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A number of the most promising inte~sl methods for solving approxi-
mately the compressible-lamlnar-boundary-l~er equations are investigated
in order to determine a computationdly convenient and sufficiently
accurate method of calculating boundary-lsyer ~a~teri stics. The chief
methods considered sre: (a) The one-parameter Karman-Pohlhausenmethod,
with three different assumptions for the velocity profiles, and (b) the
two-parameter method, first applied by Sutton, with two different assump-
tions for the velocity profiles. After the methods are explicitly
described in general terms for the case of zero pressure gradient and
for the case of a pressure gradient in the direction of flow with zero
heat transfer, they are applied to the calculation of the compressible
laminar boundary layer over a surface with zero pressure gradient, with
and without heat transfer at the surface, for the purpose of establishing
the accuracy of the methods. Comparison of the results is made with those
of known exact solutions for skin-friction and heat-transfer coefficients,
velocity profiles, velocity derivatives, and especially
layer stability..From this comparison it is found that
Pohlhausen method with a sixth-degree polynomial as the
is the most suitable for many practical purposes.

INTRODUCTION

laminar-boundary-
the K&&n-
veloci~ profile

It is well-known that the differential equations of two-dimensional
compressible-laminar-boundary-layerflow are difficult to solve exactly.
Stewartson (reference 1) and Illingworth (reference 2) have recently shown
that if the Prandtl number is unity and the viscosity coefficient is
proportional.to the temperature, then the equations for the compressible
heat-insulated boundary layer with a given pressure gradient can be trans-
formed into the equations for an incompressibleboundary layer with a
different pressure ~adient; however, this principle appears at present
tedious to apply in practice.
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2 NACA TN 2655

The most frequently used and most
boundary-layer equations approximately

fruitful methods
sre the integral

which the partial differential equations are integrated

of solving the
methods, in
over the boundary-

layer thickness, and are hence satisfied only “in the average.” By
assuming definite forms for the velocity profiles as functions of the
normal distance, ordinary differential equations are obtained, with
distance along the surface as the independent variable. Any integral
method may be regarded as either of two types: (a) The single-integral
type, in which the partial differential equations are integrated once
across the boundary-lsyer thiclmeSS, and the profiles contain a single
parameter to be determined by the resuiting ordinary clifferential equa-
tion; (b) the multiple-integral type, h which several (say m) integral
equations are used, and the assumed velocity profiles contain m param-
eters to be determined by the m resulting ordinary differential equations.

The best-known titegrsl method is the K&&-Pohlhausen, which is
of type (a) with fourth-degree profiles. This method has been found
quite useful for incompressibleflow (cf., e.g., Dryden, reference 3)
but it has two important limitations. It fails to predict the separation
point accurately in an adverse pressure gradient and it often does not
give sufficiently accurate results for stability calculations based on
criteria developed by Lin and Lees (references k and 5).1 For these
purposes refinements in the usual K&m& -Pohlhausenmethod must be made.

h the methods of type (a) the refinements usually consist of
assuming types of profiles which satisfy more boundary conditions than
the fourth-degree profiles. Schlichting and Ulrich (reference 7), for
example, have used sixth-degreeprofiles for incompressibleflow, satis-
fying an additional boundary condition at the wall and also at the outer
edge of the boundary layer. Satisfactory results were obtained, except
for flow in the vicinity of a stagnation point. Weil (reference 8) has
recently applied this method to compressible flow with zero heat transfer.
However, no investigationwas made here of the expected accuracy of the
results, although it was pointed out by Weil that the use of stith-degree
profiles is expected to yield satisfactory results for stability calcu-
lations since these calculations involve first @ second derivatives of
the velocity, and the velocity profiles are made to satisfy additional
conditions involving the rate of change of second derivatives (viz, third
derivatives).

Timman (reference9) has suggested the use of exponent~sl-profiles
based on exact profiles derived from the solutions of Von Karman and

lLees (reference 6) has recently applied the K&&-Pohlhausen
method to an investigationof the stability of compressible laminar
boundary layers with favorable pressure gradients, but this investigation
was considered by its author to be essentially qualitative.

— —.
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MLUikan (reference 10). Although the calculations are thereby made
more tedious, it is believed that no significant improvement over poly-
nomial profiles should be expected, since the latter type of profile
usually satisfies a fairly large number of conditions at the outer
boundary-layer edge anyway, and since primary interest usually lies in
the region near the wall. Moreover, Yuan (reference 11) and Lew (refer=
ence 12) have also used exponential profiles with no evident improve-
ment in accuracy. In cases of adverse pressure gradients, Timman has
su&.jestedthe use of a special profile satisfying an additional condi-
tion involving the fourth derivative of velocity at the separation point.
Considerable improvement in the accuracy of prediction of the separation
point was thereby obtained (reference 9).

