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SUMMARY

The Karmén-Pohlheusen integral method, as applied to compressible
laminar boundary layers, was simplified by an analysis similer to the
incompressible Holstein-Bohlen method. Although this simplification is
helpful for meny calculations, it is of greatest value when conditions
at the,edge of the boundary layer are known from experimentel measure-
ments. The analysis was conducted under the assumptions of & Prandtl
number of 1, zero heat transfer, and a linear Vviscosity-temperature
relation; velocity profiles are gpproximated by a fourth-degree

polynomial.

Results are pregented so that velocity and temperature profiles,
momentum and dilsplacement thicknesses, and waell shear stress can be
calculated for flows over two-dimensional bodies with arbitrary free-
gtream veloclity distributions. The results are also applicable to
flows over three-dimensionsl bodies with axial symmetry through the use
of Menglert's transformation.

INTRODUCTION

Present-day theory of compressible leminar boundary leyers permits
the serodynamicist to make satisfactory boundary-layer calculations for
flows with zero pressure gradients. Exact solutions of the boundary-
layer equations for flows with streamwise pressure gradients, however,
exist only for several specific pressure distributions (reference 1).
Solutions of the laminar-boundary-layer eguations for flows with arbi-
trary pressure gradients are of ever increasing importance because it
has been suggested that at sufficiently high altitudes and speeds lemi-
nar boundary layers can exist at very high Reynolds numbers (refer-
ence 2), and because the pressure graedients encountered over most wings
and bodies are not approximsted by any of the sforementioned exact
solutions.
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The lack of exact solutions for flows with arbitrary streemwise
pressure gradients necessitates the use of gpproximete solutions. The
Karmén-Pohlhausen method has long been found to yield satisfactory solu-
tlons for incompressible flows, provided that the separation point is
not approached. Howarth (reference l) hes recently applied this method
to compressible flows.

The solution of the incampressible or campressible boundary-layer
equations by the KdrmAn-Pohlhausen method is complex because it involves
the numerical solution of a cumbersome differential equation, and
because 1t involves second derivatives of the free-stream veloclty,
which cannot be determined with any accuracy if the free-stream velocity
is known only from experimental measurements. For incompressible
fluidse, these dlfficulties have been overcome by the Holsteln-Bohlen
simplification (reference 3), which eliminates the second derivatives
of the free-stream velocity and simplifies the differential equation.

In the present report of an analysis made at the NACA ILewls labo-
ratory, the Holstein-Bohlen simplification is epplied to the KirméAn-
Pohlhausen method for compressible fluids. The momentum~integral equa-
tion is derived using the transformation of Howarth (reference 1)
together with a more gemersl viscoslty-temperature relation than that
used in reference 1. The greater part of the analysis presented fol-
lows elong the lines of reference 1, but the emphsasis herein is placed
on simplifying the £insl results of the analysis so that they can easily
be applied to any practical problem.

Although the present analysls is carried out for two-dimensional
flows, 1t can be applied to three-dimensional flows with exial symmetry
by using the transformation of Mangler (see appendix A). Under this
transformation, a three-dimensional body with a given pressure gradient
is transformed to a related two-dimensional body. The results of the
present study can be gpplied to this two-~dimensional body.

SYMBOLS .

The following symbols are used in this report:

a gpeed of sound
c proportionality factor used in equation (1)
S specific heat at constant pressure

£(M;) function defined by equation (28)

Sfee
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1(N)
£2(1)
£(n)
h

=2 K R

B

A¥

5%

function defined by equation (28)

function defined by equation (28)

function defined by equation (20)

increment of length

summation index

arbltrary constent

thermal conductivity

Mach number

transformation variable defined by equation (9)
Prandtl number, ucp/k

static pressure

radial coordinate

Sutherland's constant (216° F)

static temperature

veloclity in x~ and y-directions, respectively

cartesian coordinstes measured along body end perpendicular
body, respectively :

function defined by equation (25)

ratio of specific heats

boundary-layer thickness in x,n coordinate system
function defined by equation (19) '
boundary-leyer thickness in X,y coordinate system
boundary~layer displacement thickness

n/A
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® function defined by equation (18)
2] boundary-layer momentum thickness
A Pohlhausen parsmeter

