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SUMMARY 

An experimental and analytical study has been made of some features 
of the turbulent heat diffusion behind a line heated wire stretched 
perpendicular to a flowing isotropic turbulence. The mean temperature 
distributions have been measured with systematic variations in wind 
speed, size of turbulence-producing grid, and downstream location of 
heat source. The nature of the temperature fluctuation field has been 
studied. 

A comparison of Lagrangian and Eulerian analyses for diffusion in 
a nondecaying turbulence yields an expression for turbulent-heat-transfer 
coefficient in terms of turbulence velocity and a Lagrangian "scale.'! 

The ratio of Eulerian to Lagrangian microscale has been determined 
theoretically by generalization of a result of Heisenberg and, with 
arbitrary constants taken from independent sources, shows rough agree-
ment with experimental results. 

A convenient form has been deduced for the criterion of inter-
changeability of instantaneous space and time derivatives in a flowing 
turbulence.

INTRODUCTION 

One of the most striking aspects of turbulent motion in fluids is 
its dispersive property. This "convective diffusion," illustrated by 
the general statistical tendency of (noncontiguous) fluid elements to 
get farther apart with increasing time, was probably first observed long 
before the era of analytical fluid mechanics. An analytical start on 
this problem was not made, however, until the now-classic work by 
Taylor in 1921 on diffusion by continuous movements (reference 1). Not 
only did this paper lay a groundwork for the study of turbulent diffusion 
but it also represented a forward step in the ideas essential to develop-
ment of a general statistical theory of turbulence, a field which had
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scarcely progressed since Reynolds' original formulation of the equations 
of motion for a flow in which mean and fluctuating parts could be 
distinguished. 

The diffusive action of a turbulent flow may manifest itself in 
various ways, depending upon the Initial and/or boundary conditions and 
upon the interests of the observer. The following possible measures of 
the diffusive powers are neither exhaustive nor mutually independent: 

(1) The average rate 

(2) The average rate 
particles 

(3) The average rate 
a given mean c 

(4) The average rate

of dispersion of particles from a fixed source 

of increase of spacing between different 

of transport of particle concentration under 
rncentration gradient 

of increase of the length of a fluid line 

(5) The average rate of increase of the area of a fluid surface 

The word "particles" means simply indelibly tagged fluid elements, much 
smaller than the smallest length associated with the turbulence. 

The present report is concerned primarily with measure (1). The 
measurements have all been made in the thermal wake of a long thin heated 
wire mounted perpendicular to an isotropic turbulent air flow and 
producing no turbulent wake. Here the tagging is thermal, and the degree 
of indelibility (negligibility of molecular diffusion) is one of the 
matters to be investigated. 

The diffusive property (for scalars) of a turbulent flow is appar-
ently a secondary characteristic at least in the sense that it need not 
explicitly enter the dynamical problem. The diffusion may be regarded 
as a kinematic phenomenon, to be deduced from the dynamical solution to 
the problem if and when the latter is obtained. Thus the objective of 
research on turbulent diffusion may be to seek a connection between the 
diffusive and the dynamical statistical variables, even before the 
complete dynamical theory is available. 

Measure (3) is usually termed the "turbulent transport" or "transfer" 
problem. Although of extensive practical importance, it has not yet been 
subjected to genuine theoretical study. 

Most of the semiempirical "theories" of turbulent transport, for 
both scalar and vector properties, employ an Eulerian formulation of the 
basic equations, and up to now they have been unable to relate the
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turbulent transport correlation to other statistical functions describing 
the flow. Taylor (reference 1) showed that in the simple case of a 
homogeneous field of isotropic turbulence, and even in a decaying 
isotropic turbulence (reference 2), a Lagrangian formulation of the 
transport (i.e., diffusion; the terms will be used interchangeably) 
problem leads to some important results.-  

Up to the present time little theoretical or experimental work has 
been done to find relations, if any, between the Lagrangian statistical 
measures of a turbulent field with its Eulerian statistical measures. 
Since turbulence dynamics seems best handled in the latter terms and 
turbulent diffusion in the former, it is evident that such a connection 
is important. Hence, one of the purposes of the present experiments has 
been to compare the magnitudes of some of these quantities under varia-
tions in the turbulent field. For example, the postulates of Taylor 
and Heisenberg on a relation between Lagrangian and Eulerian microscales 
can be examined and, in corrected form, compared with experiment. 

The turbulent diffusion from a fixed line source can be set up 
analytically as an ordinary (Eulerian) "heat-transfer" problem, permitting 
a start to be made in relating measures (1) and (3) of the diffusive 
power of a turbulent flow, under certain simplifying assumptions. 

Measures (Ii) and (especially) (7) may well be classed as character-
istic of the "turbulent-mixing" problem rather than diffusion in the 
common connotation. 

Experimental work on diffusion from a fixed local source in a 
turbulent flow has been meager. In isotropic turbulence, there have 
been the measurements of Schubauer (reference	 Simmons (reported by 
Taylor in reference 2), Dupuis (reported by Kampé de Feriet in refer-
ence 7), Frenkiel (reference 6), and Collis (reference 7) . Of these, 
only the data of Simmons and Collis are extensive enough to permit 
confident computation of the Lagrangian correlation function. In 
turbulent shear flow, Skramstad and Schubauer (reference 8), Dryden 
(reference 9), and the present authors (reference 10) have measured 
.distributions close to a source; Kalinske and Pien (reference 11) and 
Van Driest (reference 12) have made measurements somewhat farther 
downstream. 

None of these studies was repeated with a systematic variation of 
the properties of the turbulence. In spite of the poor precision 

i-In his tensorial generalization of Taylor's work on case (1), 
Batchelor (reference 3) has chosen to call this an "Eulerian" analysis, 
describing only case (2) as "Lagrangian." In keeping with previously 
accepted nomenclature, both cases are Lagrangian, (1) involving a single 
particle, and (2) involving a pair. In fact, case (2) might be termed 
a mixed (Eulerian and Lagrangian) problem.
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inherent in this type of measurement, it was hoped that such an approach 
would at least show up some general trends in the relations between 
Eulerian and Lagrangian variables. 

This investigation has been conducted at the Aeronautics Department 
of the John Hopkins University under the sponsorship and with the 
financial assistance of the National Advisory Committee for Aeronautics. 
The authors would like to acknowledge the assistance of Messrs. Alan 
Kistler, George Stierhoff, and Allen Gates and Miss Patricia O'Brien, 
as well as the helpful criticism of Dr. Francis H. Clauser and Dr. C. C. 
Lin.

SYMBOLS 

M	 grid mesh size 

x	 distance downstream from grid 

X0	 location of heating wire 

Lx=x-x0 

y	 distance in direction of measured diffusion 

z	 distance in direction of heating wire 

r	 scalar distance between two points 

U	 mean velocity in x-direction 

V	 mean velocity in y-direction 

u	 instantaneous velocity fluctuation in x-direction 

v	 instantaneous velocity fluctuation in y-direction 

w	 instantaneous velocity fluctuation in z-direction 

U' 

vt 

c	 root-mean-square molecular velocity 

e	 instantaneous temperature (measured above ambient room 
temperature)
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(9	 mean temperature 

0	 maximum mean temperature at a cross section, a function 
of & 

instantaneous temperature difference 

temperature difference of rectangular heat pulse 

j	 width of rectangular heat pulse 

s	 average on-center spacing of pulses 

ftt 

T1(t0,t)	 v() d 
o 

t -	 time 

T	 time difference 

f(r)	 Eulerian velocity correlation coefficient (notation of 
Von Krmn and Howarth) 

Rv( T )	 Lagrangian correlation coefficient for nondecaying 
turbulence 

/ T)	
v(t)v(t - T) 

tEt	 R t, -T - V	 v'(t)v'(t - T) 

R ( T1)	 Lagrangian correlation as a function of	 for 
nondecaying and decaying turbulence 

R	 - 

Y	 distance traveled in y-direction by a fluid particle 

X	 distance traveled in x-direction by a fluid particle 

frroot-mean-square displacement of a fluid particle in 
y-direction
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YM	 root-mean-square displacement of a molecule 

/	 i 
Eulerlan microscale of turbulence 1X 1 

\\	 \f't(0) 

Xl,	 Lagrangian microscale of turbulence for nondecaying 

l/2tu

(Xv_ 

rbulence 	 (_RVtY(o)) 

X 
TI	

Lagrangian microscale of turbulence for nondecaig and 

and decaying turbulence (
	 2	

) 

LL	 Lagrangian scale (LL f RV(7) dT) 

L	 Eulerian scale (L I f(r) dr) 

L	 Lagrangian scale for nondecaying and decaying turbulenceTI	

(L mfRi) dli) 

