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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2561

A STUDY OF POISSON'S RATIO IN THE YIELD REGION

By George Gerard and Sorrel Wildhorm
SUMMARY

In the yield region of the stress-strain curve the variation in
Poisson's ratio from the elastic to the plastic value is most pronounced.
This variation was studied experimentally by a systematic series of tests
on several aluminum alloys. The tests were conducted under simple tensile
and compressive loading along three orthogonal axes.

A theoretical variation of Poisson's ratio for an orthotropic solid
was obtained from dilatational considerations. The assumptions used in
deriving the theory were examined by use of the test data and were found
to be in reasonable agreement with experimental evidence.

INTRODUCTION

Poisson's ratio for engineering materials under simple axial loading
usually has a value in the elastic region of between l/h and 1/3 and on
the assumption of a plastically incompressible isotropic solid assumes
a value of 1/2 in the plastic region. The transition from the elastic
to the plastic value, in general, is gradual and is most pronounced in
the yield region of the stress-~strain curve.

In the deformation theory of small elastic and plastic strains for
an isotropic solid, which is summarized by Nadai in reference 1, it is
shown that the stress-strain relations for a strain-hardening material
depend essentially upon two deformation functions, the secant modulus
and the generalized Poisson's ratio. Because of the fundamental nature
of the latter in any plasticity theory, this investigation was undertaken
to provide basic experimental data on the variation of Poisson's ratio
in the yield region of some materials commonly employed in aircraft
applications.

General dilatational relations are considered in the section entitled
"Theoretical Investigation" and it is found that a theoretical relation-
ship for the variation of Poisson's ratio from the elastic to the plastic
value can be obtained for an orthotropic medium in which the plane con-
taining the two isotropic axes is normal to the applied load. This
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relationship depends upon the elastic value of Poisson's ratio, the
shape of the stress-strain curve as given by the ratio of the secant to
the elastic modulus, and a plastic value of Poisson's ratio.

Systematic experimental studies of the variation of Poisson's ratio
in the yield region are generally lacking in the literature. One study
is a report by Stang, Greenspan, and Newman (reference 2) for aluminum
alloys and low-carbon steels. Values of Poisson's ratio under simple
tensile loading were obtained for strains as high as 18 percent on thin
flat tensile specimens.

It appears that a completely systematic series of tests should
include both tensile and compressive stress-strain properties along three
orthogonal axes as well as the Poisson ratio variation along these
directions under simple tensile and compressive loadings. An investi-
gation of this type was carried out for three commonly used aluminum
alloys: Rolled 24S-Th and extruded 14S-T6 and 75S-T6. The results are
given in the section entitled "Experimental Investigation."

In the section entitled "Correlation of Theory and Test Data" the
validity of the theoretical relationship for the variation of Poisson's
ratic is examined by comparison with the experimental results.

This investigation was conducted under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronautics.
The authors wish to acknowledge their indebtedness to Mr. Gary Gould for
valuable assistance in the experimental investigation and Mr. Conrad
Schmidt for machining of the test specimens.

SYMBOLS

E modulus of elasticity

E secant modulus

i quadratic strain invariant; defined in equation (6)
= normal stress

T shear stress

€ normal strain (&/ﬁ)

9 shear strain

v generalized Poisson's ratio (}ey/ex)
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i elastic strain (G/ED
3 o strain deviation (E - €*>
9 cubical dilatation
vl variation of Poisson's ratio from elastic value (v - v*>
S A Cartesian coordinates
Superscripts:
* elastic component

- plastic component

Where two subscripts are used, the first refers to the direction
in which the load is applied and the second to the reference direction.

THEORETICAL CONSIDERATIONS

Transforms of Simple Tension to Simple Shear

For the purpose of indicating the magnitude of the effect of the
Poisson ratio variation in a simple case, it is instructive to consider
the derivation of the affinity terms which transform a simple tensile
stress-strain curve into a simple shear stress-strain curve. Since
Poisson's ratio is associated with strain only, the stress transformations
are written immediately.

