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TiIE—DIMENSIONAL UNSTEADY LIF2 PROBLEMS IN HIGH—SPEED 

MGHT - TEE TRIANGULAR WING 

By Harvard Loinax, Max. A. Heaslet, 
and Franklyn B • Fuller 

STJNMARY 

The indicial lift and pitching-iioment coefficients are derived for 
flat-plate triangular wings traveling at supersonic speeds. The coeffi-. 
dents are determined for angle-of--attack distributions corresponding to 
sinking wings and to pitching wings. The wing with supersonic edges is 
completely analyzed, and the wing with subsonic edges is partially 
analyzed, the solution in this case being completed for very narrow 
wings by an application of slender wing theory. In the case of the 
supersonic edges, a comparison is made with known two-dimensional 
results and also with the results for the same triangular wing in 
reversed flow.

INTRODUCTION 

The wing of triangular plan form has received considerable atten-
tion in the steady-state theory of three-dimensional wings in a super-
sonic stream. The purpose of the present report is to determine the 
aerodynamic characteristics of a triangular wing in supersonic unsteady 
motion. 

There are several simple types of unsteady motion on which the 
analysis can be based. The so-called indiclal motion, in which the 
velocity undergoes a discontinuous change at t'=O, will be considered 
here. (See also references land 2.) It is possible to conceive the 
physical situation in two slightly different ways. For one, it can be 
supposed that the wing has been traveling at the constant velocity V0 
for an infinitely long time and then, at t'=O, starts suddenly to sink 
without pitching motion (or to pitch without sinking) while maintaining 
the forward velocity V. On the other hand, the wing may be considered 
to be at rest In still air until at t'=O it starts suddenly either to 
sink or to pitch and, at the same Instant, attains the forward velocity 
V0. The latter physical picture will be used in this report. Problems 
of unsteady motion can also be approached with the initial assumption 
that the velocity potential depends harmonically on the time. (See 
reference 3.) These two approaches are quite compatible In that they
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can be related through the use of superposition methods (Duhail's 
integral, Fourier's integral) of the operational calculus. 

The question of whether the coordinate system should. move with the 
wing or remain fixed is also of some importance. (See reference for 
a discussion.) The latter alternative, that is, where the wing moves 
away from the coordinate system, was chosen for this report because the 
velocity potential q in this case satisfies the wave equation 

cp+	 t't' =0 

where x,y,z are Cartesian coordinates, t' is time, and. a 0 is the 
speed of sound in the undisturbed medium. The fact that the equation 
has this form is helpful in establishing analogs between steady and. 
nonsteady motions, and these analogs are of considerable help in the 
solution of certain problemn. 

The boundary conditions to be considered correspond to the problem 
of the flat sinking wing (angle-or-attack distribution uniform over the 
plan form) and to the flat pitching wing (angle of attack varies 
linearly with chord.wise distance) in indicial motion. First, the load-
ing on a flat triangular wing with supersonic edges undergoing an 
indicial sinking motion is determined. Then a simplified method is 
developed whereby total lift and pitching-moment coefficient for the 
wing with supersonic edges may be obtained. These quantities are 
determined as functions of time, for both sinking and pitching wings. 

Lastly, the triangular wing with subsonic eds is partially 
analyzed, and an approximate method for very slender wings is used to 
complete the determination of loading. The analog method, mentioned 
previously, is here of great value. Lift and pitching-noment coeffi-
cients for the sinking and pitching slender triangular wing are 
determined.

LIST OF IMP ORTAI'IT SYMBOLS 

a0 speed of sound in the free stream 

c0 root chord of triangular wing 

(lift 
CL lift coefficient 

CL indicial lift coefficient due to angle-of-attack change (without 

pitching) (CL =	 L)
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CLQ ' ind.iclal lift Coefficient due to pitching on a wing rotating about 

its leading edge or apex	 = _____ 

voo=o 

Cm pitching-moint coefficient, positive when trailing edge tends to 
sink relative to leading edge 

C11 ' indicial pitching-monnb coefficient due to angle-of-attack change 
(without pitching) nasured about the leading edge or apex 
/

m 

C	 ind.icial pitching-3noment coefficient due to pitching measured about 

the leading edge or apex (cinq ' =

Voê=O) 

in	 cotangent of sweep angle (cot A) 

M0 free-stream Mach number (_) 
P

	

	
P8Lp

2a.s J.5 
—dy 

P1 inM
0V0 r5 é!. dy 

2s2	 q.o 

loading coefficient (pressure on the lower surface minus pressure 
on the upper surface divided by free-stream dynamic pressure) 

(	 2'\ free-stream dynamic pressure	 Vs,) 

fc 9 
q	 dimensionless rate of pitching

\ V0 

s	 local semispan of wing 

S	 wing area 

t' time 

t	 ant'
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Co 

u,v,w perturbation velocity components In the x,y,z directions, 
respectively 

V0	 free—stream velocity 

x,y,z Cartesian coordinates 

Xcp distance of center of pressure from wing apex 

a	 angle of attack (angle between flight path and. plane of wing), 
radians 

JIl-2l 

1

mM0 -F.Il+n 

9	 wing angle of pitch, relative to initial attitude, positive when 
trailing edge lies below leading edge 

wing rate of pitch, positive when trailing edge is sinking 

relative to leading edge 

A	 angle of sweep of leading edge, positive for sweepback 

p0	 free—stream density	 - 

1•

(v0t' 
chord lengths traveled ( 	 or M0t0 

\ C0 

perturbation velocity potential 

LP	 jmnp in potential across the z=O plane 

[(x,y,O) - p(x,y,0)) 

Subscripts 

n	 component taken normal to the leading edge 

u	 positive side of the z=O plane, or upper surface of a wing
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THE PROBLEM AND THE NATURE 

OF ITS SOLUTION 

Consider a wing situated In still air and a Cartesian coordinate 
system with origin on the leading edge at the point of wing symnetry. 
At time equal to zero, the wing starts impulsively to move In a straight 
line with constant velocity away from the coordinate system which 
remains fixed relative to the still air at infinity. The load distri-
bution on a wing undergoing such a motion Is called the ind.icIal loading. 
Similarly, the forces and moments which are based on this loading are 
given the adjective indiclal. The partial differential equation that 
is satisfied by the velocity potential 	 for such a motion can be 
written

tt	 xx "Pyy	 zz = 0	 (1) 

which Is the normalized form of the wave equation. In equation (1), 
x,y, and z are distances: x measured chordwlse, y spanwise, and. z 
vertically, and t is equal to a 0t' where a0 Is the free-stream 
speed of sound and t' Is time. 

The boundary conditions to which equation (1) is subject are 
dependent on the wing shape and. motion. Adopting the assumptions of 
thin-airfoil theory, which are consistent with the assumptions already 
used In obtaining equation (1), it can be assumed that the slope of the 
wing surface, In the direction of motion, at any place and time Is 
given by the ratio of the vertical velocity component in the z=O plane 
to the wing's forward velocity component. For a flat plate, then, the 
following conditions are to be satisfied:. 

1. The vertical velocity	 Is a linear function of x, 
the coefficients of which depend upon the angle of attack and 
rate of pitch, over the portion of the xy plane occupied by 
the wing at any given time. 

2. No perturbations exist at infinity. 

3. There are no dlscontinuities In the velocity potential 
except over the region occupied by the wing and its vortex wake. 

The problem has now been expressed as one of finding, for pre-
scribed boundary conditions, a solution to the ,wave equation. It Is 
often desirable to express the solution in terms of the loading coeffi-
cient rather than the potential function or velocity components. This 
coeffIcient can be written in Its linearized form as
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Lp	 2	 LcP 

	

= V0M0 -r
	

(2) 

The solution of the problem without further restrictions has, in 
general, not been obtained, although it can be shown that the boundary 
conditions for any wing in unsteady motion can be satisfied by a 
suitable superposition of sources and doublets (reference Ii). However, 
the solution for wings with all supersonic edges can be written as a 
double integral of sources having intensities determined, by the local 
slope of the wing. Hence, for a flat surface at constant angle of 
attack and. not pitching,

V 
(x,y) = ± P P di1dy1	 (3) 

21tJJ 
Sa 

where Sa is the outline of the region of sources which can, at a 
given time, affect the point x,y at which the potential is being 

determined, r equals aI(x_x1)2 + (y-y 1 )2 , and a is the angle of 
attack of the wing. The area Sa has been termed, the acoustic plan 
form and. a discussion of its significance is given in reference 4. 

