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STR4MAH

The K6rm6n-Pohlhausen integral method, as applied to compressible
leminsr boundary layers, was simplified by an analysis similar to the
incompressibleHolstein-Bohlenmethod. Although this sh@ification is
helpful for many calculations, it is of geatest value when conditions
at the.edge of the boundary byer exe Jmown from experimental measure-
ments. The analysis was conducted under the assumptions of a Rrandtl
nuriberof 1, zero heat transfer, and a line= %iscosity-temperature
relation; velocity profiles are approximated by a fourth-degree
polynomial.

Results axe presented so that velocity and temperature profiles,
momentum and displacement thicknesss, and wall shear stress can be
calculated for flows over two-dimensionalbodies with arbitrary free-
stresm velocity distributions. The results are also applicable to
flows over three-dimensional
of Manglerts trensformation.

bodies with axial symmetry through the use

INTRODUCTION

Present-day theory of compressible 1smiw boundary layers permits
the aerodynamicist to make satisfactory boundary-layer calculations for
flows with zero pressure gradients. Exact solutions of the boundary-
layer equations for flows with stresxwise pressure gradients, however,
e=st only for several specific pressure distributions (reference 1).
Solutions of the laminar-boundary-layereg-tions for flows with arbi-
trary pressure -ents are of ever increasing @ortance because it
has been suggested that at sufficiently hi@ altitudes and speeds l.ami-
nar boundary layers can etist at very high Reynolds numbers (refer-
ence 2), and because the pressure gradients encountered over most wings
and boties are not approximated by any of the aforementioned exact
solutions●

. . . .— ——..— — -—-
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lack of exact sol~tions for flows with srhitrary streamwise
gradients necessitates the use of approximate solutions. The

l&m&n-PoElhausen method
*ions for ticompressible
not approached. Howarth
to ccnnpressibleflows.

The solution of the

has long been found to yield satisfactory solu-
flows, provided that the sepsmtionpoint is
(reference 1) has recentl.yapplied this method

:

incompressible or cmrmessible bo~-lamr 8
equations by the I&m6a-FobJha-wen method is c-&plex because it-inv&vee
the nmnerical solution of a cudbersame &Lfferential.equation, and
because i.tinvolves second derivatives of the free-stream velocity,
which cannotbe determined with any accuracy ,M the free-stresm velocity
is known only from e~erimentalmea surements. For incompressible
fluids, these difficulties have been overcome by the Holstein-Bohlen
s@lMication (reference 3], Which eliminates the second derivatives
of the free-stream velocity and sim@ifies the differential equation.

In the present report of an analysis made at the NKCA Lewis labo-
ratory, the Holsteim-Bohlen simplification is ap@lied to the K6rm6n-
Pohlhausen method for compressible fluids. The momentum-integral equa-
tion is derived using the transformation of Howarth (reference1)
together with amore genersl viscoqity-temperature rektion than that
used in reference 1. The greater part of the analysis presented fol-
lows slong the lines of reference 1, but the emphasis herein is placed
on simplifying the final results of the analysis so that they can easily
be applied to any practical problem.

Although the present anslysis is carried out for two-dimensional
flows, it canbe a~pLLedto three-dimensional flows with axkl symnetry
by using the transformation ofl!angler (see a~endix A). Under this
transformation, a three-dimensionalbody with a given-pressure gradient
is transformed to a related two+llmensionalbody. The results of the
present study can be -Meal to this two-dimensionalbody.

!s-YMBoIs .

