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i(t1 
Page 6: In equations (9) and (10) the exponential term e \ XJ should 

be changedto e \ V. 

Page 7: In equation (13) the plus sign preceding the last term (the 
integral) should be changed to a minus sign. 

Page 9: In equation (17) the sununation of terms 

(_1)ne T log (1 +	

- 

should be deleted and replaced by the summation 

M2) 2i2H[	 1	 1	 + 
-7-
1 13w	 - V log (1 +	 - 

M	 + M2	
\/)2 - (i)2 J)2 - ()2 
(-M-	 --	 (M n=l 

(2n + 1)2()2 (,)2	 + l)2()2 - (i)2 + 

This last item warrants the following explanation: The expression 

-IY-nHI	 (i + l - M2\ 
e	 1og	
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was obtained by evaluating the integral 

e V 2 (2) [cn	 + 2(y nH)2]d 

by comparison with the known value of the integral 

e1StII2) (ajt2 - b2)dt = e	
22 

log (5 +	 + a2) 

This procedure leads to an incorrect result since the branch points 
of the Hankel functions involved are on the real axis in one case and on 
the imaginary axis In the 'other. 

The integral being considered actually appears in an infinite 
summation of integrals, namely 

00

(_1)fl	 e V2H (2)( CD 2 + 2n2H2)d = 
oV-c 3 

iCD 00 I ;	 [ ( l ) 2 )(i2 + 

n=l	 \c13 

A correct value of this summation is obtained by replacing the series 
of Hankel functions in the last integral by the equivalent series of 
exponential functions given in equation (18) of the report and then 
performing the indicated integrations.
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This procedure leads to the following final expression for 
(eq. (17)) 

2Mw 
iw(t-	 ___ 

=	
e	 /çe(_i)(1 + iv 2 \.(2)r0) 1x2 +	 2] + 

n=1 

___ V	 1 +	 M2	 2i2H	 1 

V	 N	 ) + M2 [ff)2	 2	 2	 2	 j 

LY 14	 - •-)	 (-iT) - (-V-I + 1W 

1	 1	 11+ 

J2n + 1) 2(\ -	
2 1	 )2	

2 
(_	 (2n +1	 (-) + (--) - 'V 

j2(1)fl 
J	

e(2)[4u2 + () du]) 

NACA-LangleY - 1-20-53 - 1000



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TEChNICAL NOTE 2552 

CONSIDERATIONS ON THE EFFECT OF IND-TUNEL WALLS ON 


OSCILLATING AIR FORCES FOR TWO-DI1ThNSIONAL 


SUBSONIC COMPRESSIBLE FLOW 

By Harry L. Runyan and Charles E. Watkins 


SUMMARY 

This paper treats the effect of wind-tunnel walls on the oscillating 
two-dimensional air forces in a compressible medium. The walls are simu-
lated by the usual method of placing images at appropriate distances 
above and below the wing. An important result. shown is that, for certain 
conditions of wing frequency, tunnel height, and Mach number, the tunnel 
and wing may form a resonant system so ,that the forces on the wing .are 
greatly changed from the condition of no tunnel walls ... It is pointed 
out that similar conditions exist for three-dimensional flow in circular 
and rectangular tunnels and apparently, within certain Mach number ranges, 
in tunnels of nonuniform cross section or even in open tunnels or jets. 

INTRODUCTION	 .	 .	 - 

• The understanding of flutter and other nonsteady phenomena requires 
a knowledge of the associated unsteady flow. In the underlying theories 
of unsteady flow, such assumptions as small displacements, linearizations, 
and an inviscid fluid are made in order to obtain workable and usable 
results. 1ihen it is necessary to investigate the effect of these assump-
tions on analytical results by measurements of the forces and moments on 
an oscillating wing in a wind tunnel or to treat cases that do not con-
form to theory, the question of the effect of the tunnel walls naturally 
arises. In the case of steady flow the problem of the effect of tunnel 
walls is more or less classic and has been treated by many investigators. 
In general, these investigators have been able to obtain relatively simple 
factors which can be used to modify measurements of the air forces on a 
wing in a tunnel to correspond to free-air conditions. The extension 
of the results to compressible flow presents no difficulties since the 
results for incompressible flow can be corrected according to Prandtl-. 
Glauert correction factors.
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In th case of unsteady flow, Reissner, reference 1, and W. P. Jones, 
reference 2, have published papers showing the effect of wind-tuimel walls 
for the incompressible.case. -In both papers, the influence of the tunnel 
walls is fourd to be comparatively small for most cases, although indica-
tions are given that, for sonie ranges of a reduced-frequency parameter, 
the effect may be quite large. In the unsteady case, unlike the steady 
case, the trahsitior from results for incompressible flow to those for 
compressible flow cannot be accomplished by simple transformations. This 
difficulty is a result of the fact that, in an incompressible fluid, the 
velocity of propagation of a disturbance is infinite and no time lag 
OCCUrS between the initiation of a disturbance and its effect at another 
position in the field, but, in a compressible fluid, a definite time is 
required for signal to reach a distant field point so that both a phase 
lag and a change in magnitude result. Under certain conditions this 
phase lag can result in a resonant condition which would involve large 
corrections. 

