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SUMMARY

The indicial 1ift and pitching-moment coefficients are derived for
flat-plate triangular wings traveling at supersonic speeds. The coeffi-—
clents are determined for angle—of-attack distributions corresponding to
sinking wings and to pitching wings. The wing with supersonic edges is
completely analyzed, and the wing with subsonic edges is partially
analyzed, the solution in this case being completed for very narrow
wings by an application of slender wing theory. In the case of the
supersonic edges, a comparison is made with known two~dimensionsal
results and also with the results for the same triangular wing in
reversed flow.

INTRODUCTION

The wing of triangular plan form has received considerable atten—
tion in the steady—state theory of three—-dimensional wings in a super—
sonic stream. The purpose of the present report is to determine the
aerodynamic characteristics of a triangular wing in supersonic unsteady
motion,

There are several simple types of unsteady motion on which the
analysis can be based. The so—called indicial motion, in which the
velocity undergoes a discontinuous change at t'=0, will be considered
here. (See also references 1 and 2.) It is possible to concelve the
physical situation in two slightly different ways. For one, it can be
supposed that the wing has been traveling at the constant velocity V,

 for an infinitely long time and then, at t'=0, starts suddenly to sink
without pitching motion (or to pitch without ginking) while maintaining
the forward velocity Vs. On the other hand, the wing may be considered
to be at rest in still air until at t'=0 1t starts suddenly either to
sink or to pitch and, at the same instant, attains the forward velocity
Voe The latter physical picture will be used in this report. Problems
of unsteady motion can also be approached with the initisl assumption
that the velocity potential depends harmonically on the tims. (See
reference 3.) These two approaches are quite compatible in that they
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can be related through the use of superposition methods (Duhamel's
integral, Fourier's integral) of the operational calculus.

The question of whether the coordinate system should move with the
wing or remain fixed is also of some importance. (See reference 4 for
a discussion.) The latter alternative, that is, where the wing moves
away from the coordinate system, was chosen for this report because the
velocity potential @ in this case satisfles the wave equation

1
(pn"‘ q)yy+q)ZZ_a?q)t't'=o

where X,y,z are Cartesian coordinates, t' is time, and ao, is the
speed of sound in the undisturbed medium. The fact that the equation
has this form is helpful in establishing analogs between steady and
nonsteady motions, and these analogs are of considerable help in the
solution of certain problems.

The boundary conditions to be considered correspond to the problem
of the flat sinking wing (angle—of—attack distribution uniform over the
plan form) and to the flat pitching wing (angle of attack varies
linearly with chordwise distance) in indicial motion. First, the load-—
Ing on a flat triangular wing with supersonic edges undergoing an
indicial sinking motion is determined. Then a simplified method is
developed whereby total 1ift and pltching-moment coefficient for the
wing with supersonic edges may be obtained. These quantities are
determined as functions of time, for both sinking and pitching wings.

Lastly, the triangular wing with subsonic edges is partially
analyzed, and an approximate method for very slender wings is used to
complete the determination of loading. The analog method, mentioned
previously, is here of great value. Lift and pitchlng—moment coeffi—
clents for the sinking and pitching slender triangular wing are
determined.

LIST OF IMPORTANT SYMBOLS

ag Speed of sound in the free stream

Cqo root chord of triangular wing

. 1ift
Cr, 1ift coefficient I——a

7

G, indicial 1ift coefficient due to angle—-of-attack change (without

pitching) <CL ach_)
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CLq' indicial 1ift coefficient due to pitching on a wing rotating about

tl

oCy,
its leading edge or apex CL = _
a3 ESL.3

Yo 40

pitching-moment coefficient, posifive when trailing edge tends to
sink relative to leading edge

indicial pitching-moment coefficient due to angle—of-attack change
(without pitching) measured about the leading edge or apex

act
Cp.' = —28- )
<m<z X

a=0

indicial pitching-moment coefficient due to pitching measured about
Cpy* ’

t 1 i é 't =
he leading edge or apex my cof
VO é:O

cotangent of sweep angle (cot A)

v
free—stream Mach number <L

=10)
_M_Q. ° ég d_y
2as do

mMO——.—Vofs@dy
2682 Jg

loading coefficient (pressure on the lower surface minus pressure

on the upper surface divided by free—stream dynamic pressure )

free—stream dynamic pressure <%po V02>

c
dimensionless rate of pitching <VL>
o

local semispan of wing
wing area

time
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t

Co

perturbation velocity components in the x,y,z directions,
respectively -

free—stream velocity
Cartesian coordinates

distance of center of pressure from wing apex

angle of attack (angle between flight path and plane of wing),
radians )

1147

1

m My +#1+1P

wing angle of pitch, relative to initial attitude, positive when
~ trailing edge lies below leading edge

wing rate of pitch, positive when trailing edge 1s sinking

relative to leading edge (dt' >

angle of sweep of leading edge, positive for sweepback

Pree—stream dens ity

t

8

v
chord lengths traveled < - Oor Moto>

o
perturbation velocity potential

jump in potential across the z=0 plane
+ _ .
[o(x,y,0 ) "(P(x:y:o )]

Subscripts

component taken normal to the leading edge

positive side of the 2z=0 plane, or upper surface of a wing
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THE PROBLEM AND THE NATURE

OF ITS SOLUTION

Consider a wing situated in still air and a Cartesian coordinate
system with origin on the leading edge at the point of wing symmetry.
At time equal to zero, the wing starts impulsively to move in a straight
line with constant velocity away from the coordinate system which
remains fixed relatlve to the still air at Infinity. The load distri-
bution on a wing undergoing such a motion is called the indicial loading.
Similarly, the forces and moments which are based on this loading are
given the adJjective indicisl. The partial differential equation that
is satisfied by the velocity potential @ for such a motion can be
- written '

Pit —Pyx —Pyy =Pz = O (1)

which is the normalized form of the wave equation. In equation (1),
X,y, and z are distances: x measured chordwise, y spanwise, and =z
vertically, and t 1s equal to agt' where a, 1s the free—stream
speed of sound and t' 1is time. ,

The boundary conditions to which equation (1) is subject are
dependent on the wing shape and motion. Adopting the assumptions of
thin-eirfoil theory, which are consistent with the assumptions already
used in obtaining equation (1), it can be assumed that the slope of the
wing surface, 1n the direction of motion, at any place and time is-
given by the ratio of the vertical velocity component in the 2z=0 plane
to the wing's forward velocity component. For a flat plate, then, the
following conditions are to be satisfied:

1. The vertical velocity @, 1is a linear function of x,
the coefficients of which depend upon the angle of attack and
rate of pitch, over the portion of the xy plane occupied by
the wing at any given time.

2. No perturbations exist at infinity.

3. There are no discontinuities in the velocity potential
except over the region occupied by the wing and its vortex wake.

The problem has now been expressed as one of finding, for pre—
scribed boundary conditions, a solution to the wave equation. It is
often desirable to express the solution in terms of the loading coeffi—
clent rather than the potential function or velocity components. . This
coefficient can be written in its linearized form as
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The solution of the problem without further restrictions has, in
general, not been obtained, although it can be shown that the boundary
conditions for any wing in unsteady motion can be satisfied by a
suitable superposition of sources and doublets (reference 4). However,
the solution for wings with all supersonic edges can be written as a
double integral of sources having intensities determined by the local
slope of the wing. Hence, for a flat surface at constant angle of
attack and not pitching,

Voo
o(x,y) ="‘20?ff%d-xlle (3)
Sa.

where S, 1s the outline of the region of sources which can; at a
given time, affect the point x,y at which the potential is being
determined, r equals # (x—x;)° + (y=y1)%, and a 1s the angle of

attack of the wing. The area S; has been termed the acoustic plan
form and a discussion of its significance is given in reference L.