The fol.lowingsynbols sxe used in this report:

a speed of sound

c proportion&Mty factor used in equation (1)

‘% specific heat at constant pressure

f(Ml) function defined by equation (28)

.
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function defined by

function defined by

function defined by

increment of length

summation index

arbitrary constant

equation (28)

equation (28)

equation (20}

thermal conductivity

Mach number

transfomnation variable definedb~ equation (9)

,Prandtlnumber, p~/k

static pressure

radial coordinate

Sutherlandrs constan~ (216° F)

static temperati

velocity in x- and y-directions, respectively

Cartesian coordinates measured along body and perpendicular to
body, respectively

function deftied by equation (25)

ratio of specific heats

boundary-layer thickness in x,n coordinate system

function defined by equation (19)

boundary-layer

boundary-layer

n/A

thickness in x,y coordinate system

displacement thiclmess

———. ———.—-——
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@ function definedby eqmtion (18]

e boundsry-lsyer momentum thickness

A Pohlhausen parsmeter

P sbsolute viscosi~

v M.neJlnticviscosity

NACA!I!N2531

P mass density

‘r shear stress ‘

$’ transformed S-

* stream function

Subscrip-k :

fi.mction

o conditions at stagnation point

1 conditions at outer edge of boundary layer

s standard condition

w condition at solid boundary.

As8ml?rIom

The foXLowin.gassumptions are made in addition to the ususl

&mndary-@er assumptions in order to make the problem amenable to
solution:

(1) The Prandtl mniber of the fluid is equal to 1. It has been
shown in reference 4 that this assumption has no a~reciable effect on
flat-plate sktn-friction calculations if the fluid is air (for M< 5),
but the assuqtion does limit the accuracy of heat-transfer calcuh-
tions and temperature distributions.

(2) The heat transfer at the solid boundary is equal to zero.
This asmm@ion should be reasomble for many practical ap@ications.

.

—______ .
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(3) The viscosi~ and temperature exe related ~early by
lowing expression:

Chapman and Ribesin (reference 5) have shown that solutions of
boundary-layer equations based on equation (1) agree we3J with

5

the fol-

(1)

the
reality

for flat-pkte flows if the constant C is determined by matcldng
equation (1) with sutherland~s relation at the solid boundary so that

-J

t+ (ts+s)
c- ~m (2)

This assumption should also be reasonable
stresmwisepressure ~adients because the
stant as a consequence of assumptions (1}

tion

for the case of flows with
wall tempemture ~ is con-
and (2).

ANALYSIS

Compressible laminar-boundary-~yer equations. - The momentum equa-
describtig the flow in the boundary layer is

The equation of continuity is

T@ flow of heat is described by the ener~ equation, which is

(3)

(4)

(5}

A particular solution of the energy equation can be obtained by multi-
plying equation (3} by PU and adding the result to equation (5), and
by letting the Frandtl nunibereqpal 1. This solution is

U2
-Z-

and corresponds to the case
ax-yis equal to zero.

+Cpt = constant ,

where the~eat transfer

(6)

at the solid bound-

—.. ..-— .—— —— —. —— —. .—. .—
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The equation of state can be expressed as

The IkrwuJJ3 equation, which applies at the outer edge of the
boun&my kyer, iS

(7) -

(8)

Transformation of Howarth. - In reference 1 Howarth introduces a
transfomnationwhich, when applied to equation (3), yields an equation
similar to the incompressiblemomentum equation. In the present report
the transformation is modified slightly to include the proportionality
factor C in equation (1}. 5e transformation variables are

(9)

where n alters the scale in the direction normal to the surface. The
derivatives are eqressed as follows:

Ikfore trsnsforming eqyation (3] it is convenient to introduce a stream
function *(x,y) which satisfies equ@ion (4). This function is
defined by

pu = ps

~1 (u)

$qpv=-ps x

.—— —
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In terms of the transformed coordinate system, a function @(xjn) can
,bedefined as

.

.

.

From equations (10), (IL}, and (12},

2
a

u= 1
and, as shown in reference 1, frum equations (1), !7),
and (13), the mmkntum equation becomes

The temperature term in this equation can be expressed

from which

(12)

4

(8], (10),

,s B
ans

(14)

in the form

(M]

(16)

With the exception of the term within the bracket, equation (16} is
identical in form to the incompressiblemomentum equation.

.

Momentum-integral equation. - The momentum-integral equation is
obtained by integrating each term of equation (16) from the solid
boundary to the outer edge of the boundary layer (see reference 1):

..-- .——. .— —.. ——– .—-—
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J( )
A

A* z l“dn-%

o

(18]

(19)

The audlisry functions @ and A* m?e shilar to the momentum thick-
ness e and the displacement thiclmess 5* in the physical coordinater
system.