Loitsianskii (reference 13) has suggested a modification of the
K&&n-Pohlhausen method based on multiplying the momentum equation by
a small variation of velocity and then integrating across the boundary-
layer thiclmess. A velocity profile with a single undetermined pamm-
eter is, as Usualt assumed. The skin friction is subsequently calculated
by means of the Karm&n momentum equation. The method was applied in
reference 13 for several cases of incompressible flow, but the results
did not seem to indicate superiority of this method over the usual K&m4n-
Pohlhausen method with a fourth-degree profile.

b the titegral methods of type (b) the K&&n-Pohlhausen method
is extended by deriving more than one integral equation. This can be
done by multiplying the momentum partial differential equation-by a
series of different factors, and then by integrating the resulting equa-
tions over the boundary-layer thickness. The factors which have usually
been chosen are integral powers of either the velocity (Leibenson, refer-
ence 14; Golubev, reference 15; Sutton, reference 16; and Wieghardt,
reference 17) or the normal distance (Whitehead, reference 18). A further
possibility, suggested and applied by Whitehead, is successive integra-
tion of the momentum equation. The integral equations obtained by these
procedures are to some extent analogous to those which would be obtained
by the method of moments, and an infinite number of such equations would
be equivalent to the origksl partial differential equation. Because of
the elaborate nature of the calculations required in such a procedure,
however, only the first two of the infinite set of equations have usually
been considered.

The multiple-integralmethods have thus far been developed and
applied only for incompressible flow. In the present investigation only
the use’of powers of velocity as factors wilIlbe considered. W the
application made by Sutton (reference 16) a fourth-degree velocity pro-
file was assumed with two undetermdmed parameters. Howeverj o,m of the
boundary conditions at the wall ordinarily satisfied in the Kenl&l-
Pohlhausen method was mt satisfied. Wieghardt (reference 17) has also .

_ . ..—————— –--— -–
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used this two-psmameter method, but he has assumed eleventh-degree
velocity profiles satisfying additional conditions at the wall (in

2655

fact,
the same as those satisfied by the sixth-degreeprofiles of references ~
and 8) snd at the outer boundary-layer edge. Although results of com-
paratively high accuracy can therebybe obtained, Wieghardtts method
can be qpite tedious in practice. This, in fact, is one of the general
disadvantages of the multiple-integrsl methods.

The general case of heat transfer in a compressible lsminar boundary
layer with a pressure gradient is complicated by the fact that in this
case there is no known solution of the ener~ partial differential equa-
tion giving the temperature explicitly as a function of the velocity.
One means of treating such a case is by transforming the ener~, as well
as the momentum, equation into a differential-integralequation, and
assuming a profile not only for the velocity but also for the temperature.
Kalikhman (reference19) has inv~stigated this case by this means using,
analogously to the ordinary K&man-Pohlhausen method, fourth-degree pro-
files for both velocity and stagnation enthalpy. Although i.mportsnt
useful results are thus obtained, their accuracy is subject to the limi-
tations of the K&m&-Pohlhausen method previously discussed.

The aim of the present study is to investigate the practical feasi-
bility of the most promising integral methods (single-integraland double-
titegral methods with various polynomial velocity profiles) from the point
of view of simultaneous accuracy and ease of computation. The approach
here is primarily a posteriori. The implications of each of the methods
considered are developed for only the simplest case, that of a surface
with zero axial pressure gradient in a subsonic and in a supersonic

,,

stresm, and these are compared with the corresponding implications of an
exact solution. In Particulm, results for skin friction and heat trans-
fer at the surface, velocity profiles, velocity derivatives, and laminar
stability based on the work of Lees (reference 5) have been considered.
The comparison of stability is particularly critical, since it ib here
that the largest errors are incurred in the approximate methods, and
that the greatest differences among the results of the various methods
appear.

The following points are among the distinguishing features of this
study: (a) The two-parameter method involving two differential-integrsl
equations is developed and applied to compressible flow, and (b) the
implications of the various methods are directly compand with respect
to stability criteria; this, moreover, is the mhti basis here for judging
the relative accuracy of the methods for practical purposes.

Although it does not necessarily follow, without further investi-
gation, that the conclusions drawn from the analysis of the solutions
for the flow with zero axial pressure gradient will be valid, without

—.
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modification, for flows tith axial
that the COIII’J)ariSOILSand restitin#j

5

pressure gradients, it is believed
conclusions’should nevertheless serve

as an indication of the relative merits of the various methods in more
general cases.

It maybe noted that llsngler~stransformation(reference 20), which
brings the boundary-layer equations of axially symmetric flow into the
form of the two-dimensional equations, further extends the usefulness
of two-dimensional-flow solutions. Moreover, axiadly symmetric flows
of constant pressure thereby lead to eqyations analogous to those of
two-dimensional flow with zero pressure gradient.