The. solution for the triangular wing with subsonic edges can be
obtained in certain regions, but in others the problem reverts to the
solution of a double integral equation involving time and the two sur—
face dimensions of the wing. If the triangular wing is slender, an
approximate method for finding the pressure over the entire wing can be
used. This method is to neglect the streamwise velocity gradients in
comparison with the gradients in the plane normal to the free strsam
and also in comparison with the term @ii. There results for the
partial differential equation governing the flow field (equation (1))
the wave equation of one lower dimension, namely,

Prt = Pyy —Pyy = O (k)

As will be developed later, the boundary conditions become the sams as
for a rectangular flat plate of very low aspect ratio inclined at angle
of attack to a free stream with a Mach number equal to~ﬁ§: This
analogy with the steady—state lifting-surface problem is useful since
solutions to the latter problem have been obtained.

The indicial 1ift and pitching-moment cdefficients will be deter—
mined for wings with two different vertical velocity distributions.
The first 1s the case in which the boundary condition is

w, = @ = —Vva
u % z=0 °
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where a 1s the angle of attack, and w, 1is constant over the plar
form. This case 1s referred to as that of the sinking wing. The other

boundary-value problem considered is the one corresponding to a flat
wing pitching at a constant rate about its leading edge or apex. The

boundary conditions have the form

W= q)z |z=0

where 6

= -6 (x+Mgt)

is the constant rate of pitch and (x + Mgt) 1s the distance
aft the leading edge or apex of the wing.

The pitching velocity 8

is considered positive when the trailing edge of the wing sinks relative

to the axis of rotation.

The difference between o
‘and 6 is illustrated in the
~ sketch, where for clearness the
motion 1s shown to be oscillatory
rather than indicial. The angle
of attack o 1is the angle
between the flat wing surface and
the line tangent to the flight
path of the leading edge or apex
of the wing. The angle 6 is
the angle between the flat wing
surface and the horizontal (see
part (a) of the sketch). Part (b)
of the sketch shows a wing under-
going a sinusoidal angle—of-attack
variation with a zero angle of
pitch throughout the motion.
Part (c) shows a wing undergoing
a sinusoidal angle—of—pitch varia—
tion taken about the leading edge,
with the angle of attack remain—
ing zero,

Although the 1ift and
pitching-moment coefficients are
given only for the two types of
motion separately, it is possible,
according to the linear theory,
to combine them to similate an

arbitrary indicial maneuver consistin

motions,

Direction of wing motion
- >

Flight path of
leading edge y

2t

Wing
(a)
§:-6-0
a:sinwt
(b)
&= sinat’

(d

g of both sinking and pitching
For such a case, the boundary condition becomss

Wy = Vea - (x + Mot)
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If, furthermore, the desired maneuver is not indicial, the 1lift and
ritching-moment coefficients may be determined by use of Duhamel's
integral: : ' ,
t'
L E%_l [0r, (8'=71) alr') + o' (e'=r)a( )] v
.LI

d
C —
T

7, [C ' (Ef= 1" Ja( 7) + Cmq'(t'—'r') é( T*)lanr?t

. N ' coe
where a(t') and q(t') are the arbitrary motions <q_ = Vo>, CL(L’ Cmo,"

CLq', and Cmq’ are the indicial aerodynamic coefficients, and the primes
on the coefficients indicate that the pitching motion is about, and the
pitching moments are referred to, the leading edge or apex. :

The position of the axis of pitching motion, and of the axis to
which pitching-moment coefficient is referred, is of importance. 1In
this report, these axes coincide in an axis normal to the root chord of
the wing and passing through the wing leading edge or apex. However,
it 1s often desired to transfer the pitching motion and moment calcula—
tion to other axes, and the formulas for such a transformation will be
given here. Let the pitching motion refer to an axis lying a distance
acy back of the leading edge or apex, and let the pitching-moment
coefficients refer to an axis bc, aft the leading edge or apex. The
necessary transformation formulas are

C

m |, = Cmg' + b Crg
- 1 _
CLq'a—CLq' aOLaI
- ] T t
cmqla’b = Cyy" + b Cry' —aCn,' —ab O

where a prime on a quantity indicates that the pitching motion is about,
and the pitching moments are measured about, an axis through the leading
edge or apex of the wing. .The quantity gq 1is the dimensionless rate

of pltching, equal to co 8/Voe The subscripts a and b mean,
respectively, that the quantity in question refers to & pitching motion
about an axis at.a distance ac, aft the leading edge or apex, or that
the pitching moments are measured about an axis bcy aft the leading
edge or apex. '
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WING WITH SUPERSONIC EDGES
INDICIAL LOADING FOR SINKING WING

Analysis

The seven regions.— The analytic expression for the indicial load—
ing over the triangular wing has a different form in each of seven '
regions. These regions are determined by ths positions of the various
wave fronts relative to the wing plan form (fig. 1). For t<O the
wing is motionless, its leading edge lying along lines represented by
the dashed lines in figure 1. At t=0 the wing starts suddenly to
move, and for >0, travels forward at a constant speed V,. After a
certain time t has elapsed, the wing has traveled to a new position,
also shown in the figure. In this same interval of time, pressure
impulses have traveled out in spherical waves from every point of the
region which the wing has occupied. The trace on the wing of the
sphere starting from the wing apex at t=0 forms the external boundary
of region 7. Ths area outside this circle and within the traces of the
cylindrical waves (the envelopes of the spherical waves) generated by
the leading edges at t=0 forms region 4. Region 5 is formed by the
overlapping of these oylindrical waves, and the solution for loading
within it can be found by a suitable superposition of the solutions for
regions 3 and 4. Region 1 lies between the cylinder trace on the wing
and the leading-edge position at time t; the loading in this region
cannot be affected by the manner in which the wing started its motion
since 1t lies outside the starting cylindrical waves. Hence, the
loading in region 1 is the same as that on a swept wing flying at a
steady supersonic speed. The solution in region 2 can also be obtained
from steady—state lifting—surface theory, but, whereas in region 1 the
fleld is two-dimensional (1.0., invariant with distance measured parallel
to the leading edge), in region 2 the field is conical. Region 6 is
formed by the overlapping of regions 2 and L. 'Finally, region 3 is that
area completely unaffected by waves from the wing edges. In the follow—
ing subdivisions the analysis of each of the separate regions will be
discussed.

Region 1: The loading in region 1 of figure 1 is equal to the

loading on a two-dimensional flat plate moving at a constant velocity
glven by the component of stream velocity normal to the leading edge
of the triangular wing. Since this component is supersonic, the
loading is'of the Ackeret type and is given by

OF

But since Vp = V, cos A where A 1is the angle of sweep (see fig. 2),
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qn=qocoszA
Cp =a sec A
M, = M, cos A

By =MZ cos A1

< éE)l - ha
o ,/Moa - seczA

Finally, if ctnA =mn

and

&p (5)
q

0 /4 /62m2 -1
wheré B =« M02 - 1.

Region 2: The steady—state loading on a triangular wing with
supersonic edges has been given by several authors (see, for conven—.
ience, reference 5) so the expression for the loading in region 2 can
be written immediately for the coordinate system shown in figure 2 as

20\ ___ hom {,, + arc sip B my=(x+Mot)

Yo 7 /PP b plm(zigt)-y]
BPmy+ (x+Mgt ) (6)
BM(x+Mot )+7]

arc sin

Region 3: Since region 3 is umaffected by the edges of the wing
the solution for the loading therein can be written as in reference 6

Y ke
(QOG e (7)

Region 4: The solution for loading in region 4 can be obtained

from consideration of a two—dimensional wing starting from rest and
moving with velocity V, normal to its leading edge. This problem
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has been treated in reference 6 and the solution written there can be
written for the right-hand side of figure 1 as i

o Mp 2= s
¢ =—hﬂl— arc cos MnXtt Mnl<—+arcsin2%l\;:|
\ qn 4 ’n'Bn L Xn+Mnt Mn 2 /
where the notation, as defined by the sketch, 1s
Xp = X cos A —ysin A
Jnp =X 8in A+ y cos A
and since
ctn A =m, sin A = s A _ Y
1+nP P
m 7 \ A
cos A = P
1+of :
Then n
mX—y
In = —=
N 1P
X-+my :
Jp =
v 1+mP Yx