K ebsolute viscosity

v Kinematic viscoslty

P mass density

shear stress

) 'bra.n‘sformed stream function
¥ stream function
Subscripts:
0 conditions at stagnation point
1 conditions at outer edge of boundary layer
8 standard condition
¥  condition st solid boundary.
ASSUMPTIONRS

The followlng assumptions are made in addition to the usual
boundary-layer assumptlions in order to make the problem amensble to
solution:

(1) The Prandtl mmber of the fluid is equal to 1. It has been
shown in reference 4 that this assumption has no appreciable effect on
flat-plate skin-friction calculations if the fluid is air (for M< 5) s
but the assumption does limit the accuracy of heat-transfer calcula-
tions and temperature distributions.

(2) The heat tramnsfer at the solid boundery is equal to zero.
This assumption should be reasonable for meny practical applications.

§822
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(3) The viscosity and temperature are related linearly by the fol-
lowlng expression:

r _st
™ ct,s (1)

Chepman and Rubesin (reference 5) have shown that solutions of the
boundary-layer equaetions based on equation (l) agree well with reality
for flat-plate flows if the comstant C is determined by matching
equation (1) with Sutherland!s relation at the solid boundary so that

t, (tg + 8)
PNz " @

This assumption should also be reasonable for the case of flows with
streamvise pressure gradients because the well temperature +t,; is con-
stant as a consequence of assumptions (1) and (2). .

ANATYSTS

Compresgsible laminar-boundary-layer equations. - The momentum equa-
tion describing the flow in the boundary layer is

Ju ou 1 & 19 ou
u&+v5§=-67‘§+55§(ua (3)
The equation of continulty is
5 (o) + 5% (ov) = 0 (+)
The flow of heat 1s described by the energy equation, which is
2
P cp u%§+v%)=u%§+%(k%§‘ +u(%) (5)

A particular solution of the energy equation can be obtained by mmlti-

plying equation (3) by pu and adding the result to equation (5), and
by letting the Prandtl mumber equal 1. This solution is

uZ
- + Cp t = constant . (5)

and corresponds to the case where the heat transfer at the solld bound-
ary is equal to zero.
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The equation of state can be expressed as

=£t1 (7)

The Bernoulli equation, which applies at the outer edge of the
boundary leyer, is

du
dp 1

Transformation of Howerth. - In reference 1 Howarth introduces a
transformation which, when applied to equation (3), yields an equation
similar to the incompressible momentum equation. In the present report
the transformation is modified slightly to include the proportionality
factor C in equation (1). The transformstion varisbles are

X=X

1 (9)
t

1L /D _B8
n—W(PS) o ® v

where n alters the scale in the direction normal to the surface. The
derivatives are expressed as follows:

[hV]

d d dmd |
5-JE)y =.E§)n.+6215£ \
% (10)
1
9 _ 1 (p 2.35 9
70 () T o

Before transforming equation (3) it is convenient to introduce a stream
function Y(x,y) which satisfies equation (4). This function is

defined by
Ps %%

- Ps g%

pu

pv

G82e
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In terms of the transformed coordinate system, a function ¢(x,n) can
‘be defined as

1

W) = A0 () taa) ()

From equations (10), (11), and (12),
-
L SR

end, as shown in reference 1, from equations (1), (7), (8), (10),
and (13), the momentum equation becomes

Bgﬁi‘g‘ Sg—g‘udul(ﬁ"-;—g¢—2~vsg-n§ (14)

The temperature term in this equation can be expressed in the form

-

(13)

—

2_ .2
% uf-u r-1., 2 7t-1 (a )2
= o] =1 + =My - = 15
t - T e %y T ZalZEg (15)
from which
P 2 d2 duy r-1. 2 7t-1
ﬁﬁ‘%ﬁ‘“l&‘}“f?m " 28,2
(18)
_T_¢_¥§ _9
2&12 8113

With the exception of the term within the bracket, equation (16) is
identical in form to the :anomjpressible momentum equation.