‘J?hiswork, carried out at the Polytechnic Institute of Brooklyn
Aeronautical Laboratories, was sponsored by snd conducted with the
financial assistance of the National Advisory Committee for Aeronautics.
The authors wish to acknowledge the helpful discussions of this research
with Professor R. Paul Barrington and the valuable contribution of
Dr. H. G. Lew to the formulation of the program in its early stages.
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SYMBOLS

appearing in velocity profile

factor of proportionality in equation L = &
Pm w

coefficient of average skin-friction drag for surface of
length x

specific heat at constant pressure

specific heat at constant volume

integrals defined in equations (22)

local heat-transfer coefficient

thermal conductivity of fluid

Mach number

local Nusselt number (hX/km)
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Nn

P

R

Rcr

Rx

%

s

t

T

%

Um

U,v

~>Y

Prandtl number of gas
(’%/k)

preSsure

gas constant
(% -4

critical

Reynolds

Reynolds

Reynolds number

nuber based on length x (lJ@X/V@)

number based on momentum thickness O (UJ+J

Sutherlandfs constant

transformation variable defined in equation (15)

absolute temperati -

velocity at outer edge of boundary layer

free-stream velocity .

velocity components in x- and y-directions, respectively

coordinates parallel and perpendicular to surface,
respectively

variable de&ned in equation (35)

mass density

absolute coefficient of viscosity

ratio of specific heats
(%/+

kinematic viscosity (u/p)

thickness of boundary-lsyer velocity profile in xy-plane

thickness of boundary-layer velocity profile in xt-plane

transformation variable (/ )t 5*
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Subscripts:

m

1

0

c

free-stream conditions for subsonic flow; uniform conditions
behind shock for supersonic flow

locsl.conditions at outer edge of

conditions at surface

vslues at critical coordinate for

BASIC EQUATIONS

boundary layer

stability

The following equations describe the steady, two-dimensional, laminar-
boundary-layer flow of a compressible gas along a surface whose radius
of curvature is large compared with the boundary-l~r thickness:

Momentum eqpation in x-direction:

pu(au/&) + pv(au/ay) = -(h/&) + (b/ay)[P(b/ti~ (1)

Momentum equation in y-direction:

Equation of continuity:

(a@d(pd + wh(pd = o

Equation of state:

p=pm

(2)

(3)

(4)

llner~ equation:

Pucp(~/&) + PvCP(~/~) = u(@/bX) + (a/by)[k(bT/&~ + L@@Y)2 (~)

- —-—..—.———- — ——-— —— _—— — -----



8 NACA TN 2655

As a consequence of equation (2) the static pressure p at any
sxisl position x in the boundary layer’is equal to the corresponding
static pressure in the potential flow, in which conditions are assumed
to be known.

From the momentum (Bernoulli) equation in potential flow, the
pressure p can be expressed in terms of the potential-flow velocity
distribution, thus:

where the prime denotes differentiation with respect to x, and the sub-
script 1, conditions at the outer edge of the boundary layer. As is
usual in aeronautical problems, the coefficients of viscosity and heat
conductivity are taken to be known functions of the temperature only,
while the coefficient of specific heat at constant pressure will be
assumed constant.

The treatment of these equations is greatly simplified if use is
made of well-known algebraic velocity-temperature relations which are
exactly valid for a Prandtl number of unity. These relations are for
the case of zero heat transfer with or without an axial pressure gradient

and for the case of zero

(u2/2) + C&

sxial pressure

( /)“22+Y=

.

=A (7)

gradient with heat transfer

A+Bu (8)

where A and B are arbitrary constants determined from wsXl_and free-
stream conditions. With the use of these conditions, equation (7) becomes

T/Tl =1+(7- 1)(M~2/2)~ - (@&j (9)

.—
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while equation (8) becomes

q%= @o/T,)-{@o/T,)-~+(,-‘)(Mlyq}(“/%)-
(, -1) (%72) (11/u1)2 (lo)

The use of equations (9) and (10) which are valid only for a Prandtl
number of 1 in lieu of the more general ener~ equation (5) is justified
primarily by the shplifications introduced in the anslysis. However,
it has been found that momentum boundary-lsyer characteristics such as
skin friction are not significantly affected by a change in Prandtl
number from unity to the actual value for air, which is between 0.65
~d 0.76. Heat-transfer coefficients are affected approximately 10 per-
cent by such a change.

Before discussing the approximate solution of the basic equations
by means of integral methods, it inconvenient to present several sub-
sidiary relations for later use. Since the pressure within the boundary
layer at any given value of x is a constant, equation (4) gives

P/Pi

The most accurate representation of
viscosity of gases with temperature
formula, nsmely,

= T1/T (11)

the variation of the coefficient of
is usualJy considered to be Sutherland’s

V/vm= (T/Tm)3/2(Tm+s)/(T+s) (12)

where S is a constsnt which for air is 21.60R and where the sub-
script L= denotes reference conditions taken in the undisturbed free
stresm for subsonic flow and in the uniform flow behind any shock wave
associated with the leading edge for supersonic flow. Although it iS

possible in principle to use equation (12) in the methods employed here,
it is inconvenient to do so since certain inte~als must then be evaluated
numerically. It is thus desirable that some acceptable simplif@ng
approximation to equation (12) be made. h reference (21) Chapman and
Rubesin suggested that the mathematical advantages of assuming w and
T to be linearly related can be obtained along with satisfactory accuracy
if it is assumed that

— - —-———— — —. —.—
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(13)

where C is a factor which is chosen so that the Sutherland viscosity-
temperature relation is exactly satisfied at the wall temperature To.

