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SUNMARY 

A matrix method is presented for determining the longitudinal-
stability coefficients and frequency response of an aircraft from arbi-
trary maneuvers. The method is devised so that it can be applied to 
time-history measurements of combinations of such simple quantities as 
angle of attack, pitching velocity, load factor, elevator angle, and 
hinge moment to obtain the over-all coefficients. Although the method 
has been devised primarily for the evaluation of stability coefficients 
which are of primary interestin most aircraft loads and stability 
studies, it can be used also, with a simple additional computation, to 
determine the frequency-response characteristics. The entire procedure 
can be applied or extended to other problems which can be expressed by 
linear differential equations. 

INTRODUCTION 

The longitudinal characteristics of an aircraft are often related 
by a second-order linear differential equation in which the aircraft is 
assumed to have freedom in pitch and in vertical motion; changes in 
forward velocity are so small that they can be neglected. In the evalua-
tion of tail loads, the coefficients of the differential equation and 
the elevator forcing function are generally assumed to be known and the 
response is to be determined. In the evaluation of gust problems the 
response and the coefficients are assumed to be known and the forcing 
function is to be determined. By analogy in stability and control work, 
it is desirable to determine the restoring-force and damping-force 
coefficients from known forcing functions and responses. In case the 
damping is small enough to obtain the rate of decay (or logarithmic 
decrement) and period from the oscillation, the required damping and 
restoring coefficients are easily computed. Models employed in rocket-
powered and drop tests can be and usually are so ballasted that such



NACA TN 2370 

well-defined oscillations are obtained; however, the longitudinal 
osciLlations of piloted airplanes ordinarily are nearly critically damped 
an4 this analysis procedure cannot be applied. In any case, additional 
data and analysis are required to evaluate the control-effectiveness 
coefficients. 

Appreciable wprk hs been done recently in tle field of determining 
the frequency-response Characteristics of aircraft in flight and evalu-
ating the stability coefficients from the frequepey-response ata. In 
general, the methods for determining these relationships have been to 
impose actually prescribed motions uch a unit steps, triangular pulses, 
or sinusoidal motions to the elevator by meaps of special eqi4pment and 
then to measure the responses. The theoretical iethods for eucing such 
data ar sia4y tailored to ft the preçribed elevator motion. Refer-
ences 1 an 2 present methods of treating input arid oitput da by Fourier 
analysis to determine the frequency response compared with the irect 
sin-wave input method of evaluating the frequency response, these 
r!Iethods require less special equipment and flight time at the expense of 
additional computation. For the practical application of the Fourier 
transform method, certain restricti,ons are pThaced on the nature of the 
input and the resultant outpl4t motions: the motions must start from a 
trimmed steady-state conition an, at the end of the tranient period, 
must approach either the original or the new steady or quasisteady trim 
conditions. 

In view of the complications and limitations of existing methods of 
fl:i-ght evaluation of stability coefficients and frequency repopse, 
eveThopment of a simple and less restricted flight test and associated 
arlyis was considered desirable. A matrix method f or evaluating the 
longitudinal-stability coefficints . of ap aircraft directly from the 
ppu axd oitpit time I stories corresponding to arbitrary control 

motions has bee p erived in the present paper. The frequency reppnse 
and sorie of the staily erivatives may be evaluated once these coef 
ipients are known. 4lthough thi method was derived to determine the 

second-order longitudinal response of an aircraft, it can be applied to 
other systems which can be approximated by econ-order differential 
equations; extension of the method to highen-order linear systems is also 
poible

SThBOLS 

A1, A2	 combinations of aerodynamic parameters (see table I) 

wing span, feet 

bt	 tail span, feet
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c chord, feet 

Ch hinge-moment'coefficient	 (	
H 

kv2 ctSt 

rate of change of hinge-moment coefficient with 
elevator angle	 (aCh/ao) 

CL lift coefficient	 (L/qS) 

C pitching-moment coefficient of airplane without 

horizontal tail 	 (r1b/qs2) 

C pitching-moment coefficient of isolated horizontal 
tail surface 

g acceleration due to gravity, feet per second per second 

H hinge moment 

Icy airplane radius of 	 rration about pitching axis, feet 

K empirical constant denoting ratio of damping moment 
of complete airplane to damping moment produced by 
tail 