Momentum-integral equation. The momentum-integral equation 1s

obtained by integrating each term of equation (18) from the solid
boundary to the outer edge of the boundary layer (see reference l)

du M, 2 -
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where

A

®= (1 - l) 2 an (18)
5 v ) ug

A u
ax = A ( 'u_l)dn (19)

The suxiliary functions © and A¥ are similar to the momentum thick-
ness O and the displacement thickness &% in the physical coordinate
systemn.

Modified Karmsn-Pohlheusen solution. - In order to solve eque-
tion (17) by the Kdérmédn-Pohlhausen method it is necessary to introduce

the varisble 7 = n/A and to assume that u/u; is a polynominal in 7. ¢

As in the method of Pohlhausen, this polynomial is taken to be of the
fourth degree. The coefficients of the polynomial are determined from

the following boundary conditions:

n = 0: u=2~0
Qg f  rip2y_, ¥_, %
-uj ax 1+ > Ml . s an_s = Vg Eﬁ
n=A: u = uj
du_ 3% _
dn  yp2
Thus the following form is obtained for the velocity profile:
= =) =20 - 20° + 0t e [—61- n (1-n)3] (20)

where the parameter A\ i1s defined as

Q

N8

! y-1. 2
> 7;&{(“71‘1) (21)

m

S82e
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Transformation to the 17~coordinate and subsequent integration in egua-
tions (18) and (19) yield

A £ sxé
®= 375 (37 -3 1__44) (22)
36 -\
* P AN
AF = A 120) (23)
and it is found that
au) ul( x)
=—=(2+3% (24)
-(5n.w A 6

Equations (22), (23), and (24) could be applied to equation (17)
directly and the result would be a differential equation for A (ref-
erence 1). A simpler solution can be obtalned by applying the substi-
tution of Holstein-Bohlen: T

' Z= 92/"'5 (25)
or, from equations (22) and (21),

Z=x[3:lL—5(57 -%""157%)]2 (26)

dug (1 ¢ Ik 2

ax 2

Equation (17) is multiplied by @/u;v;, apd equations (25) and (26) are
spbstituted in the resulting expression to yileld

W 4z A¥ ® {du
Then, from equations (22), (23), and (24),

Z . uil £1(\) £() + fz(xﬂ (27)
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where
2
£,.(0) = [315 (37 A A
e =k (57-2 .22\ &, A\, (28)
2\h = 315 3T 144 - 15 Y120
M2 - 4
f(M) =
)= (r-1) 12 J
and
£1 (0
d.ul l( ) (29)
dx 1+ L— Ml)

Equations (27) and (29) can now be integrated simultaneously, and A
cen be obtained as a function of x by a method of numerlical Iintegra-
tion given in detail in appendix B. The functions fy(A) and F2()\)

are graphically presented in figure 1 and are tabulated in table I;
£(M;) 1s tabulated in teble IT. Boundary-layer variables are still in

the transformed system of coordinates, however, and a transformation to
the physical (x,frgr coordinates is required.

Inverse transformation to physical coordinates. ~ The distance
normal to the surface can be obtained fram equation (9)

b.C
Y t
v =N=Z-
PsC ¢
=AI\/_—d
P tg 4

oxr

o=

PsC 1

y=A —
3 ts b1,
0

G822



2285

WACA TN 2531 11

But, from equation (15),

%=1+L§J-'M12l:-(%)z] (30)

8
t -1 .. 2 i
=1+ 1—2,3111 ‘ (31)
1 i=2
Where
2
a2=%+§x+4
A2
8.3—-?-2)\
RN .
a4j=ﬁ+—5-—8
5A2 B
8.5—-—§—+?+4:
2
a.6=—5%—3)\+4
2
a7=-%‘+%)\—-4
LD
=% "3t

(The functions a; are tabulated in table I and presented graphically
in fig. 2.)