A	 mean free path of a molecule 

/.	 mixing length 

c 	 specific heat per unit volume at constant pressure 

P	 density 

V	 kinematic viscosity 

k	 thermal conductivity 

p	 static pressure 

dimensionless empirical constant 

- Y'(x)



NACA TN 2710
	

7 

H 2cU	 dy 

11* =

2Pc	 f() d 
JO 

kT	 turbulent-heat-transfer coefficient 

I4	 /	 (r) cITI 
Jo

3/ [6v)] 3/2 
Sm()/  

=—	

1/2 

T= 

p ( ,o)	 probability density of fluctuating temperature 

RL	 turbulence Reynolds number based on Eulerian scale 

(RL) 

RX	 turbulence Reynolds number based on Eulerian microscale 

(RX 

()	 mean value or ensemble average 

max	 maximum, used as subscript 

mm	 minimum, used as subscript 

E =	 + 
_t	 x
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EQUIPMENT AND PROCEDURE 

Aerodynamic Equipment 

The wind tunnel (fig. 1) is an open-return NFL type tunnel with 
a 2- by 2-foot working section and a free-stream turbulence level of 

= 0.06 percent and u'/U = 0.05 percent at a mean velocity of
26 feet per second. The turbulence-producing grids were as follows: 

Rod 
Designation Type Mesh size 

(in.)
diameter Solidity 
(in.) 

l-in.grid Biplane, wood 1.00 0.25 O.437 
1/2-in, grid Woven, metal' a,50 by 0.53 .120 
1/4-in. grid Woven, metal .25 .060 .42 

2he 0.50-in, mesh was set in direction of measured diffusion. 

They were mounted in turn at the upstream end of the working section. 

The heat source was an 0.008-inch-diameter platinum wire stretched 
vertically across the tunnel at various distances from the grid. It was 
heated by direct current to temperatures between 500° and 700 0 C, with 
the latter figure only at the highest operating velocity of 38.0 feet 
per second. The wire Reynolds numbers at this condition and at the two 
other velocities were as follows: 

Mean speed 
(fps)

Wire temperature 
(°c)

Reynolds number based on - 

Air temperature Wire temperature 

8.5 500 35 6.4 
25.6 500 105 19 
38.0 700 157 19

A preliminary investigation was made without grids to insure that 
these operating conditions did not generate a vortex street downstream 
of the heated wire. 

With the grids in place, the mean momentum wake became practically 
undetectable with total-head tube and manometer at distances greater 
than 1 or 2 inches downstream of the heating wire.
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Measuring Equipment and Procedures 

The mean-temperature distributions were measured with a Chromel-
Alumel thermocouple and a Leeds and Northrup type K-2 potentiometer. 
The cold junction was kept outside of the wind tunnel. 

The shadowgraph technique was used to photograph the laminar thermal 
wake close to the source with no grid in the wind tunnel. This informa-
tion was.applied to the problem of " correcting" the thermal wake in 
turbulent flow for the effects of molecular diffusion and of finite 
source size. Figure 2(a) is a shadowgraph of the wire wake with no grid 
in the tunnel; figure 2(b) is a typical time exposure with grid-produced 
turbulence. A resistance-thermometer traverse of the laminar wake in a 
flow of very small turbulence showed that the temperature profile had 
already become very nearly Gaussian at a distance of 1 inch (127 wire 
diameters) downstream. The white lines on the sides of the dark wake 
shadow in figure 2(a) correspond to the minimums in the second derivative. 
of the density profile. For small temperature differences these coincide 
with the maximums in the second derivative of the temperature profile. 
Although the temperature differences are not small in the immediate 
vicinity of the wire, this condition is reasonably well satisfied at 
relatively small values of Ax as evidenced by the parabolic spread of 
this laminar wake. 

The standard deviation of the wake could then be computed from the 
spacing of these two bright lines, with the assumption of a Gaussian 
distribution. Since the closest points of traverse in the turbulent 
cases were 1/2 inch (63 wire diameters) from the heat source, this was 
probably a reasonable assumption. 

As pointed out by Taylor (reference 2), the molecular and the 
turbulent diffusive phenomena are statistically independent, so that the 
squares of the standard deviations due to these two effects are additive. 
Hence the wake spread due to turbulence alone, from a true line source, 
was obtained by subtracting the square of the standard deviation of the 
laminar wake (computed from the shadowgraph) from the square of the 
standard deviation of the total wake (from thermocouple traverses with 
grid turbulence present) at all stations. This difference was the 
square of the standard deviation of the desired phenomena. All wake-
spread data presented in the next section have been corrected in this 
fashion. 

Parenthetically, it should be remarked that the laminar wake in 
figure 2(a) spreads parabolically within the limits of precision, from 
at least 1 inch on, so that the effects of density differences on the 
flow phenomena must have been negligible for this investigation.
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The transverse turbulence levels V'/U behind the grids were 
obtained from the initial rate of spread of the mean thermal wake 
(method due to Schubauer (reference 4)) after the effects of molecular 
spread and finite source had been removed. The resulting levels were 
somewhat higher than those obtained with a hot-wire anemometer but were 
used because of their consistency with the rest of the measured dif-
fusion curve. 

Free-stream velocity fluctuations (without grids) and the wake 
temperature fluctuations (with grids) were measured with the hot-wire 
anemometry equipment described in reference 10. The wires were 
0.00025-inch platinum etched from Wollaston; the compensated response 
of the system was flat within 12 percent over a frequency range from 
3 to 12,000 cycles per second. 

Oscillograms of the temperature fluctuations were recorded by 
photographing a blue oscilloscope tube with fast 35-millimeter film 
in a General Radio type 651-AE camera. 

Probability densities of the temperature fluctuations at fixed 
points in the mean thermal wake were determined from photodensitometer 
traverses of time-exposure photographs of a short-persistence (0.001 sec) 
blue oscilloscope tube with the temperature fluctuations on one pair of 
plates and a 30,000-cycle-per-second sweep on the opposite plates. The 
technique is essentially that used by Simmons and Salter (reference 13). 

EXPERIMENTAL RESULTS 

Mean Thermal Wake 

Complete mean-temperature wakes behind a line source of heat were 
measured for 10 different conditions. Arranged to indicate the 
systematic variation of one parameter at a time, these conditions were 
as follows:

8.5 1-in, grid;	 ._	 = 143.14;	 U, fps ............
25.6 
38.0 

U	 25.6 fps;	 -2	 143.11;	 grid,	 in..........1 
M 1/2 

i/k 

U	 25.6 fps;	 = 86.1; grid, in...........1 14 1/2 
1/14 

U	 25.6 fps;	 1/2-in, grid;	 x0/M ..........143.14 
86.1 

172.3 

U = 25.6 fps;	 1/4-in, grid;	 xo/M	 .........143.14 
86.1 

172.3
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Here U is the mean velocity, M is the grid mesh size, and x0 is 
the heat-source location measured from the grid. Since some individual 
cases enter as elements in two sequences, the total number of elements 
is more than 10. 

Two of the many mean-temperature traverses in the y-direction 
(perpendicular to mean flow and to source line) are shown in figure 3 
to give an idea of the amount of experimental scatter. The upper 
traverse was the worst of the lot, even showing an apparent skewness 
which was not borne out by the investigation as a whole. The lower 
traverse is more nearly typical of the measured temperature distribu-
tions from which the standard deviations of the mean thermal wake were 
computed. By comparison with the reference curve, it is seen to be 
essentially Gaussian. This was the case for temperature profiles at 
all stations. Since the virtually Gaussian character of such a wake 
has already been established by several of the earlier publications, 
there seemed to be no point in reproducing here all of the large number 
of traverses measured. 

The mean-thermal-wake spread for the 10 different configurations 
studied is given in figures 4 to 7 as plots of corrected standard 
deviation Y against distance from the heat source x. Each point 
in these figures corresponds to a complete transverse temperature 
,traverse. 