The equation for loading now becomes, in the coordinate system of
figure 2, . ' .

mMo(mx — |y|) + t(1+®) N
V1 (mx - Iy | + mMot)

[ arc cos

<é’i> __ fem
%74 /g

'~/Bz¥n2—l< aip == 1] } |
-—I-n-M—o——— %+arcsin;——-]:m?- , | (8)

Region 5: The solution for loading in region 5 can be"obtained

by superposition of the solutions for regions 3 and 4. If the solu—
tions for the two sides of region 4 (obtained from equation 8) are
added, the result gives a value of w; of twice the required amount
in region 5, as well as undesirable pressures off the wing. However,
subtraction from this sum of the solution for region 3 (equation 7)
reduces the downwash w, to the proper value, and also cancels the
excess pressures. The resulting expression can be written
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<é2> ) o [arc cos . o (mey) + (1+m2)t +
Qs n o/ B2rP-1 V1+rP (mx—y + mMgt)

My (mx+y) + (1+m@) t
v 1+? (mx + y + mMgt)

arc cos

s— .
——255§:£ arc sin ——Eftz—g + arc sin ;F%%i%‘{:ﬂ (9)

Reglon 6: The loading in region 6 can also be calculated by

Superposition. To find the loading in this case, add the solutions
for regions 2 and 4 (equations (6) and (8)) and subtract the solution
for region 1 (equation (5))s There results

//AP arc sin BPmy — (x+Mot) — arc sin By + (X+Mbt)

2 .\/ p2m2 { Blm(x+Mot) —y] Blm(x+Mgt )+y]

arc cos

Mo (mx — |y ) + t(1+mR)
mx — | y| + mMgt )W/ 1+

__.__‘”BZnMi_l <’§t— + arc sin E—i.%g:‘)} (10)
+

Region 7: The solution for the loading in region 7 can be

obtained by means of equation (3). The analysis used in finding the
solution in this region is
not difficult but the algebra
is rather involved. It is
useful at this point to
introduce polar coordinates
(see sketch) such that

X-X3 = r cog @

r sin 6

Iy
dxidy;

r dr de (11)

From equation (11), equa-—
tion (3) can be written in
the form

cp- 21r Js, f drde (12)




NACA TN 2387 ‘ 13

The acoustic plan form for points in region 7 is the region
bounded by three curves as indicated in the sketch. The arc between
61 and 62 1is determined by eliminating T Dbetween the equations

r? = (t —=17)°

(the equation for the inverse sound waves) and the equation for the
left leading edge . ‘

y1 = -m(x1 + MoT)

’

The arc between 63 and 6; is found by determining the acoustic
intersection (eliminating T) of the right leading edge with the
inverse sound wave; and, finally, the arc between 62 and 65 is
given by the equation r=t. The equations of these arcs can be
written in polar coordinates as
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= m(x+Mot )+y ;010 <62
m cos 6+mMg+sin 6

r=%t; 62<0<06;

r = — mlxMot)y -{039361

m cos +uMy—sin @ " 8:<9 <on

Using these expressions, equation (12) reduces to

02 ' -
? Voo f m{x+Mot )+y o +

n
2 g, W cos 6+mMy+sin 6
Vc;a pb%
Y - tdo +
82
e , TR
Voo 1 - m(x+Mot )~y
an o, ™ cos 6 +mMy—sin 6

and taking the partial derivative with fesypec"c to t '(to determine
the loading according to equation (2)) one finds!

' 92 93
< 2).zn [ o s [
40 . n by ‘mMo + m cos 6+sin 0 1M, o
2am f v a9 (13)
T 6, mMy + m cos 6—sin 6

In evaluating this equation, the following integral is used:

for -n <9<«

ae - 2 m{Mo—l)ta.n (9/2) 1 14
f My + mcos @ +sin 6 W pEmE—1 e tan J BPr1 o

1The limits 03, 62, and 65 are all functions of t but in moving“

the partial derivative through the integral sign the terms involving
961/0t, 302/dt, and 365/t all cancel ome another.
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Since equation.(1k) is valid only in the interval -n< 9 < n, care
mist be exercised in applying it because the angle 6; may be greater
than = (as in the preceding sketch). In case =< 85, 1t is con—
venient to introduce the angle 65' = 6;—<n. The expression for
Ap/qo can then be written in two forms, according as 6, 1s less
than or greater than :

for y>0, 6 <n-

t+ arc tag DMo-l)tan (81/2)-1 _

< ). lm [
Yo/, /PP . V p2uP-1

m(Mo~1 )tan (31/2)"’1 + arc tan
Bl P

arc. tan

arc tan

(Mo—1 )tan(85/2)-1 J 2a
(Mo ;;112—3 + e (63 — 82) (15a)

for y 2 0, 1t <64 K

op) . __lom { n(Mo-1)tan (0:/2)-1
<qo “m arc tan i 52312—1

'm(Mo—l)ta-n (91/2)+1
J BPrP1

m(Mo—1)tan (62/2)+1
/B2rP-1

arc tan + arc tan

arc tan

m(My~1)tan (85'/2)-1 2a '
'/Bzmz-: J " o, (702 v 20 (150)

where

My 7P+ (xeot) W (Mot )PPy
arc cos 7+ (ootlgn ®

01

(0 <9y <)

n(y+mx) — & (1422 )t2 — (y+mx)?
(1+m)t .

82

arc cos

(0 <6, <n)

m(Mo—1)tan (62/2)+1 _
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—a(y-mx) — & ()2 — (gome)
(1+m2) ¢

63 = arc cos

~93'= 9;3 - 2n (if < 63)

The limitation on 65 can be given both an analytic and geometric
interpretation. Thus, equation (15(a)) applies.for O < m(x+t)<y
and equation (15(b)) applies for 0 <y < m(x+t). These regions are
shown in the accompanying sketch. Because of the geometrical symmetry
about the x axis, equations (15) suffice for the determination. of

loading throughout region T.

Discussion_ of Results

Plots of the load distribution on the sinking triangular wing with
supersonic edges are shown in figure 3, and an isometric drawing of the

-
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loading on the right panel appears

in the sketch. The positions of

the spanwise sections were chosen ap
so that each of the regions 1 A
through 7 is represented. It is

to be noted that the results for
region 7 show no unusual charac—
teristics, but fit in well with

those for the adjoining regions.

In general, the distribution is

gimilar to the steady-state load-—

ing on a triangular wing.

L

\\

INDICIAL LIFT AND
PITCHING MOMENT

Analysis

Msthods of solution.— If a

detailed knowledge of the load

distribution is not required, but only the total values of 1ift and
moment need be known, analyses much simpler than the one presented in
the previous section can be employed. These methods, however, not only
require the edges of the wing to be supersonic, but also require the
trailing edge to be straight and normal to the free—stream direction.
One such simple method has been presented in reference 4. It involves
the integration over the three—dimensional plan form of longitudinal
strips, or elements, which carry the two-dimensional values of loading
as a function of time. The results presented in the present section
can be derived by this method as well as by the ‘method to be developed
next.

Consider again equation (1) and integrate each term with respect
to y Dbetween the limits minus and plus'infinity.2 There results the
equation

" P, fwézjzd fmﬁd _fméf%d=o
o 0 ¥V, Y Yl

If y = &z(x,z,t) and y = y.(x,z,t) are the equations of the Mach
waves streaming back from the leading edges on the left and right sides
of the wing, respectively, then, since ® 1s continuous across these

2 The basic idea for this solution was given by Prof. P. A. Lagerstrom
in his lectures at the California Institute of Technology.




