the other cen-
trally located around Xt/C equal to zero. 

Velocity Q. - The velocity Q, which is dimensionless, having been 
divided by the downstream velocity, is plotted in figure 15, as a 
function of the ideal (design) velocity potential ' along the blade 
surface. The pressure tap corresponding to a given data point can be 
determined from the value of	 and table II. The prescribed variation 
in Q with 0 is given by the regular solid lines in figure 15. The 
experimental values of Q were derived from the total pressure and the 
measured static pressures as indicated in appendix C. (Note that the 
total pressure was assumed equal to the tank pressure so that in the 
presence of shock losses the computed velocities are indicative only.)
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In figure 15(a) the variation of velocity Q with	 is plotted 
for the downstream Mach numbers between 0.2 and 0.6. For these Mach 
numbers the flow is everywhere subsonic and the agreement with the 
prescribed velocity distribution is considered quite good and appears 
to be independent of the downstream Mach number Md. (This independence 
of downstream Mach number will be discussed later.) It is concluded 
that blades for high-solidity cascades can be designed for prescribed 
velocities by the channel flow methods of this report and that rounding 
off the nose and tail of the blade-element profile has negligible effect 
on the velocity distribution along the blade surface except in the 
vicinity of the blade nose. The discrepancy at the blade nose will be 
discussed later. 

In figure 15(b) the variation in velocity Q with 0 . is plotted 
for downstream Mach numbers of 0.70, 0.75, and 0.79. For these Mach 
numbers local regions of supersonic flow exist on the suction surface of 
the blade and shock phenomena result at the points indicated previously 
by the pressure distribution in figure 14(b). 

Loss coefficient . - The loss coefficient 
(Pt P)d	 (Pt - 

has been computed from the total pressure survey data taken downstream 
of the cascade for five values of Nd between 0.3 and 0.7. This loss 
coefficient is plotted in figure 16. The average total pressure loss 
ZE was calculated by methods given in appendix D. The loss coefficient 
at first decreases with increasing 'Md, probably as a result of the 
increasing Reynolds number, and then increases rapidly, as a result of 
shock losses, after Ma equal to 0.6. 

Turning angle LD. - The measured value of the cascade turning 
angle L0 is plotted as a function of Ma in figure 17. For values of 
Md less than 0.5 the turning angle is insensitive to Mach number, but 
for the two largest values of Ma (0.6 and 0.7) the turning angle 

10 
increased about 1-,T	 The design turning angle was 900, so that for Md 

equal to 0.5 or less the measured turning angle agreed within 0.50 with 
the design turning angle.

Analysis of Results 

The test results are analyzed for the continuity condition, com-
pressibility effects, and momentum considerations. The cascade per-
formance is then compared with that of similar cascades reported in 
the literature.
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Continuity. - In figure 18 it is shown that as the downstream Mach 
number Md increases the upstream Mach number Mu, determined from the 
static pressure measurement at tap 3 in figure 11, becomes progressively 
less than Md. For an impulse cascade Mu should equal Md, and the 
measured difference between Md and Mu was sufficiently great to 
require an investigation of the continuity condition upstream and down-
stream of the cascade. 

From the total-pressure surveys downstream of the cascade the 
velocity distribution is obtained as a function of y?/st, where y' 
is measured from the center of ,a wake, and a typical example is given 
in figure 19 for a downstream Mach number of 0.3. (From the relatively 
small momentum losses indicated by this velocity distribution it is 
concluded that boundary-layer separation on the blade surfaces was 
negligible.) From this velocity distribution the flow rate W through 
the channel between blades can be determined from the continuity equa-
tion

1.0 

Stf	 p"q" cos 8td \s,1 

where ptt and qtt are the density and velocity, respectively, in 
dimensional form and 'O 'd is the measured flow direction downstream of 
the cascade in the x!yt_plane. Upstream of the cascade, flow conditions 
are uniform and the continuity equation becomes 

W = s'(p"q" cos 

The flow rates Wu and Wd are plotted in figure 20 and it is seen 
that the continuity condition (Wu Wd) is satisfied. The increasing 
magnitude of (Md - Mu) with increasing Md (fig. 18) must therefore 
be caused by the displacement of the wake downstream of the cascade. 