The solution for the triangular wing with subsonic edges can be 
obtained in certain regions, but in others the problem reverts to the 
solution of a double integral equation involving time and the two sur-
face dimensions of the wing. If the triangular wing is slender, an 
approximate method for finding the pressure over the entire wing can be 
used. This method is to neglect the streamwise velocity gradients in 
comparison with the gradients in the plane normal to the free stream 
and also in comparison with the term CPtt. There results for the 
partial differential equation governing the flow field (equation (1)) 
the wave equation of one lower dimension, namely, 

	

-	 -	 = 0
	

(1.) 

As will be developed later, the boundary conditions become the same as 
for a rectangular flat plate of very low aspect ratio inclined at angle 
of attack to a free stream with a Nach number equal toVT This 
analogy with the steady-state lifting-surface problem is useful since 
solutions to the latter problem have been obtained. 

-	 The indicial lift and p1tching-noment coefficients will be deter-
mined for wings with two different vertical velocity distributions. 
The first is the case in which the boundary condition is 

WU =
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where a is the angle of attack, and. w is constant over the plai 
form. This case is referred to as that of the sinking wing. The other 
boundary-value problem considered Is the one corresponding to a flat 
wing pitching at a constant rate about its leading edge or apex. The 
boundary conditions have the form

. 
wu = cp I 	 = -9 (x+M0t) 

z=O 

where 9 is the constant rate of pitch and. (x + M0t) is the distance 
aft the leading edge or apex of the wing. The pitching velocity 9 
is considered positive when the trailing edge of the wing sinks relative 
to the axis of rotation. 

The difference between a 
and 9 is illustrated In the 
sketch, where for clearness the 
motion Is shown to be oscillatory 
rather than indicial. The angle 
of attack a is the angle 
between the flat wing surface and 
the line tangent to the flight 
path of the leading edge or apex 
of the wing. The angle 9 Is 
the angle between the flat wing 
surface and the horizontal (see 
part (a) of the sketch). Part (b) 
of the sketch shows a wing under-
going a sinusoidal angle-of-attack 
variation with a zero angle of 
pitch throughout the motion. 
Part (c.) shows a wing undergoing 
a sinusoidal angle-of-pitch varia-
tion taken about the leading edge, 
with the angle of attack reniain-
ing zero. 

Although the lift and 
pItching-nionnt coefficients are 
given only for the two types of

Direction of wing motion 

Flight p0th of 
leading edged 

14'? 9 

(a)

8:8:0 

8: sinoit' 

motion separately, it is possible, 
according to the linear theory, 
to combine them to simulate an 
arbitrary indicial maneuver consisting of both sinking and pitching 
motions. For such a case, the boundary condition becomes 

= -Va. -0 (x + M0t)
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If, furthermore, the desired. maneuver is not ind.icial, the lift and. 
pitching-noment coefficients may be determined by use of Duhamel's 
integral: 

CL =	
t?	

(t'_) a(T') + CLq '( t '_ T ' )q( T')} dT' 

Cm = 4f	 [C'(t'—T' )a(i- ') + C'(t'T') q( T')] dT' 

where a(t') and. q(t') are the arbitrary motions (q. =
	 ), C

L, C', 
C4', and. C' are the indicial aerodynamic coefficients, and. the primes 

on the coefficients indicate that the pitching motion is about, and. the 
pitching moments are referred to, the leading edge or apex. 

The position of the axis of pitching motion, and. of the axis to 
which pitching-iiient coefficient is referred, is of importance. In 
this report, these axes coincide in an axis normal to the root chord of 
the wing and. passing through the wing leading edge or apex. However, 
it is often desired to transfer the pitching motion and moment calcula-
tion to other axes, and. the formulas for such a transformation will be 
given here. Let the pitching motion refer to an axis lying a distance 
ac0 back of the leading edge or apex, and let the pitching-noment 
coefficients refer to an axis bc 0 aft the leading edge or apex.. The 
necessary transformation formulas are 

C I = C' + b 

CLq ! =CL '.-aGi q a 

Cinqi	 = C' + b CLci' - a C' - ab CL a 

where a prime on a quantity indicates that the pitching motion is about, 
and the pitching moments are measured. about, an axis through the leading 
edge or apex of the wing. The quantity q is the dimensionless rate 
of pitching, equal to c 0 9/V0. The subscripts a and b mean, 
respectively, that the quantity in question refers to a pitching motion 
about an axis ata distance ac 0 aft the leading edge or apex, or that 
the pitching moments are measured about an axis bc 0 aft the leading 
edge or apex.
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WING WITH SUPERSONIC EDGES 

INDICIAL LOADING FOR SINICLNG WING 

Analysis 

The seven regions.— The analytic expression for the ind.icial load-
ing over the triangular wing has a different form in each of seven 
regions. These regions are determined by the positions of the various 
wave fronts relative to the wing plan form (fig. 1). For t<O the 
wing is motionless, its leading edge lying along lines represented by 
the dashed lines in figure 1. At t=O the wing starts suddenly to 
move, and. for t>O, travels forward at a constant speed V0 . After a 
certain time t has elapsed, the wing has traveled to a new position, 
also shown in the figure. In this same interval of time, pressure 
impulses have traveled out in spherical waves from every point of the 
region which the wing has occupied. The trace on the wing of the 
sphere starting from the wing apex at t=O forms the external boundary 
of region 7. The area outside this circle and. within the traces of the 
cylindrical waves (the envelopes of the spherical waves) generated by 
the leading edges at t=O forms region i. Region 5 is formed by the 
overlapping of these cylindrical waves, and the solution for loading 
within it can be found by a suitable superposition of the solutions for 
regions 3 and I. Region 1 lies between the cylinder trace on the wing 
and the leading-edge position at time t; the loading In this region 
cannot be affected by the manner In which the wing started its motion 
since it lies outside the starting cylindriôal waves. Hence, the 
loading in region 1 is the same as that on a swept wing flying at a 
steady supersonic speed. The solution in region 2 can also be obtained 
from steady-state lifting-eurface theory, but, whereas in region 1 the 
field is two-dimensional (i.e., invariant with distance measured parallel 
to the leading edge), in region 2 the field is conical. Region 6 is 
formed by the overlapping of regions 2 and 1. Finally, region 3 is that 
area completely unaffected by waves from the wing edges. In the follow-
ing subdivisions the analysis of each of the separate regions will be 
discussed. 

Region 1: The loading in region 1 of figure 1 is equal to the 

loading on a two-dimensional flat plate moving at a constant velocity 
given by the component of stream velocity noril to the leading edge 
of the triangular wing. Since this component is supersonic, the 
loading is of the Ackeret type and is given by 

1a 
'nJj	 t3n 

But since Vn = V0 cos A where A is the angle of sweep (see fig. 2),
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= q 0 cos2A 

sec A 

M=M0cosA 

-.	 J2 cos2A-1 

jMO2 - sec2A 

Finally, if ctn A = in 

(p\	 -	 llcLm	 (5) 
- 22 
Jm —1 

where	 =IM - 1. 

Region 2: The steady—state loading on a triangular wing with 
supersonic edges has been given by several authors (see, for conven—. 
ience, reference 5) so the expression for the loading in region 2 can 
be written immediately for the coordinate system shown in figure 2 as 

(Lp\	 ____	 ________ 

	

)27 
,/j2m2_l	

+ arc sin	
y(x+Mot) - 

3(ni(x+M0t )y 

arc sin 32my+(x+M0t) } 

[M(x-i-Mt )+y'
	 (6) 

Region 3: Since region 3 is unaffected by the edges of the wing 
the solution for the loading therein can be written as in reference 6 

(p'\ -	
(7) 

Region 14: The solution for loading in region 14 can be obtaired 
from consideration of a two—dimensional wing starting from rest and 
moving with velocity Vn normal to its leading edge. This problem 

10

and.
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i,j 

has been treated in reference 6 and the solution written there can be 
written for the right—hand side of figure las 

1 (iT	 Xn'\ /	 !±n r arc cos nxn+t + .JM2—	 - + arc sin - 

	

= iT	 Xnt	 2	 ] 

where the notation, as defined by the sketch, is 

xcos A—ysinA 
= x sin A + y cos A 

and since 

ctnA=m, sinA= ____ , 
/1+ni2	

,d cosA=m	
<J 

Then	 \
\ V0 nIx—y	 ' 

Xn

x+Iny 
yn=

J1+m2	 N 

The equation for loading now beconies, in the coordinate system of 
figure 2,

=	 1kzJfl	 [arc cos mM0(mx - J y !) + _____	 + 

	