from which
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where A is obtained from equation (21). The boundary-layer thickness
is determined by letting 17 equal 1:

psC - .
5 = Al\/—-;— t—i'[l + I-é-l- M2 (-0.0001A% - 0.0094\ + 0.4_175):l (33)

The momentum thickness is defined as

5
pu u
0 = —_— ] - —
| erm ( ul) ¥
0

-

t P 0 ‘
?1_-”_5_5 2 (1 -.2\an
8 D o b .

t C .
1 fosC (52)

R

tg js)

and the displacement thic];:ness is

° % C A 4
D
(oo -2nEE | VDo | (& e

t pC _
% =2 [A* + A(T—-l-) %2 (-0.000102 - 0.0094% + 0.4175)] (35)
5 P 2

o¥

The wall shear stress =Ty 1s defined as

: (%)W
52 (8,
LA (2 ) (36)

T

g822
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The separation point is defined as the point where the shear stress
vanishes, or, from equation (36), where X = -12. It is emphasized,
however, that the Kdrmén-Pohlhausen solution has been found to be gquite
inaccurate in the neighborhood of a separation point.

SUMMARY OF METHOD

The results of this study will be summarized in the order they are

needed for the solution of a particular problem. It is assumed that all
- du

free-stream conditiqns uy , a;l, My, %y, py) are known functions of x.

The standard conditions (vg, Pg, tg) are selected as mean values of the

free-gtream conditions. Next A i1is determined as a function of x by
solving equations (27) and (29) numerically:

az 2 {200 £04,) + £.(0 27
2.2 [200 tn) + 0] (21)
_ £1.00) :
Z_jiu_l 1+Y_-lMZ) (29)
ax 2 M
where 2N
‘ r s\ |?
fl()\)_)\[%s— (37 -g-m)jl
2 2
fz(x)sgzjf—s(37-%..:%_1:)(2-—lz—’éar-l)z‘—o)b (28)
3 Mlz-4:
f(Ml) = 2 4 (‘Y-—l) Mlz J

A suggested procedure for solving equation (27) is presented in appen-
dix B. All functions of A and My are tebulated in tables I and IT.

Once A 1is known as a function of x; the following functions can
be found: .

(21)

Xvs

A fdu r-i
= 2
'V odx (l+ 2 Ml)
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2
-2 ) :
© = 315 (37 3 144 (22)
36 - A
x —
a = o (22) (23)

and
PgC b -
5 = A’\/% = [1 + T2 w2 (-0.00010% - 0.0094M + 0.4175)] (33)
8

t pLC )
1 8 e (34)

=-E; D

% c .
5% = %-ll\/—ig [A* + A ()’2_1) M2 (-0.0001A% - 0.0094\ + 0.41758 (35)
8

: ugp
. isﬁﬁp‘; (z +’g) (36)

end, for assumed values of 0S5 <1,

L o2n-2p3+ 0t + )\[% | (l—n)‘ﬂ ) (20)

uy
L1522 [ (2] (0)

The velocity and temperature profiles can then be found in terms of the
physicael (x,y) coordinate system by the following relation:

8
1+1L
N,Psc at y-1.,2) y-1, 2 a4 1
y=A —P—E T](l-l""z_'Ml -3 Ml 12’_1_'_'—_"1_' (32)

S822
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where
2
ay = %E + g A+ 4
A2
&3-‘:—'—6—-2)\
_BE o g
84 =12 3
5\2 B
8-5—"9+'€'+4:
2
%:%—SX+4:
_ A& B\
a,=-F tz -4
D
a8=3—6'-"5+l

SPECIAL CASES

15

Solution near a stagnation point. - In the immediate neighborhood

of a stagnation point, u; 1is equel to zero and the incompressible
solution must apply. This solution is (reference 3): .

Ag =

Zy =

TN
&
-

7.052 )

0.077
dui?dx

d%uy /ax?

3 ' (37)

= ~0.0852 g7 _J

Flat-plate solution. - In the case of the flat plate, A =0 and
the conditions at the outer edge of the boundary layer are constant and

equal to the standard condition(s).