If A* is the ratio of the effective flow area (geometric area 
minus the effective displacement area of the wake) downstream of the 
cascade to the geometric area upstream of the cascade, Md and Mu are 
related by (appendix E)

T+l 

M"l i-1 2\2(1 

MCI A(\1:tlMd2)	
(12)
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For an impulse cascade with no boundary layer, A* equals 1.0 and from 
equation (12) Mu is equal to Na. If however the effective displace-
ment of the boundary layer is 5 percent, A* is equal to 0.95 and the 
relation between Mu and Md is given by the dashed curve in figure 18. 
Thus, for a given value of A* a cascade designed for impulse operation 
without a wake exhibits progressively more reaction as the downstream 
Mach number increases. 

In figure 18 for values of Md greater than. 0.75 the value of Mu 
remains essentially constant and equal to 0.6, or a little higher, so 
that the cascade is choked. In figure 15 the high value for Q on the 
pressure surface at () equal to i/2 indicates that the choke condi-
tion occurs along this value of 0 . Figure 6 shows that for this value 
of t/2) the flow area of the channel between blade elements is a 
minimum. Thus the upstream Mach number for choke flow could probably be 
increased by a slight modification in the blade element design in the 
regions of 0 equal to it/2. (For example, the manner in which the blade 
nose is rounded-off might be modified to increase the minimum flow area. 
Also, the blade nose might be extended farther upstream ' along the 
channel boundaries (shown in fig. 6) to guide the fluid into the minimum 
area in the proper direction. Or perhaps near the nose a less rapid 
velocity deceleration might be prescribed on the pressure surface, or a 
less rapid acceleration on the suction surface, so that the rate of area 
convergence and divergence in the vicinity of the minimum area would be 
reduced.) In addition this design modification would eliminate the large 
deceleration of the velocity along the pressure surface following the 
peak velocity at	 equal to it/2 and might thus improve the efficiency 
of the cascade by eliminating a possible region of separated boundary 
layer. 

Compressibility effects. - The effects of compressibility on P 
and Q are shown by the effects of Ma in figures 14 and 15. Consider 
the region of constant prescribed velocity along the suction surface. 
Provided the local velocities are subsonic the absolute magnitude of the 
pressure coefficient P decreases with increasing Md (fig. 14(a)) but 
the velocity Q remains essentially unchanged (fig. 15(a)). This 
behavior of P and Q is unlike that for isolated blades (airfoils) 
but compares favorably with that for the known compressible flow between 
a curved channel consisting of streamlines from a free compressible 
vortex. (The regions of constant velocity along the pressure and suction 
surfaces of the blades suggest that the channel between these regions can 
be approximated by the flow between selected streamlines of a free vortex 
for purposes of this investigation.) In appendix F equations are derived 
for computing the variation in P and Q with the equivalent Md for 
those radii of a free compressible vortex for which the values of P 
and Q at Md equal to zero (incompressible flow) are the prescribed 
values for the cascade design (ax = 1.5, 9,An = 0.66687, and so 
forth). The resulting distributions in Q and P with Md for the
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compressible vortex are shown in figures 21 and 22, respectively, and 
are compared with the test values of Q and P at taps 44 and 20 on 
the pressure and suction surfaces of the blades, respectively. The 
agreement in trends is good and indicates that the observed variations 
in P and Q with Ma in the tests are reasonable. Thus, for the 
high-solidity impulse cascade of this report the distribution of Q is 
essentially independent of downstream Mach number Md. 

The appearance of supersonic velocities on the suction surface of 
the blade is indicated (in figs. 14(b) and 15(b)) by sizeable variations 
in P and Q (with Xt/C and	 respectively) due to shock phenomena. 
For a given value of Mj there is a critical value of Q (r) for 
which the velocity corresponding to Qcr is sonic. This relation is 
given by (appendix G)

	

11	 •r- :L	 2 

Qcr/
	 d	

(13) 

which is plotted in figure 23. For test values of Q about equal to 
1.5, such as exist on the suction surface at 	 equal to ,t/4, the 
value of Md in figure 23 is about 0.63. Thus in figures 14(b) and 
15(b) shock phenomena are observed for values of Md equal to 0.70, 
0.75, and 0.79. 