Thus,

c= (To/TJ1/2(Tm+s)/(To+s)

Equation (13) will be used throughout this report.

It is convenient in the method used here to apply
transformation. Thus a new variable t is defined so
value of x the physical variable y is given by the

(14)

the Doroanitzw
that for a gi&
equation

(15)

Correspondingly the thiclmess bt of the boundery layer in the xt-plane .

is defined as the vslue of t when y = 5, and therefore

(16)

With the additional relations given by equations ‘(n), (13),
(14), and (15), equation (1) can be recast into an infinite set of
integral-differentialeqyations. This can be done by multiplying equa-

tion (1) by Un

Y = 5 with the
dy(n=l,2,3, . . .) andby
boundary conditions that at

U=v=

andat y=b

u= u~

au/ay = 1
0

0

integrating from y = O to
Y=o

(17)

—.
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After transforming to the xt-plane~ nondimensionalizing, and introducing
T s t/5t, the following set of equations is obtained:

,[ l-ls.(./~){,u,n+2~tJ:(u-(n+ l)plU1n+2

(’ul/~)(’t2/ul)J1[uPl-(’wwn] “ =

! ( ~)-l~l@/ul)n-l[(~/aT)(u/u1)]2dTn>lII@& PJJIT

c#~lulTm)-’fa/aT) @/u,]o n.()

The application of the imfinite set of equations represented by
equations (18) will now be discussed. By mesas of equations (9) and
the temperature can be expressed in terms of the velocity component

I Now if it were assumed that

u/ul ‘ y aj(x)Tj
j=o

(18)

(lo)
u.

(19)

then several of the aj coefficients couldbe determined in terms of

the other coefficients so that certain boundq conditions, at least
those in the xt-plane corresponding to those givenby equations (17) in
the xy-plsne, would be satisfied. The rest of the coefficients and bt

could be calculated from the infinite se. of first-order ordinary differ-
ential equations represented by equations (18). Such a solution would
in principle be exact and would be equivalent to a solution of the
original partisl diffe~ntial equations.

In actuality, however, since the attainment of such a solution
would be quite difficult, it will usually be considered sufficient for
practical purposes to obtain approximate solutions to the infinite.set
by taking only the first few diffenntial equations of this set and
correspondinglyonly the first few terms of the power series in equa-
tion (19). kdeed, much information of engineering importance for the

. . . ..—-— .- ————-———— .—— .—- — —————.—— ———-
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flat-plate case has been obtained in the past by using only the equation
corresponding to n = O, that is, to the Von K&&n mmnentum integral
(e.g., references 3, Il.,and 12). Additional accuracy may be obtainable
by the use of a second equation, that is, by the use of equations (18)
for n = O and n=l. Therefore, these two equations will now be
explicitly written.

For n = O:

(%k#%)/(wl’m) (m)

and for n = 1:

(F4/4)@)’ + ~4’/2) + (F@) (&% P,@)’ - F,(% %)g & =

~6~mc)/(P~u~](TllTrn) (21)

where the prime denotes differentiation with respect to x and where ‘

(22)

‘7

1,
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In these F-J integrals

be, is used to express

13

either equation (9) or (10), as the case may

T/Tl.

In the actual application of
U/ul is assumed as some function

in T is here assumed, that is

either or both equations (Xl) and (21),
Of T. For convenience a polynomial

u/uI = f_ a-j(x).s
j=()

(23)

where N is the degree of the assumed polynomial containing (N + 1) of
the a ls.

J

The ajts are determined from the boundary conditions and from the

differential equations (20) and (21). The boundary conditions in the
xt-plsme corresponding to those given by equations (17) must be satisfied.
Furthermore, additional accuracy can be obtained if the aj’s are selected

so that the approximate solution given by this method has the same value
of lower derivatives at y = O and y = 5 as an exact solution to the
partial differential equations would have. These values msy be obtained
by differentiatingequation (1) one or more times with respect to y
or t. For completeness the useful boundary conditions in the x,t coordi-
nates will now be listed for flows having zero axisl pressure gradient
with or without heat transfer or having an axisl pressure gradient but
no heat transfer:

s

Att=O: /Uul=o 1
wpl/TJ(T1/To)(a2/b2)(u/@ =-plulfbtp

(a%rs) (u/ul) = o

}

At t = bt: /Uul=l I
(W/a#) (u/Ul) = O(m = 1,2,3, . . .) J

It may be pointed out that elthough additional condition~ at y = O
can be derived they become impractically cumbersome to apply.