18 NACA TN 2387

waves but @, Pys Dy and @94 are not,

2 Jr - Ir
-9 ayr ayZ u/ﬂ 52¢
—_ dy = —— - — -
N ¢dy = Uy = uy + 2 dy
yl ‘ ) ) yz

where u, and wu; are the values of u on the interior faces of the
right and left Mach waves, respsctively, and

Tr 3o
/N FE YT
¥

Values of the terms involving w and ®, are similar to those involv-
ing u so that finally, if '

Jr
. 7
then

2 2 2 -
d¢ d0 3o _ [y, ,Wr _ O - >_
32 32 o \dx T T Ty 7T

'Byz ' ayz Lhg)

Er i Bl T

ox

The termS enclosed within the brackets in the last equation combine
so that each bracketed quantity is zero. TFor the case of interest here,
this is not difficult to show. Consider, for example, the right wedge.
Then, since the equation of the wedge is

Jp = —z«fﬁzm?—l + mx + mMst

and the value of the potential 1is the steady-state two—dimensional value
given by the expression .

. m{x+Mot )—y—~2z « BZmE-1
B N2l

0, =
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the term

d dy: oy

becomes

, s &
—w, M + J Bl — 2 Mo 4 1 )
: ( o BEmE—1 ' W BRrP-1 J BPrP-1

and this is identically zero?

Finally, therefore, equation (1) has been reduced in terms of equa-—
tion (16) to

Qtt - Qxx - sz =0 (17)

Consider next the boundary conditions for a triangular wing with

o
supersonic edges. In the plane 2z=0, 00 /dz becomes d/‘ wydy where
- —C0
w, 1s the vertical induced velocity in the plane of the wing. Since
the edges are supersonic, however, w,; must be zero off the plan form

of the wing and the integration need extend only over the plan form
itself. Hence :

@> = 2V om (x+Mgt) (18)
L
for the flat triangular wing at constant angle of attack and
?) =.—26m (x+Mot)? (19)
- N0Z/7=0

31t is not necessary to perform a direct calsulation in order to prove
the above result for arbitrary plan forms. The bracketed terms
represent the directional derivative of the velocity potential taken
along the so-called "conormal" of the foremost disturbance surface.
Since. @ 1is constant on the surface, and since the concrmal lies
along the surface, the bracketed terms are zero.
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for a flat triangular wing with a constant rate of pitch '8 about its
apex (positive & produces a downward motion of the trailing edge .

relative to the leading edge).

T A f— o]

These boundary conditions are exactly like those studied in steady—
state supersonic wing theory. In fact, the lifting-surface analog
(shown on the sketch) is a wing tip of specified camber in a supersonic
free stream having a Mach number equal to ~r§T The solution for the
potential in the plane of the wing for this problem can therefore be

vritten immediately as
/ﬂ>
L ==
: 2= ——— dt; dx;
g v (t=t1)% — (x-x1)?

N

(QA)Zzo = -

where o 1s the portion of the area on the shaded surface in the sketch
lying ahead of the forecone traces given by the equation (t—t,;)® = .
(x—x,)%. Using equation (2) for the loading coefficient, and introducing
the following notation for the average spanwise loading

]

M A |
Py = §§% 7§;dy (sinking wing) (20a)
v s
P, = mM%O f 2 3y (pitching wing) (20b)
28 6 Y—g 9o :
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where
s = m(x+Mgt) | ' (21)
it is found that
_bm 9 (x14Mgt1) dxadt,
Po - s Bt ff (t—tl)z - (X—X1)2 (22)
x1+Mot1)2 dxy dt; (2
= 3)
nsz ot d/‘d/\~/(t—t1)2 ~ (x—=x1 )2

Wing with constant angle of attack (sinking wing).— The solution

for the average load on a flat, supersonic-edged, triangular wing
starting from rest at t=0 and flying at a constant speed and angle of
attack 1s given by equation (22). With the transformations

X-X) = Xg
t=ty = to

this becomes

_bm o m— %2 — Motz
_ﬁsatffdtzdxz,f__:F

This integral can be evaluated and gives for x<t (region A)
P, - (2ka)

for -t< x<t (region B)

Po=%[ x:;;fz+arc cos< >+——arc cos—%%’é} (24v)

and for x < -t (region C)

P JB&  (2he)

(o]

where the regions are shown in the preceding sketch. Equations (24) can
also be obtained by integrating the equations for the loading given in



22 NACA TN 2387
the preceding section. These integrations were carried out (in somse

regions numerically) and the results were found to agree with those of
~the present analysis.

It is now possible to write the equation for the indicial 1ift and
" pitching moment for a sinking wing:

-

L2 [ (x+Mot) P, dx (25)
To TSy, e
‘ CoMpt
Cp ' = _».__2_.f ° ‘m(x+M t)® Py dx (26)
a - Scog M Iiot

where S - 1s the wing qrea‘(equal to mcoa) and the prime- indicates that
the pitching moment is measured about the apex, the positive moment
being one which causes the trailing edge to sink relative to the apex.

Combining equations (24) and (25) one finds for the first interval
shown in the sketch :

Interval no.

T i {
/
t_ 1
\ Co M3 |
\ 2
\
\ t_1
\ | Co Ms!
\
\ .
\
/ 3\
/ \
\

"f
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[ h(x+Mot) dx }

This equation integrates to give, if t5 = t/cg,

for 0 <tg < M—.}—l (first interval)
+

o)
C = —— 1 =t 2
L, Mg * 5 v _ (27a)
Similarly for M;il to < ﬁééi' (second interval)
/
Cr, = L \} + 1 t,- )arc cos Motorl |
. 1My 2 : o
L arc cos (Mg—topZ) +
7B o
t
2 3_5:1.;0 ~/t02 - (1 - Moto)a (27v)
Mo
and for ﬁ < t, (third interval)
_ L
CLQ, =B (27¢c)

In the same manner the values for Cp ' in the various intervals can be
determined by combining equations (24) and (26). There results
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1

for 0 £ t5 < —/— (first 1ntérval)
Mo+l
C '=__8_<1+lMot3> (28a)
My, 3Mg 2 °
1 < 1
for ) < %, £ T (second interval)
8 1
Cmu,. =_;.M; [i— (8—Moto—Mo toZ—2t67) Jt —(1Mte)®  +

% (2+Moto3) arc cos MQ%QZ& + %% arc cos (Mg—B23t) ] (28b)
. o . ’

and for Mll < t, (third interval)

0

Oy, -~ T 3a (28¢)

Numerical results for a Mach number of 2 will be presented in the dis—
cussion section. :

Wing with linear angle-—of-attack variation (pitching wing).— The

golution for the average load on a flat, supersonic-edged, triangular
wing flying at a constant speed and pitching at a uniform rate
about its apex is given by equation (23). With the transformation

X-X1 = X2

(i+
ct
=
i

to

this equation becomes
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and the evaluation of this gives (for the regions defined for the
sinking wing)

for x <t (region A)

P, = b [1 . %(ﬁ)ﬂ (2%)

for =t € x <t (region B)

et (35 o ().

My BMX 1 3xeMt B J
32 arc cos X+Mot 2 o £ a2 (29p)

and for x € -t (region C)

Py = — :  (2%)

The equations for 1ift and pitching moment on a pitching wing can
be obtained from the equations .

Co—M.t

CL' . . o o "o > .
() 0T T
VO
Mt
Cn' ' 5 fco o 3
=Cp ' = - o m(x+Mot) P, dx (31)
od g Sco™M,
cvo> ° ot

where the primes indicate the wing is pitching about and the moments are
measured about the leading edge.

A combination of equations (29) and (30) gives for the 1lift coeffi—
cient .

1
Mo+l

for 0 £ t45 < (first interval)
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6t - 330 (r+3e fMot03> (32a)

for — <t < L (second interval)
Mo+l Mo—1

8 1 1 1 tol
CLq' =ﬂ—M-C—) [(5 toZ —§Motos+§) arc cosM—%‘%+

’3"‘3 arc cos (My—p> to) <g £ 2 + %Moztoz— i% Moty +

%) v toa—(l"Moto)z ] | (32b)

and for —L— < to, (third interval)

OLy" = 8/38 ' (32¢)

Similarly a combination of equations (29) and (31) ylelds, for the
pitching moment about the apex, the results

for 0 £ t, < M_;lT (first interval)
-+

Cmy,* =—%_[1+to —-to (1+4M 2 )]  (33a)

for oL <ty S M_,:Tl (second interval)
o=l

Cag" = = 51%4—0 { 2(1+t57) — 71I t;,4 (1+§M02):l arc cos M°to +

Ho arc cos (Mo—tho) +

Ed
_15 [h2—22M0t0+(2M02+3 )t02+(2M02+l3)Motc?}dtoz—(l—!’lot'o)z } (33b)
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T < to (third interval)

cmq' = —% (33c)

Numerical results for a Mach number of 2 are presented in the
next section.