According to the maximum-shear theory

T = 0.50 (1)

For the octahedral-shear theory

|
/ T s oy (2)
)

The maximum-shear theory states that

/ A (3)
‘ 1 In simple tension, €y = - ve and thus from equation (3)
% = (LSS (L)
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The octahedral shear strain can be written in the following form:

Yoct =\/81/3 (5)

where I 1is the quadratic strain invariant,

I-= %€x2 + ey + ez2>+]]:(7xy2 + Vyz° + 7zx2> (6)

In simple tension

v, AR e\/ll-(l + 2v2>/3 (7)

In simple shear

Yoct = 7\[2/3 (8)

The affinity relationship is obtained by equating equations (7)

and (8)
y = e\/ 2(1 + 2v2> (9)

Thus, from equations (4) and (9), it is evident that the strain
affinity terms are actually functions of Poisson's ratio. The limiting
values which the affinity terms can assume for a plastically incompressi-

ble solid are given in the following table for typical values of Poisson's
ratio:

{ Lower limit Upper limit
Theory Affinity term V¢ = 0.3 V.=10.5
Maximum shear (L +v) 343 Y:5

Octahedral shear \/2(1 + 2v2) 1553 \[5

Theoretical Poisson Ratio Variation

The cubical dilatation of a strained solid is given by

95T S ey RS g ey & EoE o Hie e i €xSy€2 (10)
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If infinitesimal strains are considered, which is a reasonable assump-
tion in the yield region, the second- and third-order terms of the
dilatation may be neglected. In so doing, the dilatation is equal to
the linear strain invariant:

9 =€, +€__ +¢€ (31

The behavior of engineering materials indicates that the total
strain can be considered to be composed of two parts: The elastic strain
component ¢* and the strain deviation &. Thus, the dilatation can be
written

g :(sx* iy Gz*)+ (ax i 6Z) (12)

By considering the dilatation to be composed of elastic and plastic
components,

9 = 9% + 3 (13)

where
9% = ex* + ey P RINEE (1)
)= DA 6y + Sz (15)

The usual assumption of mathematical plasticity theory that the dilatation
vanishes is obtained by neglecting the elastic component and assuming
that the plastic component is zero.

Consider a solid subjected to a simple tensile load in the x-
direction. Upon making the assumption that the solid is isotropic along
the other two orthogonal axes, the various dilatations can be determined.
Such a solid is referred to as orthotropic.

For the elastic component, from equation (14)

3% = ¢¥(1 lovR)y (16)

and for the plastic component it is assumed that for the orthotropic
solid equation (15) can be written as

T =25(1 - 29) (A7)
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The total dilatation, from equation (13) is

9 =veX(1 = 2v*) &+ 5(1 - 2%) (18)

It is further assumed that for an orthotropic solid the total dilatation
can be referred to the total strain by the relation

9 = (1 - 2v) (19)

Combining equations (18) and (19) and simplifying, the variation of
Poisson's ratio as a function of .strain is given by

Ly
y=19 - %— T o= y¥) (20)

For cases in which the plastic dilatation vanishes, 9 = 0, and
from equation (17), ¥ = 0.5. In this special case, equation (20) reduces
to

V=05 - £0.5 - v

or

v (0.5v= V%) (20a)

0.5 -

= =]

When unloading follows loading into the plastic range, equations (20)
and (20a) yield the elastic value of Poisson's ratio since the term
e*k then becomes equal to unity.

An expression for the generalizqﬁ Poisson's ratio which corresponds
to equation (20a) is also given by Nadai in reference 1.

EXPERIMENTAL INVESTIGATION

Description of Test Specimens

The materials under investigation were loaded in tension and com-
pression along each direction of a set of three orthogonal axes X, Y,
and 2z where the z-direction is the direction of extrusion or rolling.
The materials tested were rolled 24S-Th aluminum alloy and extruded 14S-T6
and 75S-T6 aluminum alloy. The specimens were cut from bars of square

cross section with sides equal to 3% inches.
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Engineering materials generally lack isotropy and, in addition, the
properties may vary from point to point in the cross section. Therefore,
the specimens were cut from each bar in such a manner that strain measure-
ments were taken at essentially the same location in all tests.