\q0)4	 '/132m2l 4/1+m2 (mx - ly t + mlvI0t) 

A/2m21 
(IC	

mx - I['\] —+ arc sin ____ 
2	 tf1+m2 / 

Region 5: The solution for loading in region 5 can be obtained 
by superposition of the solutions for regions 3 and 4-. If the solu-
tions for the two sides of region 1. (obtained from equation 8) are 
added, the result gives a value of w of twice the required amount 
in region 5, as well as undesirable pressures off the wing. However, 
subtraction fran this sum of the solution for region 3 (equation 7) 
reduces the downwash w to the proper value, and also cancels the 
excess pressures. The resulting expression can be 'written

(8)
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() 

=	 1Km	 [arc cos 
M0 (nix-.y) + (1+m2 )t + 

	

5	 ,taJ2m2_1	 /l+ni2 (nix_y + nvi0t) 

arc cos n1v10 (mx+y) + (i+ni2 ) t	 + 

'I l+m2 (mx + y + mnM0t) 

'-________	 mx+y	 ________ 
mM0	 çarc sin 

411::iii2- 
+ arc sin mnx-y (9) 

1+ t)J 

Region 6: The loading in region 6 can also be calculated by 
superposition. To find the loading in this case, add the solutions 
for regions 2 and. ii. (equations (6) and. (8)) and subtract the solution 
for region 1 (equation (5)). There results 

(Lp\	
-[arc sin
	 - (x+M0t) - arc sin 	 + (x+M0t) 

/2m2_l	 (In(x+Mt) -yl	 [m(x+M0t)+yl 

arc cos	 (nix - I I ) + t (l+m2 ) + 
(nix - I yl + niM0t)*Jl+ii? 

/21	
+ arc	 mx - lyt	 (10) sin	 ______ 

	

mM0	 \ 2	 t/1+ni2 ,Ij 

Region 7: The solution for the loading in region 7 can be 
obtained by nans of equation (3). The analysis used in finding the 

solution in this region is 

is rather involved. It is 

	

,	

not difficult but the algebra 

useful at this point to 
introduce polar coordinates 
(see sketch) such that 

= r cos e 

y-y 1. = r sin 9 

	

dx1dy1 = r dr dO	 (U) 

From equation (U), equa-
tion (3) can be iritten in 
the form 

=	 LaI th'de	 (12)
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The acoustic plan form for points in region 7 is the region 
bounded by three curves as indicated in the sketch. The arc between 
9 and 92 is determined by eliminating T between the equations 

r2 = (t - T)2 

(the equation for the inverse sound waves) and the equation for the 
left leading edge

= -n(x1 + M0T) 

The arc between 93 and 9 is found by deternining the acoustic 
intersection (eliminating T) of the right leading edge with the 
inverse sound wave; and, finally, the arc between 92 and 93 Is 
given by the equation r=t. The equations of these arcs can be 
written in polar coordinates as

13
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in(x-i-M0t )+y r=	 ;9l^9^62 
m cos 9+mM0+sin 0 

r=t; 92^993 

	

m(x-i-M0t)_y	 .	 0 ^ e ^ r 
= m cos 0+nM0-sin	 ' 99 S2ic 

Using these expressions, equation (12) reduces to 

- V0	
r°	 m(x+M0t)^y	

+ 
- 2't	 m COB 0+InM0+sin 0 

9.. Vct	 3

tdB+ 

thxt)_y.	
dO 2ic J9 	 m cos 0 +niM0-.sin 0 

and taking the partial derivative with respect to t (to determine 
the loading according to equation (2)) one finds1 

92	 93 

	

(Lp) = 2a m 
f	

dO	 + -
	 I dO + it	 + m cos 9+sin 0 

____	
dO	

(13) 
2 m f	 + m cos 9 in 0 

It 

In evaluating this equation, the following integral is used: 
for	 <9 < 

f
dO	 =	 2	 arc tan m(Mo-l)tan (0/2) ±l (114) 

	

mM0 + m cos 9 ± sin 9 ,/ 32_J	 / 
'The lImits 9,, 02, and 03 are all functions of t but in moving the partial derivative through the integral sii the terms involving e2/t, and e3/t all cancel one another,
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Since equation(l l ) is valid only in the interval -.n^ 9^ t, care 
mist be exercised in applying it because the angle 93 ny be greater 
than ir (as in the preceding sketch). In case 1r^ 03 it is con-
venient to introduce the angle 93 '. = 93-2t. The expression for 

can then be written in two forms, according as 93 is less 
than or greater than it: 

for y ^ O, 93^lt 

(	 =	 [+ arc tan m(Mo-l)tan (9/2)-1 - \ q.o	 ii: I2m2_l	 32m2-1 

in(Mo-1)tan (9/2)+1	 m(Mo-i)tan (02/2)+l - arc. tan	 ______	 + arc tan	 _______ 

,J 32xn2-1	 J 

	

m(M0-l)tan(03 /2)-1 1 + 2a 
(93 - 92)	 (iSa) arc tan	 _______ 

J	 -'	 tM0 

for y^O,it.93 

=	 [arc tan m(Mo-l)tan (e/2)-i - 
/ç2m2_l A/32m2_l 

in(Mo-1)tan (e/2)+1 + arc tan m(Mo-l)tan (92/2)+l arc tan	 _______ 

.1 22 ]	 /32m2_1 

in(M0-l)tan (03'/2)_1 1	 2a arc tan	 ______ 
4/32m2_1	 +	

(e'-e + 2it)	 (lsb) 

where	 _______________ 

.-M, y2 + (x+M0t) */(x+M0t )232y2 = arc cos
+ (x^t) 

(0 <e <It) 

92 = arc cos m(y+mx) - m/(1+m2)t2 - (y+nix)2 

(l+m2 )t 

(0 < 92 <it)
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2	 2 -4n(y-4nx) - &I(1+in2 )t	 (y-nx) 03 = arc cos
(lim2) t 

93 '= 93 - 2ir (ir ^ 93) 

The limitation on 93 can be given both an analytic and. geometric 
interpretation. Thus, equation (15(a)) appllesfor 0 <m(x+t),y 
and equation (15(b)) applies for OS y <m(x+t). These regions are 
shown in the accompanying sketch. Because of the, geometrical symmetry 
about the x axis, equations (15) suffice for the determination, of 
loading throughout region 7.

quo f/on 1/5o.J,' 

ym(x+ f) 

/ r2c-221 
/	 Equct/on 

(/5(b)) va/id 
// r \\ 

Discussion of Results 

Plots of the load, distribution on the sinking triangular wing with 
supersonic edges are shown in fIgure 3, and. an isometric drawing of the
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loading on the right panel appears 
in the sketch. The positions of 
the spanwise sections were chosen 
so that each of the regions 1 
through 7 is represented. It is 
to be noted that the results for 
region 7 show no unusual charac-
teristics, but fit in well with 
those for the adjoining regions. 
In general, the distribution is 
similar to the steady-state load-
ing on a triangular wing. 

ThDICIAL LIFT MID 

PITCHING MONEI'IT 

Analysis 

Methods of solution.- If a 

detailed knowledge of the load 
distribution is not required, but only the total values of lift and 
moment need be known, analyses much simpler than the one presented in 
the previous section can be employed. These methods, however, not only 
require the edges of the wing to be supersonic, but also require the 
trailing edge to be straight and normal to the free-stream direction. 
One such simple method has been presented in reference • It involves 
the integration over the three-dimensional plan form of longitudinal 
strips, or elements, which carry the two-dimensional values of loading 
as a function of time. The results presented in the present section 
can be derived by this method as well as by the method to be developed 
next.

Consider again equation (1) and integrate each term with respect 
to y between the limits minus and plus infinity. 2 There results the 
equation

rdyO 
-	 y	 —co	 '-'-a 

If y = r 1 (x,z,t) and y = yr(x, z , t ) are the equations of the Mach 
waves streaming back from the leading edges on the left and right sides 
of the wing, respectively, then, since p Is continuous across these 

2The basic Idea for this solution was given by Prof. P. A. Lagerstrom 
in his lectures at the California Institute of Technology.
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waves but (p	 q), (pa, and. Cpt are not, 

:

2

	

	 Yr	
Yr	 Yi	

Yr2 

f d.y =	 U - u 
+ f 

y.l 

where u and. U2 are the values of u on the interior faces of the 
right and'left Mach waves, respctive1y, and. 