Momentum. - From momentum considerations it can be shown (appen-
dix H) that the blade force in the direction of y' (per unit length 
of blade span) is equal to

1.0 
sin e' g d cos 0td. Li':

	
P(") d(-) - 

0 

	

s' sin O ' Cos	 u pt ( q )2	
(14)

 
g 

where p" and q" are evaluated from the test data by equation (C2) of 
appendix C, equations (D2) and (D3) of appendix D, and the known value 
of the stagnation speed of sound a0. 

From the measured pressures on the blade surface the blade force 
is also equal to
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9-. 

U)

fntose

ail 
= c (pt,d - Pd.)	 P - Po) a(!.)	 (15) 

 2 

where the subscripts ic/2 and 0 refer to the pressure and suction sur-
faces of the blade, respectively, and where for a given Nd the integral 
is equal to the area under the curve in figure 14. The blade force Ft 
has been computed from the test data by equations (14) and (15) and the 
values are compared in figure 24. The agreement is considered satis-
factory and serves as a check on the accuracy of the experimental data. 

Comparison with other impulse cascades. - The test performance 

[e and minimum /(pt - P)ã] of the 900 impulse cascade given in this 
report is compared in the following table with that of other impulse 
cascades reported in the literature. 

Blade Inverse of 
solidity 

s/c

Loss coeff i- 
dent 

(Pt-

Turning 
angle, ,6D 

 (deg)

Reynolds 
number 

Re

Comments Reference 

A 0.750 0.035 90 2X105 Airfoil blading, 14, 
(nun.) t/c = 0.10 fig. 62 

B .750 .035 86 Low Blade shape similar 16, 
speed to blade C fig. 178 

C .613 .038 90.5 1.5x106 Designed for pre- This 
(mm.) scribed velocity report 

gradients that 
avoid separation 

D .500 .038 87 Low Airfoil blading 16, 
speed fig. 177 

E .500 .039 90 2X105 Airfoil blading 14, 
(min.) t/c = 0.10 fig. 62 

F .574 .05 88.6 1.8X105 Two circular arcs 6, 
plus flat section, p.4 
similar to blade C 

G .625 .072 90 2x105 "Conventional" impulse 14, 
(mm.) blade, t/c = 0.22 fig. 62 

H .500 .09 88.7 1.8X105 Two circular arcs, 6, 
sharp nose and tail, p.4 
symmetrical
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The blades A to fl are arranged in order of increasing minimum loss 

coefficient 
U,- t -	

. All cascades have approximately a 900 turning 

angle. Blade C, from this report is seen to have about as low losses 
as any reported in the literature. The low loss coefficients of 
blades A and E are questioned in reference 14 (P. 233) because of the 
experimental technique. Also, the thin profiles (small values of t/c, 
where t is the maximum blade thickness) of blades A, D, and E prohibit 
their use in turbines near the blade root (where impulse conditions are 
usually approached) because the blade taper requires thicker profiles at 
the root. Blade B has a thicker profile and gives excellent performance. 
It is similar in shape and performance to that of blade C, developed, in 
this report. 

It is concluded that, if properly applied, the high-solidity blade-
element design method de'-eloped in this report can result in efficient 
blade profiles for incompressible flow or for compressible flow with 
local subsonic velocities. These profiles can be designed directly 
without extensive experimental trial-and-error development. 

SUMMARY OF RESULTS AND CONCLUSIONS 

A technique is developed for application of a channel design method 
to the design of high-solidity cascades with prescribed velocity dis-
tributions as a function of arc length along the blade-element profile 
and for prescribed turning angles of the fluid. The technique applies 
to both incompressible and subsonic linearized compressible (ratio of 
specific heats equal to -1.0) fluid motion, and the results are exact 
except for the usual approximation resulting from rounding-off the nose 
and tail of the blade element. In order to investigate the effect on 
the velocity distribution of rounding-off the nose and tail, a high-
solidity 900 impulse cascade was designed and tested. To achieve good 
efficiency, the cascade was designed for prescribed velocities with 
maximum allowable blade loading according to limitations imposed by 
considerations of boundary-layer separation. The cascade was developed 
for incompressible flow and was tested at the design angle of attack 
over a range of downstream Mach number from 0.2 to choke flow. From the 
results of the tests it is concluded that: 

1. Blades for high-solidity cascades can be designed for prescribed 
velocities by the channel flow methods of this report. 

