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SUMMARY

SANDWICH

The clifferential equations of the bending of sandwich plates were
integrated to obtain the deflections when the four edges of the plate
are simply supported and the loading consists of either a uniformly dis-
tributed transverse load or a concentrated load applied at the center
of the panel. The deflection patterns are shown in diagrams and the
~ deflection of the plate is presented in a number of graphs.

,>

INTRODUCTION

A sandwich plate is a composite plate consisting of two thin faces
and a thick core. In airplane construction the faces are usually co~
posed of aluminum all.oy,and the core is composedof some lightweight
material such as an expanded plastic or balsa wood. In the latter case,
the fibers of the wood are usually arranged perpendicular to the plane
of the plate. Since the modulus of elasticity of the core is of the
order of magnitude of one-thousandth that of the faces, the normal
stresses in the core are of little imporknce in resisting bending
moments, although the usual ratio of face thickness to core thickness
lies between one-tenth and one-hundredth. The core performs a task in
transmitting shear forces and undergoes considerable shearing deforma-
tions because its modulus of shear is 10W, and therefore shearing defor-
mations cannot be disregarded in the analysis of sandwich plates.

Differential equations have been derived for rectangular sandwich
plates subjected to transverse and edgewise loading (reference 1). In
the present report the differential equations are integrated for the
case when all four edges of the plate are simply supported, and when
the load is either concentrated at the center or uniformly distributed
over the entire plate. The madmum deflection depends upon the thick-
ness ratio r . c/t and upon a nondimensional parameter R. Numerical
values of the deflections of a square sandwich plate were calculated for
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2

a great number of values of these
computations are presented in the

NACATN 2581

,

two parameters, and the results of the
form of diagrams.

The calculations presented here were carried out under the sponsor-
ship and with the financial assistance of the National Adviso~ Committee
for Aeronautics. The authors are indebted to Doctors N. J. Hoff and
V. L. Salerno for their advice in the course of the calctiations and for
their help in preparing the final report, and to Mr. George Booth for
his work in carrying out the calculations and in checking the ‘malysis.

SYMBOLS

Bc

Bd

c

D

Df

Do

E

F

Gc

k

Lx

%

P

Px

‘Y

deflection factor

deflection factor
uted load

for sandwich plate under

for sandwich plate under

concentrated load

uniformly distrib-

thickness of core, inches

bending rigidi~ of thin plate, pound-inches squared per inch

bending rigidity of two independent faces, pound-inches
squared per inch

bending rigidity of sandwich plate, pound-inches squared
per inch

Young’s modulus of face, psi

form factor for sandwich plate

shear modulus of core, psi

side ratio (L-&)

side length of sandtich plate in x-direction, fiches

side length of sandwich plate in y-direction, inches

concentrated load, pounds

compressive end load in x-direction, pounds per inch

compressive end load in y-direction, pounds per inch
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,

q

q.

r= c/t

R

t

u
1

v

w

X)Y

z

P

~2

distributed load, psi

intensity of uniformly distributed load

stiffness factor for sandwich plate

thickness of face, inches

displacement in x-direction,

displacement in y-direction,

inches

inches

deflection in z-direction, inches

rectangular coordinates in plane of faces, inches

rectangular-coordinateperpendicular to plane of faces, inches

Poissonfs ratio

Laplace operator

DERIVMION OF EXI!RESSIONSFOR DEFLECTIONS

The differential equations for the deflections of a sandwich plate
have been derived previously (reference 1), and the problem has been
defined by means of the following three partial differential equations

[
Da2~+ (l- P)~ + (1 + p)p 1 c++-2GCCU - 2GCC —

v ‘x =0 (la)
2

[
Do 2vn + (1 - 1l-h=+(1+d% -2GCCV - 2GCC ~ % ‘.O (lb)

hDfAw-Gcc~(~+vy) - Gcc A2W - q + Pxw= + Pyww = o (lC)

together with the following

~ +Wy
..

boundary conditions:

=0 when x = O, Lx (2a)