L lift, pounds 

m airplane mass, slugs (W/g) 

M pitching moment of airplane, foot-pounds 

n airplane load factor 

q dynamic pressure, pounds per square foot	 (pv2) 

S wing area, square feet 

St horizontal-tail area, square feet 

t time, seconds 

V true velocity, feet per second 

W airplane weight, pounds
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x. ,	 length from center of gravity of airplane to aero-
dynamic center of tail (negative for conventional 
airplanes), feet 

Kl,K2,K3,Kb,	 dimensional constants occurring in equations (see 
Till	 table I) 

it 0 Ti 0 itO it 0 ft1 ,n2 

a	 wing angle of attack, radians 

at	 tail angle of attack, radians 

V	 flight-path angle, radians 

0	 angle of pitch (a + 

6	 elevator deflection, radians 

€	 downwash angle, radians (a) 

nt	 tail efficiency factor (t/) 

0	 phase angle between incremental load factor and 
elevator deflection, degrees 

p	 mass density of air, slugs per cubic foot 

dumny variable of integration 

elevator angular velocity, radians per second 

The notations a and 0, a and 0, and so forth, denote single 
and double differentiations, with respect to time. 

a	 bar over letter represents maximum value 

Ia	 bars on sides of symbol represent absolute value 

Natrix Notation: 

H 1	 rectangular matrix 

L ]	 square matrix 

t column matrix
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Ilci 

I IA II 

Subscripts: 

J 

t

integrating matrix (see table II) 

matrix defined by equation (2L) 

transpose of IIAI 

denotes row elements in matrix 

denotes column elements in matrix. 

tail 

LONGITUDINAL EQUATIONS OF MOTION 

Elevator Motion 

In this section the usual longitudinal equations of motion 
following an elevator motion are derived in such a manner as to obtain 
expressions between some of the simple combinations of variables which 
are measurable: in flight: namely, angle of attack and elevator angle, 
pitching angular velocity and elevator angle, or load factor and elevator 
angle. The usual assumptions of linearity, small angles, and no loss in 
airspeed during the maneuver, and no flexibility are implied. 

As in reference 3, the differential equations of motion of an air-
plane due to a given elevator deflection may be written as (see fig. 1 for 
definitions):

dCL	 (dCL\ 

	

m'V - - taqS - —)nt St	 = 0	 (1) da	 dô 

- Laq— +	 - - - a— - - - - + 
dCm	 s2	 dCLt [a (i dE)	 .X d.E	 t K 
da	 b	 da.t	 Vda 

da I	 ___ 
5JSt - dC
	 ;2	

-	 = 0	 (2)
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By use of the definitions

AG = A + Aa 1
(3) 

•=-;+•c 

equations (1) and (2) are reducible to the following second-order 
differential equation giving the relation between angle of attack and 
elevator angle:

(L) 

where the K's are the constants for a given set of conditions and are 
defined in table I. The coefficient K1 represents an effective 

aerodynamic-damping coefficient; K 2 represents an effective 

aerodynamic restoring-force coefficient; K3 and K represent effec-

tive elevator-control power coefficients. 

An alternate form of equation (b), expressing the relation between 
angle of pitch and elevator angle, may be obtained by inserting rela-
tions of equation (3) into equation (Ii ) and noting from equation (1) 
that

= A1 1a + A2 5

() 

Pt 
A1 /
	

a dt + A2 /	
5 dt 

U0	 Li0
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where A1 and A2 a combinations of aerodynamic parameters efined 

in table I. The equation obtained after these preceding substitutions 
are made is

Pt 

-	 e+Klo+K2e=KSAo+K6/	 Aödt	 (6)

LJO 

where (see table fl

+ K1A2 + 

N6 =	 + A1K3 

From the following finition for load-factor increment 

v	 dCL
(7) 

it f011OW5 tit

Ea=':!:	 n__.5 
dCL	 A1' 

.	 w/s.	 A2.