The pirpose of this paper is to consider the effect of wind-tunnel 
walls on th forces on an oscillating airfoil of infinite span with con-
sderations of the compressibility o the fluid. The usual method of 
images is enployed in order to satisfy the condition of no normal velocity 
at the tunnel walls, First, the effect of tunnel walls on the induced 
'vertical velocity, hereinafter referred to as downwash, of an oscillating 
doublet is determined and this result is used to formulate the integral 
equation foz the downwa'sh of an oscillating airfoil in a tunnel. This 
paper is nt intended t0 give rumerica1 values or any detailed calcula-
tions of j'inal tnnel-wali correction factors but mainly to show the 
existing nd 4or such calculations and to present equations for calcu-
lating corrections for the twodimensional case. 

SYMBOLS 

A	 constant 

b	 semichord 

c	 velocity o 

H	 tunnel height 

(2), H1(2) 1apkel functiOns 

N	 Mach numb' 

local presu.re difference
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t	 time 

U 

V	 velocity 

w, w0, w1	 downwash or vertical induced vêlo.cit 

, x, y, z,	 Cartesian coordinates 

Euler t s constant 

angular frequency 

wave length 

acceleration potential 

velocity potential 

p	 fluid density

ANALYSIS 

Effect of Tunnel Walls on the Downwash of a Single DOublet 

The differential equation that governs flow due to small nonsteady 
perturbations imposed on a steady, uniform flow field is the wave equa-
tion. Referred to rectangular coordinates, fixed relative to the undis-
turbed stream at infinity; this equation is 

a2i	
(1) 

2	 2	 c axat c2t2 

In this equation the independent variable may be regarded as either 
a perturbation velocity potential or as an acceleration potential. In 
treating the boundary conditions of the second section of this analysis 
it is convenient to regard c as an acceleration potential. Thus, in 
order to be consistent,	 is hereinafter regarded as an acceleration 
potential. Accordingly 4r is directly proportional to a perturbation
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pressure field and is therefore related to a perturbation velocity 
potential p as follows:

acp	 ap
(2) at	 ax 

In order to calculate the domwash w = - associated with 
fr, it is 

necessary to solve equation (2) for p in terms of r. 

When i and p are sinusoidal funétions of time, such that 

(x,y,t) = e1t(x,y)1 

p(x,y,t) = e±t(xy)j 

equation (2) becomes independent of time and thus reduces to an equation 
with one dependent variable, namely 

7= io+V	
4) 

This equation can be integrated with respect to x to give 

1(L) 

V
	 (,y)eV d	

() 
- 

where the lower limit of integration is chosen for later convenience so 
that p vanishes far ahead of the point of disturbance. The downwash 
may be readily calculated with the use of this equation. In the absence 
of tunnel walls the retarded potential 4i (that is, the potential corre-
sponding to outgoing waves) of a harmonically pulsating pressure doublet 
located, for simplicity, at (0,0) that satisfies equation (1) is
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= -Ape(	 )

jo), 
- —x2+2y2+2z2 

e C32 

yc2 +	 +

dz 

= AtTie (	 2)(2 + 22) 

iCJ3AIT	

(	 _________ 
= - - e t+) _____ H1(2)(2 +

	
(6) 

C	

jx2 + p2y2 

where H0(2) and H1(2) are Hanke]. functions as defined in reference 3, 
A is an arbitrary constant denoting doublet strength, ü is circular 
frequency, and 3 = fi - M. The Hankel function H1(2) in equation (6) 

becomes infinite (as ________ as its argument approaches zero. Other-

2'	
jx2+2y2J 

wise H1	 is continuous and approaches zero as its argument approaches 
infinity. Thus the only discontinuity in 	 is at the location of the 
doublet, that is, at (x=O,y=O). 