A drawing of the tension and compression specimens is shown in
figure 1. The tension specimens were loaded through special grips
designed for this investigation. The grips were seated in spherical
bearings to insure application of axial loading to the specimen and are
shown with a specimen installed in figure 2.

The compression specimens were machined flat, square, and parallel
and carefully placed in the testing machine to minimize bending.

Test Procedure

Load was applied to the specimens by a Baldwin-Southwark universal
hydraulic testing machine of 200,000-pound capacity with an accuracy of
loading of il/E percent. AX-5 strain gages were mounted on each of the
four sides of each specimen. A wired tension specimen is shown in figure 3.

Strains were measured with a Baldwin SR-4 strain indicator. The
estimated accuracy of the strain measurements is approximately 2 percent.
The errors in the strain measurements are associated with the strain
indicator, the stated gage factor of the strain gage, and slight drift
of the strain readings at large plastic strains.

Experimental Results

A complete set of stress-strain curves for each of the aluminum
alloys tested is given in figures h, 5, and 6. Poisson's ratio in the
yield region is given in figures T to 12 for both tension and compression
with the load applied along each of the three coordinate axes. Poisson's
ratio was computed by taking the negative of the ratio of corrected
transverse strain to strain in the direction of loading. Corrections
for the measured transverse strains are necessary because of the construc-
tion of the wire resistance strain gage. The method of correction is
given in the appendix.

A quantity of considerable interest in the theoretical study was the
nature of the plastic dilatation. Accordingly, the plastic dilatation
as a function of strain deviation is given in figures 3, 14, and 15 for
the materials studied. The strain deviations were computed according
to the definition of this quantity, and the plastic dilatation was
obtained by equation (15).
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In all cases, the values of strain shown in the figures were

obtained by averaging each back-to-back set of strain gages to eliminate

any bending. In the worst case, it was found that the maximum bending
strain was approximately U4 percent of the axial strain.

In several of the plots of Poisson's ratio variation shown in fig-
ures 7 to 12 it can be observed that the elastic value of Poisson's

ratio is not constant.

Any scatter which exists at the first few loading

points may possibly be attributed to experimental technique. However,
the consistent variation of the elastic Poisson's ratio shown for the
tension specimens in figure 10 suggests that a nonconstant elastic
Poisson's ratio may actually be a property of the materials tested.

That such behavior was not observed in reference 2, and possibly in other

investigations, is attributed to the fact that the elastic Poisson's
ratio was computed as the ratio of the slopes of straight lines drawn
through stress-axial-strain and stress-transverse-strain data in the

elastic region.

CORRELATION OF THEORY AND TEST DATA

A significant feature of the experimental study is contained in
figures 13, 14, and 15 which show that the plastic dilatation is not

zero for the aluminum alloys under investigation.

This experimental

fact may be attributed, in part, to the anisotropic character of these

engineering materials.

The theoretical variation of Poisson's ratio given in the section
entitled "Theoretical Consideration" was derived for an orthotropic
solid. The stress-strain characteristics of' the alloys used for the

experimental investigation indicate that the cases given in the following
table may be considered orthotropic if it is assumed that the transverse
strains are induced by an effective transverse load of the same sense as

the applied load.

Material Loading
1Lks-T6 Tension in z-direction
245 -Th Tension in z-direction
245 -Th Compression in z-direction
758~T6 Tension in z-direction
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Thus, experimental data are provided for examination of the theo-
retical variation of Poisson's ratio given in "Theoretical Considerations"
by the relation

VaT T v (20

Poisson's ratio for various plastic strains may be computed by use
of equation (20) if the following quantities are known:

(a) The elastic value of Poisson's ratio V*

(b) The stress-strain characteristics of the material in the direc-
tion of application of load from which e*/e can be computed

(c) The term Vv which for a plastically incompressible isotropic
solid has the constant value of 1/2

The coefficient Vv Dbears further discussion since it is a term
which apparently incorporates the effects of nonvanishing plastic
dilatation. From equation (20) this coefficient may be expressed as

Lim® S pe =y
€*/e—>0 g

It is the asymtotic value of the Poisson ratio variation to which the
elastic properties make no contribution, or it can be imagined as the
strain ratio of a material in which the dilatations were purely plastic.
It is referred to hereafter as the asymptotic strain ratio.