(8) 

= 
•	 dCL 

The	 term in equation (8) was found to be small and is 

gitted in te subsequent derivation.
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Substituting the results from equation (8) into equation (t i ) yields 
another form expressing the relation between measured load-factor incre-
ment and elevator angle as 

j +K1ñ+K2 n=K7 5+K85	 (9) 

where (see table I) K 7 and K8 are now different forms of the effec-

tive control power coefficients. 

Hinge Moment 

The coefficients K1 to K 8 occurring in equations (t4 ), (6), and 

(9) are those associated with the measured elevator-motion case. The 
use of the relation

aCh	 aCh 
Ch=—ö+-----Aat	 (10) 

gives the solution for 5 as 

=	 --ta I	 (II)
5 E3h (ch aCh aat tI 

ao 

The increment in tail angle of attack to be substituted in equation (11) 
is given by

(12) 

so that

-a+	
1 

Ch5	 aatL ( da da 2 m	 V(da
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In order to shorten the subsequent derivation for the hinge-moment 
case, the term K6 in equation (t i ) and its counterparts in equa-
tions (6) and (9) are omitted. This effect is usually small; however, 
each individual case should be examined to see whether the term warrants 
dropping. 

A substitution of the value of 5 given by equation (13) into 
equations	 ), (6), and (9) gives the following three differential 
equations for the same combination of variables with Ch and its 
integral replacing 6:

+ K°& + K2° t1a = K3 0Ch	 (lL) 

gK° R 
8+Kl°O+K208=K3°ch+ V 

•/ Ch dt	 (l) 
(Jo 

+ K°ñ + K2° tn = KS°Ch 	 (16) 

INTEGRAL FORM OF EQUATIONS 

Although equation (ti ), (6), (9) and (lIt), (15), (16) could be used 
to evaluate the effective K coefficients from flight measurements of 
a, e, and n together with measurements of elevator angle, stick 

force, or hinge moment, it is seen that several differentiations of the 
measured data would be required. Inasmuch as a numerical differentiation 
process is inherently more inaccurate than the corresponding integration 
process, the preceding equations are changed and rearranged so that 
either a, e, or tin, which are to be the measured values, appear as 
separate quantities on one side of the equation and the operations 
on these quantities appear on the other side. In integral form the 
rearranged equations are 

[)t	 t [)'E 

KiJ adt+K2 / I 
0	 'O (JQ 

Pt 
KIt I	 tbdt-ta 

110

[)t p'r 
ad'rdt-K3/	 /	 E6d'rdt-



UO(JO

('7)
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K1e + K fo dt - Kf A6 dt - K6 f f A6 th dt = —é (18) 

pt	 pt p't	 pt r' 
K1 1 Andt+K2J J Andtdt-K7J J Aöd'rdt-- 

0	 00	 00 

Pt 
K8 I Aodt = -An	 (19) 

'Jo 

K1° f Aa dt + K2° f f Aa d dt - K3° f, iCh d dt = LAa (20) 

K10e + K2°	 dt - K3° f	 dt - KS° f	 th dt = —ê	 (21) 

Kl0 fAndt+K20 fftAndTdt_K 0 fftCh ddt=_An (22) 

In principle to solve any one of these equations for the K 
coefficients, it is only necessary to tabulate the recorded values of
the two basic variables (for example, in equation (19) the values of 
An and A8) at a number of points t 1 , t2 , t, and so forth along a 

given time history and perform the indicated integrations from t = 0 
up to the time of the recorded value tj. A number of simultaneous 
equations containing the unknown K's result which are then solved. The 
number of equations can vary from a minimum, in which the number of 
ordinates is equal to the number of unknown K's, to the case where there 
are more equations than unknowns. When the number of ordinates equals 
the number of unknown K's, the usual methods of solving simultaneous 
equations may be used to obtain the K's; however, when there are more 
equations than unknowns, a least-squares method is required to reduce
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the equations. Since the best average value of the K's is obtained 
when many points along the tinie history are used, a least-squares pro-
cedure is generally preferable. 

Although the integration indicated in equations (17) to (22) can 
actually be performed graphically from the time histories, it is deemed. 
better to express the equations in matrix form in order to enable a 
complete numerical solution to be made. 