In order to have values of transverse turbulence level vt/U 
consistent with the thermal-wake behavior, these values were determined 
from the initial angle of spread of the corrected wake standard devia-
tion (references 2 and Ii-) instead of from direct hot-wire anemometer 
measurements. The results are plotted in figure 8. Since these 
represent an insufficient number of points per grid to permit the 
drawing of reliable curves, some simplifying assumptions were made based 
upon the results of several more-detailed turbulence-decay investigations. 
(See references 14 to 20. The pertinent results of references 14 to 16 
are summarized in reference 17.) In the light of these papers, it was 
assumed that the decay curves had a common apparent origin, and that 
this was obtainable by drawing the best straight line for all the 
available points, independent of the differing wind speeds and mesh 
sizes. In computing any individual Lagrangian correlation function 
from the corresponding wake history, the turbulence decay rate was 
assumed to be given by the line drawn through this common origin and 
the specific turbulence value giving the measured initial spread angle 
for this wake. This is, of course, a very rough procedure, but the 
experimental scatter in this whole method of determining Lagrangian 
correlation functions is so great that a more extensive study of decay 
(including the resolution of inconsistencies between wake method and 
hot-wire method) seemed unwarranted at this time.
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Temperature Fluctuations 

Distributions of temperature-fluctuation level -8 1 /9 in the thermal 
wake have been measured by using the hot-wire anemometer as a resistance 
thermometer, that is, at a current low enough to render the sensitivity 
to velocity fluctuations negligible compared with the sensitivity to 
temperature fluctuations (reference 21). A representative distribution 
of	 /e in the x-direction is given in figure 9. Typical transverse
distributibns are given in . figures 10(a) and 10(b). It is clear that 
the temperature-fluctuation intensity changes very little with increasing 
values of Ax. A rough explanation of the very high values of t/e 
(compared with the concomitant turbulence level, for example) in terms 
of the highly intermittent structure of the thermal wake has been given 
in reference 10 and will be discussed in more detail later in this 
report. This intermittency is shown very clearly in figure 11, a 
series of temperature oscillogranis recorded at two different positions 
across the thermal wake for a fixed value of Ax and at two different 
values of Ax with y = 0. The one-sided and pulse character of the 
instantaneous temperature at a fixed point in space is also demonstrated 
by its probability density. 

THEORETICAL CONSIDERATIONS 

Homogeneous Steady Turbulence at Rest 

For a nondecaying incompressible turbulence with no mean motion, 
Taylor (reference 1) was followed in getting an expression for the mean 
time rate of diffusion in the y-direction (say) from a fixed source as 
measured by the second moment of the probability density of the diffu-

sion, that is, the mean-square particle displacement 12(t): 

d Y2 - 2Y dY 
dt	 -	 dt

t
= 2v(t)	 v(t1) dt1 

The bar denotes ensemble average. 

Taking v(t) inside the integral, interchanging the processes of 
integration and averaging, and introducing the Lagrangian (auto)
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correlation coefficient (following the fluid particle), where 
T = t - t1

RV (T) - 
v(t)v(t - T) 

-
V 

there results	 - 

	

= 2V2 

fOtFO 
 
Rv( T ) dT dT	 (i) 

This is Taylor's form. Integration by parts yields a form like that in 
the work of Kampé' de Feriet (reference 5): 

	

- 
= 2v2

it
 (t -T)Rv(T) dT
	

(2) 

In this Lagrangian analysis, v(t) is the velocity of a fluid 
particle in the y-direction at time t; v(t - T) is the velocity of 
the same particle at time t - T. Corresponding expressions can be 
written for the rate of diffusion in any direction. 

Diffusion from an infinite line source, the case to be discussed 
here, is a two-dimensional problem in the mean, and, in addition to 
equation (2),

- - / Pt 
=	 2	 (-t - T)Ru( T ) dT 

A tensorial generalization of these concepts has been given by 

Batchelor (reference 3) dealing with the behavior of X±x(t) where X 
and X are any two of the orthogonal displacements of the particle at 

time t. 

It should be noted that this analysis gives no information on the 
shape of the probability density of Y(t) or of x(t). In fact there 
still exists no theory for these. However, experiments in flowing 
turbulence (the case to be considered next) show Gaussian density, 
within the experimental precision, for y(t) at all values of t.

(3)
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For this stationary random process, Taylor (reference 1) introduced 
the concept of the Lagrangia.n "scale," 

	

J
00LL =
	

R ( T ) dT
	 (Ii.) 

These have the dimensions of time and are characteristic constants of 
the system. 

In his later work on the (Eulerian) dynamics (reference 2), Taylor 
had occasion to introduce another measure of the correlation function, 
which he called the "microscale." Applying the same geometrical concept 
to the present function, the Lagrangian microscale 

v - - R"(0)
	

(7) 

is simply the T-intercept of the vertex-osculating parabola of the even 
function Rv(T). The kinematic significance is clearly shown by a 
series expansion of v(t + T) in Rv(T): 

RV(T)	
v(t)v(t + T) 

V2

[(dv\ 1	 d2v)l T2  (t) fvt +
	 )tJT +
	 +. .j) V2 (

	

= 1 	 rld2l.	 a2	 dv2T2 -= I
v2	 + L()tJ T + (d2 ) -	 +. . 

But v2 = Constant, so that 

R ( T) = 1 - 1(d\22 + . . .	 (6) 
2 dt) 

2v
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From equations (6) and (5), the Lagrangian microscale for v(t) is 

2v2	
(7) 

"dv \2 
dt 

or

(

dv\2 

) =2T	 (7a) 

Turbulence in a Flowing Medium 

The dictates of both practical interest and experimental feasibility 
require analysis of the diffusion when there is a mean velocity U 
relative to the source. Since the diffusion phenomenon is linear, the 
probability density (mean-concentration distribution of tagged particles 
in the wake) is simply proportional to the superimposed probability 
densities of a continuous line of sources moving with the mean velocity 
U with their time (and space) origin at the actual fixed source. This 

is illustrated in figure 12(a) for v,u < 1. The circles (corresponding 

to isotropy) are the standard deviations of the dispersions that would 
occur from moving sources. The envelope of these circles gives a 
measure of the mean wake. It is obvious that in general the functional 
form of the mean-concentration distribution along a line x = Constant 
will not be the same as the functional form of the same quantity for 
the individual source at time t, that is, at position x = Ut. 

However, it is extremely likely that if 	 << 1 (fig. 12(b)) 
dx 

the mean concentration along a line Lx = Constant becomes very nearly 
of the 'ame functional form as that for the source at x = Ut. For a 
zero-correlation Gaussian density, the equivalence is easily 
demonstrable-2 

2The most general mathematical restrictions under which the super-
position of a line of identical densities will yield a "cross-section" 
density of the same form has not been studied here. It is obvious that 
the condition of statistical independence is sufficient. The fact that 
the density of each of the velocity components in isotropic turbulence 
has been found to be Gaussian within the experimental precision seems 
to show that the equivalence under discussion is at least a good 
approximation.



16
	

NACA TN 2710 

The condition 
dY'
--- << 1 will always occur at large enough values 

of & when ILL < 1. This follows from the asymptotic parabolic 

behavior, Y 1 (t) " V (reference 1), of the diffusive process. It will 

occur for all *values of Ax when 1L << 1. Therefore, in this case a 
U 

simple approximate space-time transformation in the mean is permissible, 
and the t-v.riation in Taylor's theory of diffusion by continuous move-
ments becomes a variation of x/U. (it must be emphasized that the 
foregoing discussion does not apply directly to the possibility of 
applying a space-time transformation to the instantaneous turbulence 
variables. This latter question will be discussed later.) 

In the present measurements ILL << 1, and, therefore, the 

Lx-variation of diffusion gives an approximate measure of the Lagrangian 
correlation coefficient (in time). Equation (2) can be rewritten as 

X  2 V Ix (x - )Rv() d	 (8) -- 
U  

Decaying Isotropic Turbulence 

When the turbulence is decaying in time (similar to space in the 

flowing turbulence) v2 is no longer constant, and the analysis cannot 
be carried out as far as equation (1). The same approach stops with 

fot 
Y2=v'(t)v'(t -T) tRtT dT	 (9) 

where the prime denotes root-mean-square value, and 

v(t)v(t - T) 
tRt_T	 v'(t)v'(t - T) 

o 

There is no a priori reason to believe that tRt_T is a function of T 

alone, as in the nondecaying turbulent flow.
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At this point Taylor (reference 2) invokes the empirical fact that 
over a wide range of mean velocities (all of which give essentially the 
same distribution of v'/U in x behind a grid) the thermal wake 
behind a line heat source at fixed x .appears to be unchanged in form, 
within the experimental error. This is consistent with dependence of 
the diffusive process upon a variable of type 

= v'(t) dt1 f 
l =	
j 

v'(x1) dx1	 (10) 

Fo 

Therefore, Taylor has postulated the unique dependence of t Rt_T on 

the variable i. With this postulate and the space-time transformation 
valid for small turbulence level, he arrives at 

d P2 = 2	 j R(1) d11	 (ii) dx 

or

2 J" R(111) di 1	 (12) 
TI 

where

V' dli =	 dx
U 

= v' dt 

Equations (11) and (12) look like the equation for nondecaying 
turbulence. They also give 

= 2 I	 (li - 1l1) R li ( Tll) dli1	 (13) 
Jo
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A physical significance of the length ii is underscored by the 
limiting form of equation (13) as 11-0 and	 Then, 

Y t = 

so that r is a measure of the lateral diffusion that would occur if 
the lateral velocity fluctuation following a particle v(t) remained 
perfectly correlated but decreased in magnitude according to the decay 
rate of the turbulence level. 