Furthermore, the plastic dilatation for an orthotropic material was
assumed to be given by

3 =8(1 - 2¥) (17)

If the asymptotic strain ratio is a constant, then the plastic dilatation
should be a linear function of the strain deviatiom.

An examination of figures 13, 14, and 15 for the orthotropic cases
listed in the preceding table indicated that although considerable
scatter does exist among the experimental points, a possible linear
relationship exists between plastic dilatation and strain deviation
within the range of strains considered. A straight line was passed
through the test data by the method of least squares and V was computed
from
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v=;< _*9_>
2 o)

(17a)

The values of V obtained from figures 13, 14, and 15 by means of

equation (17a) are given in the following table:

Material Loading Computed V Nt
14s-T6 Tension in z-direction 0.65 0.30
oks-Th Tension in z-direction .56 22
ohs-Th Compression in z-direction .63 .29
758-T6 Tension in z-direction .60 .25

To test further the validity of the theory by use of the experimental

data contained herein, it is proposed to examine these data by use of
equation (20) to determine if the value of the asymptotic strain ratio
is constant for various strains and compares with the values given in
the preceding table. For this purpose, equation (20) can be rewritten

in the form

¥
o e e (22)
E*
8 e
Equation (22) can be simplified by letting
v= v+ (23)

where p 1is the change in v from the elastic value. With this

substitution, equation (22) reduces to

(2k)

For the cases listed in the table above, values of p as a function
of ¢ were obtained from curves faired through the test data given in
figures 7, 9, and 11. The values of ¢*/e were computed from the stress-
strain curves of the materials given in figures 4, 5, and 6. Then by use
of equation (24) the asymptotic strain ratios were calculated for the
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series of selected points. These data are shown in figure 16 as com-
pared with the values of the asymptotic strain ratio given in the
preceding table.

Reasonably good agreement exists between the two methods of compu-
tation among all the cases except for 14S-T6 aluminum alloy. The greatest
discrepancies between the two sets of data occur at values of e*/e
approaching unity. The nature of equation (24) is such that large errors
are associated with this range of e*/g values and consequently more

weight should be given to the points removed from this region.
DISCUSSION

The Poisson's ratio test data presented herein for the yield region
of the stress-strain curve exhibit the same general characteristics as
the test data given in reference 2 for similar aluminum alloys. The
tests reported in reference 2, however, also go far beyond the yield
region and indicate that in many cases the variation of Poisson's ratio
reaches a maximum at a strain of between 2 and 6 percent and then
steadily decreases.

It appears that this behavior can be attributed to the fact that
beyond a strain of approximately 2 percent the strains are no longer
small in the sense that the second- and third-order terms in the dila-
tation equation (10) may be neglected. This is demonstrated in refer-
ence 2 by computing Poisson's ratio for a plastically incompressible
isotropic solid using the following expression which can be derived from
equation (10) with the above assumptions:

: gi + g \/2
W= S AL (2‘)_)

€

A comparison of numerical results obtained from equation (25) and
the variation of Poisson's ratio given by equation (20) reveals that
the latter is adequate up to a strain of approximately 2 percent. Beyond
this value of strain, equation (20) asymptotically approaches a maximum,
whereas equation (25) reaches a maximum and then decreases in substantial
agreement with the experimental behavior observed in reference 2.