(24)

——.. ~ ——..—— ———— —..— .—...———— --
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The method involving the simultaneous solution of equations (20.)
and (21) will be referred to as the “two-parameter method,” while that
of using only equation (20) will be the “one-parametermethod.” In the
two-parametir method one coefficient ~ in addition to bt is deter-

mined from the two diffe~ntial equations, the rest from the boundary
conditions. ti the one-par=ter method bt is determined from the

solution of equation (20) and all of the aJ coefficients are deter-

mined from boundary conditions.

In carrying out the integration of these differential equations
graphical or numericsl methods are in general required. The arbitrary
constants are usuaILy determined so that the unknowns are either well-
behaved or have definite prescribed values at some value of x.

Before applying the methods indicated here to the case of an axial
pressure gradient, it is considered desirable to investigate critically
the accuracy obtained by using several types of profiles in equation (20)
and in both equations (20) and (21) for the compressible flow with no
axial pressure gradient. An exact solution for this case has been given
by Chapman and Rubesin (reference 21). The accuracy of the results wild.
be measured by two criteria, namely, by the accuracy of the skin-friction
and heat-transfer values and by the critical Reynolds nuniberfor the
stability of the laminar boundary layer.

The application
the results for skin
in detail.

BOUNDARY

of these integral methods to the flat plate and
friction and heat transfer wtll nowbe discussed

- WITH ZERO AXIAL PRESSURX GRADIENT

The one-parsmeter and two-parameter methods described in the pre-
ceding section sre here explicitly applied to the compressible flow over
a surface with zero sxial pressure gradient. Various profiles will be
assumed and the results
exact solution for this

co&red with
case.

Solution of

those obtainable-

Equations

by a mathematical.ly

For the case of zero axial pressure gradient u~ = Um and equa-

.

tions (20) and (21) become

(5:)’ = (%@3)/(@ (25)
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and

(bt2)’ = (4~#F6)/@.,F4)

15

(26)

where the Fj titegrals are in this case constants, and not functions

of x.

In the two-parameter method equations (25) and (26) are solved for
tit and the additional a~ coefficient which has not ’beendetermined

from boundary conditions. With the initial condition bt = O at x = O

these unknowns are determined by the equations

~t/x=J(%pl)(%) (28)

where ~ . Umx~@. Equation (27) leads to a quartic equation in the

unlmown coefficient ai, three roots of which must be rejected on physical

grounds. Once the constant value of ~ is known, F3 and F1 can

be evaluated and substituted into equation (28) to complete the solution.

h the one-parsmeter method the Fj integrals are completely deter-

mined once the velocity profile is chosen so as to satisfy the selected
boundary conditions. Thus, only equation (28) is used to determine the
single unlomwn 5t.

Skin Friction and Heat Transfer

From the solutions outlined in the preceding section, the skin-
friction and heat-transfer characteristics are readily determined. The
coefficient of average skin-friction drag Cf is defined by the equation

cf=2
~ II‘(dl+y)odx(Pmu$

o

.

(3)

. . . . ..——. .— .———— — .— ——.. .. ..—_ — . .. —-—
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By use of equation (28) this can be written as

Similarly a local heat-transfer coefficient h can be defined as

h = -(k ~/b)o/(To - Te)

(30)

(31)

where Te is the equilibrium wall temperature for no heat transfer and,

for Nfi = 1, is given by the equation

(32)

By the use of equation (28) the equation for h is found to be

NNU =

=

hx/k

(F1F~C12)1/2

Hence, by comparisonof equations (30) and (33),

NNU = Cf~/4

(33)

(34)

Velocity Profiles snd Results for Skin Friction and Heat Transfer

Several velocity profiles were assumed and the friction and heat
transfer givenby these profiles were calculated. In the two-parameter
method fourth- and fifth-degree pol~mials were used, while in the one-
parmeter method fourth-, fifth-, and sixth-degreepolynomials were
chosen.

The results obtained here are compared mainly with those of the
exact analysis of Chapman and Rubesin (reference 21) which treats a

—. -—
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general Prandtl number and variable surface temperature. The exact
velocity profiles of reference 21 are derived from the well-lmown Blasius
differential equation, solutions of which are tabulated, for example,
h reference 22. With the assumptions Npr = 1 and conptant surface

temperature for which equations (9) and (10) are valid, exact temperature
profiles are thus obtainable from the exact velocity profiles of refer-
ence 21. (These profiles, when expressed in terms of the Blasius vari-
able ~ (cf. equation 14, reference 21), me independent of the surface
temperature and the Prandtl number.)

The variation of skin friction with Mach number for an insulated
surface is represented in figure 1. Included for comparison are results
already calc~ated

results for Npr =

‘I’ableI gives
number obtained by
velocity profiles.
ence 21 for Npr =

stream temperature

in reference 21 for Npr = 0.72, as well as exact
-1

-1..

values of the skin-friction coefficient and Nusselt
the one- sad two-parameter methods with the various
Values derived from the exact analysis of refer-
1 and 0.72 are listed for comparison. The free-

and the wall temperature, tich for an insulated
surface is-a function of the free-s~nsam Maih number, are contained
explicitly in the term C. Typicsl values of m for au insulated
surface are presented in table II in connection with the calculation of
the skin-friction drag coefficient.