In postulating tRt_T R(r1), Taylor was apparently comparing only 

diffusive processes in turbulence fields with identical -(x). Of more 

general interest is the comparison of diffusion in fields with differing 
turbulence-level distributions. Although such a generalized application 
of his postulate is doubtless not too well applicable, it is conceivable 
it might have approximate success in the more general comparison. For 
both convenience and lack of any obviously superior alternative, his 
suggestion is therefore applied in computing the results of the measure-
ments reported here.3 

With the ri -postulate, the R Lagrangian correlation function can 

be obtained from measurements of T as a function of Ax: 

R (ri) 1 d2 

2dy2 

1 U2 d2 2 (l1i) 
2 v2 dx2 

3After this work was completed, Dr. Batchelor suggested an alternative 
approximate approach: In order to construct a stationary random function 
out of the nonstationary v(t) one first normalizes the dependent 
variable with its root-mean-square value. (This has been automatically 
accomplished by use of the correlation coefficient.) If the decaying 
quantity is assumed to maintain complete similarity during decay, all 
characteristic times (e.g., Lagrangian time scale and microscale) vary 
in the same way with t and the new independent variable is constructed 
by dividing T by this t-variation. Unfortunately, this variation is 
unknown a priori, so it would be necessary to assume further that the 
Lagrangian scales are directly proportional to the Eulerian scales, about 
which there is previous experimental information. His work has now been 
published; see reference 22.
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A scale and a microscale can also be defined for R: 

/ 

L 
= f R(r1) d111	 (15) 

2 
TI 

=

	

	 (i6) - R(0)'t 

With nondecaying turbulence, no one-parameter true (time) Lagrangian 
correlation function exists, and the ri- formulation is much more con-
venient. A further significance of this variable will appear in the 
comparison of Eulerian and Lagrangian treatments of diffusion from a 
line source in flowing turbulence. 

Accelerations in Decaying Turbulence 

A series expansion of v(t + T) for decaying turbulence will show 
something about the initial behavior of the true (time) Lagrangian 
correlation function and will indicate an experimental method for 
examining a hypothesis of Taylor on the interchangeability of instanta-
neous time and space derivatives when the turbulence level is low 
(reference 23). 

Write the Lagrangian correlation coefficient 

Substitute

- v(t)v(t - T)	
(17) Rv(t,T) - 

v!(t)v t (t - T) 

Id2v\ -'- + 

into numerator and denominator, and restrict the analysis to small values 
Of T:

(2)T +	 -  
R(t,T)	 (18)

^2V-
	

1Id2	 2 ''	 id	 ___v'(t) 	
t) - \Jt 	 2\dt2 It
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Divide numerator and denominator by 7, expand the square root in 
the numerator, and keep terms i' r2: 

r2
	

dv 21 T2	
(19) R ( t , T )	

1 - L()t +	 2(t) 

For negligible decay rate this reduces to equation (6). 

Equation (19) shows that a Lagrangian microscale defined by 

1 - - urn
	

-Ry(t,T)1 

x 2(t) T0 I T2	 ] 

= !2RV(	
(20)

T2

	

T=O 

is expressible as

1	 _1r	 dv'\' 

- (-)_j	
(21)

dt 
xv 2(t)	 2v2

Introduction of Taylor's r1 -postulate transforms equation (19) to 

F!di-j-)n_O2

	 dv'	 ___ (22)1 -
- ()Oj2V02 

after the additional approximation that v'(ii) 	 v'(0) when Tj is very
small. 

This gives a new expression for Lagrangian microscale 

_ irav 2	 dvtl 

	

- (-)j	
(23)
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Equation ( 23) is in contradiction to equation (17) of part IV of 
reference 2. In that work Taylor has apparently assumed that V' is a 
nondecaying function of r. However it certainly is decaying, even in 
terms, of this distorted coordinate, and the dv'/dri_term must be, 
included. 

Since X 7, and v'(x) can be determined experimentally from the 

mean thermal wake behind a line heat source, equation ( 23) permits 

determination of (dy)2 which is simply related to the mean-square 

"Stokes" 'acceleration OtS2 = (yT)2(4N'2 This quantity is of particular 
)	 \d111 

interest for the possibility of an instantaneous space-time transforma-
tion at low turbulence levels. This was first proposed by Taylor (refer-
ence 23) and has since been used very widely, especially to get approxi-
mate values of partial derivatives with respect to x (the mean-flow 
direction) by measurements of time partial derivatives. 

The total (or Stokes) derivative of v(x,y,z,t) in a turbulent 
flow with mean velocity U along the x-direction is 

	

dv 3v (J+u)+	 v 

	

v—+w—	 (211)
6y 	

z

Taylor's hypothesis amounts to the statement that 

Tt	 6x 
ty 

or

6v	 v (21a) 

with

r_l/2
<<1	 (25) 

U2(6v)^
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In detail, equation (27) is

1 1/2 v v 
()2 + uu	 - 2u dt 

v)2	
<< 1	 (25a) 

_2(  

In the absence of information on the algebraic sign of the triple 
correlation term, it is sufficient to require the two conditions1 

1— -1 
I 
fV 2 i/2 

I __	 <<1 
I_2fv\2 
iU - 'ox

(26) 

Liui 
v	 1/2 

-	 U	

I	 <<1 
._2Iv\ 2	 I 

But 
()2 

can be determined from measurements of y'(x); 

()2 = 2 , where ? ' is the Eulerian microscale (reference 2); and 

upper bounds, in terms of measurable functions, can be set on 

uu. !_ L- with the - use of Schwarz inequalities. Thus, an experimental 

check of the requirements in equation (26) is to be made in the section 
entitled "Computation of Results." 

Lin has discussed the validity of Taylor's hypothesis using a 
slightly different formulation in reference 24. He points out there that 

if A = >111 ac, then (from the Schwarz inequality) ()1/2	 (a)1/2 

where ac is a set of numbers.
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Relation between Eulerian and Lagrangian Microscales 

Taylor (reference 2) inferred an approximate relation between 
and X by neglecting the effect of viscosity on pressure-gradient 

F72 \211/2 
fluctuations and estimating [) j	 as being approximately 

[v2
_, \21l/2 

3p(—) I	 .This led to a constant ratio	 for all turbulence.
 \Y1J 

The rough nature of this analysis induced Heisenberg (reference 27) to 
conduct a more detailed study of the static-pressure fluctuations and to 
reestimate the X/X ratio. However, he followed Taylor in ignoring 

the dv'/dl-term in the relation between X and (dy)2 (see equa-

tion (23)) and in neglecting viscous terms in the relation between X. 

and (2 
\ y) 

Although these omissions are probably not serious except in the 
low Reynolds number range, it seems interesting, if only for the sake 

Vyof completeness, to use a Heisenberg type of approximation for 

and to repeat his treatment with the omissions rectified. 

From the complete Navier-Stokes equations in the wave-number space, 

Heisenberg deduced an approximate expression for (7p)2 in terms of 
mean quadruple products of the "harmonics" of the velocity field. His 
principal simplifying assumptions were: 

(a) Different Fourier components of the velocity field are 
unc orrelated 

(b) The turbulent energy spectrum is given by the solution to his 
equilibrium-energy-transfer equation, above a lower cut-off wave num-
ber k0 

Following these, but using Chandrasekhär's (reference 26) solution 
to the Heisenberg equation instead of the interpolation formula used by 
Heisenberg, there results

2 27.6Pv -	 (27)
(Y) = __ 

where r, is a dimensionless empirical constant.
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The numerical constant in equation (27) would perhaps have been 
given more accurately by the use of a "self-preserving" spectrum 
(calculated by Chandraseithar from Heisenberg t s equation) instead of the 
stationary spectrum with low cut-off wave number. Time ras not taken 
to make the requisite additional calculations because: (a) The value 

of (2 depends principally upon the high-wave-number region of the 
;y) 

velocity spectrum rather than the low-wave-number region, where the 
difference would be greatest, and (b) the experimental results and 
(especially) the value of K both have a considerable range of 
uncertainty. 

The mean square of the y-component of the Navier-Stokes equation 
will lead to a relation between X and ?.:

TI 

dv 6v	 v	 6v u - + v - + w - 
dt 6t	 6x	 6Y 

= -+ vv 

therefore,

(\2 = i(\\2 + v
2(V2v) 2	 (28) 

\dtJ	 2\dyj 

where the correlation between pressure gradient and velocity Laplacian 
function is zero because of isotropy. 