Mcdified I&man“ -Pohlhausen solution. - In order to solve eqpa-
tion (17) by the K.4rmAn-Pohlhausenmethod it is necess~ to introduce
the v&i&bl& q s n/A and to assume that U/ul is a _potiominal

As in the methcilof PohJhausen, this polynomial is
fourth degree. The coefficients of the polynomial
tie folhwing boundary conditions:

n= o: u= o

n= A: u= q

tsken to be of
are determined

Thus the following form is obtained for the velocity profile:

where the parameter A ‘is defined as

inn. d
.

the
from

(20)

(a.)

—.— —--——— —.-
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l?ratlsformation
tions (18] and

9

to the q-coordinate and mibsequent integration in e.qua-
(19) yield

( )=2
G=2 37 -;-=315

(22)

()

=A 36-AA* —
120

(23)

and it is found that

!(%). =%(2+%)
(24)

Equations (22}, (23], and (24] couldbe aypliedto equation (17)
directly and the result wouldbe a differential equation for A (ref-
erence 1). A simpler solution canbe obtainedby applying the substi-
tution of Holsteti-Bohlen:

(25)

Equation (17) is multipliedby @/UIV1, tieq-=tions (25) @ (26) =LW

~bstituted in the resulting e~ression to yield

Then, from equations (22}, (23], and (24),

dZ2~=~
[ 1fl(~)f(M1) +fz(~) (27)

—.
——- .- .— —
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where

and

z =

Equations (27) and (29) can

(28)

(29)

now be inte~ted simultaneously,and h
c& be obtkbed as a f?kction of x by–a method of numeric~ lntega-
tion given in detail in appendix B. The functions fl(l) and f2(k)

are graphically presented in figure 1 and are tabulated in table I;
f(Ml) is tabulated in table II. Boun&ry-kyer ‘%riables are still in

the transformed
7

stem of coordinates,however, and a transformation to
the physical (x,y coordinates is required.

Inverse transformation to physical coordinates. - The distsmce
normal to the surface can be obtained frm equation (9):

.

@3
N
CD
ul

.

or

.

—.—.-..—. —
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from equation

from equation

U

(1.5),

t

[ (1)]2
~= l+~1M12 1- &

(20),

-=.+~+,$%,)tt~

(30)

(31)

where

5A2
a5 = -T +*+4

5A2
% .— -31+4

12

(The functions ~ sre tabulated in table I and presented gaphicaXly

irifig. 2.)

from which

—— –— —— —



12 NACA TN 2531

T

where A is obtdned from equation (21). The boundary-layer thiclmess
is determined by letting q equal 1:

Kr[p8c q
8=A ——

p ts 1

The momentum thiclmess

1

r-l ~p (. O.0()()1A2-
‘-T

1

O’.0094A+ o.4175) (33)

N
N

Is defined as m
Cn

&H+.

(34)

and the displacement thiclmess is

.+~[A*+A(~~M12 (-o.OOO~z - 0.0094A+ 0.4175j (35)

The wall shesx stress Zw is defined as

= W/Ha

.

.

.

(36)

_.—__ ._ ..._ __
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The separationpoint is defined as the point where the shear stress
vanishes, or, from equation (36), where k = -12. It is @?@asized,
however, that the I&m&n-PohJhausen solution has been found to be quite
inaccurate in the neighborhood of a separationpoint.

.

.

SUMMARY OF METHOD

The results of this study wild.be summarized in the order they are
needed for the solution of a particular problem. It is assumed that all

.

(

dul

)
free-strewn conditZQns Ul, ~, ~, tlj pl =e lmown functions,of x.

The standard conditions (V S) Psj ta) = selected as mean values of the
free-stiesm conditions. Next A is determined as a function of x by
solving equations (27} and (29) numericdd.y:

where

dzz—=—
dx U1

z=

r’

M12 - 4
f(Ml} s

2 + (T-1} M12 J

(27)

(29}

A suggested procedure for solwLng equation (27) is presented in appen-
dix B. AU functions of X and ~ sre tabulated in tables I and II.