Table I shows that the values obtained for skin friction dnd heat
transfer by the two-parameter method with either of the two profiles
used and by the one-parsmter method with a sixth-degree profile differ
from the exact values by less than 0.6 percent. The values obtained by
the one-parsneter method with the fourth-degree profiles are in error
by approximately 3 percent. Thus, all methods used here give sufficiently
accurate results for engineering purposes for skin-friction and heat-
transfer coefficients.

Since in both the exact solutions (reference 21) and the solutions
obtained here by the integral methods, the effect of Mach number in the
case of sm insulated plate with Npr = 1 is given by the same factor,

namely m, it follows that (for a linear temperature-viscosityrelation)
these intepal methods lead to the exact effect of Mach number on Cf

and NNU. It may be noted that the Mach number effect depends solely on

the assumed temperature-viscosityrelation. The effect of the latter
can be seen from figure 1, where the results of the various integral
methods and of reference 21, all.based on a linear temperature-viscosity
relation, are shown along with Crocco’s results which are based on the
Sutherland formula.

_-—_.—._ .——- -— ——— ..———— —.
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From figure 1 it can be seen, incidentally, that the value of the
Prsndtl number has a small effect on the variation of Cf with Mach

numiberin the case of zero heat transfer. For example, in the range
M= O to M=5, with Tm=6480R, Cf & varies frord1.328 to 0.983

for N- = 0.72, and from 1,328 to 0.954 for ~r = 1. It can be seen

from table 1, moreover, that the Prandtl number has a somewhat larger
effect on the vslue of Nusselt number at all Mach numbers, the change
from Npr =lto Nw = 0.72 be= about 10 percent.

Comparison of Velocity Profiles and Derivatives in Physical Plane

For esthating the stability of the laminar.boundary layer, the
accuracy of the first and second derivatives of the velocity profile,
as well as that of the profile itself, are of importance. In this sec-
tion the profiles and derivatives obtained by the integrsllmethods under
discussion are compared with the exact Blasius solution
and 22. The comparison can be conveniently made in the
by introduction of the dimensionless variable

G = (Y/’a)(qc)@

of references 21
physical xy-plane

(35)

The derivatives with respect to 6 are shown in figures 3 and 4.

It is seen from figures 2, 3, sad 4 that, although the velocity
profiles obtained by the integral methods agree well.with the exact
profile, the derivatives, as might be expected, do not correspond so
closely. Previous comparison of skin friction and heat transfer, which
depend upon the first derivatives at the surface, indicates that each
of the integral methods gives good results for these characteristics.
Hence each of the integral methods maybe considered to predict the
value of the first derivative at the surface with sufficient accuracy.
Moreover, except for the fourth-de~ee profiles, the first and second
derivatives given by all the approximate solutions are in good quali-
tative agreement tith the exact results throughout the boundary-layer
thiclmess. Examination of figures 3 and 4 for first and second deriva-
tives over the boundaq-layer thickness indicates, however, that the
one-parameter method with a sfih-degree velocity profile gives on the
whole the nmst satisfactory results. It is to be anticipated that this
method will consequently also giw satisfactory results for stability
calculations.

_—
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DETERKDMTION OF CRITICAL REYNOLDS NUMEER FOR STABILITY

The experimental work of Schubauer and Skramstad (reference 23) has
clearly established that the transition from a laminar to a turbulent
boundary layer is due to an instdxLlity of the laminar layer, if the
turbulence in the free stream is low, and if the surface of the body
is aerodynamically smooth and has a large radius of curvature. Thus
the lsminar-boundary-layerstability theory, which has been developed
for incompressible flow by several investigators over the past 25 years
snd which has been recently extended by Lin and Lees (references 4 and 5)
to the practically interesting case of compressible flow, may be used
to predict the local Reynolds number at which instability of the laminar
layer will first occur, or above which self-propagated disturbances are
not dsmped out. Transition to turbulent flow will.take place downstream
of the point corresponding to this local Reynolds number, which is termed
the critical Reynolds number; the exact distance downstream cannot he
predicted by the present stabili~ theory, which is based on small-
perturbation methods, but seems to be dependent on the value of the
criticsl Reynolds number, on the magmitude of the smsll but possibly
finite turbulence h the free stream, on the surface roughness, and on
the potential-flow pressure gradient.

The exact calculation of the critical Reynolds number for a given
velocity profile is tedious. However, the approximate stability rules
of Lin and Lees (references 4 and 5) permit a rapid determination of
this critical value with a minimum of labor. These rules have been
shown by the work of Lin and Lees and that of Hahneman, Freeman, and
Finston (reference 24) to give reliable results and have, therefore,
been used extensively. It might be further mentioned that because of
approximations inherent in the lsminar-boundary-layer stability theory,
sad because of the undetermined relation between boundary-layer neutral
stability and transition, there seems to be no practical justification .
for obtalntng greater accuracy than that giv&n by the approximate sta-
bility rules.