Equations (23) and (27) give the first two terms in terms of the 
microscales, and the mean-square Laplacian function is expressible in 
terms of the fourth derivative of the Von K&mn-Howarth f(r) correla-
tion coefficient at r = 0 (reference 21): 

	

(,7 2V) 2. =	 (vt)2fhT(0)	 (29) 

Consequently, equation (28) becomes 

2	
+ ()2 = 25.2	 (t)3 +	 v2(vt)2f1v(0) 

XTI	 dt	 K
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The second term in this equation can be replaced by the turbulence-
decay equation:

d(v')2  
-lOv '	 (30) dt -	 x2 

whence:

dv'
= -5v -

VI 

	

dt	 X2 

so that:

(v	 2 (i)2	 27 .2	 (v 3 +	
(v')2f(0) 2	 +27v 

therefore,

12.6 1	 12.7 +	 iVv2X2	
(31) 

-	

f(Q) (v')2 

where	
v'X 

= —v---. 

Batchelor and Townsend (reference 19) have deduced an expression 

for fiv(0) which is valid in the region of decay where both 1/(v')2 
and X2 increase linearly with t (corresponding to large R): 

Xfiv(0)	 +RS	 (32) 

I IMY] the
3/2 

where S = 	 skewness factor. Their experimental 
. i15 

results showed S = 0 . 39 approximately constant for isotropic turbulence. 
Then the estimate for 	 becomes 

(

- 10.5 + / 12.6 +
	 (33)

	

- 2 	 . 
K	

) TX
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The value of K was first estimated by Heisenberg (reference 25), 
from measurements of turbulence decay, as 0.85. This method may be 
regarded as emphasizing the (relatively low wave number) energy-bearing 
range of the spectrum. Lee (reference 28) worked out an estimate based 
upon skewness factor ( i	 0.13), which gives heavy weight to the high-
wave-number range. Proudman (reference 29) has reestimated K by 
comparison with measured curves of the double and triple velocity correla-
tions. The value K = 0.45 leads to reasonably good agreement for the 
moderately high-wave-number region, over a wide range of R. 

It may be remarked that the supposed constancy of ic is merely a 
postulate of the Heisenberg dimensional formulation of the spectral 
transfer function. In fact it is by no means obvious that this turbulent 
part of the transfer is quantitatively independent of the amount of 
spectrally local dissipation to heat. In any case, Proudman t s estimate 
Of •ic = 0.45 has been used here. Therefore, 

fx\2 _lO.5 + 29 
t\xl1) - R2	 R 

In the limit of R—). 0, equation (34) does not apply since 
equation (32) does not apply. However, the appropriate limiting rela-
tion can be obtained directly. In this limiting condition the pressure 
term in equation (28) is negligible compared with the viscous term (the 
former goes with l/RX and the latter with 1/R 2 ), and the Eulerian 

velocity correlation coefficient is (reference 27) f(r) = e -r
2/2>,2

This gives fiV(0) = 3/X and

Ix\ 2	 3.5 

) 
=	 (35)RX2

Eulerian Analysis of Heat Diffusion from a Line Source 

The two-dimensional turbulent-heat-transfer equation is 

-.	 -	 k f2	 2\
-() -()	 (36) 

where e is mean temperature, b . is temperature fluctuation about the 
mean, k is thermal conductivity, and cp is specific heat at constant 
pressure.

(31f)
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For the thermal wake behind a line source in isotropic turbulence 
with constant mean velocity V = 0. With restriction to low turbulence 
level, a "boundary-layer" type of approximation can be applied to the 
mean wake, so that

2 

and 

so that equation (36) takes the approximate form 

-	 k 629 6 (37) PC p 6Y2 

It must be emphasized that for this particular initial condition 
on the temperature (effectively a "point source"), the restriction to 
small turbulence level v'/U << 1 does not imply that 	 '/ is small.
In fact, for this problem '/e is often greater than unity, especially 
at the Ttedgel? of the mean wake, as has been discussed in reference 10 
and will be brought out again later in the present report. 

When the molecular transport can be neglected relative to turbulent 
transport

-	 ()	 (38) 

an equation given in reference 10; a slightly more general treatment 
follows: 

With a constant rate of heat generation (similar to steady state 
in the average), the application of a Von Karmn integral-relation 
treatment to equation (38) yields an integral condition:

002cU/ 8 dy = Constant = II	 (39) 
Jo
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where H is the average time rate at which heat crosses all planes 
perpendicular to U per unit length of heat source (z-direction). Of 
course,	 has been neglected relative to eu in equation (39). 

Equation (38) has two unknowns, and the first objective is to 
express	 as a function of the (more easily measurable) 	 (x,y). 
After integration with respect to y, 

foy jdy+F(x) 

But, by symmetry, 3v = 0 for y = 0. Hence F(x) = 0 and 

T 
UJYdy	

(1o) 

This relation is sufficient for the computation of 	 (x,y) from 
the measured (x,y) but the empirical fact of simple geometrical 
similarity in ëx,y) suggests exploitation of the consequent 
simplification. 

Assume

(x,y) = 0 (x)f()	 (11) 

where	 = y/Y'(x). This transforms equation (39) to 

-  
G0(x)Y'(x) = 11*

 -	 (2) 
U 

where 11* =	 H	
= Constant. It transforms equation (11.0) to 

2Pcp j f() d

df dYt T 
(-U r	 )Yx d	 f_ f	

d(x) - - (11.3) = 	 j r() d	 ---( udx 
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With equation (42), 	 0 (x) can be eliminated from equation (43), 
and after integration of the dimensionless integrals this leads to the 
final form for the turbulent-heat-transfer correlation, 

x,y) = H*f() 1	 dY' I() 	
E 

where

-	 y
'( - Yx) 

The same sort of analysis can be made on equation (37) which 
includes the molecular conduction, but the rather large experimental 
scatter in the present measurements seems to make such a refinement 
inappropriate. 

An "exchange" coefficient or "diffusion" coefficient for turbulent 
heat transfer krr is simply expressible in terms of ®(x,y). A con-

ventional procedure for semiempirical analyses is to write for the 
turbulent transport an expression just like that for the molecular 
transport:

_Pcpv = kT 

which serves as the definition of krr. 

For the simple case of equation (44), it turns out that 

-	
-[df

()1 Icr - PcU	 ly (x) dYt
	

(16) - 
 I	 dx 

This has the particularly interesting property that in a nondecaying 
turbulence at very large values of x, where the mean thermal wake 
spreads parabolically (reference 1), kT becomes independent of 

explicit dependence on x. 

A more startling simplification follows for a particular mean
temperature distribution across the wake: All dependence of kT on y
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disappears if 

that is, if

df

12 

f() = e 2	 7) 

But this is the Gaussian function, which is found empirically to fit 
all the measurements within the experimental scatter. Hence one arrives 
at the empirical result that in both nondecaying and decaying turbulence 
kT is independent of y in the thermal wake behind a line source of 

heat. From equation (47), 	 = - f() and 

	

kT = PcJY'(x)
dY' 	 (48) 
dx 

It can be seen that in the nondecaying case at very large values of x, 
krp is constant and independent of both y and x. 

Relation between Some Lagrangian and Eulerian 

Parameters in Transport 

There has apparently been little effort to relate the Eulerian and 
Lagrangian formulations of turbulent diffusion up to the present time. 
Exceedingly simple boundary conditions permit some connection to be 
made in restricted ranges of the present problem. 

For nondecaying or (with much less accuracy) decaying turbulence, 
equation (13) applies:

= 2 fo (Ii -
 

or, equation (12),

dY2	 dY' 
-- = 2Y' 

= 2	 R(rd1 
Jo
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For small values of ri, R = 1 - _ fl	 whence 

X T1 

.9 2 (1i
2)

(19) 

(5°) 
dii	 32) 

Substituted into equation (44) these give 

TV	
1 

	

= H*f(4(1 - 
T	 (51) 

while equation (46) becomes

(52) df (	 2) 

f

x
where r =	 vt dx and	 1+ J

 = Y'(x)	 12 2) In fact, for 

small values of ii, ii	
Vt

x. 
U 

For low-level nondecaying turbulence, r = 	 X. and equation (71) 
becomes	 U 

:= H*f()(1 - 1 2 x2 \U 

X2 \	
(53) 

while equation (52) becomes

	

f()(1 - 1	
(54) kT=PcPv'y df 

TE
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As Ti — O both equations (31) and (53) reduce to 

= fi*f()JL L.	 (5) Vt 

while equations (72) and (54) reduce to 

= Pcv' ThT y	 (76) 
d 

At the other extreme, when Tj is very large, 

= 211L - •2M1	 (57) 

where M1 = 
fo

1R() dli = Constant and 

TT)	
T1 

- 2L	 (58) 

In this case,

Vt 
yLli 

= *f()	 (59)
 - r2 ^L 

T1 

and

	

kT = pc V. f)
	 yL

(60)
df 	 1/2 

	

-	 IM1)] 

As indicated previously, the li-variation can be expressed in terms 
of x or t.
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If ri is allowed to become large enough to make yL,- >> 

v  

= H*f() 3123,	 (61) 

PC Vt r()	 L71 	

(62) kT =	 p	
df\2riJ 

The above formulas take on particularly simple forms if the 
empirical result of a Gaussian f( ) is utilized: 

1 

f() = e 2 

Then the general expressions for -v and kT (equations (114) and (46)) 
become

1 
V(x,y)-
	 11*	 dY I y2(YtV	 (63) - (y, )2(x) dx 

and

k(x,y)	 v c'Y'(x) dYt —	 (61i) d  

the latter having been deduced in the previous section. The particulai 
forms for small values of Ti would follow from substitution of equa-
tions (49) and (50) into these two. 