Equation (27)

therefore becomes
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2
% - [fl(o) £(My) + fz(o):]
_ 0.470
h !
and
7 = 0.4:-32 X (38)
From equations (25) and (34), the momentum thickness is
vl H
6 = 0.685 (39)
ha
The boundary-layer thickness is found from equations (22), (34),
and (33) to be
ﬁ/ vy XC a2 Y1
5 = 5.836 e [1 + 0,417 My (—2— (40)

The displacement thickness, from equations (23) and (35), is

v xC -
5% = 1.75'\/ L [1 + 1.392 I—l) Mlz] (41)
uy 2

and, from equation (36), the well shearing stress is found to be

uq M u-C
1ML 1
Tw =2.918 Vyix (42)

Velocity and temperature profiles can be found as functions of 1 by
letting A vanish in equations (20) and (30), respectively. The rela-
tion of 711 and y can then be obtained from equation (32). The error
introduced in the flat-plate solution by assuming that the velocity
profile is a fourth-degree polynomial can be deduced by comparing these
results with the results of reference 5:

Vv lXC
U

6 = 0.664

(43)

S822
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v xC . ’
A ’ 1 I -1 %l
* , 1—=
5% = 1.73 1+ 1.372 ( > ) M] (44)

w =302 Vvix (45)

Equations (43) and (45) epply for any Prandtl number, whereas equa-
tion (44) epplies for Pr = 1 only.

Tt can therefore be seen that the results of the present analysis
are quite accurate for the case of zero pressure gradient. No definite
conclusions for the nonzero pressure gradient case can be made, however.

Lewls Flight Propulsion Iabératory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, August 8, 1951
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APPENDIX A

TRANSFORMATION OF MANGLER

The laminar-boundary-leyer equations for three-dimensional flows
with axial symmetry axre

SEL E._1E,12(3E

Z.vE--2E-15(F) o)
2 (e v E G =0 (12)

S BRI RO

where the bar is used to differentiate the three-dimensional from the
two-dimensional quantities, and ro(x) defines the radial coordinate of

the body in a meridional plane. The contlnuity equation is satisfied
by the following stream function:

ro E Tl = %
(ag)
Io -5 -T_T. = - =
ox .
The following transformation variebles were introduced by Mangler
(unaveilsble report):
X
x = K° o2 (%) &
0
_ (a5)
y=KroX) ¥

where K is an arbitrary constant. Thus

S822
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d 2.2 Yo'
E—Kro&-l-roa
d _ d
%~ oy

where the prime indicetes differentistion with resgpect to X.

It is further assumed that

5&:?) = P(X:Y)
T 7) = t(x,y) '
&) = ulx,y)

p(%,7) = o(x,y)

¥&7) = & ¥(x¥)

Equstions (A1), (A2), and (A3) can then be transformed to the following
form:

Berpo-122R08) 0w
3 (o) +.% (ov) = 0 . (@7)
pcp(u%{+vg$)=u%+%(k%)+u@—;)2 (a8)

where

u(x:Y) = ﬁ(_i:?)
1 === Yo' —— —
V(X:Y) = ir_o v X;y) - 'K}‘O—z u X;y)

Equations (A6), (A7), and (A8) are now identical to equations (3), (4),
and (5) The solution of these equations, as presented in the text of

(49)
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this report, therefore applies to the three-dimensional problem, but
the final results must be retransformed to the three-dimensional quan-
tities. The boundary-layer thickness .3 1is not defined in a solution
of the differential boundary-layer equations, but its definition is
required for the solution of the integral equation. The transformetion
of B8 can best be accomplished by examining the velocity profiles:

a _u fy
ul~ul )

Z_3u(y
w g \B

From equetion (A9), however,

.3
ot R
It therefore follows that
y_ X
o] S)
whence, from equation (A5),
5 = Krp(x) 3 (a10)

The momentum thickness is transformed as follows:

@) S5

= == 9(x) (A11)

8822
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and similerly,

TR) = g 8 (x)
(A12)

T (%) = Krg 7,(x)

where the quantities without the bar (representing two-dimensionsl
quentities) are given by equations (33) to (36).