In the presence of plane tunnel ialls located parallel to the x-axis 
at H/2 units above and H/2 units below the doublet position, the 
potential 4i of a pressure doublet may be represented by the potential 
of an infinite system of appropriately chosen reflecting doublets, namely 
(see fig. 1) 

= Aie \ p2)a > (l)o(2)x2 + p2 (y -	 (7) ay n=-	 [2 

In this equation the term corresponding to n = 0 is the potential 4, 
equation (6), discussed in the preceding paragraph. It may be noted that 
only this term of the infinite summation in equation (7) gives rise to a 
discontinuity in	 at any point within the tunnel (_y,_co<x<zcc).
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The infinity of terms corresponding to 	 n 0 are necèssai'y to cause 

the doniwash w to vanish at all points of the tunnel walls,	 y = ±.

The dowiiwash along the midsection of the tunnel y = 0 is gIven by 

w =
	

et	

y0[	
Ho(2)[2 + p2(y - nll)d 

= wo + wl
	

(8) 

where 

WO =	
lim[e2	 + 2yd	 (9) 

represents the downwash associated with the pressure doublet in the 
absence of tunnel walls and 

V	 iw 

1 =
	

e	
y0[	

(-l)e	 R0(2)	 2&_n)d 

(10) 

represents the additional domwash due to the presence of tunnel walls. 
Thus the relative value of w0 as compared with w0 + w1 is the main 
item of interest here. 

The integrals appearing in equations (9) and (10) can be reduced to 
simpler form for evaluation but since the steps required to reduce one 
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of the integrals are the same as required to reduce the other, only 
the intQgral appearing in eqi,ation (9) will be treated in detail. The 
reduced form of the other integral can then be obtained 'by simple corn-
parisoi. The Hankel function in equation (9) satisfies the following 
identity; 

-	 Ho ( 2 )(_Q42 ^ p2y2) ..j2 
• 

Ho( 2)(_2 + 32y2) - 

2	
(2)../2 + 32y2)	 (U) 

	

H0	
c2 

Substituting this relation into equation (9) gives 

	

w0 = -	 2 

f 
e2	 (2)2	 2y2	 + 

V	 y—O	 \c	 / - 

	

(2)(2 + p22	 (12). 

In equation (12) the first integral can beintegrated twice by' parts to 
give fçr w0

x 

	

' . wo - 
• 	

e	
V L

T	 2	 22 l(c2V 
+ 22) - 

ehT2(2)(__jx2 + 2Y2) +	 e	 H0(2)(L2 +

('3)
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By writing the integral in equation (13) as the sum of two integrals, 
namely

.rx	
po	 px 

I =1 ^1 
(i —co J—cx) d0 

and making a change of variable

(is) 

the expression for w0 may be further reduced to 

• / x'\I ±(&C 
ict--	 - 

=	 lini e	 V)iMeV2	 x	 H1(2)(.x2 +	 - 

v2 —o	 ifx2 +	
0 

ic	 -_ 
2i	 V	 (l+iiN2 

g	 ,1 lo	
M 

e1	 (2)/u2 
+ ()du1	

0,	 (16) 

In the limit y = 0 the expression in braces in equation (16) reduces 
to the kernel of Possio's integral equation reiat .ing , pressure and down-
wash for the, oscillating airfoil in compressible flow. (This result 
checks . the results for this expression given, for example, in reference L.)
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In general, this infinite-series representation of w1, equation (17), 
converges to a finite value. However, for certain critical values of the 
frequency parameter cH/V, it is found that the value of w 1 becomes 
infinite. This fact can be readily made evident by use of relations 
given in reference where it is shown that an infinite series of Hankel 
functions of the type appearing in equation (17) can be replaced by an 
equivalent series of exponential functions as follows: 

2	

rHI cJ (-l)H	 _jx2 + ()2j =	 (l)nHO(2?I_2 + 
n=1	 J nl	 LV! 

/(\2 

p2HY's.N) 	 s%j 
ie_______ + 

N /(2 - 

V\MJ - 'xv) 

= _H0 ( 2 ) 1". 9:f\ + 
2H v)

- !E.	
N) \VJ

+ 

p42m + i)2()2 - ()2 

- 2HV 
e	

(18) 

- 

l)2(2 (\2 

) - 

It may be seen that, if this relation is substituted into equation (17), 
the value of w1 becomes infinite for all values of x when the fre-
quency parameter üH/V has any of the values given by 

= (2m - 1)	 (m	 1, 2, 3, . . .)	 (19)

t
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These critical values of the frequency parameter correspond to a condi-
tion of pure resonance in the tunnel 'thich in the present case implies 
that a harmonic disturbance of any finite amplitude may lead to a down-
wash of infinite amplitude. 