2. Rounding-off the nose and tail of the blade-element profile has 
negligible effect on the velocity distribution along the blade surface 
except in the vicinity of the blade nose.
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3. The distribution of the velocity (expressed as a ratio of the 
downstream velocity) is essentially independent of downstream Mach num-
ber, provided the maximum velocity on the blade surface is subsonic. 

4. For the velocity distribution that was prescribed (and measured), 
the boundary-layer separation on the blade surfaces was negligible. 

5. For downstream Mach numbers of 0.5 or less the measured turning 
angle was less than 0.5 0 greater than the design turning angle (900). 

6. The cascade choked near the inlet at an upstream Mach number 
slightly greater than 0.6. This Mach number for choke could probably 
be increased by a modification in the profile design near the blade nose. 

7. Sonic velocity first appears on the suction surface of the blade 
at a downstream Mach number of about 0.63 and for downstream Mach numbers 
of 0.70, 0.75, and 0.79 shock phenomena were observed on the blade sur-
faces.

8. A cascade designed for impulse operation without a boundary layer 
exhibits progressively more reaction in the presence of a constant wake 
displacement as the downstream Mach number increases. 

9. If properly applied, the high-solidity blade-element design 
method developed in this report can result in efficient blade profiles 
for incompressible flow or for compressible flow with local subsonic 
velocities. These profiles can be designed directly without extensive 
experimental trial-and-error development. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, November 30, 1951 

11
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APPEI'IDDC A 

Symbols 

The following symbols are used in this report: 

A*	 ratio of flow area downstream of cascade to flow area upstream 

a	 local speed of sound
CQ 

a0	 stagnation speed of sound 

c	 blade chord (fig. 7) 

FY I 	 blade force in the direction of y' 

g	 gravitational acceleration 

K1,K2 constants, equations (Fla) and (F4a), respectively, of appendix F 

M	 Mach number, qt/a 

P	 pressure coefficient, equation (11) 

P	 static pressure (dimensional form) 

Apt	 loss in total pressure at point downstream of cascade 

Q	 velocity (for which units are so chosen that channel velocity 
downstream at infinity is unity) 

Q	 critical value of Q for which velocity corresponding to 
cr	 is sonic; related to Md by equation (13) 

q	 velocity (for which units are so chosen that stagnation speed of 
sound is unity) 

velocity (dimensional form) 

R	 perfect gas constant 

Re	 Reynolds number based on blade chord 

r	 radius from center of free vortex (for which radius the units 
are so chosen that width, downstream at infinity, of channel 
between cascade blades that is being simulated by free vortex 
Is unity)

V
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S 

St 

T 

W 

x, y 

X t ,1t

of 3t 

nose*'ose tail 

I 

L. 

e 

Of 

LO 

P 

pt1
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distance in xy-plane measured along direction of flow 
from arbitrary reference point (for which distance the 
units.are so chosen that channel width dOwnstream at 
infinity is unity) 

blade spacing (fig. 7) 

temperature of gas 

maximum thickness of blade-element profile 

velocity parameter defined in reference 12 

flow rate (per unit length of blade span) through 
channel between two blade elements 

Cartesian coordinates in physical plane (for which 
coordinates the units are so chosen that channel width 
downstream at infinity is unity) 

x,y coordinate system rotated and translated so that 
cascade lies along y t -axis (fig. 7) 

average angle of blade surfaces tangent to circular arcs 
at nose and tail, respectively, in x'y t -plane (fig. 7) 

ratio of specific heats 

finite increment 

flow direction in physical xy-plane (measured in counter-
clockwise direction from positive x-axis) 

channel, or cascade, turning angle 

flow direction in physical x 1 y t p1ane, (measured counter-
clockwise from positive xt_axis) 

ratio of are lengths, equation. (7) 

density (expressed as ratio of stagnation density) 

density (dimensional form) 

velocity potential used as Cartesian coordinate in trans-
formed 1-plane and defined in reference 12 
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stream function used as Cartesian coordinate in trans- - 
formed OT-plane and defined, in reference 12 

average loss in total pressure, equation (Dl) of 
appendix D 

Subscripts: 