—- —- -—— —. —--—-——– -——–— — —.——–— ——..—
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vy+p~=o when y = O, ~ (2b)

U.o

V=()

Wx =0

‘Y-Y=0

W.()

The symbols denoting
manner:

when y = O, L
Y

(2C)

when x = O, Lx (2d)

when x = O, Lx (2e)

when y =
0’ % (2f)

when x = 0, Lx and when y = O,
%

(2g)

bending rigidities were

Do = ILEt(c +t)2 2(1-

defined in the “following

P2fl (3a)

/~ - .2)JDf = Et3 6(1 (3b)

where DP is the bending rigidity per inch of the faces about their own
L

Centroiw -axes, calculated for the two faces. Also, Do is the bending

rigidity of l-inch width of the sandwich panel calculated about the
centroidal axis of the sandwich, when the contribution of the corey as
well as that represented by Df, is neglected.

The other symbols, as well as the sign convention, are shown in
figure 1. It should be mentioned that the sign of the last term in
equations (la) and (lb) and that of the second term in equation (lc) are
opposed to those in reference 1 because of the Mferent choice of the
coordinate systems. A single sixth-order differential equation can be
,obtainedfrom the above three Mferential equations by elimination of u
and v (reference 1):

Df &W -
(

4- ~2 - (Gcc,Dojj(q - PXw= - ‘y%) (4)DO + @(Gee/Do)A w -

where

*6 . (#/16) +3(#/&4~2) +3 (#’/&2~4)+ (#/#) (4a)
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This problem will be solved by the method of Fourier series
expansion. The deflection w can be represented by a double Fourier
sine series: .

5

W=rr Wm sin (*&) sin (m9/~)
mn

(5)

which satisfies all the bounda~ conditions (2e) to (2g). Assumption of
the other

.,

and

satisfies
tion (2d)

two deflections in the form
—

m m
u’

~Z- n % Cos (~/Lx) ‘fi (nw/Ly)

“’E-S’%stn (mx/Lx)COS (n~/+Y)
mn

(6a)

(6b)

all the remaining boundary conditions (equations (2)). Equa-
implies v. = O on x = O and x = Lx, and equation (2a)

then reduces to Ux: O on the edges

equation (2c) implies ~ = O on y =

then reduces to v= = O on the edges

expressed by means of the Fourier sine

x =Oandx= ~. Likewise,

O and y = ~, and equation (2b)

y=Oandy=~. Ifqis

series

m m
——

q “ > > qm sin (+Lx) sin (Wwy)
mn

(7)

where the qm can be calculated from the well-lmown formula

then the Fourier coefficients ~, Vm, and Wm can be determined

from the algebraic equations obtained by substitutfig u, v, w, and
,, q into equations (la), (lb), and (lc).’ The lmowledge of the coeffi-

cients ~ and Vm is not needed when the transverse deflection of’

the face plate is sought...
solve the problem by means

Therefore, it was found more convenient to
of the stih-order differential equation

....——. .. —._. —— ____ .-. ..— .—-.
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.

(equation (L)). Substitution of q from equation (7) and w from
equation (5) into equation (4) yields:

‘Inn = (’c/’c4[#+(&f+j(%d%)
where the denominator is given by

r

In the present solution of the problem, the
loads Px and P= will be assumed to be zero.

of the following notations

k.Lx
/%

r = “c/t

II=Et3/@-v2)]

R=
/

GctLx2 n2D

.

(9)

compressive end
With the introduction

(>Oa)

(lOb)

(1OC)

(lOd)

the deflection coefficients (equation (9)) CaII be mitten in the fol-
lowing nondimensional form:

=C‘m ( /)
L4Dqmmnx (n) “

.—
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where

7

{ }/

cm= (1/2.4) [6(, + r)2/riiJ(In2+ W) + , ~“ (IL.)

and

%“ = E(1 + r)2/rR](m2 +

The maximum deflection

I
of X=LX2 andy= %/

2

n21#)3 + E(1 + r)2 + l](m2 + n2k2)2 (Ilb)

occurs at the center of plate. Substitution
into equation (5) yields

where Wm is given by equation (U).