Of course these infinite values of w1 would never be realized 
under practicable conditions because factors such as finite tunnel length, 
absorption through walls, fluid viscosity, and so forth that would give 
rise to damping would make pure resonance unobtainable; however, with 
damping present, resonant frequenôies yielding. values of üH/V in the 
neighborhood of those given in equation (19) would exist and it is not 
likely that quantitative agreement or even possibly qualitative agreement 
between calculated and measured downwash (or forces) can be realized when 
the value of üH/V is in the neighborhood of these critical values. 

It is interesting to note that the effect of boundary conditions 
such as section geometry, tunnel-wall flexibility, and so forth is to 
change the value of the critical frequency but not to do away with the 
possibility of resonance. Also, by treatments similar to those employed 
herein, it can be shown that under idealized conditions resonance can 
occur inthree-dimensional flow in both round and rectangular tunnels or 
apparently, within certain Mach number ranges, in tunnels of nonuniform 
cross section (expanding or contracting section) or even in open tunnels 
or jets,. 

The fundamental or smallest critical values of coH/V, corresponding 
to m = 1 in equation (19), are shown plotted as functions of Mach num-
ber N in figure 2. This figure indicates that there is no finite 
critical value of c/V for the conditions M = 0, V 0, and c = 
which correspond to a flow of incompressible fluid in the tunnel. This 
result agrees with those found in references 1 and 2. 

The frequency parameter 

(2m -	 (m ' 1, 2, 3, . . .)	 ( 20) 

which may be derived from equation (19) is shown plotted for m = 1, 
as a function of Mach number in figure 3. Equations (2O and figure 3 
show that finite values of the critical frequency exist for the condi-
tions M = 0, V = 0, and c co• These conditions correspond to a com-
pressible fluid at zero velocity in the tunnel. For these conditions 
equations (20) and the corresponding wave lengths 

=	 2R	
(m	 1, 2, 3, . . .)	 ( 21) 

U)	 2m-1
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agree, respectively, with results found in the literature for the char-
acteristic frequencies and wave lengths associated with transverse 
acoustic vibrations in rectangular chambers when the location of the 
source of disturbance is excluded as a nodal point. See, for example, 
reference 6. 

It may be of interest to note that equation (20) can be derived 
from the principle of standing waves as follows: The condition for 
resonance for the type of disturbance considered implies that the 
standing transverse waves have a maximum velocity at the midsection of 
the tunnel and zero velocity at the boundaries. A half-sine wave of 
wave length X = 2H or any odd divisor of this length, namely, 

= 2m-	
satisfies this condition. If c is the velocity of sound 

in the medium and V the velocity of the medium, the velocity of pro-
pagation of . disturbance in a fixed plane perpendicular to the air flow 

is 11c2 - V2 . Since the frequency is given by the speed of propagation 
divided by the wave length there is obtained 

= (2m - l)V 2 - V2 = 

or

= Tr3(2m - 1) 

Integral Equation for an Airfoil of Infinite Aspect 


Ratio Oscillating in a Wind Tunnel 

In order to present equations from which tunnel-wall corrections 
for two-dimensional flow can be calculated, use is made of the foregoing 
analysis to deriv the integral equation, relating downwash distributions 
and lift distributions, for the effect of tunnel walls on the lift dis-
tibutibn associated with a given downwash distribution. 

The resultant pressure or local lift p associated with the accele-
ration potential of a single doublet located at (x0 ,O) with strength 

depending on streamwise position x 0 may be expressed simply as (compare 
with equation (6)):
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CONCLUDING REMARKS 

The important result shom is that, in a tunnel of infinite length 
containing a flowing fluiTd, a resonant condition involving a transverse 
oscillation of the fluid across the tunnel is possible and measured air 
forces at or near this condition of resonance might be greatly- modified 
from those measured in free air. This resonant condition is a (simple) 
function of Mach number, tunnel height, and wing frequency and brings to 
attention a new type of tunnel-wall interference. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field; Va., September 2)4, l9l 
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Figure 1.- Sketch showing reflecting system of doublets simulating 

two-dimensional tunnel walls.
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Figure 2. - Fundamental critical values of frequency parameter uiI/ 

plotted as a function of Mach number M.
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Figure 3.- Fundamental critical values of frequency parameter uI/c 

plotted as a function of Mach number M.
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