2 r	 d. - J	 Y_v_ j 
yl 

Values of the terms involving w and. 	 are similar to those involv-



ing u so that finally, If

= 1Yr	
(16) 

then

2	 2

Ur	 Yr	 Yr +	 -	 =	 -	 t - vr) 

( yl	 Y2	
) 

I —U1+--1 

The terms enclosed. within the brackets in the last equation combine 
so that each bracketed. quantity is zero. For the case of interest here, 
this is not difficult to show. Consider, for example, the right wedge. 
Then, since the equation of the wedge is 

Yr = —z A/jc2_l + mx + mM0t 

and. the value of the potential is the steady—state two—dimensional value 
given by the expression

ni(x^M0t )—y—z Jm2_1 
= —wu
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the term

	

" Yr	 Yr	 Yr 
Ur +Wr_	 t_vr) 

be c on S

(	 in	 ,Jjm2l - m2MO2 +	 i	

) 
in	 +	 ____ ____ 

J 322_] J 

and this is identically zeros 

Finally, therefore, equation (1) has been reduced in terin2 of equa-
tion (16) to

	

tt - xic - zz = 0	 (17) 

Consider next the boundary conditions for a triangular wing with 

supersonic edges. In the plane z=0, 	 / z becos	 Wudy where 

is the vertical Induced velocity in the plane of the wing. Since 
the edges are supersonic, however, w must be zero off the plan form 
of the wing and the inteatIon need extend only over the plan form 
itself. Hence

	

_21Tam (x-4-M0t)	 (18) 

for the flat triangular wing at constant angle of attack and 

	

(
!)	 =.-25ni (x+Mot)2	 (19)
Zz0 

31t is not necessary to perform a direct calriulatlon in order to prove 
the above result for arbitrary plan forms. The bracketed terms 
represent the directional derivative of the velocity potential taken 
along the so-called "conorinal' t of the foremost disturbance surface. 
Since. q is constant on the surface, and since the conormal lies 
along the surface, the bracketed terms are zero.
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for a flat triangular wing with a constant rate of pitch 9 about its 
apex (positive	 produces a downward motion of the trailing edge. 
relative to the leading edge). 

t 

These boundary conditions are exactly like those studied in steady—
state supersonic wing theory. In fact, the lIfting—surface analog 
(shown on the sketch) is a wing tip of specified camber in a supersonic 
free stream having a Mach number equal to 	 The solution for the 
potential in the plane of the wing for this problem can therefore be 
written imnndiately as

r 

= - if (t—t)2—(;—x1)2 dt1 

where a is the portion of the area on the shaded èurface in the sketch 
lying ahead of the forecone traces given by the equation (t—t 1 )2 = 
(x—x 1 )2 . Using equation (2) for the loading coefficient, and. introducing 
the following notation for the average spanwise loading 

p0 =	 f Ldy (sinking wing)	 (2c) 

= flIM0V0 P5 Ldy (pitching wing)	 (20b) 2s2êL_8
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where

	

s = m(x+M0t)
	

(21) 

it is found. that

f' (x1-s-Mt 1 ) d.x1d.t1	 (22) 
=	 a	 /(t-t1)2 - (x-xi)2 

p =	 A r I (x1+M0t 1 )2 dx1 dti	
(23) 1	

,/(t_t1)2 - (x-xj)2 

Wing with constant angle of attack (sinking wing).- The solution 
for the average load. on a flat, supersonic-edged, triangular wing 
starting from rest at t=O and flying at a constant speed and. angle of 
attack Is given by equation (22). With the transfornEtions 

XX1 = 12 

t-t 1 = t2 

this becomes

S 

L f dt2dx2 -12 - M0t2 P0 =---	 .v1 t22-x22 

This integral can be evaluated. and gives for x<t (region A) 

p0 = 14.	 (2a) 

for -t ^ x ^ t (region B) 

= [
	

+ arc cos ( x) Mo	 t+M0x 1 

	

+	 arc cos	 I	 (214-b) 
x+Mot J x+M0t 

and for ' x <-t (region C)

where the regions are shown in the preceding sketch. Equations (2 14.) can 
also be obtained by integrating the equations for the loading given in
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the preceding section. These Integrations were carried out (in some 
regions numerically) and the results were found to agree with those of 
the present analysis. 

It is now possible to write the equation for the indicial lift and 
pitching moment for a sinking wing: 

c0-M0t 
c1 =
	

m(x+M0t) P0 dx	 (27) 

Cm =	 2	 rc0t m(x+M0t)2 P0 dx	 (26) 
•Sc0M0 M

0t	 - 

where S Is the wing area (equal to ]o2 ) and the prime Indicates that 
the pitchlng . moment i-s measured about the apex, the positive moment 
being one which causes the trailing edge to sink relative to the apex. 

Combining equations (2 1. ) and. (25) one finds for the first interval 
shown In the sketch

Inter vol no. 
I- x 

t	 / 
c;M0', 

c;Mj/ 

t
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2 1 r0(X+)+ C2	
t 

t	 r 
f (x+Mt) [ Jt_x2 + arc 

x+M0t 
—t 

arc cos t+Moxl 
13	 x-1-M0t] dx 

+ 

c0—M0t

(x+M0t)	
} 

This eQuation 1nte'ates to give, if t o = t/c0, 

for 0 <to < 1	 (first interval) 
-

CL =	 (1 + t02)	 (27a) 
a 

Similarly for	 ^ to ^	 (second interval) 
M0+1	 M0-1 

C1 = -2±-- '1 + i to2)arc cos M0t0—1 + 
2 to 

1 
- arc cos (M0—t0 132 ) + 

2 30t0 ,/to2 - (1 - M0t0 )2	 (2m) 

and for	 < to (third interval)

14. 
CLcL = 	 (27c) 

In the same manner the values for Cma,' in the various intervals can be 
determined by combining equations (2 14.) and (26). There results
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for 0 ^ to < 1 (first interval) 
M0+l

= -	 +	 to) 

for	 ^ to ^ 1	 (second interval) M0+1	 M0-1 

= _..Q.. [
	

(8._M0t0_MO2t02_2t02) Jt02_(1..zv10t0 )2 +

(28a) 

(2+t 3 ) arc cos	 +	 arc cos (2t0) ]
	 (28b) 

to	 3t3 

and for	 1	 (third interval) M0-1	 0

C ' =_.Q 
3	 (28c) 

Nuiirica1 results for a Mach number of 2 will be presented in the dis-
cussion section. 

Wing with linear angle-of-attack variation (pitching wing).- The 
solution for the average load, on a flat, supersonic-edged, trianu1ar 
wing flying at a constant speed and pitching at a uniform rate 
about its apex is given by equation (23). With the transformation 

x—x1 = X2 

t—tl = t2 

this equation becomes

/	 2 

P1-f _________	 dt2 d,x2 
A[t22 X22
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and. the evaluation of this gives (for the regions defined for the 
sinking wing) 

for x ^ t (region A)

t	 (29a)
2 x+M0tJ j 

for -t ^ x ^ t (region B) 

ii. 1 a. t2+(x+M0t 

	

P1 =	
[	 x+ot )2 arc cos ( ) + 

t+M0x + 3x+2M.t dt2_12 arc cos
x+M0t 2 (x+M0t )2	 1°	 (29b) 

and. for x ^ -t (region C)

P1=-1-	 (29c) 

The equations for lift and pitching moment on a pitching wing can 
be obtained, from tI'ie equations

c0-M0t 
=	 2 

	

(ê) = CL' Sc0 M0	
m(x+M0t )2 p1 dx	 (30) 

CD1,	
—c ' --	 2	

c0-M0t	 3 

	

(coê -	 - Sc02M,	
m(x+M0t) P1 dx	 (31) 

v) 
where the primes indicate the wing is pitching about and the moments are 
measured about the leading edge. 

A combination of equations (29) and (30) gives for the lift coeff 1-. 
dent 

for 0 ^ t <	 (first Interval) ° M+l
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=	 . (i + t02 -	 (32a) 

for	 1	 (second interval) 
M0+l

1	 M0t0-1 + 8 [(i 2 -	 +	 arc cos to Lq	 TM0L2°	 3 

arc cos (M0—p2t0) 
+	

t02 + ;t2-. ..
	

t0 ^ 

ii	 't 2(1t)2 ]
	

(32b) 18)	 ° 

and. for 
M0-1	

to (third interval) 

c' = 8/3	 (32c) 

Similarly a combination of equations (29) arid (31) yields, for the 
pitching moiint about the apex, the results 

f or 0 ^ to ^	 (first interval) 
M0+1 

Cmq'	 2 1 4 
[	

t0 - t0 (i+)]	 (33a) 

for	 1	 0	 (second Interval) M0+1

1 1 	 __ M0t0-1 = -	 1 [i+to2 - 1 to4 (l^Mo2)] arc cos to 
+ 

2M0	 2 
- arc c Os (Ivi_p t0 ) + 

(2+3 )t02+ (2MO2+13 )t]dto2_(lto )2 } 
(33b)
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and. for < to (third interval) 

'	 (33c) 

Numerical results for a Mach number of 2 are presented in the 
next section.