.

UNIFORMLY DISTRIBUTED LOAD

When the load is uniformly distributed over
ficients of the Fourier series given by equation
as

(12)

the plate, the coef-
(7) can be calculated

1-’%(’Lx

= (Mqopn)

where ~ is the intensity of the uniformly

Substitution of these coefficients into
duction of the notat.on

(13)

distributed load.

equation (U) and intro-

(u)

— —— ——- —. —



8 NACATN 2s81

yield the following expression for the nondimensional deflection
parameter:

(15)

The ~ deflection parameter w= d can be written as
P

f’fdBd)’(’6/’2) ~ = (cm/+(-1)’+Dm+n)/2](16)
m=l,3,**= n=l,3,””*

The nmdmum deflection can be calculated from the rapidly convergent
series (16).

If c or Gc approaches zero, the ~ deflection is
to:

reduced

This is the formula for the bum deflection of a simply supported
thin plate under the uniformly distributed load qo/2, as given in

reference 2. In the limiting case of no shear deformation in the core
(infinite Gc), the maximum deflection is given by equation (17), with

‘D replaced by DF. The form factor for the sandwich plate is
F=l+3(l+c/t). The quanti~ DF represents the total moment of
inertia of the two faces with respect to the center plane of the sand-
wich plate.

Deflections of sandwich plates under uniformly distributed load are
shown in figures 2 to 4.

———
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CONCENTRHED LOAD

.

In the case of a coneentrated”load P acting at the center o~the
sandwich plate, the Fourier coefficients qm in equation (7’)are

obtained by a limiting process. Let p be”the intensity of the load
uniformly distributed over a small square with sides a parallel to
those of the plate, and with its center at the center of the plate.

‘ Set P=pa20 Then according to equation (8),

If this expression is integrated and the quantity a is allowed
to approach zero while P = pa2 is kept constant,

,.

qm = (Wwy)(-i l+[b~)/2] when ~ and n are odd, and qmn
=0

. when m and n are even.

With the notations used before, and with

Bc = ~2jD (18)

the deflection can be expressed in the following nondimensional form:

“(wpc)=@‘~ ~ Cm(-l)’+[(m+n)lqsin (mx&)sin(nv~)
m=lj3,*** n=lj3, ● ● ●

(19)

The maximum deflection is then given by

where Cm is defined by equation (ha).

(20)

.. —.. — .—-— —... —. .—
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.

~ equation (20) if either c or Gc approaches zero, the ~-

mum deflection reduces to that of two thin plates with no core (refer-
ence 2), namely:

(@3c) =

It is shown in
double series for a

(@j ~ ~ 1 (21)
rn=l,3,0.. n=l,~,... (m2 +n2~2)2

equation (A8) of the appendix that the value of the
square plate (k=l) is

-f--~ r 1
2
= 0.282~1 “ ● ●

(d
(21a)

m=l,3,””” n=l,3j””* “+ n2
)

Therefore the mdmum deflection of the two thin square plates with
no core is

For a
tion given

(%@c) = ~.800~2 x 1~3

=a

(21b)

square sandwich plate the expression for the maximum deflec-
by equation (20) may be transformed as follows:

.’+4 zrh -
m=l,j,”.: n=l,j, ...

(2/n4) S_ r (m2tn2k2)
m=l,j,””” n=l,3, *o*

(22)

w

●

✎✎

— —
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.

,

(wmax/%)=~.8@2

(r~/n4)

x 10-3 -

w

E
~ (m’+.’)’&’+.’+(:/’)+m=l,3,””” n=l 3,””-

square sandwich plate with an infinitely rigid core
deflection, obtained from equation (20),

(%axpc)=M+) x z
m=l,3,””” n=l,3,***

where

1

1[rR/6(1+r)~

(23)

(i.e.,
is:

(m2+n H
)2 +-;223(l+r -

F=3(l+r)2+l

is the form factor of the sandwich plate.