NATRIX FORN OF EQUATIONS 

Since the derivation in matrix form for any one of equations (17) 
to (22) is the same as for any other equation, only equation (19), 
involving measured load factor and elevator angles, is used. In matrix 
form the system of simultaneous equations obtained from reading the 
time history of the load factor n against elevator angle o in an 
arbitrary pull-up may be written 

Pl P' 
Andt/	 I 

0	 JO J0

pt pT 

And'rdt-/	 I 
JO	 O

Pt1 
5d'rdt_J

0 

nt	 pt T 
ndt/	 I 

0	 LJO '-

n dt 

IOt Andtf

rt2 r 
nd'cdt_J	 I 

0	 O 

pt3 p'r 
nd'rdt- I	 I 

Lb	 Li0 

tL 
nd'rdt_f	

T

öddt- Ct2ödt 
JO 

- rt3 
ö dt 

JO 

6 d dt	 b dt

K1
-En2 

K2

= (2: 
K7

-tn3 

K8

-LxnL
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In shorter form this expression may be rewritten as 

K1 

IAII K2 = {Ani}	 (2L) 
K7 

K8 

where the matrix h Ail is in general a rectangular matrix; that is, for 
every time t, one equation or one row of the matrix hAil is obtained. 

The individual elements of matrix hAil are evaluated from the known 

values of incremental load factor and incremental elevator angle. As 
mentioned previously, the integration may be performed graphically but 
in the present case, use is made of the integrating matrices derived in 
reference i-i. Thus, any element in the rectangular matrix (equation (23)) 

such as f An dt or f f An dT dt may be expressed in matrix 

form as follows:

{1t An dt} = Cl	 (2) 

An d dt} = tic1 {1t An dt} 

The integrating matrix IC1 as derived in reference L is given 

in table II, with a time interval At = 0.1 second. 

After the elements of the matrix k (equations (23) and (2t)) have 
been determined either by applying the integrating matrix or by graphical 
integration, the method of least squares is applied to the solution of 
the system of simultaneous equations. In matrix notation the least-
squares solution involves multiplication of matrix A by its transpose A' 
so that equation (2L) becomes

'I
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EAt A] JKjj = {_A t njj	 (26) 

where the matrix [A l A] would be a L by L matrix for equations (18) 

and (19).: Equation (26) can now be arranged to be solved directly for 

the K t s by multiplying by the inverse matrix [A'A]' so that finally 

[Ku 

K2 - [AIA]_1{_Av Ani}	 (27)
I K7 

LK8J 

Alternately the system of simultaneous equations represented by 
equation (26) can be solved for the values of K by any of the well-
known methods of solving sets of simultaneous equations, that is, by 
eliminating the variables or by using Crout's method (reference ). 
The derivation in matrix form of any of the other equations from (17) 
to (22) is similar to the plan given for equation (19) and therefore is 
not given.

FREQUENCY RESPONSE 

As first derived by Cornell Aeronautical Laboratory (reference 6), 
the frequency response was measured by actually subjecting the airplane 
to sinusoidal elevator motions of various frequencies by means of 
specially constructed apparatus. From these results the coefficients 
K1, K2 , and so forth, which are significant in control and loads work, 

could be determined provided the equation of motion was assumed. 

In the present instance since the coefficients K1 and K2 are 
determined directly from the equation of motion, the corresponding 
relations are given so that the frequency response, which is sighificant 
in the design of stable autopilot systems, can also be determined.
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When a sinusoidal elevator motion has been assumed then equation (9) 

becomes

j + K1ii + K2 An = K75 sin t	 (28) 

where An is the load-factor increment and ü is the angular velocity 
of the elevator. Since equation (28) is a linear equation with constant 
coefficients, the steady-state solutions are of the form 

n =	 sin(ut + 0) 1 
= ii cos(ct + 0)	 (29) 

=	 2 sin(U3t + Øj 

By a substitution of these relations into equation (28) the following 
equation is obtained: 

_ 2 sin(t + 0) + Kjo cos(üt + 0) + K211'sin(üt + 0) = K75 sin t	 (30) 

which may be rewritten as 

(K2 - 2) sin(üt + 0) + K11ku cos(üt + 0) = Kj Sin c* t	 (31) 

or

Bsin(ct+Ø+€)=K76sinot	 (32) 

where

B=K7=(K2_)2+ (K1)2	 (3) 

and

1 -K1c -E = 0 = tan-	 (3I 

K2 -

D
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From equation (33) the amplitude ratio of load factor to elevator angle 
is seen to be

K7	 - 
(3S) 

-	
)2 + (K1)2 

and the phase angle at various frequencies is given by equation (3L). 