Discussion of Results

Figure 4 shows the variation of CLa’ Cma', and the location of

Xc,p. Wwith. 7, the number of chord lengths traveled ( 7, = Vot'/cq =
Mot/co = Mgty) for a free—stream Mach number M, equal to 2. The
values of C and Cp ' are in agreement with those given in refer—
ences 1 and 2., For the purpose of comparison, similar curves are shown
for a two-dimensional wing having a chord c, equal to the root chord
of the triangular wing, and for the triangular wing in reversed flow.
The materilal necessary for the calculation of the latter curves was
presented in reference 6. Several interesting conclusions can be drawn
from these results. '

First, notice that the total indicial 1ift on the triangular sink—
Ing wing is the same at every instant as that on the same wing in
reversed flow (both wings of course having started with the same velo-—
city at the same time), and that the value of this lift is the same as
the total indicial 1ift on the two-dimensional wing only at the begin-
ning of the motion and again when the steady state has been attained
(fig. 4(a)). Such a result for reversed flow is not true for the
pitching moment (fig. 4(b)) and center of pressure, and it can be shown
that 1t is true for the total 1ift only when the wing is a flat lifting
surface with supersonic edges?

Second, notice that, since all of the characteristics for the
triangular wings are Independent of the angle of sweep, they are valid
for any unyawed triangular wing flying at a Mach number equal to 2
and having supersonic leading edges.

Third, it i1s apparent from figure 4(a) that the transition of the
total indicial 11ift from its initial to its final value is less abrupt
than that transition for the two—dimensional wing, and finally the
movement of the center of pressure on the sinking wing of all types is
seen from figure 4(c) to be small. )

*R. T. Jones has shown, in an unpublished work, that the build-up of
‘total indicial drag on symmetrical nonlifting wings is the same for
all types of plan forms in forward and reversed flow.
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_ Finally, 1t can be seen from equations (27a) and (27c) that
the initial and final values of Cp_ depend on 1/My, and 1/B, respec—

~tively. As the Mach number Mb is increased, therefore, the variation
dles out since B and M, becoms nearly equal. The same remark
applies to all the other coefficlents.

Figure 5 presents the values of CLq', Cmq', and xc.p./co for

wihgs pitching about the foremost extremity of their plan form (i.e.,
leading edge or apex). Again the results are presented in terms of
chord lengths traveled ' T, for a free—stream Mach number equal to 2.

For these wings it 1s apparent that the reverse-flow theorem does
not apply even to total lift. The results for the triangular wing are
still independent of the angle of sweep, however, and the movement of
the center of pressure is again slight.

WING WITH SUBSONIC EDGES
INDICIAL LOADING FOR SINKING WING-

Anglysis

The six regions.— As in the study of supersonic-edged triangular

wings, there are also in the case of triangular wings with subsonic
leading edges various regions in which the analytical form of the load—
ing equation is different. Figure 6 shows the regions into which the
subsonic-edged triangular wing can be most conveniently divided. Most
of these regions have counterparts on the supersonic-—edged wing shown
in figure 1.

To begin with, region 6 lies within the spherical wave which
started at t=0 from the wing apex. Region 1 is within the cylindrical
wave which was started at t=0 by one edge of the wing, but outside
the wave started by the other edge. Region L4 is the area formed by the
overlapping of the two cylindrical waves from the opposite edges, but
outaide the region Influenced by the reflection of one of these waves
on the opposite edge (secondary wave fronts shown in the figure). -
Region 5 is the area between regions 4 and 6 where the flow is influ—
enced by secondary (and higher—order) wave reflections. ,Finally,"
regions 2 and 3 are similar to regions 2 and 3 in the supersonic—edged
case; region 2 being that uninfluenced by the starting phenomena and
therefore having a loading already at its steady-state value, and
region 3 being that which is unaffected by the disturbances emanating
from the edges.
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Region 1: The solution for the load distribution in region 1

is the same as that for a two-dimensional wing starting suddenly from
rest and moving with a steady subsonic velocity Vp. A solution to
the latter problem for the initial part of the motion is presented in
reference 7. In terms of the normal components of velocity and dis—
tance, therefore, the loading coefficient for the right-hand side of
figure 6 can be written immediately:

A_'p - 8WQ' / IVIn t-—Xn N&lt'f'Xn)
<‘1n:i> WnMp K1+Mn J Mtexg +oare tan./ t—xn

The equations which relate the normal components to those in the
free—stream direction have already been given in the section on
region 4 of the supersonic-edged wing. Use of these relations leads
to the following expression for loading in region 1 (in the coordinate
gsystem of fig. 7)

<'é£:> _ 8 V//t 1+ + |y| — mx +
Q4 ™Mo mMo+J1+ m Mt - |y| + mx

arc tanv//nJMot = ly| + me : (3k4)
to/ 140 + |y| - _

Region 2: The loading on region 2, being the steady—state

loading on a triangular wing with subsonic edges, 1s well known. The
solution for region 2 of figure 7 is therefore givem by (see, for
convenience, reference 5)

<A_p ) banf (x+Mgt )

Y2 ¥ mB(x+Mt)2-32 E (35)

wvhere E 1s the complete elliptic integral of the second kind with

modulus & 1—p2n’

Reglon 3: The loading in region 3 follows from reference 6 and

( > - (35)

is
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supersonic edges was obtained.

NACA TN 2387

Region 4: The loading in region 4 of figure 7 is calculated by
Superposition, Just as the solution for region 5 of the wing with

The solution in region 4 is the sum

of the solutions for the right and left halves of region 1, minus the

result for region 3.

Thus

<A_p> _ 8a [ M, < [t 1erPy—me
do/s Mo | mMo+ T4 1P Mg t+y+mx

=k

~// t & 1+nP+y—mx

Mg t—y+mx

arc tan /

Region in which solution
is unknown

t+y+mx
+ arc tan~// o bty
t

 L+mP—y—mx

mMot — 3y + mx

t/1vR + y — mx

v

 _~

nj a
——

(37)

Regions 5 and 6: In these
regions the exact solution for
the loading has not been deter—
mined. As was shown in refer—
ence U4, such solutions would
require the solution of a three—

" dimensional elliptic-type partial

differential equation. In this
report a later section will con—
tain an approximate solution for
these regions.

Discussion of Results

An isometric drawing of the
load distribution, for the '
regions in which it is known, is
shown in the sketch. Comparing
the results for the loading on
this wing to the one with super—
gsonic edges (fig. 3), 1t is

apparent that the principal difference in the two distributions is in
the vehavior around the leading edges; the loading being finite at the
supersonic edge, whereas 1t becomes infinite at the subsonic edge. In
view of the known steady—state results this difference was to be
expected. Elsewhere the loadings are quite similar.
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The results presented in equations (34) through (37) will next be
oxamined in a different light. Choose a given spanwise section on the
wing and watch this section as time progresses from t=0. This amounts
to fixing the axis on the body and can be accomplished simply by using
the quantity s introduced in equation (21),

s = m(x + Mgt)

It is clear that s 1is the semispan of a given spanwise section, and
that if equations (34) through (37) are written in terms of s, y, and
t, for a fixed s they represent the variation of loading on a given
section as time progresses.