Discussion of Results 

Figure Ii- shows the variation of CL, C', and the location of 

XC 	 with Tc, the number of chord lengths traveled ( T = Vot '/c 0 = 

M0t/co = M0t0 ) for a free-stream Mach number M 0 equal to 2. The 
values of C	 and C' are in aeen1ent with those given in refer-
ences 1 and 2. For the purpose of comparison, similar curves are shown 
f or a two-dimensional wing having a chord. c 0 equal to the root chord. 
of the triangular wing, and for the triangular wing in reversed flow. 
The material necessary for the calculation of the latter curves was 
presented in reference 6. Several interesting conclusions can be drawn 
from these results. 

First, notice that the total indiclal lift on the triangular sink-
ing wing is the same at every instant as that on the same wing in 
reversed flow (both wings of course having started with the same velo-
city at the same time), and that the value of this lift is the same as 
the total ind.icial lift on the two-dimensional wing only at the begin-
ning of the motion and again when the steady state has been attained 
(fig. li. (a)). Such a result for reversed flow is not true for the 
pitching moment (fig. 1l-(b)) and center of pressure, and it can be shown 
that it is true for the total lift only when the wing is a flat lifting 
surface with supersonic edges 

Second., notice that, since all of the characteristics for the 
triangular wings are independent of the angle of sweep, they are valid 
for any unyawed. triangular wing flying at a Mach number equal to 2 
and. having supersonic leading edges. 

Third, it is apparent from figure It(a) that the transition of the 
total iñdicial lift from its initial to its final value is less abrupt 
than that transition for the two-dimensional wing, and finally the 
movement of the center of pressure on the sinking wing of all types is 
seen from figure lt(c) to be small. 

T. Jones has shown, in an unpublished work, that the build-up of 
total indicial drag on symmetrical nonlifting wings is the same for 
all types of plan forme in forward and. reversed flow.
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Finally, it can be seen from equations (27a) and (27c) that 
the initial and final values of CL depend on l/M0 and 1/13, respec-

tively. As the Mach number M0 is increased, therefore, the variation 
dies out since f3 and M0 becon nearly equal. The sair renrk 
applies to all the other coefficients. 

Figure 5 presents the values of CL', C', and xc.p./co for 

wings pitching about the foremost extremity of their plan form (i.e., 
leading edge or apex). Again the results are presented in terms of 
chord lengths traveled T0 for a free-stream Mach number equal to 2. 

For these wings it is apparent that the reverse-flow theorem does 
not apply even to total lift. The results for the triangular wing are 
still independent of the angle of sweep, however, and the movement of 
the center of pressure is again slight. 

WING WITH SUBSONIC EDGES

IIsIDICLAL LOADING FOR SINKING WING 

Analysis 

The six regions.- As in the study of supersonic-edged triangular 

wings, there are also in the case of triangular wings with subsonic 
leading edges various regions In which the analytical form of the load-
ing equation Is different. Figure 6 shows the regions into which the 
subsonic-edged triangular wing can be most conveniently divided. Most 
of these regions have counterparts on the supersonic-edged wing shown 
In fIgure 1. 

To begin with, region 6 lies within the spherical wave which 
started at t=O from the wing apex. Region 1 is within the cylindrical 
wave which was started at t=O by one edge of the wing, but outside 
the wave started by the other edge. Region 14 Is the area formed by the 
overlapping of the two cylindrical waves from the opposite edges, but 
outside the region influenced by the reflection of one of these waves 
on the opposite edge (secondary wave fronts shown in the figure). 
Region 5 is the area between regions i-i- and 6 where the flow is influ-
enced by secondary (and higher-order) wave reflections. Finally,' 
regions 2 and 3 are similar to regions 2 and 3 in the supersonic-edged 
case; region 2 being that uninfluenced by the starting phenomena and 
therefore having a loading already at its steady-state value, and 
region 3 being that which is unaffected by the disturbances emanating 
from the edges.
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Region 1: The solution for the load, distribution in region 1 
is the same as that for a two-dimensional wing starting suddenly from 
rest and moving with a steady, subsonic velocity Vn. A solution to 
the latter problem for the initial part of the motion is presented in 
reference 7. In terme of the normal components of velocity and dis-
tance, therefore, the loading coefficient for the right-hand side of 
figu.re 6 can be written inmediately: 

(p - 8w0'	 _____ 

+ arc tan /) - - 1VnMn \l+M '.1 Mnt+Xn	 tX 

The equations which relate the normal components to those in the 
free-stream direction have already been given in the section on 
region 1i of the supersonic-edged wing. Use of these relations leads 
to the following expression for loading in region 1 (in the coordinate 
system of fig. 7)

mM0	 /Vi+m2+yJ_mx + 

q ' 	 itM0,	 %/l+n12	 m M0t - 1y1 + mx 

arc tan / mM0t- ly I + mx 

tl+	
+ Iyl-	

(3k) 

Region2: The loading on region 2, being the steady-state 
loading on a triangular wing with subsonic edges, is well known., The 
solution for region 2 of figure 7 is therefore g.ivenby (see, for 
convenience, reference 5)

=	 lcxm2(x^M0t) 
\q.0)2 A/m2(x+Mot)2_y2E	 (35) 

where E is the complete elliptic inte-al of the second kind with 
modulus aJl32m2 

Region 3: The loading in region 3 follows from reference 6 and 
is

(p'	 L 

\q0J3 M0 (36)
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Region 14-: The loading in region 14- of fIgure 7 is calculated by 
superposition, just as the solution for region 5 of the wing with 
supersonic edges was obtained. The solution in region Ii- is the sum 
of the solutions for the right and. left halves of region 1, minus the 
result for region 3. Thus 

=	 [	 mM0	 (/toIl^ni2_y–amc + 

\q0 ,14 ltM0 L mM0+ /l+in2 aJ mM0t+y+mx 

It 41l+n12+y_nx	 /_mM0t+y^mx	 + 
+ arc tan	 ____ mMot–y+mx I	 I t1+m2_y-x 

arc tan /—_mM0t - y ^ mx	 t 1 

	

j tl++y–mx 2 J	 (37) 

4p 
Go

Regions 5 and 6: In these 
regions the exact solution for 
the loading has not been deter-
mined. As was shown in refer-
ence 14., such solutions would 
require the solution of a three-
d.Innsional elliptic_trpe partial 
differential equation. In this 
report a later section will con-
tain an approximate solution for 
these regions. 

Discussion of Results 

An isometric drawing of the 
load distribution, for the 
regions in which it is known, is 
shown in the sketch. Comparing 
the results for the loading on 
this wing to the one with super-
sonic edges (fig. 3), it is 

apparent that the principal difference in the two distributions is in 
the behavior around the leading edges; the loading being finite at the 
supersonic edge, whereas it becomes infinite at the subsonic edge. In 
view of the known steady–state results this difference was to be 
expected. Elsewhere the 'loadings are quite similar.
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The results presented in equations (311.) through (37) will next be 
examined in a different light. Choose a given spanwise section on the 
wing and watch this section as time progresses from t=0. This amounts 
to fixing the axis on the body and can be accomplished simpiy by using 
the quantity s introduced inequation (21), 

a = xn(x + M0t) 

It is clear that a is the semispan of a given spanwise section, and 
that if equations (314) through (37) are written in terms of a, y, and 
t, for a fixed a they represent the variation of 1cding on a given 
section as time progresses. 

If the notation is further simplified by introducing the parameter 
1e where

1 

= mM0+*/1+in2	
(38) 

equations (311.) through (37) can be written in the following way: 

1 =	 (moeJt - +
	 + arc tan [	 - lyl	

) - f y i	 '%' t/	 -	 + Jyf

(39) 

(-_hams 
\q.0 12 - E	 - y2 

( p - 
\.q0J3M0 

(Lp \\ - 8cx. 
(1nMoe 

Jt	 +Y	 + IXlMoJ3e /t/ e - y —s + 

I 

+ arc tan arc tan J - y	 J_S+y 
t/+y_s	 t/e_y_s) 

The load distribution across any section is given by equations (39), 
(11.1), and (14.2) from the time t /13e = 0 to (t/e)i, where the term 

( t /e) i is equal to 2s or s/m(Mo-4-1)e, whichever is smaller.