However, the most interesting form occurs for very large values 
of Ti. There Y'(x) is given by equation (57) and 

ftyLy 
(x,y) = _________ 

(^_ 2 \ 
i3/2 exp
	 I	 (6) 

[2 (Ti LTi - M1)]	
Ti - M1) 

k.(x,y) = Pcv t L = Constant	 (66)
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For still larger values of r, such that M1 << 

_H*	 __	 / 1y2\ 
-av(x,y) -	

3/2Q/2 
exp	 (67) 

and

krp(x,y) = PCv'L,-	 Constant 

The constancy of •kn2 for large values of 	 (large values of t 
or x) is to be expected; a treatment of molecular diffusion by this 
method must certainly yield a constant coefficient for times much larger 
than the mean free time (of flight) of the molecules - that is, for all 
"macroscopic times." Put another way, the simple parabolic behavior 
of Y' for large values of r is a sure indication that 0 obeys the 
simple classical diffusion equation with constant coefficient, when 
viewed extremely "coarsely." 

Perhaps the chief interest of equation (66) is its identification 
of L as a significant Lagrangian length for diffusion at a large 

distance from the source. It enters the expression for turbulent-
diffusion coefficient in much the same way as mean free path enters 
the expressions for the molecular-diffusion coefficients. Furthermore, 
its role appears to be much like that attributed to Prandtl's "mixing 
length," which was brought into the turbulent-transport problem in a 
more or less intuitive fashion. 

Of course, the possible crude nature of Taylor's original 
ri-postulate may render the significance of L more qualitative than 
quantitative in the case of decaying turbulence. 

COMPUTATION OF RESULTS 

Although Taylor's assumption of the unique dependence of tRt_T 
upon 71 is not likely to be accurate for collapsing together cases 
with widely differing turbulence decay rates, it does provide a rela-
tively simple relation between Y'(x) and Ry 1 (T). Therefore all of 
the mean-thermal-wake data were reduced on the TI-basis. 

In principle the complete R(r) curve can be obtained from y2(x) 
by double differentiation (equation (12)):
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R	
2 d112	

(68) 

or

= (2 d2() 
R	

2\v'I dx2V 

However, simple double differentiation of the squares of a curve 
as uncertain as Y'(x) seems almost hopelessly indeterminate - although 
Taylor (reference 2) and Collis (reference 7) have apparently followed 
this procedure. A somewhat more circumspect technique has been tried 
here: The values of Xn and L were determined first, through certain 
limit relations (to be described). Then the Rn curve was determined 
by double differentiation, subject to the restrictions of agreement with 
the previously determined scales. Thanks to rather poor determinacy of 
values of	 and L this method is not so much of an improvement as 
it might first appear.

Lagrangian Microscale 

If equation (13) is restricted to very small values of i the 
parabolic approximation for Rn can be introduced: 

2\

(69) 

therefore 

whence

rd /\1 = -
	 2)J2	

(70) 

The computational procedure was .toplot y2/2 against 2 and

	

to estimate the slope of the faired curve at 	 = 0 where the curve
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must pass through unity. The abscissa intercept of the 0-tangent is 

6xTi2. The actual points, faired curves, and tangents for all cases are 

presented in figures 13 to 22. Clearly the precision is poor. 

Lagrangian Scale LTi 

Consider equation (12) in the limit as 1ì__?.. It immediately 
gives

Li=1 urn ()
	

(71) 
Ti - 

and the graphical procedure based on this is also presented in figures 13 
to 22. Some of the asymptotic slopes drawn are not the best representa-
tion of the experimental points. This is due to the auxiliary (assumed) 
restriction that RTi cannot increase with increasing values of ii as 
long as R 7 has not previously dropped below zero. The graphical 

precision attainable is perhaps a little better here than that for 
but the square root necessary to get XTi means that X11is determined 
about as well as is L. 

Lagrangian Correlation Function RTi(r) 

With X and LTi determined, the initial (small x) and final 
(large x) behavior of the curve Y'(Ax) is prescribed. These parts 
of the curve were drawn on a graph with the experimental points. Then 
the fairing in of a reasonable central portion to this mean Y'(zx) 
curve was a relatively simple matter. The RTi curve was then obtained 
by double differentiation. 

The curves drawn for Yt(Ax) in figures 23 to 32 were determined 
in the fashion described above, as were the curv.es for RTi in the same 
figures.

Eulerian Microscale X 

In view of the approximate nature of the determination of X 1-1 , no 
new direct measurements were made of the Eulerian microscale X. Instead, 
X was comput?d with the energy equation for isotropic turbulence, from 
the measurements of turbulence decay:.
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= -b y -= 
dv2 
dt 

or, with the space-time transformation, 

= -l0

—dv2 
U dx 

Eulerian Scale L 

Earlier investigations have shown that the Eulerian scale in a 
grid-produced turbulence is closely, a linear function of the mesh size 
of the grid producing the turbulence (for.a given value of x and grid 
geometry) and is not significantly dependent upon the mean velocity 
(or grid Reynolds number, provided it is sufficient to cause turbulence). 
Therefore the values of L have been deduced from earlier measurements 
at the California Institute of Technology (reference 18) on grids of 
essentially the same geometry. 

Table 1 summarizes the results for Lagrangian and Eulerian scales 
and microscales. The results have been grouped to show the effect of 
systematic variation of one parameter at a time. Some of the results 
are presented in figures 33, 31, and 35. 

Instantaneous Space-Time Transformation 

The permissibility of an instantaneous space-time transformation 
in flowing turbulence,

'1v
(7k) 

37

(72) 

(73)
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can be estimated in accordance with equations (26). For equation (74) 
to be valid, the sufficient requirements are those given in equations (26) 
that:

rdv 271/2 T	 (•	 I U2  

	

21	
<<1 L] 

L

<< 1 

v v11"2 
UjUj 

2(v\2 
U—) 

With the aid of equation (23), the turbulence decay . equation, and 

the Taylor relation 2 -, the first of these conditions can 
\LX 

be written in the form 

T	
( . l2.7 

+ 
(^--T,

2,	 << 1	 () 
\ u/ 2 	\JJ 

From the Schwarz inequality, essentially the necessity that the 
magnitude of any correlation coefficient be less than or equal to unity, 

?v 6v < 
uu - -- = u'u (L 

(^X-Vj)	
(76) xi 

where the prime in this expression denotes root-mean-square value. For 
isotropic turbulence, equation (76) can be written 

vv < 
uiuj	

_____ 

	

= (9 +	 (77)
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Thus, the second condition in equation (26) . will be satisfied if 

2.7 - <<1
	

(78) 

Both T and vt/U for the flows studied are presented in table 1. 
It is clear that for these flows instantaneous x and t partial 
derivatives may be taken proportional with reasonable confidence. 

57v-Correlation 

The Eulerian measure of transverse turbulent heat transport is 
computed from the mean temperature distribution. The dimensionless 
form, -v/ 0U, is given for two typical cross sections in figures 36 
and 37. 

The measurements of v'/'U and of '/o permit calculation of 

the correlation coefficient	
= 3t1 and this is also given in 

figures 36 and 37. 

For the convenient and reasonably accurate assumption of Gaussian 
mean temperature distribution, the corresponding turbulent-heat-transfer 
coefficient kT follows from equation (64). It was found to be inde-
pendent of y, and typical curves of kT/k are given in figure 38. 
The data for kT at three different speeds behind the 1-inch grid are 
roughly collapsed together through division of kT by pcv'L, as 
suggested by equation (66a), an asymptotic result for nondecaying 
turbulence (fig. 39).

DISCUSSION

Lagrangian Variables 

Even a cursory examination of the technique used in this investi-
gation for the determination of Lagrangian correlation shows that, as 
physical measurements go, this method is a "bad" one, largely because 
of the inherent double differentiation between measured variable and 
desired information. 