The test data on plastic dilatation obtained from strain measure-
ments and shown in figures 13, 14, and 15 indicate that tensile loading
in the yield region is accompanied by a permanent decrease in volume,
whereas compression results in a permanent increase in volume. These
data were subsequently checked by density measurements on several



12 NACA TN 2561

specimens used in the experimental investigation of Poisson's ratio and
also by independent volume measurements on a block of 14S-T6 aluminum
alloy compressed in the y-direction to various values of strain devia-
tion. From the latter, the data indicate that the volume changes noted
appear to be associated with the yield region only and apparently decrease

to negligible volume changes beyond a strain deviation of the order of
0502 inch ‘per dnch.

CONCLUDING REMARKS

in the yield region of the stress-strain curve is presented for the
aluminum alloys 14S-T6, 24S-Th, and 75S-T6. The test data are for simple
tensile or compressive loading along three orthogonal axes.

For an orthotropic solid, a theoretical variation of Poisson's ratio
in the yield region was obtained from dilatational considerations.
Certain of the test data indicated that under the loading used the
material could be considered orthotropic. These data were used to con-
firm the validity of the assumptions made in deriving the theoretical ~
variation of Poisson's ratio.

Daniel Guggenheim School of Aeronautics
College of Engineering
New York University

|
A systematic set of test data for the variation of Poisson's ratio
New York, N.Y., November 1k, 1950 |
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APPENDIX
GAGE-FACTOR CORRECTION FOR A ONE-DIMENSIONAL STRESS FIELD

The use of 90° crossed-type (X) resistance strain gages in a one-
dimensional stress field requires that a correction be applied to the
stated gage factor of the gage which is perpendicular to the applied
load. This correction arises from the fact that the end loops of the
transverse gage are subjected to a different strain from that used to
determine the stated gage factor. The stated gage factor of the strain
gage alined in the direction of the applied load requires no correction
since the manner of loading used in the test corresponds to that used
in calibration of the gage.

The symbols used in the following discussion are:

R resistance of strain-sensitive wire

o) resisitivity

L length of strain-sensitive wire

A area of strain-sensitive wire

k constant involving changes in p, L, and A
i length of strain-gage grid

w width of strain-gage grid

n number of grip loops plus 1

G gage factor

T strain reading

The initial resistance of a strain gage in which the strain-
sensitive wire is arranged in the conventional rectangular grid is

Ro = poLq/Ao (A1)

Under deformation, the resistance is changed by the increment A(QL/A)
which involves changes in p, L, and A. It is known, however, that
this increment is a function of the deformation of the wire only. Thus
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g 5 kAo/ean + €2W) (AQ)
RO Py \ nl +w
where € is the strain along the axis of the gage and €5 is the
transverse strain. For loadings in which El = = V€2, equation (A2)
can be rewritten in the form
AR/RO (
2 W
= He i el (S > S A
G 1 ‘211 - vw (A3)

where

o kAo L =Vw
Po nt +w
The left-hand term of equation (A3) is the reading obtained from the
strain indicator. Equation (A3) can be written approximately as

T gl 4 (l L V2>€2 (w/n1) (A4)

The corrected transverse strain is then

e, =T - (1 = VQ)GQ (w/nl) (85)

For the AX-5 strain gage used in the test described in the section
entitled "Experimental Investigation," n = 10 and w/l = 0.5. Thus

e (v o) (46)

The only difficulty encountered in using equation (A6) to correct the
transverse strain measurements is that Poisson's ratio was unknown.
As a first approximation V was calculated by taking the negative of
r/ee. It was found that a second approximation was unnecessary.
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Tension specimen

Section A-A
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Figure 1.- Tension and compression specimens used in experimental
investigation. V-ends are to be flat, square, and parallel
within *0.002 inch.
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o Figure 2.- Tension specimen in testing machine.

Figure 3.- Wired tension specimen.
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Figure 8.- Poisson's ratio variation for 14S-T6 aluminum alloy loaded
in x- or y-direction.
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Figure 11.- Poisson's ratio variation for 75S-T6 aluminum alloy
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Figure 14.- Plastic dilatation against strain deviation for
24s-Th aluminum alloy.
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Figure 15.- Plastic dilatation against strain deviation for
755-T6 aluminum alloy.
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Figure 16.- Comparison of computed values of

NACA-Langley - 1-29-52 - 1000