A,B,. . . , H positions defined by velocity potential lines in fig- 
ure2

C'-1 

CC,DD,EE,FT	 values of	 defined in figure 4 

d.	 conditions downstream at infinity 

max	 maximum 

min	 minimum 

t	 total, or stagnation, condition 

U	 conditions upstream at infinity 

0	 right boundary of channel, when faced in direction of 
flow, along which IV is equal to zero 

3	 tap 3, figure 11 

left boundary of channel, when faced in direction of 
flow, along which 1. is equal to 

I
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APPENDIX B 

RELATION BETWEEN P AND Q FOR INCOMPRESSIBLE FLOW 

From Bernoulli's equatidn for incompressible flow, if q" is the 
velocity in dimensional form and p" is the density in dimensional 
form 

CA	 p + p	 -	 - 

	

2g - t	 t,d 

and

u tt 2 
Pd + P
	

(Bl) 

from which

it i 2 t

	

Pd. (
	 1tt2\ 

) 
(B2) 

	

2g	
\l - q 

Therefore, from equations (Bl), (B2), (ii), and the definition of Q 

P  

which relates the pressure coefficient P to the velocity Q for 
incompressible flow.
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APPENDIX C 

CALCULATION OF Q FROM MEASURED STATIC PRESSURES 

From the general energy equation 

T 1 y--1 2	 ( C l)

c'J 
where T is the temperature of the gas and i is the ratio of specific 
heats so that

I T 	 T-1 q2)7"-1 

from which

F̂2
	 1-li

(C2) 

Therefore,

i-i 
) , r 

Al______ Qi3_
/ p \'I 

\t,d 

where	 - 

= t,d. constant
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APPENDIX D 

CALCULATION OF AVERAGE LOSS IN TOTAL PRESSURE w FROM

TOTAL PRESSURE SURVEY DOWNSTREAM OF CASCADE 

By definition the mass-weighted average value of the loss in total 
pressure (Apt a) downstream of the cascade is 

P"q(zPt )dy

(Dl) 
fpttq d 

where the integration is taken across an enti,re channel equal in width 
to the blade spacing and therefore including the wake region. The 
density p" is related to the pressure p by

(D2) 
t ( t 

-	 where, from the perfect gas law,

p 

p,tt =
	

(D3) 

so that from equations (Dl), (D2), (D3), and (C2) 

(
i - ^d ) r dyI	

(D4) 

f()1çPy
dy 

where pt is the total pressure measured by the survey along y'.
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APPENDIX E 

RELATION BETWEEN Mu AND I'& FOR VARIOUS AREA RATIOS A* 

From continuity considerations 

p
U 
(Ma)

U pd(Ma)d A*
	 (El) 

where p Is the fluid density expressed as a ratio of the stagnation 
density, where M is the local Mach number, where a is the local 
speed of sound so that the product (Ma) is equal to the velocity qtt, 
and where A* is the ratio of the effective downstream flow area to the 
upstream area. From the general energy equation,

(E2) 

so that

ad	 AI' AI1+2Mu 
='vT	 l+ijM2 

and

1	 1 

d	 (/T d \11 
/i+L M2\y_l 

\	 (	 2 

\l+t_Md2 

from which equation (El) becomes

1+1 

(1+	 Mu2 
Mu	 A*	 i-i 2 T-1

	

(12)
Md
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APPENDIX F 

EQUIVALENT COMPRESSIBLE FREE VORTEX 

The regions of constant, prescribed velocity along the pressure and 
suction surfaces of the 900 impulse blade suggest that, for purposes of. 
investigating the variation in these velocities with the equivalent 
downstream Mach number, the channel between these regions of constant 
velocity can be approximated by the flow between selected streamlines 
of a compressible free vortex. First the radii for these selected 
streamlines are determined: for an incompressible free vortex to give the 
prescribed values of QO and	 for incompressible flow along the 

2 
suction and pressure surfaces of the blade, respectively. 