Therefore, if it is desired to determine any of the boundary-layer
characteristics at a distance X from the nose of an axially symmetric
body, the corresponding two-dimensional distance x 1s first found from
equation (AS). The two-dimensional quantities (B, 5%, 6, T, and so
forth) are then found using equations {33) to (36), and are transformed
to the three-dimensional quantities at X through the use of equa-
tions (A10) to (A1l2). The transformation applies-for flows with or
without streamwise pressure gradients.
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APPENDIX B

SOLUTION OF DIFFERENTIAL EQUATION BY RUNGE-EUTTA METHOD

The Runge-Kutte method of finite differences (reference 6) has
been found to be very satisfactory for solving equation (27). It is
believed that a detailed discussion of the method, as applied to the
present problem, will be of help to the reader.

It is suggested that a teble of the following form be used:

(1) |(2) §3) (4)| (5) (6) (7) (8) [(9) (20)f(11)

x fug E}? w o (e0n) |1+ R Bl oz (5 00] % ()| x

i o Zg Iy
h/2 Zo +3 Xy kp

3| n/2 Zo + 3 by k3
4l n Zo + ks Iy
s| n Z k,
6lh + % Z +J§' kq kp
b+ 2 7y + 3 Xy kg

8| 2n 71 + ks Ky

The distence along the body (x) is subdivided into & number of incre-
ments h, and the free-stresm varisbles wu;, du;/dx, end M; at each

point are tabulated in columms (2), (3), and (4). Column (5) follows
from equation (28), and column (6) is easily tabulated. Columns (1)
%o (6) can be tabulated for all x, whereas for columms (7) to (11},
each row must be calculated separately.

The value of Zg = Goz/ys (column (7), row 1) is given by equa-
tion (37) for stagnation-point flow, or is equal to zero if @, = O.
The value of f3(A) (column 8) is obtained from equation (29), or in

column notation,

£,00) = (1)(3)(6) .

$822
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Colums (9) and (10) are obtained from figure (1). Column (11)
lists the Runge-Kutta parameter Xk, which in column notation is

k =‘-(g-)- ((8)(5) + (10)) h

Rows 1 to 4 can now be completed in this manner. At the completion of
row 4 the total increment in 2Z can be computed using the following:
equation:

1
A7 =% (I + 2kp + 2kz + ky)

The entire process is then repeated for rows 5 to 8. The value of Zl
(column (7), row 5) is equal to Zy + AZ. The procedure 1s carried out