Once X is known as a function of xj the following functions can
be found:

(21)

.—-— —
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A
(

A 5A2-—
‘–315 37 -3-= )

(22)

(23)

and

5* =+@[A* +A~~)M12 (-0.0001X2 - 0.0094k+ 0.4175j (35)

.

and, for assumed vslues of O< q< 1,

u
—=2q -
U1 [ 1ap+1#+A*~&~}3

(36)

(20)

(30)

The velocity and tempemture profflea can then be found in terms of the
PhYSiCal (x,Y) coo~te system by the following relation:

.

●

—-— -.--.——
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where

SPECIAL CAsEs

Solution near a stagnation point.
of a stagnationpoint, ul is equal to

solution must apply. This solution is

hO = 7.052

()dzZiO = -0.0652

-In
zero

15

the immediate neighborhood
and the incompressible

(37)

Flat-plate solution. - In the case of the flat plate, 1= O and
the conditions at the outer edge of the boundary layer are constant and
equal to the standard condition(s). Equation (27) therefore becomes

L

—— —.— —



.

16

[

NACA TN 2531

,

and

dzz—=—
ax [ 1fl(o) f(M1) + f2(0)

U1

.

_ 0.470

‘1

z=
0.470 x

U1

From equations (25) and (34), the momentum thickness is

rvl ‘

0 = 0.685 —
U1

(38)

(39)

The boundsxy-layer thiclmess is found
snd (33) to be

from equations (22), (34),
.

nVlxc
5 = 5.836

( )1

2 T-1— 1+0.417Ml ~
U1

The displacement thickness, from equations (23) and (35), is

(40)

(41j

and, from equation (36], the wall sheari& stress is found to be

Ulvl

T

Ulc
. ‘w ‘m — (42)

vlx

Velocity and temperature profiles can be found as functions of q by
letting X vsmish in equations (20] and (30), respectively. The rela-
tion of q smd y can then be obtained from eqyation (32). The error
introduced in the flat-plate solutionby assuming that the velocity
profile is a
results with

fourth-degree polynomial canbe
the results of reference 5:

m

Leducedby comparing these

(43]

.



3

, *

In
co
N
N

.

.,

l?ACATN 2531

cl
.,

Vlxc
5* = 1.73 — 1 + 1.372

U1

‘w

Equations (43) and (45) apply
tion (4A) applies for Pr = 1

It can therefore be seen

for any I&andtl number, whereas eqpa-
Only.

that the results of the present analysis
are quite accurate for the case of zero pressure gradient. No definite
conclusions for the nonzero pressure

Lewis Flight Propulsion Lab&atory
National Advisory Ccmm&ttee for

Cleveland, Ohio, August 8,

. #

-ent case canbemade, however.

Aeronautics
1951

——. —.. —— ——-. .
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with

A2PEND~ A

TRANSFORMMCION OF MlU?GIIJ3

The laminar-boun~-l-ay’er equations for three-dimensioti flows
E&al. symmetry axe

{Al)

(A2)

(A3}

where the bsx is used to Ufferentiate the three-dhensiti from the
two-dimensional quantities, and r.(x) defines the radial coordinate of

the body in a meridional plane. The continuity equation is satisfied

by the following stream function:

The

ro~~.-

following transformation variables
(unavailable‘report):

r%

a
3:

were introducedby Mangler

7

N
N
01
u-l

(A5)

.

.where K is an arbitrsx’yconstant. ThUS

—-—.—.— ..——
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.

.

where the prime imdicates differentiationwith respect to 3?.

It is further assumed that

19

,

—.—
V(x,y) = W(x,y)

Equations (Al), (A2), and (A3) cap then be @ansformed to the following
fOrm:

l~+la
“% ++= -;dx pdy ()

@J (A6)

where

& b-d +~ (Pv} = o

——_
U(x,y) = U(X,Y) .