(14.0) 

(14.1) 

(14.2)
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(At t /J3e = 2s the spanwise section has just reached. the secondary 
waves shown in figure 6, and. at t /3e = s / r 43e (M0^i) the spanwise section 
has just reached the spherical 'wave which started from the apex.) from 
( t /i3e ) to ( t Ine )2 = 3 /mI3e (M0—l), the loading has not been determined, 

and from t/e = (t/Be) to t=cc 

the loading is the steady—state 
value given by equation (hO). 

tO	

The sketch shows this initial and 
final load variation plotted as a 
function of the parameter t/13e. 
At the beginning of the motion 
the loading is constant across 
the span, but this type of dis-
tribution is quickly modified and 
the shape of the curve tends 
toward the "inverted elliptic" 
loading given by equation (h.0) 
and shown in the sketch as the 
distribution at t/e = (t/3e). 

(
i)

	

	 In fact, when the span has 
I	 traveled a distance such that 

t /13e 2s , the expression for the 
(i-)	 , loading given by equation (h.2) 

T becomes
= 16

= 2s	 7ta/s2y2 

which differs from the value given by equation (h-a) only by a constant 
of proportionality. Both before and after the time t/3e=2s the shape 
of the loading curve varies from the simple type represented by equa-
tion (14-3), but the trend, and to a certain extent the rapidity of the 
trend, is clearly established. 

The average spanwise loading P 0, introduced by equation (20a), can 
now be determined for certain regions. Hence, if the notation 

	

T=t/S	 - 

	

S	 (41i) 

028a	 q0Y 

is adopted, there results for the early part of the motion, that is, for 
O ^ T /3e < ( T/f3)j

- P0 = 2 (2 -	 +	 eMo ( T/)	 (5)
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Equation (1t5) was derived, by 1nteating equations (39), ( li-i), and (t2). 

For values of T/e ^ 1/em(Mo_1) =()2 equation (1O) is valid. 
Bence 

for

- 2rtniM 
E

(ti.6) 

The sketch indicates the 
magnitude of this average load 
for both large and small values 
of T/3es Notice that for small 
values of T/3 it is suff i-
dent for the establishment of 
the curve to specify the parameter 
mMot3e, but for large values an 
additional parameter must 'be given 
(such as M0 in the sketch). 
Notice, further, that in spite of 
the large variation in the distri-
bution of the loading, as shown in 
the previous sketch, the average 
value P0 varies linearly through-
out the intervals considered. This 
result is similar to the one 
obtained for triangular wings with 
supersonic edges arid. is given in 
equations (21i.).

4 

0' 
0

= 1/8 

I	 M2 

4	 8 /2 /6 

INDICIAL LOADING ON VERY SLENDER ThIANGULAR WINGS 

Analysis 

In the first section of this report entitled "The Problem and the 
Nature of its Solution," it was pointed out that if the wing is slender 
(i.e., hasa small ratio of span to chordwise length) the basic partial 
differential equation (1) can be approximated by the equation which was 
-previously introduced as equation (Ii.), thus: 	 -. 

Ptt _CPyy	 zz = 

The boundary conditions appropriate to this problem will now be examined. 
insoine detail.
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Just as in the previous sections of this report, consider a triangu-
lar wing which Is at rest for t < 0, starts suddenly to move at a for-
ward velocity equal to V0 at t=O, and continues at this same velocity 
for t > 0. It should be emphasized that in this case, V 0 may be either 

subsonic or supersonic. A section in the spanwise direction, as for 
Instance section AA in the sketch, 

	

.7	 projects into the yt plane as a 

I \,	 arc tan m narrow rectangular strip along the t 
A	 axis. Since equation (1i ) has been 

-	 -	 - —A	 derived on the assumption that the 

\	
velocity gradients in the y, z, and 

I	 \	
t directions are independent of the 

________	 i	
gradient in the x direction, the 
boundary conditions along the strip 

	

I	 shown in the sketch are independent 
of those on other strips projected 

	

X '	 from spanwise sections along the wing. 

I	 I	 Hence, the problem is to find a solu-
i -,. $ -	 y	 tion to equation (14) which will make 
77	 constant over the strip and at the 

	

// /	
same time will satisfy the other con-

	

"/ 7/	 ditions listed under equation (1). 

	

,// 7/	 In the lifting—surface analog this 

	

7/ 7/	 corresponds to the problem of finding 

	

7í Ii	
the velocity potential over a flat 

/ '/	
rectangular wing of low aspect ratio 

	

(/, //,	 situated in a free stream moving at a 
Iviach number equal to /. Solutions 
to the latter problem can be obtained 
by various techniques, and so the pro-

cedure will be first, to find the potential for the steady—state, flat, 
rectangular wing, and then, by analogy, to convert this to the solution 
for the very slender triangular wing in unsteady motion. 

The steady—state, lifting—surface problem.— Lifting—surface solu-
tions for the loading on a rectangular wing traveling at supersonic 
speeds have been developed for regions 1, 2, and 3 of figure 8 (by 
Busemarin and others), and by means of these solutions the load distri-
bution on a spanwise section of the triangular wing can be determined 
to a time necessary for sound to travel that span length. For t > 2s, 
however, the solution becomes considerably complicated by the increasing 
number of reflections from the edges. Reference 8 gives solutions for 
the loading on a rectangular wing in region 14 and indicates methods for 
extending the solution to regions farther along the wing. Already in 
region 14W, however, the expression is cumbersome and in higher—numbered 
regions the expressions become difficult to manipulate. These methods, 
therefore, will be discarded in favor of a more approximate but simpler 
analysis. 

If x is the distance along the chord, y the distance along the 
span, and s the semispan, then the solution for regions 1, 2, and 3 of



NACA TN 2387
	

35 

figure 8 can be written (for convenience, see reference 5): 

Region 1 

Region 2

ip	 8c	 s - I y ' - = - arc taxi
Jx—s+y 

Region 3

(lqa) 

I	 + arc tan	 —y 
s+y	 S - = - (arc tan x—y	 J	 -	 ( 7c) 

As x increases (i.e., for higher—numbered regions in figure 8) 
it is reasonable to assume that the spanwise variation of loading is 
relatively unimportant - except that it be "smooth" and fall to zero at 
the side edges - and the chordwise variation of loading is dominant. 
Assuii, therefore, that the loading is given by the relation

(18) 

-s	 S 

	

h—s H	 -y 

-'IA,,. 

Mach 
forecone 
trace 

P
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Spanwise, this has the variation shown in the preceding sketch; chord—
wise it is as yet arbitrary. To fix the chordwise distribution the 
value of f(x/s) will be determined so that the vertical induced velo-
city along the center line is constant and equal to —V0a. 

The solution to this somewhat artificial problem approaches the 
exact solution to the steady—state lifting—surface problem for a flat 
rectangular wing along sections far behind the leading edge; closer to 
the leading edge it only approximates the exact solution; and., of course, 
in the vicinity of the leading edge it will be least representative. 
But, on the other hand, the exact solution is known in the vicinity of 
the leading edge and it turns out that the solution of the problem posed. 
above forms a reasonable continuation over the remainder of the wing. 

The velocity potential for the problem which has been set can be 
readily expressed in terms of an integration of elementary horseshoe 
vortices over the plan form. Since the Mach number equals 	 then 
according to reference 9,

(x—xi) (Lp/q0 ) dx1dy1, 

(y 2+z2) J(x_x1)2 ...y12....z2 

where A is the area on , the wing within the forecone fron the point 
P(x,y,z), at which q' is to.be determined (the shaded area in the 
sketch).	 . 

The simplification of the last expression is given in reference 9. 
The result is the integral equation 

2 1 = f(1) +	 [ f 1 ) G ( 1 )d 1	 (9) 
Jo 

where r=x/s and G is given by

l^ii-i 
=	 E2—(l—k22)K2 

k	
,	 r —r^l 

1 k1 = 1	 ; k2=r—r11 

The modulus of E 1 is k1 and the modulus of K2 and E2 is 1c2.
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The solution of equation (11.9) for f(i) is not difficult when 
nwirical thods are used. For intervals of i	 equal to 0.2, the 
result is given in tabular form in appendix A, and also in the sketch 

equation (47) 

From equation (49J 

'7 

This result can be improved in the interval 0 ^ r ^ 2 by nans of the 
correct solution in that interval given by equations (47). Comparison 
of the spanwise average of the loading given by equation (11.8) with that 
which can be derived from equations (47) gives an equivalent f(r) in 
the interval which, when used in equation (48), will give the correct 
value of the average span loading. The sketch also shows a curve for 
this equivalent f(r1) which startL. at ll./,t and falls linearly to zero 
at 11=2. 