The results of stability calculations are sensitim to the accuracy
of the profiles. Thus the critical Reynolds numbers based on approximate
solutions to the boundary-layer equations have not in general been in
good agreement with those based on exact solutions. The reason for this
discrepancy is clear when it is considered that the stability calculation
depends strongly on first and second derivatives of the velocity profile.
Approximate solutions maybe expected to give fairly accurate veloci~
profiles, but unless special care is exercised the first and second
derivatives of the profile throughout the entire boundary-layer thick-
ness might be quite in error. This has been shon in the pre~ious sec-
tion where it has been pointed out that the frequently used Wrm&n-
Pohlhausen method with a fourth-degree velocity profile gives reasonably

—.—.—.—. .- — ——- — --- ..——. . _.— .—
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.

accurate vslues for the skin friction, the heat transfer, and the velocity
profile but ytelds quite inaccurate values for the derivatives. It may
be-expected, therefore, that a crucisl test of the accuracy of approxi-

“

mate solutions to the laminar-boundary-layerequations wqild be a com-
parison of the criticsl Reynolds numbers predicted by these solutions
with those predicted by exact solutions.

In this section the critical Reynolds numbers of the profiles
obtained in the previous section for the zero-heat-transfer case are
obtained and compared with those of the exact solution of Chapman snd
Rubesti.

With the prime denoting partial differentiation tith respect to G,
Lees! criterion mdified for the viscosity-temperature relation used here
‘isgiven as follows:

Rcr =

=

2(%,crc)112

25(U/@o’C(T/Tl) 2(u/@-4{ hM~2~-(u/UI)~2} -1i2 (36)

where the subscript c denotes values at the point G = Ec at which

the following relations are satisfied:

and

O.xO/J= 1
- 2~/%);GF/%) -q (38)

It will be noted from equation (37) that the first and second deriva-
tives of the velocity and temperature profiles in the critical region
around. 6C are influential h the determination of Rcr. The procedure

for obtaining Rcr is to calculate J from equation (37) for various

values of e, and to f5ndthe values of e = Cc for which equation (38)

is satisfied. After the vslues of (Ul%)c ~d (T/T1)c = detetimd
at this point, Rcr and ~,cr follow from equation (36).

.

_.—. ——
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For comparison with previous resuits it is convenient to calculate
the critical Reynolds number ‘e)cr based on mmsntum thickness. Since

19 is defined by

‘9=J5(P,P1)(W)F- (WJ dY

it is found, for the integral methods, that

R~,cr = (F~F~/2)1i2Rcr

and for the profiles of reference (21)

‘9,cr = o.332Rcr

(39)

(40)

(41)

Calculations of the minimum critical Reynolds numbers have been
made for the flow over a flat insulated surface at f~e-strem Mach
numbers of 0, 1, and 2. The results are tabulated in table III and -
plotted in figure 5. Primarily, comparison of the integrsl methods
presented here should be made with the results derived from the exact
profiles of reference 21 since identical temperature-viscosityrelations
are used in tith. The result~ of Lees, given in figure 5 of reference 5,
are also presented for comparison. Note should be taken that Lees’
approximate values sre based on still a further approximation to equa-
tions (36), (37)> and (38) presented here.

Figure 5 indicates that the one-parameter sixth-degreepolynomial
method gives the best general agreement with results of the exact solu-
tions over the range of Mach numbers studied. T!& two-parameter, fifth-
degree method is next best, while in order of decreasing accuracy, the
one-parameter fifth-degree, two-parameter fourth-degree, and one-parameter
fourth-degree polynomials follow. The two-parameter methods seem to
give better general agreement than the one-parameter methods for equal
degree of the assumed polynomial for the velocity profile. (Because of
the inaccuracies introduced by the approximation in this stability
criterion, as well as by the required graphical method involved in its
application, the derived results are not reliable to more than two sigdf-
icant figures.)

J

-. — . — .. —-—-- --——-— -—. -— —-———— ..-— ———— .—
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The stability analysis given here has thus indicated that integral
methods of solution of the boundary-layer equations may be used to
predict the critical Reynolds number provided that either additional
integral equations or higher-degree polynomials and additional boundary
conditions with a single integral equation are used. Thus the choice
of method to be used h the more genersllcases of pressure gradient with
and without heat transfer is either the two-parameter method or the one-

Parameter method with higher-degree polynomials, particularly of the
sixth degree.

While these two methods lead to results which are of nearly the
same accuracy, use of the one-psrameter method has the advantage of
simplicity of calculation, which becomes significant in cases involving
pressure gradient. It is thus concluded that the one-parameter method
with si@h- or higher-degree polynomials is the most satisfactory and
promising method for extension to general compressibleboundary-layer
analyses. Sixth-degree polynomials wi~ probably prove to be satis-
factory in many cases, but use of a seventh-de-e profile satisfying
an additional condition at the separation point (cf. reference 9) may
increase the accuracy of determining the separation point in adverse-
pressure-gradient cases. Moreover, a sixth-degreeprofile may not be
satisfactoryfor flow near a stagnation point (cf. reference 7).