for all increments of x, and as a result A 1is obtalned as a function
of Xx.
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TABLE I - FUNCTIONS OF A
A e 2200 | e az 8y ag &g aq ag |-0.000108| A¥/A | 6/A |2 +N /6
-0.0094\
+0.4175
12{0.0948) 0.1422 |16.000 |-48.000| 68.000 |-56.000| 28.000| -8.000{1.000| 0.2888 |0.2000|0.088%| 4.000
11| .0941 .1426|14.695|-42,167|57.084(-44.889| 21.417| -5.833| .694| .3008 | .2083| .0925| 3.833
10! .0920] 1438 13,444 [-36.667!47.000(=34.889! 15.867! -4.000| .445! .3125 | .2187| .0958| 3.687
9| .0882| .1461 |12.250|-31.500(37.750|-26.000| 10.750| -2.500| .250| .3240 | .2250{ .0990| 3.500
8| .0831 .1495[11.111|-26.667|29.334|-18,221| 6.667| -1.333| .111| .3353 | .2333| .1019| 3.333
7| .0767| .1544 |10.028 |-22.167|21.750 |-11.556| 3.417| -.500| .028| .3463 | ,2417| .1047| 3.167
6| .0689| ,1608| 9.000[-18.000(15.000| -6.000| 1.000| © 0 .3572 | .2500| .1071| 3.000
5 .0599| .1687| 8.028 |-14.167| 9.084| -1.555| -.58%| .167| .028{ .3678 | .2583| .1094| 2.833
4| .0497| .1784 | 7.131|-10.867| 4.000| 1.778! -1.333| O 11| .3782 | .2667| J1115! 2.667
3| .0385| ,1898 | 6.250| ~7.500| -.250| 4.000{ -1.250| -.500| .250| .3883 | .2750| .1133| 2,500
2| .0264| .2030| 5.445 | -4.667|-3.667| 5.111| -.333| -1.333| .445| .3983 | .2833| .1149| 2.333
1| .0135| .2181| 4.694 | -2.167|-6.250| 5.111| 1.417{ -2.500| .694| .4080 | .2917| .1163| 2.167
0|0 .2350 | 4,000 O -8.000| 4.,000| 4.000| -4.000|1.000| .4175 | .3000{ .1175| 2.000
-1|-.0140| .2536 | 3.361| 1.833|-8.917! 1.778| 7.417| -5.833|1.361| .4268 | .3083| .1184{ 1.833
-2|-.0284| .2742| 2.778| 3.333|-9.000| -1.555| 11.667| -8.000|1.778| .4358 | .3167| .1191| 1.667
-3|-.0429| .2963 | 2.250 | 4.500|-8.250| ~6.000( 16.750|-10.500 |2.250| .4447 | .3250| .1197| 1.500
-4|-.0575 .3200| 1.778| 5.333|-8.667|-11.556| 22.667|-13.333|2.778| .4533 | .3333| .1199| 1.133
~5|~.0720| .3450 | 1.361| 5.833|-4.250]-18,221 29,417 |-16.500 [3.361| .4617 | .3417| .1200| 1.167
-6|-.0862| .3717 | 1.000| 6,000|-1.,000|-26,000| 37.000|-20.000|4.000| .4899 | .3500| .1198| 1.000
-7{-.0999| .3992| .695| 5.833| 3.084 [-34.869| 45.417|-23.833 (4.694| .4778 | .3583| .1195| .835
-8|-.1130| .4279| .444{ 5.333| 8.000|-44.889| 54.667|-28.000|5.445| .4855 | .3667| .1189| .667
-9|~.1255{ .4578 « 200 4,5Q00113,750 |-56.000 | 64.750|-32.500 [6.250 4930 3750 .1181 <500
-10|-.1369| .4874| .111| 3.333|20.333{-68.222| 75.667|-37.333|7.111| .5003 | .3833| .1170| .333
-11|-.1474| .5181| .028 | 1.833|27.750|-81.556| 87.417|-42.500(8.028| .5074 | .3917| .1158| .167
-12|-.1567| .5486 |0 0 36,000 |-96,000 |100.000 [-48.000 |9.000{  .5142 | .4000| .1143| O
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TABLE II - FUNCTIONS OF M

=149

M 1555 w21+ T w2 2(o) || oo | V5 2|0+ 2F 02 2y
of o 1.000 |-2.000 ||2.2| 0.968 | 1.968 |0.213
.2| .008 | 1.008 |-1.974 ||2.4| 1.152 | 2.152 | .409
4| .032 | 1.032 |-1.861 |2.6| 1.352 | 2.352 | .589
.6 .072 | 1.072 |-1.698 [[2.8| 1.568 | 2.568 | .748
.8| .128 | 1.128 |-1.489 3.0 1.800 | 2.800 | .893
1.0 .200 | 1.200 |-1.250 ||3.2| 2.048 | 3.048 |1.024
1.2| .288 | 1.288 | -.994 ||3.4| 2.312 | 5.312  |1.141
1.4| .392 | 1.392 | -.733 |[3.6| 2.592 | 3.592 |1.247
1.6| .512 | 1.512 | -.476 |3.8] 2.880 | 3.880 |1.343
1.8| .648 | 1.648 | -.231 [[4.0| 3.200 | 4.200 [1.500
2.0 .800 | 1.800 |o
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Figure 1. - Auxiliary functions used in equation (27).
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Pigure 2. - Auxiliary functions usea in equations (31) and (32).
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Pigure 2. - Concluded. Auxiliary functions used in equations (31) and (32).
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