In the present case the values of K 1, K2, and K7 would have 
been derived from the flight measurements and the values of 	 would
be assigned. 

For the measured hinge-moments case the values of K1° and K2° 
would be used instead of K1 and K 2 , and so forth. 

DETERNINATION OF AERODYNANIC DERIVATI lIES 

The various K coefficients determined from the measured values 
may be termed effective coefficients and include, to some extent, effects 
of some nonlinearities, elasticity and effects of other varib1es which 

, are omitted in the usual analysis, In addition, as may be seen from 
table I, the K coefficients are combinations of various quantities 
involving known geometric qualities, the conditions of the problem as 
well as aerodynamic derivatives. The stability coefficients given in 
table I are expressed in a form suitable to loads work. In usual 
stability calculations, these coefficients are generally expressed in 
a simpler form where the number of aerodynamic variables are reduced 
and, as a result, the coefficients are more easily approximated. 

dCL dCm de dCL	 dCLt 
A total of 10 aerodynamic variables - a-,	

' d' dat'	 dö 
dCmt	 C	 8C __Ii , .Ji , r , and K appear in the definitions of the coeffi-

	

do' aat	 85	 t 

cients of table I. Although all the aerodynamic derivatives cannot be 
determined directly from the four basic coefficients (namely, K 1 , K2, 
K3 , and K)), engineering approximations of the more significant deriva-

tives can be obtained if values are assigned to either some of the more 
accurately known derivatives or to those factors having least influence 
on the problem.



16
	

NACA TN 2370 

The factors having the least influence on the problem are K, r)t, 

dC1 
and the derivative	 which, respectively, allow for the contribution 

of wing-fuselage damping, tail efficiency, and moment due to tail camber 
to which average values can be assigned. A representative value of K 
is 1.2g. Representative values of i range from about 1.2 to 0.8 with 

the higher limit applying to propeller-driven airplanes operating at low 
speed and full power and the lower limit applying at high speed with the 
propeller braking. An average value for jets or at zero thrust for

dCmt 
propeller-driven airplanes is about 0.9. A representative value of dô 

can be obtained from existing wind-tunnel data or by using theoretical 
methods; -0. is an average value for tail surfaces. 

Since, as may be seen from table I, K is directly proportional 

dCLt 
to 

dô 
an effective value of this derivative can be determined directly 

from the definition of K. 

In order to determine consistent values of the remaining significant 

dCL dCm dE dCLt dCh	 dCh 
aerodynamic derivatives - 	

d	
a-, and --, further 

values must be assigned to several of the remaining derivatives. The 
derivatives chosen would naturally be those for which values could be 
obtained from other sources with the greatest degree of accuracy. 

EXMIPLES 

In order to illustrate the foregoing method as well as the consistency 
of results obtained with different sets of instrumentation, typical exampleE 
are given usingdata obtained from three flights (referred to as flight 1, 
flight 2, and flight 3) of a high-speed medium jet bomber. For flight 1, 
the method of a computation is obtained in sufficient detail to enable a 
reader not too familiar with the mathematical details to reproduce similar 
results. Flight 1 is further divided into , case I where data for 1n and 
A5 tare used, and case II where data for e and A6 are used. Refer-
ences 7 and 8 may be consulted for introductory discussions of least-
squares and matrix methods. 

• Figure 2 shows the measured time histories of velocity, altitude, 
incremental elevator displacement, incremental load factor, and incremental
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pitching velocity obtained during a push-down pull-up maneuver. By means 
of the values from figure 2, increments in load factor and elevator angle 
at 0.1-second intervals have been tabulated in columns 2 and 3 of 
table III. The elements of the A matrix (equations (23) and (2L)) are 
given in columns ) to 7 of table III. Each element in these columns has 
been determined by performing the indicated integrations on the results 
given in columns 2 and 3. In this instance the integrations have been 
performed by use of the previously mentioned integrating matrix derived 
in reference ). This method is particularly suitable when automatic 
computing machines are available. 