If the notation is further simplified by introducing the parameter
Be where

1

B:-._.______
° mMo+~/i:E§ - (38)

equations (34) through (37) can be written in the following way:

/Am‘> 8 < «//t/B -8+ |y| 5 —
- ) == p ~ + arc tan ab4 ‘>
% A ofe s — |y| v/;/Be -8+ [y]

(39)
Op ) Lams
qo>2—EJ§3ﬁy - (vo)
29 _ b |
%2 i (41)

8 t = t -y -8
<$§4 .- (mMoBe/ /3es+_yy s, mMOBe/ /Bes FEL

ucmﬂ/ 8 =¥ + arc tan Sty —£> (k2)
t/Be+y—s t/Be—y—s 2

The load distribution across any section is given by equations (39)
(41), and (42) from the time t/Bg = O to (t/By)1, where the term

(t/Bg), 18 equal to 2s or s/m(Mo+1)B,, whichever is smaller.

3
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(At t/Be 28 the spanwise section has Just reached the secondary
waves shown in figure 6, and at t/By = s/mBy(Mo+l) the spanwise section
has Just reached the spherical wave which started from the apex.) From
t/Be to (t/Bg), = 8/mBg(Mo—l), the loading has not been determined,
and from t/By = (t/8e) ), to t=w
the loading is the steady—state
value given by equation (40).
2r The sketch shows this initial and
' final load variation plotted as a
function of the parameter t/B,.

y At the beginning of the motion
/////' the loading is constant across
\:: the span, but this type of dis—
' tribution is quickly modified and

the shape of the curve tends
toward the "inverted elliptic"
loading given by equation (40)
<:: and shown in the sketch as the
\ distribution at t/By = (t/8g),
(_L In fact, when the span has
Lo/t traveled a distance such that
<::: t/By=28, the expression for the
/.L) loading given by equation (42)
“ ' . becomes

éE) _ 6 mes ()
W/t _ o o g2—y2

e

which differs from the value given by equation (40) only by a constant
of proportionality, Both before and after the time t/Be=2s the shape
- of the loading curve varies from the simple type represented by equa—
tion (43), but the trend, and to a certain estent the rapidity of the
trend, is clearly established.

The average spanwise loading P, introduced by equation (20a), can
now be determined for certain regions. Hence, if the notation

= t/s \
8 (k)
_ Mo /. 4p
P =2 a
°© osx Jg Yo v

is adopted, there results for the early part of the motion, that is, for
0< 7/B < ( T/Be )1

po-2(em g )+ tapgy (/hp) (1)
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Equation (45) was derived by integrating equations (39), (L41), end (42).

For values of . T/Bg > l/Be m(Ms-1) —<B > equation (40) is valid.
Hence °

- & +(2)
By “\Be /2

The sketch indicates the
magnitude of this average load
for both large and small values
of T/Bge Nc/>tice that for small 4 .
values of T/B it is suffi-
cient for the eStablishment of mM, /B, = 1/8
the curve to specify the parameter ‘
mMoBg, but for large values an
additional parameter must ‘be given
(such as My 1n the sketch). 2
Notice, further, that in spite of | ' M 2
the large variation in the distri-
bution of the loading, as shown in My= 4 j
the previous sketch, the average '
value P, varies linearly through— X ‘
out the Intervals considered. This 0 . A
result is similar to the one o 4 & 72 16
obtained for triangular wings with : C,gg;
supersonic edges and is giver in

~equations (2k).

P, = 2o | L (46)

ob

H

INDICIAL LOADING ON VERY SLENDER TRIANGULAR WINGS
Analysis

In the first section of this report entitled "The Problem and the
Nature of its Solution," it was pointed out that if the wing is slender
(ieee, has a small ratio of span to chordwise length) the basic partial
differential equation (1) can be approximated by the equation which was
-previously introduced as equation (4), thus: .

(,ptt —ny —q>zz =0

The boundary conditions appropriate to this problem will now be examined
in some detail.
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Just as in the previous sections of this report, consider a triangu—
lar wing which is at rest for t <O, starts suddenly to move at a for—
ward velocity equal to V, at t=0, and continues at this same velocity
for t > 0. It should be emphasized that in this case, Vo may be either
subsonic or supersonic. A section in the spanwise direction, as for

instance section AA in the sketch,
J projects into-the yt plane as a
arc fan m DATTOV rectangular strip along the t
axis. Since squation (4) has been
A— — -\— — —A - derived on the assumption that the
velocity gradients in the y, 2z, and
t directions are independent of the
gradient in the x direction, the
boundary conditions along the strip

: - ghown in the sketch are independent

s=mx of those on other strips projected
: from spanwise sections along the wing.
’ Hence, the problem is to find a solu—
¥ . tion to equation (4) which will make
®, constant over the strip and at the
game time will satisfy the other con—
ditions listed under equation (1).
In the lifting-surface analog this
corresponds to the problem of finding
the velocity potential over a flat
rectangular wing of low aspect ratio
situated in a free stream moving at a
Mach number equal to « 2. Solutions
to the latter problem.can be obtained
by various techniques, and so the pro—
cedure will be first, to find the potential for the steady—state, flat,
rectangular wing, and then, by analogy, to convert this to the solution
for the very slender triangular wing in unsteady motion.

The steady—state, lifting—surface problem.— Lifting-surface solu—

tions for the loading on a rectangular wing traveling at supersonic
speeds have been developed for regions 1, 2, and 3 of figure 8 (vy
Busemann and others), and by means of these solutions the load distri-—
bution on a spanwise section of the triangular wing can be determined
to a time necessary for sound to travel that span length. For *t > 2s,
however, the solution becomes considerably complicated by the increasing
number of reflections from the edges. Reference 8 gives solutions for
the loading on a rectangular wing in region 4 and indicates methods for
extending the solution to reglons farther along the wing. Mready in
region 4, however, the expression is cumbersome and in higher-numbered
regions the expressions become difficult to manipulate. These methods,
therefore, will be discarded in favor of a more approximate but simpler
analysis. . ‘

If x 1is the distance along the chord, y the distance along the
gpan, and s the semispan, then the solution for regions 1, 2, and 3 of
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figure 8 can be written (for convenience, see reference 5):

Region 1
2 - ' (¥7a)
20
Region 2 .
& _8 o cten /—s8=1lyl (47b)
do n X - 8 + |y|
Region 3

&p B [~ s+y [ 8=y = )
ol <;rc tan o + arc tan o7 "2 (b7c)

As x 1increases (i.e., for higher-numbered regions in figure 8)
it 1is reascnable to assume that the spanwise variation of loading is
relatively unimportant — except that it be "smooth" and fall to zero at
the slde edges — and the chordwise variation of loading is dominant.
Assume, therefore, that the loading is given by the relation

AR ORES O NN
ap _

Mach
— forecone
trace
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Spanwise, this has the variation shown in the preceding sketch; chord—
wise 1t 1s as yet arbitrary. To fix the chordwise distribution the
value of f(x/s) will be determined so that the vertical induced velo~
city along the center line 1is constant and equal to —Vga.

The solution to this somewhat artificial problem approaches the
exact solution to the steady-state 1lifting-surface problem for a flat
rectangular wing along sections far behind the leading edge; closer to
the leading edge it only approximates the exact solution; and, of course,
in the vicinity of the leading edge it will be least representative.

But, on the other hand, the exact solution is known in the vicinity of
the leading edge and it turns out that the solution of the problem posed .
above forms a reasonable continuation over the remainder of the wing.

The velocity potential for the problem which has been set can be
readily expressed in terms of an integration of elementary horseshoe
vortices over the plan form. Since the Mach number equals 4/5, then
according to reference 9,

VoZ U/1 U/1 (x—=x1) (Ap/ay) dxadys.
| (y22+22) o (xx1)% —y12—22
where A 1s the area on the wing within the foreconme from the point

P(x,y,z), at which @ 1is to be determined (the shaded area in the
sketch). .