(24)

(Za)

Another
plate may be

expression for the maximum deflection of a square sandwich
obljainedfrom equation (20):

(“maxpc) = (’m) + 4 ~ 5 -(am)
m=l,3,””* n=l,3, ”””

= 5.80042x (10-31F) +(2/n4)~F-1)/F]x

25
m=l,3,”-* .=1,3,.””

(m2+n2){m2+n2 +(~R/2)+ ~R/6(l+r)~}

(25)

.

.——.. .—— — .—_— —- —— -——— ——. –—.-



12 NACA TN 2s81

4

Equations (23) and (2s) are alternate expressions for the deflec-
tion at the center of the sandwich plate. Since the series involved .
are sums of positive constants, the following inequality holds:

(26)

This means that the deflection of a sandwich plate is bounded by two
limit5ng cases: It is smaller than that of a sandwich plate with a core
having no shearing resisttice and is greater thqn the deflection of a
sandwich plate with a core of infinite shearing resistance.

Equation (23) can be used for values of R< 1 and r< SO since
the convergence of the series is sufficiently rapid for these ‘%lues.
This series was used to obtain portions of figure ~. For large values
-of R the convergence of both series in equations (20) and (23) was
too slow to permit direct use. Because of its simpler algebraic form,
the series of equation (25) was evaluated as shown in the appendix. The
series (A12), in conjunction with-other modifications given in the
appendix, was used to obtain figure 6.

PRESENTATION OF RESULTS

The equations derived in the preceding section have been used to
compute the deflections of various square sandwich plates subjected to
unid?ormlydistributed loads or to a concentrated normal load acting at
the center of the plate.

The series solution equation (15) was usedto obtain the maximum
deflection of a square sandwich plate supporting a unifordy distributed
load. The deflections for a square sandwich plate at y = ~/2 ~d for

different values of x/l& have been obtained for R = 800 and M-

ferent values of r. These are plotted in figure 2, which shows the
deformation pattern for the sandwich plate. The maximum deflection for
a sandwich plate with prescribed values of r and R is shown in fig-
ure 3. In figure 4, the ~ deflection for values of R from O
to 1 is plotted. As R approaches zero, the deflections approach the
value for-a sandwich plate without shearing deformation, that is,

W~Bd=2.029x lo-3 inches. Hence the curves of figure 4 show the

effect of the core upon the ~ deflection of a sandwich plate.

For a square sandwich plate with a concentrated load at the center,
the maximum deflection for small valuesof R is plotted in figure ~.
In figure 6 the maximum deflection for large values of R is plotted.
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In both the uniformly
as R approaches infinity
values of a sandwich plate

distributed and
the deflections

13

the concentrated-loadcases,
approach the asymptotic

without shear deformation. The limiting
values for a square plate are given in figures 3 and 6 for these two
cases, respectively.

With the aid of figures 3 and 6, the ~ deflections of a
square sandwich plate can be calculated. The value of w& ~d ~ be

read off from the curves of figure 3 for appropriate values of r and
for values of R less th& 1000. If R exceecls1000, figure 3 serves
to obtain only an appro~tion to the value of W~Bd. In such cases

only three terms of equation (1S) are needed to obtain wm~d accu-

rately, and in most applications the first term of
be adequate. For values of R less than 1000 the
are particularly valuable since in this range many
tion (1S) would be required to calculate w- Eld

/

COMPARISON WITH EXPERIMENT

equation (Is) would
graphs of figure 3
more terms of equa-
accurately.

The calculated values of the maximum deflection under uniform
loading have been compared with the test results obtained by the Forest
Products Laborato~ (reference 3, table I). The results calculated from
the present report for a urdformly distributed load are in good agree-
ment with these test results, although of slightly smaller value in 23
of 30 cases. This behavior is to be expected since the theoretical.
b~unda~ conditions correspond to a greater degree of constraint along
the edges than do the experimental boundary conditions. Theoretically,
both faces must be simply suppotied; experimentally, only one face was
simply supported on knife edges.