The elements of matrix A (equation (23)) which are given in 
columns Lt to 7 of table III indicate that with the At spacing used, 
there are 23 equations involving the four unknown values of K. In 
order to obtain the least-squares solution of these equations, the trans-
pose hAil of matrix hi Ahl is required. The transpose matrix is obtained 
by interchanging.the rows and columns of matrix UAII. 

The product of the )4-row, 23-column transpose matrix by the 23-row, 
It-column original matrix yields the ti-row, )4-column matrix in the coef-
ficients of Ki. The resulting four simultaneous equations are then 
solved by any of the well-known methods of solving sets of simultaneous 
equations - 

By performing the preceding operations, the following values of K 
were obtained from the data listed in table III: 

K1	 K2	 K7	 K8 

3.31L122l	 7.339706	 -1l9.390	 .8l902 

In order to show how well these computed values of K represent 
the original data, they have been reinserted into equation (19) along 
with .the measured values of Aô to determine calculated values of An. 
The computed curve is given by the dashed line in figure 2 of the plot 
of An against t. 

The same process as was used for the relations of An and A5 was 
also applied to the relations of e and Ab shown in figure 2. The 
tabular material corresponding to table III is not included; the values 
of K obtained, however, were as follows: 

K1	 K2	 K	 K6 

3.13167	 8.bl23	 -7.6212	 -12.1967
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These values of K •when reinserted into equation (18) resulted in the 
computed curve of e given by the dashed curve of figure 2. 

In addition to the preceding computations several push-down pull-
up maneuvers, made under similar conditions of altitude, weight, and 
center-of-gravity positions, were analyzed to obtain the variation of 
several of the computed K's with Mach number. In this analysis only, 
the measurements of n and /ô were used. The results obtained for 
three Mach numbers are shown in figure 3. The short parts of the curves 
shown are the expected variations in the K's. Table I shows that K1 

should vary linearly with speed and the other values of K should vary 
parabolically. The curves shown are merely guides adjusted to as to 
pass through zero and the value of K at the 0.L5 Mach number point. 

The values of K1 and K2 shown in figure 3 were also inserted 
into equations (3t) and (3) to determine the corresponding curves of 
frequency response. The results are given in figure L. 

In addition the values of K1, K2 , and frequency response for 

case I have been computed by using the definitions of table I and aero-
dynamic derivatives obtained from wind-tunnel tests. These results are 
also shown in figures 3 and L. The aerodynamic derivatives were listed 
in an unpublished report by the North American Aviation, Inc., and were 
obtained in the Southern California Cooperative Wind Tunnel. 

DISCUSSION 

If only the frequency response is desired, it can be determined 
without recourse to the equations of motion; however, if the stability. 
coefficients are desired,it will be necessary to use the equations of 
motion as has been done in the present paper. For either case several 
mathematical methods are available (references 1, 2, and 6) to obtain 
these required quantities and all methods, if carried far enough, should 
yield similar results. Thus the present method is basically no more 
accurate than any other method; however, it has the advantage of simple 
instrumentation and experimental procedures but may require more extensive 
computation. 

As with other methods where linearity is a basic assumption most 
consistent results are to be expected when the maneuvers are confined to 
the angle-of-attack region where linearity exists. In order for the 
outlined mathematical procedures to succeed, the maneuvers should cover 
as much of the linear range as possible in a short period of time and 
the portion of the maneuver considered should be confined to that portion
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where the integrals are increasing. This practice insures that the 
elements of the original matrix A are all different and that the 

subsequent least-squares matrix [A 'A] is not ill-behaved. A point 
worth noting in connection with the use of the equations is that zero 
time is assumed as being at the start of the maneuver when the airplane 
is in steady flight. Since the present method is not restricted by the 
final condition, it offers the possibility of performing an analysis 
on fragments of curves with the result that any variations in the con-
stants may be determined. In such an analysis two possibilities occur: 
(1) where the fragments considered start from a fixed initial condition 
and become successively longer, and (2) where the fragments are taken 
as consecutive. In the first case, the present method may be applied 
without any modification; in the second case, the equations must be 
altered to introduce the initial conditions for each fragment. These 
possibilities have not, however, been explored. 