Incompressible free vortex. - For an incompressible free vortex 

Q,r	 1(1
	

(Fla) 

or

Q0r0	 (Fm) 

22 

where r, like the Cartesian coordinates x and Y. is expressed in 
units of the channel width downstream at infinity of the channel between 
cascade blades that is being simulated by the free vortex... From 
continuity

12

37 
A 

J	 Qdr1.0 

so that from equations (Fla) and (F2) 

K1 loge	 = 1.0 

and therefore, from equations (Fla) and (fib) 

1	 (F3a) 

Qoloeç

(F2)
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and

	

1	
() 

2
	

Qo loge Q.7( 

2 

Equations (F3a) and (F3b) give the radii that determine the channel in 
the free vortx (compressible or incompressible) which is equivalent to 
the channel between the cascade blades in the region of constant pre-
scribed velocity along the pressure and suction surfaces. For the pre-
scribed values of Q0 and. Q (1.5 and 0.66687, respectively) the 

2 
values of r0 and r, given by equations (F3a) and. (F3b) are 0.82260 

2 
and 1.84992, respectively. 

Compressible free vortex. - For a compressible free vortex 

	

QrK2	 (F4a) 

or

Q0r0 = Qr	 (F4b) 

22 

and., from continuity,

I	 2 

r0 

where, from-equation (Cl),

(F5) 

so that

p=	 - T
2	 2 eq 

Pd	 T21 qd 2) T-1

(F6a) 

(F6b)
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Equation (F6a) expands in series form to give 

p	 1 - Q2qd2 +	 Q4q4 - . • .	 (F6c) 

so that equation (P5), together with equations (F4a), (F6b), and (F6c), 
integrates to give

1	 r 

Pã	
(i i-i 2	

.	
1 

-	 -
) 1 =K21og_+ 4

\ 
( 2 -r)	 4 5/1 

32 q '2	 (---• -	 + . . .	 (F7) 

\	 rj2 
where, from equation (E2),

TC,
M 'Vc = rd

	

2	
(F8) 

ii + tj 1 Md 

From equations (P7). and (F8) E is a known function of 
Nd and there -

fore Q0 and Q, are given by (F4a). The variation in Q0 and 

with Ma Is plotted in figure 21. 

The pressure coefficient P is defined by 

p  
P - p;i	 p.i-1	 p4_ 

P.-.	 U.	 -	 ", 

Pd 

Pt; d 
where, from equation (Cl),

I	 r 
P	 Ti ( -Q2g2) 

Pt^ d \ti
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so that, with 
Pt =

(i - 
r1Q22)1	 (11-1 q 2)	

(F9) 

1	 q 2 ) T 

Equation (F9) determines P for given values of Q and q. The vari-
ation in P0 and P with Nd is plotted in figure 22. 

2 

Choke flow. - Choke, or maximum, flow occurs when the derivative of 
the flow rate with respect to a characteristic velocity is zero. From 
equation (F5) the flow rate is proportional to Pd and from equa-
tion (F4a) the velocity at each radius is proportional to K 2 so that 
choke flow occurs when

dpa 

c=o 
therefore, from equation (F7) 

r	

2K22 1i) 
0 = loge
	 4	 (-_ - 

1	 5(2- 
- 32 q 4K24 f-k -

) 

+ 

0	 0 
r	 Ir	 r 

\.. 

or

3/i - 1	 A/9	 1	 1^02)  2 ^5(2r)7	 1	
rit 

2)	
(	 -	

8	 r4 - — 
loge

rO4

/ 

5(2_y)/1 - i\ 
16( ) 

0 
\

( 10) 

The value of Nd for choke flow is then obtained from equations (F7), 
(F8), and (no). For the values of r0 and r1 given by equations (F3a)	 - 

2 
and (F3b) the value of Md thus obtained is 0.815.
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APPENDIX G 

CRITICAL VALUE OF Q FOR WHICH VELOCITY IS SONIC 

For a given value of Md there is a critical value of Q (Qer) 

for which the velocity corresponding to Qer is sonic. By definition. 

i	 ,.	 a	 MIT 04

q	 Md'\JTd 

which, from equation (E2), becomes 

M Il+L!Md2 

7\j1 +r2.M2	
(Gi) 

-	 By definition Q is equal to Qcrif M is equal to 1.0 so that 

equation (Gi) becomes	
* 

F1_22

 Md2 
Qcr -
	

(13) 

Equation (13) gives the relation between Qcr and Md, which rela-
tion is plotted in figure 23.
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S' sin 0td COS etd 
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APPENDIX H 