Figures 13 to 22 suggest an uncertainty in values of XT,and L 
as large as ±20 percent, in spite of moderately good precision in the 
measurement of individual temperature distributions such as the lower 
curve in figure 3.
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As mentioned earlier, the values of v'/U computed from initial 
wake spread are consistently higher than those measured with the hot-
wire anemometer (reference 18). The same relative result was encountered 
during a brief investigation following that reported in reference 18. 
Up to the present time there has been no satisfactory explanation of the 
discrepancy. A tentative hypothesis which would at least account for 
its direction may be based upon a human weakness in the visual averaging 
of the reading of a fluctuation pointer; there seems to be a tendency to 
choose an "average" more or less halfway between the extremes of the 
needle travel. Thus a pointer motion with very skew probability density 
(greater than 0) would tend to be "averaged" at too high a value. The 
thermocouple voltage in one of these thermal wake traverses has just this 
character (fig. 11). Hence a visual averaging might yield too high a wake 
width. If this effect is nonnegligible, it is advisable to employ some 
electrical means of averaging for skew signals, for example, the flux 
meter and bucking circuit described in reference 10. 

In view of the considerable uncertainty in XT, as well as that 
in X and v' the poor degree of agreement between experiment and theory 
shown in figure 33 is understandable. Since the two undetermined con-
stants in the theoretical result have been evaluated from sets of experi-
ments completely independent of the present ones, this agreement can be 
viewed as an affirmative result. 

Since some sort of Lagrangian scale should be a significant length 
in turbulent heat and mass transport, as demonstrated in the analytical 
section of this report, an effort has been made to find some systematic 
variation in the values of L. Figure 314 might be construed to indicate 
a monotonic decrease of L/L with increasing values of RL. It is 
interesting to note that a decrease was also observed for the ratio of 
mixing length to tube radius by Nikuradse (reference 30) in fully devel-
oped turbulent tube flows. In order to determine whether these two rates 
of decrease with increasing Reynolds numbers are of the same order of 
magnitude, an estimate has been made of the magnitudes of RL corre-
sponding to Nikuradse's results given in figures 28 and 29 of refer-
ence 30. Both scale-to-diameter ratio and average turbulent levels for 
various Reynolds numbers were estimated with the help of Laufer's data 
on turbulent channel flow (reference 31) at various Reynolds numbers. 
The absolute level (i.e., the ordinate scale) of the resulting imax/L 
against RL curve was adjusted to give the most reasonable-looking fit 
with the L/L data. This is the dashed line in figure 311 and it shows 
at least a qualitative resemblance. It is likely, however, that L/L 
is not a unique function of RL. 

Of course not all of the scatter in figures 34 and 35 (involving L11) 
can be attributed to simple lack of experimental precision. Some is 
evidence of the fact that the Taylor postulate of Lagrangian correlation
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function being uniquely a function of ii is certainly not very closely 
true. Furthermore, table 1 does show rather systematic variations of 
L1 in some of the three-point groups. Most noticeably, there is a 

regular decrease in L. with increasing xo/M (or perhaps with 

decreasing v'/fl) for each of the three grids. 

Temperature-Fluctuation Field 

Fairly clse behind a line heat source in turbulent flow, the 
random pulse nature of the temperature fluctuations at a fixed point 
has been established by the oscillogram in reference 10. This is 
confirmed by the first two oscillograms in figure 11, with their highly 
skew probability densities at Ax/M = 10. One of the objectives of the 
present investigation was to find out whether this distinctly pulsed 
character persisted far downstream or whether molecular heat conduction 
becomes increasingly effective in smearing out the pulses, until they 
are no longer distinguishable as such. The third oscillogram and proba-
bility density in figure 11 (Ax/M = 70) does show a decided trend away 
from the pulse-type signal. The molecular broadening of the laminar wake 
(corresponding to the pulses) decreases the relative spacing of the pulses 
In (t) at any point in the "turbulent wake" region. This is a reduc-
tion in relative length of the flat (i3 = 0) base lines between pulses; 
giving greater statistical symmetry in (t) about its mean, that is, 
reducing the skewness of p(). 

A simple analysis will show the existence of an asymptotic behavior 
of molecular-conduction effects in a nondecaying turbulence. For a 
nondecaying flow turbulence and very large values of t( x/tT) the mean-
square wake spread due to turbulent motion is 

2L	 - x
	

(79)
U 

On the other hand, an approach to molecular diffusion through 
Taylor's concept of "continuous movements" gives, for any macroscopic 
distance downstream, the mean-square thermal wake width, 	 C 

'm 
2 
Z 2Ax
	

(8o)
U 

where A is the mean free path and c is the root-mean-square molecular 
velocity.
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From equations (79) and (80) 

Yt m	 (A 

-	
(8i) 

For a typical case, take L = 1 centimeter, v' = 10 centimeters per 

second, A = 6 x b -6 centimeter, and c = 5 x 10 centimeters per 

second. Then	 0.17. For people accustomed to thTnking of molecular 

transport as negligibly small in turbulent flow (e.g., in shear flow), 
this ratio will appear quite large. The values of kT/k plotted in 
figure 38 also show that at these low turbulence levels the molecular 
thermal conductivity is not necessarily negligible compared with the 
turbulent transport. 

The temperature-fluctuation-level distributions -3 1 /'e across the 
wake (figs. 10(a) and 10(b)) show the same character as that measured at 
much higher turbulence level in a jet (reference 10), with somewhat 
lower minimum values, which are attributable to the lower turbulence 
level. A rough evaluation of the behavior of the statistical variables 
in this turbulent thermal wake is obtainable by recalling that it consists 
of a randomly "waving" laminar thermal wake. If (t) is crudely 
represented by a randomly spaced sequence of identical rectangular pulses 
with height 80 .1 

width j, and average spacing s, it is easily seen that 

(82)

 1/2
(83)  

e	 \J	 / 

This permits -a'/ to vary between 0 and coas s/i travels the 
permissible range from 1 to cx. Since points nearer the edge of the 
turbulent thermal wake have higher values of .s/j, the behavior of 
equation (83) is consistent with the experimental distribution. If 
the analysis were repeated with triangular pulses, for example, the 
quantitative estimate would doubtless be more realistic. The higher 
values of ('/)min encountered at higher values of v'/ are an 
indication that for a given width of laminar thermal wake, the higher 
value of v'/U leads to a higher minimum value of s/i.
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The closely Gaussian shape of 9/9 0 against y has already been 
pointed out. If

-	 exp 
 ro 

L2i 

be introduced, there results

1/2

(84) 1k) 

and

[i O	 l	 11/2 
= exp	

exP(Y,1 - 11	 (87) 

Both of these expressions have behavior consistent with the experiments. 

The. form of dimensionless transverse turbulent-heat-transfer rate 
can be deduced for small values of Ax (such that R 	 1) with 

this pulse representation of (t). In this picture, 3v is the correla- 
tion between a continuous random variable v and a random pulse signal 

which "fires" every time the continuous variable passes through a 
specific value

-y vl - 

Therefore

- oj y 
- 5 L:.x 

=ey	 (86)

14.3 
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where s and e are functions of y. With Gaussian (y), 

8OU
_L.x[2(Y)2.	 (87) 

The direct comparison between this crude picture and the, experimental 
results will be confined to the correlation coefficientR-Ov= 
This is of particular interest in view of the surprisingly high experi-
mental values. With equation (85) and the fact that v'/U = 
there results

r 21 1-1/2 
R	 'L)	 expl 1	 - 1	 (88)v yt— So 

This contains the undetermined constant O/O' which can be obtained 
from any one of several experimental results. Figure 36 includes one 
plot of equation (88) with	 determined from equation ( 811-) and the
experimental value of (15 1 /)min, and one plot with 6 0/E–)determined by 

matching equation (88) with the experimental result at y/Y' = 

	

• It is also surprising to find that the experimental (Rv)	 at 

large values of x is even larger than that at small values of Lx. 
This may be due to a considerable experimental error; the resistance-
thermometer voltage signal is much lower here. Unfortunately no relation 
corresponding to equation (88) has been deduced for large values of x, 
where R T1 is essentially zero. 

The criteria'for Taylor's hypothesis of the interchangeability of 

instantaneous space U	 and time.	 derivatives (assumed by him to 

depend only upon turbulence level) have been expressed in equations (75) 
and (78) as functions of turbulence level RX and x/x. If x/x is 
replaced by its theoretical expression (equation (34)) in terms of R, 
equation (75) becomes

v'f 23	
1/2 <<	 •	

•	 (89) 
UTR X 2 R 

X ) 

For estimates of most flows the first term in the parentheses can be 
neglected; values of RX less than 5 or 10 are rare.
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Since equation (34) has now been roughly verified by experiment, 
equations (89) and (78) may serve as approximate criteria for the 
validity of Taylor's hypothesis. 