The simplification of the last expression is given in reference 9.
The result is the integral squation

q .
2
=) + % /; £ln,) G (n-n Jan, (49)
where n=x/s and G 1is given by .
Ey 1< =,
Ep—(1-k22
G(n-ny) = § —E====2 X
. T n-n. <1
| . 1
L
1

k1= gy ke sy

The modulus of E, 1s ‘k; and the modulus of K, and E, 1is ko.
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The solution of equation (49) for f£(n) is not difficult when
numerical methods are used. For intervals of g, equal to 0.2, the
result is given in tabuler form in appendix A, and also in the sketch.

ty) From equation (47)
From equation #9)

1

This result can be improved in the interval 0 < n £ 2 by means of the
correct solution in that interval given by eguations (47). Comparison
of the spanwise average of the loading given by equation (48) with that
which can be derived from equations (47) gives an equivalent f(n) in
the interval which, when used in equation (48), will give the correct
value of the average span loading. The sketch also shows a curve for

this equivalent -f(n) which starty at 4/r and falls linearly to zero
at n=2,

By using the sketch, or the results listed in appendix A, the
loading over a low-aspect—ratio rectangular wing flying at a Mach number
equal to VF§ can be estimated. Of particular interest is the dampeds
oscillatory nature of the load, falling to zero at ome span length
behind the leading edge and taking alternately negative and positive
values beyond this point.® A somewhat different approach to this
problem (reference 11) has recently led to a solution very like the one
given here.

' The unsteady analog, sinking wing.— The first step in deriving the

unsteady—flow results for the sinking wing from the steady solution is
to replace x with t. In equation (49) this corresponds to replacing

n with T where T 'is equal to t/s (equation (4k4). The second step
is to rederive the expression for loading coefficient since in the
time-varying problem it is expressed in a somewhat different manner than
in the steady—state analog. In the unsteady case, as the triangular
wing moves through a fixed reference plane the local span intersecting

s
A discussion of this aspect of these results is contained in refer—
ence 10,
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this plane grows as a function of time and equation (2), which repre-—
sents the partial derivative with respect to tims with. x fixed, must
be expanded to the form

2k ()& (¥

- nel Js
Qo VoMo [ ot oMy \L ot | ds |, ot

_ where [%%?ﬂ and (%ﬁ?ﬂ indicate derivatives taken at constant s
: 8 . t

and t, respectively. Since s 1s equal to m(x +Mgt), ds/dt equals
mM,, and there results

Tk (o~ )

In the steady—state problems an analog to the term involving [éég]
. 8dg

-is missing, and the loading coefficient is given entirely by an opera-

tion equivalent to E%%?

further on the solution given for the loading in the steady-state
problem to obtaln the solution for the loading in the unsteady problem.

But
t
[éé?J = 9 [ éé@}' at,
Jds t ds , ot s

] « It is necessary, therefore, to operate
5 . ,

go that if the notation

[Bt] i <>

is adopted (where <§Q represents the loading in the analogous
0/ s
steady—state problem), then the expression for the unsteady loading can
/ .
be given in terms of (%19 by the equation
]

2R (@ =3 (D] @

o
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By the application of equation (51) to equations (47), the loading
for the various regions of the unsteady wing can be found. For region 2
there results

4o _ 1 [8& arc tan 3= y' + mM, ha dty +
1, M, +[y| Bs
t
f 89 arc tan /—S=1¥1_ ¢
t1—‘55+ Iyl
lyl
which becomes

&p _ 8o t—a+ |yl & - |yl
- nMo nWb [ == I S + arc tan / |YI

The loading coefficient can be similarly derived in the other regions so
that finally

Region 1
A\ ha
= (528
do M ‘
Region 2
t—-a+ y
+ arc tan 2b
qo <#M°./ &—l J t—s+ |y|‘> ) (52v)
Region 3

_ t—s+y t—s—y
‘nMo<mM°J °~/ 8+y

8=y 8+y 14
arc tan + arc tan —_—
t—s+y t—s—y 2 )

> (52¢)
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For the interval t 22s equation (48) must be considered. By means
of equation (51), the expression for the loading coefficient can be
written

%:El; Ew.f(ﬂ /1—(%) +%%£t%f tgl)/l—(%) dtl:l
which becomes
RS~ 2%

where f(7) 1is the solution to equation (49). Notice that for large T
(when the loading has reached its steady state), f(r) is zero and

(m dTi (53)

T

\/P f(T1)dTy 1is unity. (See appendix A.) Hence, the loading is given
° ;

by the equation

&p _  bams
do N s-2_y2

‘which is the steady—state value for a slender triangular wing (equa—
tion (40) when E = 1).

It is now possible to derive the average span loading P, as
defined by equation (20a), thus.

Placing equations (52) and (53) in this expression, it is found that

for 0 £7<52

= 2(2—7) + bmMoT (5ka)
and for ‘r';>_2
Py = n(l_mMoT)f('d+2 mMDﬂK/\rr £(1y) dry (54b)
oA

Since the values of P, given by equations (5ka) and (54b) were
derived using different methods, their magnitudes at T =2 are not
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equal. The final curve for Po must be comstructed by fairing the solu-
tion for T £2 into that for T >2. The accompanying sketch shows
these results together with the final curve chosen (solid line).

Eq.(54(a))

£q.(54(b))

+

The unsteady analog, pitching wing.— When the wing is pitching at a
steady rate about its apex, the equation for the vertical induced veloc—
ity on the plan form is

W = —(X + Mot)é

so that the a 1in the steady-state equations (47) and (48) mst be
replaced by #s/mVo. Since the loading coefficlent is still given by
equation (51), there results for the conversion of equation (48) the

expression
t/s

%:%;[:Vsz—yz f(T)+%§%sVBZ—fL£' £(T1) ATy

and this can be reduced to the form
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g_'g - "*l'é . (l—mMoT) o 82_y2 f(’r) +
(o]

MoVo

< 525° >f £(1) dmy | (55)'

As in the discussion of equation (53'), it can be seen that equation (55)
becomes for the steady state (T large) ,

ég <%s -y

and this can be shown to agree with the steady—state slender—wing results
given 1n reference 12.

It is now possible to derive the average span loading P, as
defined by equation (20b)

\
P, mMo —_ dy
282§ Jg %o
Using equation (55), one finds for T >2
. ' .
R, = x(la,n) £(0) + 3mx [ £(m) am (56a)
o

and a similar analysis based on equation (47) ylelds
for 0< v L2

= % (2T+lmM T % My T2) ' (?6b)
As in the case for P,, the two equations for P; do not join at =2

and the final curve must be constructed by fairing the solution for TL?2
into.that for T > 2,
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Discussion of Results

It is now poésible to
assess the accuracy of the
solution for very slender 4
wings in the interval 0<LT <2
by comparing equations (52)
and (54a) with equations (kl),
(39), (42), and (45), the
exact solutions for this region
derived in the preceding sec— &
tion. It is apparent that the
approximate solution differs
from the exact only by a
stretching factor in the t
direction,. Hen;e, if 7 .1s
replaced by T/B, and m (o) v v
(note m 1is propgrtional to 0 2 4 6 &

y/t) by mB,, where By 1s r

given by equation (38), then

equations (52a), (b), and (c)

are identical with equa—

tions (41), (39), and (42), respectively, and, of course, equation (54a)
corresponds to equation (45).

£Eq.(56 (b))

]

£q.(56(a))

This rather remarkable result can be enlargsd upon from another
viewpoint. Suppose that in the steady—state analog problem the wing had
been, flying at soms Mach number other than V2, say Mg. The solution
to such a new problem could be obtained from the old one merely by
applying the Prandtl-Glauert correction, that is, by stretching all dis—
tances In the x direction by the factor 1/8, where Bg°= [1-M2].
Such a procedure would convert, for example, equation (5ha) to the form

PoBy = 2(2— T /Be) + mBoMo T/Bo
Finally, if Py 1s adjusted so that Po=hk at 7 =0, there results
Po = 2(2— 7/B,) + LmMyT

which is exactly the answer given by equation (45). It is possible to
simplify the statement of this procedure by simply remarking: The exact
results for Ap/q, or P, in the interval 0< 7/, < 2 can be
obtained from the approximate results for a very slender wing by making
an effective Mach number correction to the right—hand side of equa—
tions (52) or (5lta), respectively. :
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It is interesting to pursue this concept even further. Consider a
spanwise section of a triangular wing as time increases from the starting

Actual trace of
primary wave front

—p
/s
S
Trace of pfimary. \
wave front obtained .
from slender-wing Y

- theory 1
T

impulse. The primary
wave fronts emanating
from either side pass
across the section
forming the Mach lines
in the steady—state
rectangular-wing
analogy. For very
glender wings these
lines make a 45° angle
with the trace of the
side edge and are used
to divide the plan
form into regions as
in the sketch. Now
find the actual posi-
tion of these primary
wave fronts as they
form a trace on the
section in the y7T
plane. A stralght—
forward calculation
shows that these lines
actually make an angle
equal to arc tan 1/Bg
with the trace of the
side edges. Hence the
effective Mach number
which is used to.
correct the slender—
wing results in the

interval O < T £ 2By 1is that which makes the Mach lines of the steady-
state analogy coincide with the actual trace of the primary wave fronts.