CONCLUSIONS

TM laminar-boundary-lsyerequations for compressible flow can be
converted into one, two, or more integral-differentialequations. Approxi-
mate solutions can be obtained by assuming special forms for the velocity
profiles satisfying various boundary conditions and containing, in
practice, either one or two parameters to be determined by these equations.

From a comparison of the integral methods discussed here for the
compressible flow over a surface with no axial pressure gradient, the
folJ_owingconclusions can be drawn:

1. All of the methods predict the values of the skin-friction and
heat-transfer coefficients at the wall as well as the over-all velocity
profiles with satisfactory accuracy for engineering purposes. The two-
parameter method and the one-parameter method with a stxth-degreepro-
file are particularly accurate.

2. The one-parameter method with a sixth-degreevelocity profile
gives on the whole the most accurate results for velocity profiles and
their derivatives throughout the boundary-layer region. +
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“3. The critical Reynolds number for laminar-boundary-layer sta-
bility is predicted with qualitative accuracy by all methods. Moreover,
reasonably good quantitative accuracy is obtained with the two-parameter
method and with the one-parameter method with a sldh-degree profile.

4. Because of computational shplicity and equalityof accuracy,
the one-parameter method with sixth- or higher-degree polynomials appears
to be the nmst satisfactory and promising method of investigating the
more general case of laminar compressible boundary layer with axial
pressure gradient and heat transfer.

Polytechnic bstitute of Brooklyn
New York, N. Y.j November 6, 1950

.
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Method

Two psrameter

IOne parameter

k
Reference 21

= Constant

;=1

Eeference 21

0 = Constant

TABLE I.- SKIN-FRICTION DRAG COEFFICIENT

Degree of
polynomial

4
5

AND NUSSELT NUMBER

EOundsry conditions
satisfied

(cf. equations (24))

l,4,5(m = 1,2)
l,2,4,7(m= 1,2)

l,2,4,5(m= 1,2)
L,2,3,k,5(m = 1,2)
L,2,3,k,5(m= 1,2,3)

0.663
.660

0.635
.644
.661

0.664

0.664

!NNu(R.#)
1/2

0.663
.660

0.685.
.644
.661

0.664

0.592

.
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TA13LEII.- VALUES OF @ FOR AN

INSULATED SURFACE FOR NB = 1

Tm

72° F absolute

1.0

1.021

1.057

1.074

1.067

1.043

648° F absolute

1.0

.976

.916

.844

.776

.718

v
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TABLRIII. —KCNIMUM CRITICAL REfROLM NONBERS FOR S1’ABHJTY

‘IN LAMINAR-KKJNDARY-LAYER FLOW OVER AN INSUIATED

FIAT SU’FWACE

&=o &.1 &=2

Metkd

()

u
e~

‘cr Re, cr %,cr

()

u % ~ Rx u,—

()

% ~ ~

(1)
~c c c c Gc Gc -F c c 6C Kc T c c

em 1 exact

Ttabillty

calculation l% 51,wlo IJ.o q’,cOo

ees’ app3xtite”

atablllty

criterion o ‘41/?-5 195 86, m 0.4B n9 32,1xM

Chapnan-Rubesin 0.64 ,419 540 180 73,m3 0.947 .517 2$X3 96 21,cKlo 1.97 0.7’24 7’7 26 14&l

2 parameter-4 .56 .370 8STI 290 198,om .862 .47 J@ 152 53,@30 2.05 .7’5 62 21 96

2 parameter-s .59 .381 7m 26) W=’,m .958 .51 310 102 .24,CO0 2.17 .773 y3 17 630

1 pmanetm’-k .52 .345 1210 42a 370,000 .829 .46 520 178 68,000 2.05 .73 77 26 M&3

1 pmameter-5 .69 .436 450 145 51,000 1.067 .56 201 65 10,100 2.20 .788 44 14 480

I ~meter-6 .61 .394 690 230 llg,mo .963 .52 2ac 93 19,600 2.Oi’ .n 62 a 9&l

lFor example, 2 prameter-k meaus two-parameter method with a fourth-degree profile.
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(a) Tm = 648° F absolute.

4 5

I .5

+
1.3 ~ --- “
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n I
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2M=3

(b) ‘T@= 720F absolute.

4 5

Figure l.- Variation of skin-friction drag coefficient with free-stream
Mach number for insulated flat surface. 1, one-parameter method;
II, two-parameter method; 4, 5, 6, degree of polynomials; C-R,
Chapman-Rubesin (reference 21); C-S, Crocco’s calculation based on
Sutherland’s temperature-viscosityrelation (cf. reference 21).
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(a) Two-parameter method; Mm .0.

Figure 3.-Comparison of first derivatives of velocity profiles for flow
over insulated flat surface.
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Figure 3.- Continued.
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Figure k.- Comparison of second derivatives of velocity profiles for flow
over insulated flat surface.
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