In the limit of R---O when equation (35) replaces equation (34), 
there follows a simpler criterion to replace equation (75): 

R(
<<1	 (90) 

Tj) 

SUMMARY OF RESULTS 

The following results were obtained from the investigation of the 
diffusion of heat from a line source in isotropic turbulence. 

1. The thermal wake behind a heated wire set perpendicular to a 
flowing isotropic turbulence (at sufficiently low wire Reynolds number) 
consists of a randomly "waving" thin, laminar, thermal wake whose varia-
tions in lateral position give what may be called the turbulent thermal 
wake. At a .fixed point not too far behind the wire -(t) is a random 
pulse function, and-the nature of the turbulent heat transfer can be 
deduced on this basis. Farther downstream the distinct pulse nature 
tends to disappear. 

2. The mean transverse temperature distribution a(y) appears to 

be Gaussian within the experimental precision for all distances behind 
the wire. 

3. An Eulerian analysis of this turbulent-heat-transfer problem 
permits computation of the turbulent-heat-transfer coefficient 
which is essentially constant with respect to the distance in the 
direction of the measured diffusion y for these boundary conditions. 
It is found that at low turbulence levels (approximately equal to 1 
to 2 percent) the molecular heat transport is not vanishingly small 
compared with the turbulent heat transport. 

4. Although Taylor's postulate that Lagrangian correlations iii 
decaying turbulence can be made similar by introduction of an independent 

It 
variable ii =	 v'(t) dt (where t is time and v' is the root-

mean-square instantaneous velocity fluctuation in the y-direction) 
seems to be an oversimplification, it has been applied here for
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convenience in the reduction of data. A simple comparison of Eulerian 
and Lagrangian analyses for diffusion in nondecaying turbulence shows 
that for large values of the distance from the heat source Lx the 
Lagrangian scale L enters the expression , for krp, the turbulent-
heat-transfer coefficient, much like the empirical mixing length in 
the old turbulent transport theories. Therefore some properly modified 
generalization of Taylor's TI-postulate should prove useful. 

5. A correction and generalization of Heisenberg's theoretical 
expression for the ratio of Eulerian to . Lagrangian microscale 
as a function only of the turbulence Reynolds number based on microscale 
RX has been made and seems to agree roughly with experiment. It must 
be noted that since X 11 depends only upon a transformation dii = v' dt, 

and not upon the integral postulate stated above, its validity is not 
impaired by any failure of the integral postulate. 

6. Taylor's hypothesis for the interchangeability of space and 
time derivatives at low turbulence levels has been expressed in terms 
of criteria which depend upon turbulence level, Reynolds number, and 
x/. Applied to the flows studied here it shows that in these cases 
such a transformation is permissible. By substitution of the theoret-

ical expression for _(R,), a slightly simpler and rougher criterion 
TI 

is derived, depending only upon turbulence level and R.X. 

The Johns Hopkins University 
Baltimore,, Md., June 5, 1951
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(a) No grid, in tunnel. 

(b) Grid-produced turbulence. 

Figure 2.- Shadowgraph time exposure of wire wake.
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(a)	 = 17, -xo = 11 3. 1i , M = 1 inch, and U = 27.6 feet per second. 

(b)	 = 39,	 = 86.8, M =	 inch, and U = 27.6 feet per second. 

Figure 3.- Experimental scatter; temperature behind line source of heat.
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M 
(in.)

x01M U 
- (fps) V, 

/fi 
(percent) 

1 43.4 8.5 2.0 
1 43.4 25.6 2.0 
1 43.4 38.0 2.0 

1/2 Ii-3.1l 25.6 2.0 
i/Li. 43.4 25.6 2.0 
1 86.1 25.6 1.50 

1/2 86.1 25.6 
i/Li. 86.1 25.6 1.30 
1/2 172.3 25.6 1.05 
i/Li. 172.3 25.6 .95

Figure 8. - Decay of turbulence as determined by thermal wake of a 
line source. 
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(a)	 <1. x'(t)	 xt(); Y, (t) =
UJ 

(b) UV<<i. 
U 

Figure 12.- Propagation of turbulence from source moving with mean 
velocity U.
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Figure 13.- Determination of X and L11 ; - = 113.4, M = 1 inch, and 

= 8.5 feet per second.
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.1	 .2	 4	 .5	 .6 

(a) X1 = 0.27.

(b) t = 0.33. 

Figure 15.- Determination of	 and	 ..2. = 43.4 1 M.= 1 inch, and

13 38 feet per second.
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(b) Lq = 0.34. 

Figure 16.- Determination of	 and L; -xo	 3. 1 , M = inch, and 

U = 27.6 feet per second.
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(a) X = 0.12.
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(b) L71 = 0.21. 

Figure 17.- Determination of	 and L; - = 113. 11, M =
	

inch, and

U = 27. 6 feet per second.
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(b) L = 0.23. 

Figure 18.- Determination of 
11 and. Lq ; 2. = 86.1, N = 1 inch, and. 

U = 27.6 feet per second.
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(b)	 = 0.25. 

Figure 19.- Determination of XT, and L;	 . 86.8, M = . inch, and. 

U = 25.6 feet per second.



.10 

.08 

.06 

.04 

.02 

NACA TN 2710 

on 

U	 .02	 .04	 .06	 .08 .10 	 .12	 .14	 .16 
171  

(a) X = 0.11.TI

71 

U	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 40

(b) L = 0.19. 

Figure 20.- Detrinination of XT, and L; - = 86.8, M = inch, and.

U = 25.6 feet per second.
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(i) Ln = 0.22.

Xo Figure 21.- Determination of X and L; . = 172.3, M = inch, and 

U = 25.6 feet per second. 
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(a) X = 0.17.
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(b) L = 0.13. 

Figure 22.- Determination of X and L1.j . = 173.5, M = inch, and

U = 25.6 feet per second.
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(a) Spread of heat from a line source. 
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(b) Correlation function H1. 

Figure 23-- Spread of heat from a line source and correlation function 

for M = 1 inch, U = 8.5 feet per second ., and - = 43.4.
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(a) Spread of heat from a line source. 
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(b) Correlation function'R. 

Figure 24.- Spread of heat from a line source and correlation function
for M 1 inch, U = 25.6 feet per second, and ±2. =
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(a) Spread of heat from a line source. 

(b) Correlation function R. 

Figure 25.- Spread of heat from a line source and correlation function 

for M = 1 inch, U = 38 feet per second, and 2. = 13.4.
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(b) Correlation function R. 

Figure 26.-. Spread of heat from a line source and correlation function 

for M = inch, U = 25.6 feet per second, and	 =

.3 
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(a) Spread of heat from a line source. 
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(b) Correlation function R. 

Figure 27- - Spread of heat from a line source and correlation function 

for M '= inch, Ti = 27.6 feet per second, and .o'=
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(a) Spread of heat. from a line source. - 
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(b) Correlation function R. 

Figure 28.- Spread of heat from a line source and correlation function
TI 

for M = 1 inch, U = 27.6 feet per second, and	 86.8. 

Ell
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- (a) Spread of heat from a line source. 

(b) Correlation function R. 

Figure 29.- Spread of heat from a line source and , correlation function 

for M = inch, U = 25. 6 feet per second, and	 = 86.8.
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(a) Spread of heat from a line source. 

(b) Correlation function R. 

Figure 30.- Spread of heat from a line source and correlation function R 

for M = inch, ii = 25.6 feet per second, and Lo = 86.8. 
M
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(a.) Spread of heat from a line source.

;.	 I 

(b) Correlation function R. 

Figure 31. - Spread of heat from a line source and correlation function 

for M = . inch, U = 25.6 feet per second, and xo = 172.3.
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(a) Spread of heat from a line source. 
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(b) Correlation function 

Figure 32.- Spread of heat from a line source and correlation function 

for M = inch, U = 27.6 feet per second, and E2. = 173.7. 
M
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(b) Rav against y/Y'. Dashed curves are result of analysis based on 
rectangular temperature pulses. 

Figure 36.- Heat-transfer correlation across thermal wake, computed from 
measured mean temperature distribution. U = 25.6 feet per second,

	

M = 1 inch, x0 =	 inches, and x 10.5 inches.
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(b) R	 against. y/y'. 

Figure 37.- Heat-transfer correlation across thermal wake, computed from 
measured mean temperature distribution. U = 27.6 feet per second, 
M = 1 inch, x0 = 43. 4 inches, and nsx = 70 inches. 
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ME 

(a) Turbulent-heat-transfer coefficient at threeair speeds. M = 1 inch 

and - = 
M 

(b) Turbulent-heat-transfer coefficient for two different grids.

U 27.6 feet per second and - = 43.4. 

Figure 38. - Turbulent-heat-transfer coefficient for three air speeds 
and two different grids.
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