INDICIAL.LIFT AND PITCHING MOMENT ON
VERY SLENDER TRIANGULAR WINGS

Analysis-

The 1ift coefficient for the sinking wing is given in the notation

introduced in equation (21a) by the equation
Co

o - 28 -
ou s [ B e



NACA TN 2387 45

where ‘Po has been determined in the last section as a function of
T=t/s. Consider the situation at a certain fixed time and let the x
coordinate in the above formula be fixed in the wing. Then set

b =X - _8_, (57)

CO: fo)

and as before

1o = 20 _ g, L (58)

o] co

where T, 1is the number of wing-chord lengths traveled. In this way
the equation for 1ift coefficient becomss

Mo, = 2[1{; P°<m;Zt> at (59)

and by a similar analysis the pitching-moment coefficient taken about
the apex can be written

1

Moy ' = -2 f ¢® P°<m1:12§> at (60)

[e]

_ The equation for the 1ift and pitching-moment coefficients (where
again the pitching moment is taken about the apex) on a pitching wing

are
MoCr, ' =(b24§%) s /o‘l 92 P, <m;zc> at (61)
(o]
and
i, =<i:——_;_-%”>-= . ofl ¢, <m_%§> at (62)
o

Discussion of Results

The values of P, and P; were taken from curves similar to the
sketches in the last section (using the faired curves in the vicinity of
T=2) and the results for the indicial 1ift and pitching moment in terms
of To, the number of chord lengths traveled, are shown in figures (9)
and (10) for a value of mM, equal to 1/8. The results are all
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qualitatively alike; in each case the curve falls from its high initial
value at To=0 to a minimum at about To=1/3 and then recovers and
' : : practically attains its
asymptotic value at To=le
This behavior is similar
M. =8 ' v to that for a two—
°o - dimensional wing flying
at subsonic speeds. For
the purpose of such a
comparison the first part
of the curve of indicial
1ift coefficient versus
chord lengths traveled on'
a two-dimensional wing .
flying at a Mach number
equal to 0.8 (see refer—
ence 7) is shown in the
sketch. Notice again the
rapid fall from the
initial peak (CLa=h/Mo)
to a minimm around
To=1/2, and then a smooth
recovery to the asympto—
tic value (CLa=2ﬂ/B).

Ames Aeronautical Laboratory,‘
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Mar. 26, 1951.
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SOLUTION OF AN INTEGRAIL EQUATION

For convenience in applying equations (54b) and (56a) of the text,
a table of values of the function f(n), obtained by numerical solution

APPENDIX A

of equation (49), is given here.

];nf('ql)dnl, are also listed.

I

The values of the integral,

U
nooE) | fedane || n | o) | feCn)an
0.0 | 1.0000 0.0000 4.0 -0.1307 1.0124
.2 .9899 .1990 4.2 | -.1008 .9893
A | L9597 -3940 b4 | -,0716 -9720
.6 .9087 .5808 4.6 | —.0446 .9604
.8 .8356 7552 4.8 | —-.0207 .9539
1.0 7339 .9122 5.0 | —.0008 .9517
1.2 | .6032 1.0459 5.2 | .01k9 .9531
1.4 1597 1.1522 5.4 | 0265 .9573
1.6 .3188 1.2300 5.6 | .03k40 .9633
1.8 .1880 1.2807 5.8 | .0379 .9705
2.0 L0724 1.3067 6.0 | .0388 .9782
2.2 | —.0245 1.3115 6.2 | .0373 .9858
2.4 [-.1008 1.2990 6.4 | .0338 .9929
2.6 | -.1562|  1.2733 6.6 | .0292 .9992
2.8 |-.1919 1.2385 6.8 1 .0237 1.0045
3.0 | —.2098 1.1983 7.0 | .0180 1.0087
3.2 | —.2126 1.1561 7.2°| .0124 1.0117
3.4 | -.2031 1.1145 7.4 | .0072 1.0137
3.6 | -.1843 1.0758 7.6 | .0026 1.0146
3.8 | -.1593 1.0414 7.8 1—.0012 1.0148
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2.5
|

:
/.9 : |
0 ) 1.0 1.5 2.0 2.5
Chord lengths traveled, r, :
@) Lif?t.

Figure 4.- Indicial aerodynamic characteristics of
sinking wings with supersonic leading edges. M,=2.
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Chord lengths Iraveled, r,

(b) Pitching moment about
leading edge or apex.

Figure 4. — Continued.
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/.0

0 '
0 4 .8 1.2 1.6 2.0
Chord ‘lengths traveled, r, :
(c) Location of center of pressure
with reference to the leading
edge or apex.

Figure 4.— Concluded.
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o 5 1.0 1.5 20 2.5

Chord lengths traveled,,
(a) Lif?.

Figure 5.— |ndicial aerodynamic characteristics of

wings with supersonic edges pitching about lead-
ing edge or apex. Mo:= 2.
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Chord lengths traveled,r,

(b) Pitching moment about
leading edge or apenx.

Figure 5.- Continuved.
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|
00— :
0 4 .8 L2 16 20
Chord lengths traveled, r,

(¢) Location of center of pressure
with reference to the leading
edge or apex.

Figure 5.~ Concluded.
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A Starting spherical
wave from apex

| N\
\ Leading edge
Secondary wave . trace
reflections ‘
| ‘. ' ﬂ ’( Leading edge

at t=0

Starting
/ cylindrical
/ . wave from
/ right edge
/ \
' \
/
J \
\
, _
Figure 6.— The six regions used in the analysis of the
triangular wing with subsonic leading edges.
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!
\\ 4
ya=(x+Myt)/8 \ y=(x+Mot)/8
ya=mlx+Myt) " ‘ {y—'g:n:xe-o-:u;,;l "
m=citnd
ﬂ-" Mo—/ . 4

ye-mx-t V+me »

-
y=mx+tV1+m&

/

ys=-mx+t 1+m€

y=mx—1t )’/+_m£

Y

Figure 7. - Equations of lines pertinent to the analysis
of the triangular wing with subsonic leading edges.
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T td

N
(7,

Figure 8.— Regions used in the discussion of the /low-
aspéct—ratio rectangular wing.
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“t
o)
wa, | \

2.0}

\v/_f

0 2 .4 6 .8 10
Chord lengths fIraveled, r,
fa) Lift.
3.0
—M,c,,’,a\

o\

1.0

0 |
0 2 .8 L0

4 .6
Chord lengths traveled, r,
(b) Pitching moment about apeéx.

Figure 9.— Indicial aerodynamic characteristics of sinking
triangular wings with slender plan forms. mMo= 1/8.
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3
\
A\
M,C)
°%Lq N\
/
" 4 6 8 /.0
) Chord lengths traveled, r,
@) Lift.
2
-M,C)
[ mq .
/ \\
|
%0 2 4 6 8 1.0

Chord. lengths traveled, r,
(b) Pitching moment about! apex.

Figure 10.~ Indicial aerodynamic characteristics of tri—
angular wings with slender plan forms pitching about

apex. mMo= 1/8.

NACA-:Langley - 6-12-51 -

1000



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64