, (A7)

(A8)

(A9)

Equations (A6}, (A7}, and (A8} are now identical to equations (3), (4},
d (5). The solution of these equations, as presented in the tex% of

.— — —— —.. - —.—
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this report, therefore
the final results must

NACA TIV2531

applies to the three-dimensionalproblem, but
be retransformed to the three-dimensional.quan- ‘

tities. The boundary-layer“thichess .5 is not deftied in a solution
of the clifferentiallboundary-layer equations, but its definition is
required for the solution of the integral equation. The transformation
of 5 can best be accomplished by emamidng the velocity profiles:

u

()

Uz—= --5
lq

From equation (A9), however,
.

u ii—=-
u~ u~

It therefore follows that

whence, from equation (A5)j

The momentum thichess is transformed as

(1-

(Ale)
,

. .

(A@

———-
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and Similsxly,

where the uantities without the bar (representingtwo-dimensional
?quantities sre given by equations (33) to (36).

21

(Au)

Therefore, if it is desired to determine any of the boundsry-layer
characteristicsat a distance X from the nose of sm axially symmetric
body, the corresponding two-~nsional distance X iS first frond fhnl

equation (A5)o The two-dimensional quantities (b, 5*, 19,TW, and so

forth) are then found using equations-(33) to (36), and sre””transfmmed
to the three-tinsionsl quantities at Z through the use of equa-
tions (AIO) to (X1.2]. The transformation applies-for flows with or
without streamwisepressure @x@Lents.

.

—-—--— .—. —.- — -..
.<’
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AEPENDIX B

SOLUTION OF 11~ EQUATION BY RU?W3-KUTIA METEOD

The Runge-Kutta method of finite differences (reference 6) has
been found to be very satisfactoryfor solving equation (27). J% is
believed that a detailed discussion of the method, as applied to the
present problem, will be of helP to the retier.

It is suggested that a table of the following formbe used:

(1)

x

o

h/2

h/2

h

h

hl+—
2
hl+—
2

2h

—

:2:

11
—

—

(7)

z

%

(U)

k

The distance slow the body (x) is ~~tided-~to a ber of @~e-
ments h, and the–free-stie~ &riables Ul, du~dx, and Ml at each

point are talmlatedin columns (2), (3), = (43. Column (5) fOl-10W6
from equation (28), and colti (6) is easily tabulated. Columns (1]
to (6) canbe tabulated for all x, whereas for columns (7) to (n},
each ruw must be calculated separately.

The tiue of ~ ‘@02/Vs (column (7), raw 1) is given by equa-

tion (37) for stagnation-petitflow, or is eqti to zero

The value of fl(A) (column 8) iS ob-ed from e~tion

column notation,

if @o = o.

(29), or in

..

.

-—. . .
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Columns (9) and (10) sre obtained from figure (1]. Ceil.umn(Id_)
lists the Runge-Kutta parameter k, which in column notation is

Rows 1 to 4 ~
row 4 the to&l
equation:

( )k=~ (8)(5)+(10) h

now be completed
increment in Z

in this manner. At the completion of
can be computed using the following”

.a+ (kl+ 2k2+2k3+k4)

The entire process is then repeated for rows 5 to 8. The value of ~

(column (7), row5) is equal to ZO+ AZ. The procedure is carried out

for all.increments of x, smd as a result X is obtained as a function
of x.
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TABLE I - FUNCTIONS OF ~

12 0.0948 0.1422
K1. .0941 .1426
10 .0920 ,143a
9 .0882 .1461
8 .0831 .1495
7 .07’67 .1544
6 .0689 .1608
5 .0599 .1687
4 .0497 .li’w
3 .0385 .1898
2 .0264 .2030
1 .0135 .21.81
0 0 .235Q
-1,-.0140 .z~6
-2 -.0284 .2742
-3 -.0429 .2963
-,4-.0575 .3200
-5 -.0720 .3450
-6 -.0962 .3717
;7 -.0999 .3992
-8 -.1130 .4279
-9 -.1.255 .h576
-lo -.I.369 .4874
-11 -.1474 .5181,
-u -.1567 .5496