In the derivation given herein, lag in downwash has been included 
(see equation (2)) but unsteady lift effects have not. References 9 
and 10 show that for the present purposes the inaccuracy of omitting 
unsteady flow effects, except downwash lag, is probably no greater than 
the inaccuracies in the original assumptions or of the experimental data. 

Other terms and other combinations of measurements might have been 
included in the derivations given, for instance, the equations are 
readily adapted to measurement of tail load and either airplane load 
factor, airplane angle of attack, or pitching angular velocity. Addi-
tional terms may have been included to account for flexibility. Also it 
is possible, as for example in the case of the hinge-moment relations, 
to include additional terms to account for elevator moment-of-inertia 
effect, rate of elevator motion, and so forth in order to make the 
methods more inclusive. The inclusion of these further terms, however, 
generally requires additional K's to be evaluated and would only be 
justified when the assumptions implied in the basic equations of motion 
can be more closely approached and when the accuracy of measurements is 
high. Although the method has been applied herein to second-order 
differential equations, it may be extended to higher-order equations, 
with the limitation that too many integrations destroy the conditioning 
of the equations used in determining the coefficients (equation (26)) 
and make the equations difficult to work with. 

The results of the sample computations in which two different sets 
of instrumentation were used indicate an average difference between the 
respective K coefficients of about 10 percent. The use of a least-
squares method permits calculation of a probable error, which is an indi-
cation of how well the second-order system and the coefficients (computed 
on the basis of 0.1-second time intervals) fit the data. The expression
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used in computing the probable error is 

= o.67Li5\j9_ \JTi 

where B 1 is the main diagonal term of LAtAI 1 , E is the difference 

between the computed and measured value of the variable, and N is the 
number of cases considered in the least-squares procedure. This 
probable error has been calculated for case I and case II and indicates 
an error of ±0.3 in .K1 and ±0.	 2 for the computations in which 

the accelerometer measurements were used. These values are contrasted 
with probable errors of ±0.1 and ±0.3 for the pitching-angular-velocity 
measurements. These probable errors are associated with the very small 
differences between the solid-line and dashed-line curves shown in 
figure 2. Greater accuracy may be obtained by increasing instrument 
accuracy, record-reading accuracy, and correcting original data for 
instrument errors. Further accuracy in the method may always be 
attained by using smaller time intervals. 

The results shown in figure 3 for the three flights investigated 
give some idea of the scatter to be expected between runs as well as 
the variation of the coefficients K 1 and K2 with Mach numb'. As 

imight be expected from the definition, K1 is seen to vay linearly 

with Mach number with little scatter. On the other hand, the values 
of K2 either indicate a linear variation with Mach number or a 
scatter about the expected parabolic variation. 

The computed values of K1 and K2 (fig. 3) obtained from the 

wind-tunnel data are in fair agreement with the flight-test values. 
For many engineering purposes this agreement may be adequate and probably 
typical of what imight be expected if wind-tunnel data were used at the 
design stage.

CONCLUDING REMARKS 

A matrix method has been presented for determining the longitudinal-
stability coefficients and frequency response of an aircraft from an 
analysis of arbitrary maneuvers in which simple instrumentation is used. 
Errors in instrument accuracy and probable errors due to the use of a 
least-squares method are briefly discussed. Possible improvements in 
the method are discussed but as of the present, it appears improvements 
would be justified only for those cases where the basic assumptions are
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closely approached and where instrument accuracy is high. The method 
is equally applicable to other problems which can be expressed by 
second—order differential equations. 

Langley Aeronautical Laboratory 
National Advisory Comiaittee for Aeronautics 

Langley Field, Va., December l, l90.
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TABLE I.- DEFINITION OF CONSTANTS OCCURRING IN EQUATIONS 
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Figure 1.- Sign conventions employed. Positive directions shown.
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