By using the sketch, or the results listed in appendix A, the 
loading over a low-aspect-ratio rectangular wing flying at a Mach number 
equal to	 can be estimated. Of particular interest is the damped 
oscillatory nature of the load, falling to zero at one span length 
behind the leading edge and. taking alternately negative and positive 
values beyond this point. 5 A somewhat different approach to this 
problem (reference 11) has recently led to a solution very like the one 
given here. 

The unsteady analog, sinking wing.- The first step in deriving the 
unsteady-flow results for the sinking wing from the steady solution Is 
to replace x with t. In equation (11-9) this corresponds to replacing 

with T where T is equal to t/s (equation (11.4). The second step 
is to rederive the expression for loading coefficient since It the 
time-varying problem it is expressed in a somewhat different manner than 
in the steady-state analog. In the unsteady case, a,s the triangular 
wing moves through a fixed reference plane the local span intersecting 

A discussion of this aspect of these results is contained in refer-
ence 10.
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this plane grows as a function of time and equation (2), which repre-
sents the partial derivative with respect to time with. x fixed, must 
be expanded to the form 

= 2	 ri = 2	 ([1 +	
\\ 

LtJ	 V0M0	 .[ tj5	 [ sJ	 t) 

where []
	

and	 indicate derivatives taken at constant s 
LJt 

and t, respectively. Since s is equal to m(x ^M0t), s/t equals 
mM0, and there results

2 ([1 +mM0 [	
\\	

(50) q0 V0N0 	 [tj
[q,] In the steady-state problems an analog to the term involving - 
LsJt 

is missing, and the loading coefficient is given entirely by an opera-

tion equivalent to [_] . it is necessary, therefore, to operate 
further on the solution given for the loading in the steady-state 
problem to obtain the solution for the loading in the unsteady problem. 
But

[1 =i r ri 
Ls J	 e J0 [ t J 

so that if the notation

1	 !Q(' 
Lti 5	 2 

is adopted (where (P-	 represents the loading in the analogous 

steady-state problem), then the expression for the unsteady loading can 

be given in terms of	 by the equation 

-	

r () +	

t (
	 dt]	 (51)
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By the application of equation (51) to equations ( 1t7), the loading 
for the various regions of the unsteady wing can be found. For region 2 
there results 

—=-- 1 —arc tan / Lp 1	 ______ + 
mM0 	 4ct dt 1 + q.0 M 0 L ic	 It—e+y! 

arc tan J - Js_!y,	 ti+	
dtl)] 

which becoixs

&L 
[/_s+ lyl + arc tan Is- lyl 

Qo0 s—Iy	 Jt_s+ ITF 

The loading coefficient can be similarly derived in the other regions so 
that finally 

Region 1

LpL
- (52a) 

Region 2

+ arc tan =	
(m'yioJ	

lyl	 5— Iy )

	
( 52b) q0	 M0	 5— II	 Jt+ I! 

Region 3

p 8ct/	 ___ =	 EMo	 + mM	 + 0 J
(52c) 

arc tan	 + arc tan	 —! 
*/ t—e+y	 f t—e—y 2
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For the interval t >28 equation ( ls.8) mist be considered. By nans 
of equation (51), the expression for the loading coefficient can be 
written

t	 2 

	

r	 dt] 

	

sJ0	 \s j/ *I 	 \s) q0 M0 L 

which becomes

J2 
=	 [(i-no 'r)	 1- () f ( ,-) +	

- '°	 f f ( Ti ) d T]	 (5) q0 M0 [	 0 
\8) 

where f(T) is the solution to equation ( li.9). Notice that for large r 
(when the loading has reached its steady state),f(7) is zero and 

f
f(T1 )d. r1 is unity. (See append.ix A.) Hence, the loading is given 

by the equation

qo A/52_y2 

which is the stead-state value for a slender triazgular wing (equa-
tion (14.0) when E = i). 

It is now possible to derive the average span loading P0 as 
defined by equation (20a), thus. 

P =_2 Pdy 
2saJ q0 -e 

Placing equations (52) and (53) in this expression, it Is found that 

for OT2

P0 = 2(2-7) +	 (5a)

andfor T>2

	

P0 = (l0T)f(-r)^2	 f(i) dTi	 (5kb) 

Since the values of P0 given by equations (514.a) and (514-b) were 
derived using different methods, their magnitudes at T = 2 are not

S
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equal. The final curve for Po must be constructed. by fairing the solu-
tion for T ^ 2 Into that for T >2. The accompanying sketch shows 
these results together with the final curve chosen (solid. line). 

41\ ,Eq.(54(a)) 

g , \/' fE.(54(b)) 

2	 \I. 

00 j 46 81.0 

The unsteady analog, pitching wing.— When the wing is pitching at a 
steady rate about its apex, the equation for the vertical induced veloc-
ity on the plan form is

Wu = —(x + M0t)ô 

so that the	 in the steady—state equations (li.7) and (48) must be 
replaced by Os/mv0. Since the loading coefficient is still given by 
equation (51), there results for the conversion of equation (18) the 

expression

______	 ______ t /s 
-	 [_ f(T)	 r	 f(T1) d.T1 
- S	 J0 

and this can be reduced to the form
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Lp -	 (i—Mr) I s2—y2 (,) + - inM0V 

14.9 /2s2._y2 \ pT 

	

______ '4 I	 f(-r1) d.r 1 	 (55) 
-	 ;	 /52_2,1J 

As in the d.iscussion of equation (53), it can be seen that equation (55) 
becons for the steady state (T large) 

- 14. (2s2_y2 
q0 V \\ A&2y2 

and. this can be shown to agree with the steady—state slender—wing results 
given In reference 12. 

It Is now possible to derive the average span lding P 1 as 
defined by equation (20b)

ThM*Vc ray 
2s2Ô —e q0 

Using equation (55), one finds for T >2 

	

p1 = (10TYf(T) 
+	 1T	

d71	 (56a) 

and a similar analysis based on equation (11-7) yields 

forO^ T<2

P1 =	 (56b) 

As in the case for P0, the two equations for P1 do not join at 7=2 
and the final curve must be constructed by fairing the solution for T^2 
into.that for T 2.
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Discussion of Results 

It is now possible to 
assess the accuracy of the 
solution for very slender 
wings in the interval 0^T^2 
by comparing equations (52) 
and (5a) with equations (4.i), 
(39), (i.2), and (5), the 
exact solutions for this region 
derived in the preceding sec-
tion. It is apparent that the 
approximate solution differs 
from the exact only by a 
stretching factor in the t 
direction. Hence, if -r is 
replaced by T/	 and m	 0 
(note m is proportional to 
y/t) by	 e' where e is 
given by equation (38), then 
equations (52a), (b), and (c) 
are identical with equa-
tions (11.1), (39), and (2), respectively, 
corresponds to equation (i.5).

Eq. (56(b)) 

Eq. (56(o)) 

r 

and, of course, equation (511.a) 

This rather remarkable result can be enlarged upon from another 
viewpoint. Suppose that in the steady-state analog problem the wing had 
been flying at some Mach number other than	 say Me. The solution 
to such a new problem could. be obtained from the old one merely by 
applying the Prandtl-Glauert correction, that is, by stretching all die-
tances in the x direction by the factor 1/13e where 13e = Il4I. 
Such a procedure would convert, for example, equation (5lia) to the form 

= 2(2-i- 'r /!e) + '1.D1 eMo T/ 

Finally, if P0 is adjusted so that P0=14. at T =0, there results 

P0 = 2(2- 1/e) + 14.rflN0T 

which is exactly the answer given by equation (11 .5). It is possible to 
simplify the statement of this procedure by simply remarking: The exact 
results for Lp/q0 or P0 in the interval 0 ^ /e 2 can be 
obtained from the approximate results for a very slender wing by making 
an effective Mach number correction to the right-hand side of equa-
tions (52) or (511.a), respectively.
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It is interesting to pursue this concept even further.	 Consider a 
spanwise section of a triangular wing as time Increases from the starting 

impulse.	 The primary 
wave fronts emanating 

Actual trace of from either side pass 

primary wave front
across the section 
forming the Mach lines 
in the steady—state 

/ rectaiigular—wing 
_______ •

	 .. analogy.	 For very 
slender wings these 
lines make a	 5O angle 

J
with the trace of the 

Q side edge and are used 
to divide the plan 

2
form into regions as 

;'c tIm'! ,Y in the sketch.	 Now 
find the actual posi-
tion of these primary 
wave fronts as they 
form a trace on the 
section in the	 yr 

/	 I plane.	 A straight—

Trace of primary	 \ forward calculation 

wave front obtained shows that these lines 

from slender-wing actually make an angle 
equal to arc tan	 l/e 

theory with the trace of the 
side edges.	 Hence the 
effective Mach number 
which is used to 
correct the slender—
wing results in the 

interval	 0 ^ T ^ 2e	 Is that which makes the Mach lines of the steady—
state analogy coincide with the actual trace of the primary wave fronts.