%2

.6.000

.4.695

3.444

.2.250

1.111

.0.028

9.000

8.028

7.IZL

6.250

5.445

4.694

4.000

3.361

2.778

2.250

1.77a

1.361

l.cm

.695

.444

.250

.U1

.028

0

%5

48.CKUI

42.167

38.667

31.5(K)

26.667

22.167

18.m

14.167

10.667

-7.503

-4.667

-2.167

0

1.833

3.333

4.503

5.333

5.833

6.OW

5.833

5.333

4*5Q3

3.333

1.833

0

aa.mo -56.000

57.084 -44.089

4!7.000 -34.889

37.750 -26.0X3

29.334 -18.221

21.750 -11.556

15.cOo -6.000

9.084 -1.555

L.Coo 1.778

-.250 4.000

-3.667 5.111,

-6.250 5.lllL

-8.COO 4.000

-8.917 1.778

-9.CW -1.555

-8.250 -6.000

-6.067 -3.3..556

-4.250 -1802KL

-1.000 -26.CKIO

3.084 -34.889

8.CKH3 -44.889

13 ● 750 -56.CMIO

20.333 -68.222

27.750 -81.556

36.000 -96.000

28.CD3

21.417

15.667

10.750

6.667

3.417

1.CQO

-.583

-1.333

-1.250

-.333

1.417

4.cOo

7.417

11.667

16.750

22.667

29.417

37.@30

45.417

54.667

64.750

75.667

87.417

KXI.CW

1
a7

-8.000

-5.833

-4.000

-2.500

-1.333

-.500

0
.167

0
-.500
-1.333
-2.50Q
-4.000
-5.833
-8.CQO
,10.500
.I.3.333
.16.500
.20.CCQ
.23.833
.28.~
s32.5CQ
,37.333
.42.5al
4s.030

I=
as -o* W1X2

-0. 0094A

+0.4J.75

1.000

.6S4

.445

.250

.UL

.028

2

.028

.I1.l

.250

.445

.694

L.OM

L.361

1.778

2.250

2.778

3.361

A.oilo

$.694

5.445

5.250

7.3ZL

3.028

3.000

D.2SM

.300!3

.3125

.3240

.3353

.3463

.3572

.3678

.3782

.3883

.3983

.4080

.4175

.4268

.435a

.4447

.4533

.4817

.4699

.4778

.4855

.4930

.5003

.5074

.5142

T
1

).2003 0.0889

.2083 .0925

.2167 .0958

.2250 .0990

.2333 .1019

.2417 .KM7

.m .1071

.2583 .1094

.2667 .llJ.5

.2750 .m3

.2833 .IJ.49

.2917 .11,63

.3030 .U75

.3083 .1184

.3X7 .1191

.3250 .1197

.3533 .1199

.3417 .lzca

● 3500 .1198
.3583 .1195
.3667 .1189
.3750 .U.81
.3833 .1170

.3917 .1158

.400Q ●KM

! +A/1

4.000

3.833

3.667

3.500

3.333

3.167

3.000

2.833

2.667

2.500

2.333

2.167

2.000

1.833

1.667

1.500

‘1.133

1.167

1.000

.833

.667

.500

.333

.167

0
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I

o
.2
.4
.6
.8

1.0
1.2
1.4
1.6
1.8
2.0

o
.008
.032
.072
.128
● 200
.288
.392
.512
.648
.800

TABLE II - FUNCTIONS OF Ml

E = 1.4CII

‘ 1.000
1.008
1.032
1.072
1.128
10200
1.288
1.392
1.512
1.648
1.800

-2.000
-1.974
-1.861
-1.698
-1.489
-1.250

-.994
-.733
-.476
-.231
0

a.

7-1 @’Ml ~

2.2 0.968
2.4 1.152
2.6 1.352
2.8 1.568
3.0 1.800
3.2 2.048
3.4 2.312
3.6 2.592
3.8 2.880
4.0 3.200

‘

. .

1.968
2.152
2.352
2.568
2.800
3.048
3.312
3.592
3.880
4.200

25

f (Ml]
0.213
.409
.589
.748
.893

1.024
1.141
1.247
1.343
1.500

. .

.—. ——-—. —---
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