BLADE FORCE COMPUTED FROM MOMENTUM CONSIDERATIONS 

If the viscous shear forces, which are relatively small, are 
ignored, the blade force Fi acting on the fluid In the positive 
y'-direction (fig. 7) must, from momentum considerations, equal the. 
change in the rate of momentum, in the positive yt_direction, of 
the fluid flowing through the cascade. The rate of momentum flow into 
the cascade in the positive y'-direction is 

S I Sin e l u COS e'
U 

p it (tt)2 
g  

where flow conditions are considered uniform upstream of the cascade, 
and the rate of momentum flow out of the cascade in the positive 
y'-direction Is

t sin e'd cos 0Td	
(q')2d(-rg	

J1.0

 

where the flow direction is uniform at a station far enough down-
stream. Therefore, F 1 becomes

tx') 

c'J 

1.0 

10	 ptT(qtt)2 d
st 

S t Sifl t cosCOS 	 u p!9(qlt)2 
g 

Equation (14) gives the component of the blade force in the positive 
direction of yt.

(14)
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TABLE I - BLADE PROFILE COORDINATES 

[900 impulse cascade; prescribed velocity 
distribution, fig. 5; incompressible flow.] 

1	 2	 3	 4	 5 
X, in.

c 

YO x 

0 0.203 0.203 2.4 1.078 2.044 
.05 .069 .354 2.6 1.094 2.032 
.10 .028 .456 2.8 1.100 1.996 
.15 .009 .554 3.0 1.094 1.938 
.20 .000 .647 3.2 1.079 1.863 
.25 .006 .736 3.4 1.052 1.770 
.30 .024. .821 3.6 1.016 1.660 
.35 .061 .905 3.8 .969 1.536 
.40 .104 .985 4.0 .909 1.397 
.45 .147 1.063 4.2 .831 1.246 
.50 .189 1.135 4.4 .729 1.085 
.60 .272 1.253 4.6 .608 .914 
.70 .353 1.352 4.8 .473 .736 
.80 .430 1.440 500 .325 .558 
.90 .504 1.520 5.1 .246 .468 

1.0 .573 1.593 5.2. .167 .376 
1.2 .701 1.718 5.3 .085 .284 
1.4 .812 1.821 5.35 .044 .239 
1.6 .899 1.904 5.40 .007 .194 
1.8 .965 1.967 5.45 .003 .149 
2.0 1.014 2.012 5.50 .071 .071 
2.2 1.052 2.036

pal 

1 a

0



0.203 .071 rad 
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TABLE II - STATIC TAP LOCATIONS ON BLADE SURFACE AT NIDSPAN

1
900 impulse cascade.] 

U	 1	 2	 3	 4	 S 
X, in. 

Tap X Y X
- - Tap X Y L. 

C C C C 

9 0.015 0.280 -0.443 0.172 1	 0 0 33 4.631 0.888 0.400 0.187
26w 
-, 0 

ir 27w 10 .171 .595 -.412 .214 34 4.832 .709 .433 .151 
2w 28w 11 .297 .816 -.385 .252 16 35 5.038 .524 .467 .113 
3w 29w 12 .418 1.014 -.360 .286 36 5.248 .332 .502 .075 

471 30w
 13 .535 1.180 -.336 .314 37 5.468 .133 .538 .035 

14 .668 1.321 -.309 .337
Sir

38 5.384 .017 .521 .015
22w 
-

w 

6w 21w 15 .817 1.454 -.280 358 17 .39 5.147 .209 .481 .054 -6- 
7w 20w 16 .974 1.575 -.249 .377 40 4.871 .421 .435 .098 
8w 19w 17 1.141 1.684 -.217 .394 41 4.556 .635 .382 .142 
9w 18.Sw 18 1.314 1.780 -.184 .408 42 4.369 .746 .350 .166 

lOw 18w 19 1.494 1.863 -.150 .420 -,- 43 4.174 .842 .317 .187 -1 
12w • 17.5w 20 1.873 1.985 -.079 .435 --isj 44 3.960 .922 .279 •20S 