INDICIAL LIFT AND PITCHING MOMENT ON

\1ERY SLENDER TRIANGULAR WINGS 

Analysis 

The lift coefficient for the sinking wing Is given in the notation 
introduced in equation (21a) by the equation 

nco 
a	 I'2s 
LJ	 o 
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where P0 has been determined in the last section as a function of 
T =t/s. Consider the situation at a certain fixed time and let the x 
coordinate in the above formula be fixed in the wing. Then set 

=	 = 
c 0 mc0 

and as before

T0 =	 = mM0 T
	

(58) 

where	 is the number of wing-chord lengths traveled. Ix this way 
the equation for lift coefficient becomes 

=2fPo(T0	 d
	

(59) 

and by a similar analysis the pitching-aoxnent coefficient taken about 
the apex can be written

1 

NoCm' = -2 r 
2	

() 
d	 (60) 

The equation for the lift and pitching-ioment coefficients (where 
again the pitching moment is taken about the apex) on a pitching wing 
are

1 

= _______	 ____ 

q	 (c0é 
=2	 2P1 (3a v) 

and.

1 

	

M0Cm	 ___ MoCnqt = ( c) = -2 
f	

( 
T 

	

___	 mMo) 

Discussion of Results 

The values of P0 and P1 were taken from curves similar to the 
sketches in the last section (using the faired curves in the vicinity of 
T=2) and the results for the indicial lift and pitching moment in terms 
of To, the number of chord lengths traveled, are shown in figures (9) 
and (10) for a value of mM0 equal to 1/8. The results are all

(57) 

(61)  

(62)
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qualitatively alike; in each case the 
value at T0=O to a rnininium at about 

.8 

fiCL 

2,r 

.6 

.4
0	 4

curve falls from its high initial 
T=l/3 and. then recovers and. 

practically attains its 
asymptotic value at To=l. 
This behavior is similar 
to that for a two-
dimensional wing flying 
at subsonic speeds. For 
the purpose of such a 
comparison the first part 
of the curve of indicial 
lift coefficient versus 
chord lengths traveled. on' 
a two-dinnsional wing 
flying at a Nach number 
equal to 0.8 (see refer-
ence 7) is shown in the 
sketch. Notice again the 
rapid fall from the 

initial peak (CLCL=14/Mo) 
8	 to a minimum around 

T0=l/2, and then a smooth 
recovery to the asympto-
tic value (Cj =2ic/f3). 

Ans Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Mar. 26, 1951.
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APPENDII A

SOLUTION OF AN IW[!GRAL EQUATION 

For convenience in applying equations (54b) and (56a) of the text, 
a table of values of the function f ( rI), obtained by numerical solution 
of equation (49), is given here. The values of the integral, 

. f( T11)dr1, are also listed. 

Ii

f(r) fr(i1i ) di 1 f(rj) ff(ii)drii 

0.0 1.0000 0.0000 4.0 -0.1307 1.0124 

.2 .9899 .1990 4.2 -.1008 .9893 

.4 .9597 .3940 4.4 -.0716 .9720 

.6 .9087 .5808 4.6 -.011.46 .9604 

.8 .8356 .7552 4.8 -.0207 .9539 

1.0 .7339 .9122 5.0 -.0008 .9517 
1.2 .6032 1.0459 5.2 .0149 .9531 

1.4 .4597 1.1522 5.4 .0265 .9573 
1.6 .3188 1.2300 .6 .0340 .9633 
1.8 .1880 1.2807 5.8 . 0379 .9705 

2.0 .0724 1.3067 6.0 .0388 .9782 
2.2 -.0245 1.3115 6.2 .0373 .9858 

2.4 -.1008 1.2990 6.4 .0338 .9929 
2.6 -.1562 1.2733 6.6 .0292 .9992 

2.8 -.1919 1.2385 6.8 .0237 1.0045 

3.0 -.2098 1.1983 .0 .0180 1.0087 

3.2 -.2126 1.1561 7.2 .0124 1.0117 

3.4 -.2031 1.1145 7.4 .0072 1.0137 

3.6 -.1843 1.0758 7.6 .0026 1.0146 

3.8 -.1593 1.0414 7.8 -.0012 1.0148
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__ I - / /	 \ - ___ ___ ___ ___ 

// 
2.0 

'.9
0	 .5	 1.0	 1.5	 2.0	 2.5

Chord lengths traveled, r0 

(a) Lift. 

Figure 4. - md/c/al aerodynamic characteristics of 
sinkinq wings with supersonic /eadinq edges. Al:2.
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0	 .5	 1.0	 1.5	 2.0	 2.5 
Chord, lengths traveled.,r0 

(b) Pitching moment about 
leading edge or apex. 

Figure 4. - Continued.
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0	 .4	 .8	 1.2	 1.6	 2.0 
Chord lengths trove/ed, r0 

(ci L ocation of center of pressUre 
with reference to the leading 
edge or apex. 

Figure 4.— Concluded. 
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0	 .5	 1.0	 /5	 2.0	 2.5 
Chord lengths traveled, 

(ci Lift. 

Figure 5. — md/c/al aerodynamic character/st/cs of 
wings with supersonic edges pitching about lead-
ing edge or apex. M.: 2. 

I



56
	

NACA TN 2387 

'.5 

'.3 

I

q 

I. /

7 

.9 

.7

/,	 -,''	
\	 I 

.5 

	

31	 I	 I	 I 

	

0	 .5	 1.0	 1.5 
Chord lengths traveled, r0 

(b) Pitching moment obout 
leading edge or apex. 

Figure 5.- Continued.

2.0	 2.5



NACA TN 2387	 77 

xc 

C

_

11	 F _ _ 

1 
2

- ,/'?'' \	 - ___ ___ 

____ ____ ____ ____ ____ 

0 __ __ ____
0	 .4	 .8	 1.2	 1.6	 2.0 
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(c) Location of center of pressure 

with reference to the leoding 
edge or apex. 

Figure 5. - Concluded. 
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Starting spherical
wove from apex 

r;j

Leading edge 
Secondary wave trace 
reflections

Leading edge 
Oe• 1: 0 

I \'	 'I 
j \I	 'I 

I 

/ :" \ / 

/	 Starting 
/	 cylindrical 

/	 wave from 

/	 right edge 

/

S 
/ 

Figure 6. - The six regions used in the analysis of the 
triangular wing with subsonic leading edges.
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y = mx + I + m2 

y = - mx+ f )i+ in2 

Figure 7 - Equations of lines pertinent to the analysis 
of the triangular wing wiTh subsonic leading edges.
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Figure 8. — Regions used in the discussion of the low-
aspect—ratio rectangular wing.
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4.0-

3.0 

M0C, 

2.0 

1.0

0	 .2	 .4	 .6	 .8	 1.0 
Chord lengths traveled, z, 

(a) Lift. 

3.0

—MoC4

2.0

1.0

	

.2	 .4	 .6	 .8	 1.0 
Chord lengths traveled, r0 

(b) Pitching moment about apex. 

Figure 9. — md/c/al aerodynamic character/s/cs of sinking 
triangular wings with slender plan forms. mM0 : 1/8.
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3 

2 
MOC'Lq 

/ 

I-a	 .2	 .4	 .6	 .8 
Chord lengths trove/ed, z 

(a) Lift. 

2 

-M0 Cq

/ 

" a	 .2	 .4	 .	 1.0
Chord lengths traveled, r0 

(b)Pltc/?ing moment about apex. 

Figure /0.- md/cia! aerodynamic characteristics of tri-
angular wings with slender p/on forms pitching about 

apex. ,nMe : I/O.
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