21 2.266 2.041 -.007 .438
14w

45 13.740 .984 .241 .220
17w 

15ir . 16w 22 2.464 2.042 .029 .435 16 46 3.304 1.066 .163 .243 - 
16w lSw 23 2.661 2.023 .064 .428 -,- 47 2.859 1.099 .083 .257 
17w 14w 24 2.857 1.981 .099 .417 -- 48 2.414 . 1079 .002 .261 
18w 13w 25 3.055 1.919 .134 .402 49 1.975 1.008 -.078 .256 --
19w 12.5w 26 3.253 1.840 .168 .384 50 1.754 .951 -.119 .250 
20w 12w 27 3.451 1.744 .202 .363 -j 51 1.538 .875 -.160 .240 - 
21w 11.5w 28 3.648 1.632 .236 .339 52 1.342 .782 -.197 .227 16 
22w 11w 29 3.844 1.507 .269 .313 -y 53 1.154 .673 -.233 .211 
23w lOw 30 4.039 1.368 .302 .284 - 54 .838 .459 -.294 .178 
24w 9w 31 4.235 1.218 .334 .254 - 55 .565 .244 -.347 .144 
25w By 32 4.432 1.058 .367 .221 -is 56 .333 .046 -.393 .112
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Figure 1. - Cascade blade obtained in xy-plane by rounding off nose 
and tail of island between adjacent channels designed for prescribed 
velocity distribution along walls.
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Figure 2. - Channel between adjacent stagnation streamlines with velocity potential 
lines and subscript conventions for flow through cascade.
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x 

Figure 3. - Magnitude and direction of velocity at point 
in xy-plane. 

Figure 4. - Typical example of linear, prescribed variation in loge 

with 0, including subscript convention for 0and Q.
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Rearr-N TF1fl 

Rear	 Side	 Front 

Figure 11. - Static-pressure tap locations on tunnel walls. Circled numbers are tap 
numbers. All linear dimensions in inches.
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Tap 

Figure 12. - Variation in static pressure (with downstream Mach number) at 
four tunnel wall taps indicated by corresponding circled numbers in 
figure 11.
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Prescribed variation 
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Prescribed variation 
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-.	 -..	 -.	 -.1	 0	 .1	 -	 . 2	 .3	 .4	 .5 
x'/c 

(a) Downstream Mach numbers between 0.2 and 0.6. 

Figure 14. - Variation in test values of pressure coefficient P with position x'/c 
along surface of blade element. (The pressure tap corresponding to a given data 
point can be determined from the value of x'/c and table II.)
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x /c 

(b) Downstream Mach numbers of 0.70, 0.75, and 0.79. 

Figure 14. - Concluded. Variation in test values of pressure coefficient P with 
position x'/c along surface of blade element. (The pressure tap corresponding 
to a given data point can be determined from the value of x/c and table II.) 
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(a) Downstream Mach numbers between 0.2 and 0.6. 

Figure 15. - Variation In test values of velocity Q with coordinate 0 along surface 
of blade element. (The tap position corresponding to a given data point can be 
determined from the value of 0 and table II.)
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C
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(b) Downstream Mach numbers of 0.70, 0.75, and 0.79.	 - 

Figure 15. - Concluded. Variation in test values of velocity Q with coordinate 
along surface of blade element. (The tap position corresponding to a given data 
point can be determined from the value of 0 and table II.) 
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Figure 16. - Variation in pressure-loss coefficient 
with downstream Mach number. 
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Md 

Figure 17. - Variation in air-turning angle with 
downstream Mach number.
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Figure 19. - Variation in Q with yt/sT between wakes down-	 - 
stream of cascade. Downstream Mach number Ma, 0.30.
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Figure 20. — Comparison of measured flow rates 'upstream and dowpstream of 
cascade for five values of downstream Mach number. 
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Figure 21. - Variation in velocity Q with downstream Mach number Ma at static taps on pressure
and suction surfaces of blade and at equivalent radii of a free compressible vortex.
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Figure 22. - Variation in pressure coefficient P with downstream Mach number Mdat 

static taps on pressure and suction surfaces of blade and at equivalent radii of a 
free compressible vortex.
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Figure 23. - Variation in Qcr with downstream Mach number. 
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0	 -100	 -200	 -300	 -400

FY I from momentum equation (14) 

Figure 24. - Comparison of blade force in direction 
of y' as determined from measured static pressures 
on blade surface and from momentum equation (14). 
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