This comparison is shown in tables I, II, and III. The average
absolute errors are 4.7, 4.9, and 6.5 percent, rwpwtively. In 18 of
30 cases the absolute error is less than S percent; in one-third of the
cases the absolute prror is less than 3 percent. The four largest per-
centage errors occwred for the case in which the core was composed of
corrugated paper honeycomb.

The following examples show how to find the maximum deflection of
a simply supported square sandwich plate by means of figures 3 and 6.

— .
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Given:

Lx = ~ = 10 inches

C = 0.65 inch

t = 0.025 inch

E = iO.S x 106 psi

p = 0.3

Gc = 6000 psi

First calculate the following parameters
(1OC), and (led):

r=c/t =26

D = Et3/12(1 - V2) = l~.O

/R = GctLx2 n2D = 101

Uniformly Distributed Load

.

from equations (lOb),

For the uniformly distributed load,

&#d) = 3.9 x

For a uniformly distributed load of
value of Bd according to equation (I-4)

4
IBd= q&D=

Hence the maximum deflection is

‘max= 0..00260

NACA TN 2581

from figure 3,

10-6

intensity q. = 1 psi the
is

667

inch
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Concentrated Load at Center of Plate

,,

Consider the concentrated load equal to the total uniformly dis-
tributed load in the section above:

. Bd

= 667

From figure 6

(wmax~c) =28x ,,~

Hence the maximum deflection is

‘max = 0.0187 inch

CONCLUDING REMARKS

The deflections of a square sandwich panel were calculated for the
case where all four edges are simply supported and the etiernal loading
is either a uniformly distributed transverse load or a concentrated
transverse load applied at the center of the plate. Diagrams are pre-
sented which show the patten of deflections for these cases. The main
results of the calculations are the graphs from which the nwdmum
deflection of the sandwich plate can be read as a function of two non-
dimensional parameters.

The faces were assumed to be isotropic thin plates. The distance
between the faces was assumed to remain unchanged during the defer
mations, and the contribution of the core to the bending rigidity of the
entire plate was neglected. Theoretical as well as experimental con-
siderations have shown that these assumptions give satisfacto~ results
for sandwich plates of the types in use today in the United States.

Satisfactory agreement with the expertiental results of the Forest
Products Laboratog was obtained.

.—,. .—.— .— —. — .
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AmENDIx

ON EVALUM!ION OF DOUELE”SERIES S(a,b)

Introduction

The equation for the double series S(a,b) is:

.

S(a,b) = ~ $ l/~m2+n2+a2)(m2 +n2+b2~ (n)
m=l,3,””” n=l, ,“””

The value of the series S(a,O) was required to a high degree of
accuracy in order to evaluate the deflection equation (2s) developed in
the body of this report. The ma@ set of values considered for a2
ranged from 200 to 40,000 (b = O). In addition, the special value a = 0,
b = O had to be considered. This latter case S(0,0) was treated
separately.

Direct summation of a finite number of terms of equation (Al) does v

not yield the required six-figure accuracy in a reasonable time, P-
titularly for the larger values of a (b = 0). Methods were developed
to dete-e S(a,b) quickly to any degree of accuracy.

Evaluation of S(0,0)

For the case a = O, b = O, equation (Al) becomes

w

S(o,o) = x X l/(m2 + n2)2
m=l,3,””= n=l,3,”**

The series (A2) can be summed explicitly by rows by using the
partial-fraction expansion of the hyperbolic tangent (reference 4,
p. 362):

(A2)

(A3) -
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.
Differentiatingboth sides of

replacing d by “m in the result

n=,;qb’ +n2)2=M@)...
Y

equation (A3) with respect to 8 and
lead to

I&h(.mk’) - (m/2) sech2(nq/2~

(M)

The result (~) permits the summation with respect to n to be
carried out in equation (A2); S(0,0) may now be written as the single
series

S(0,0) = (rt/8) ~ (1/rn3)~anh (~2) - (~2) seCh2(&2]
rn=lj ,...

(As)

It would be difficult to treat equation (AS) explicitly in the
form shown, but the evaluation can be simplified if the dependence of
the hyperbolic functions upon m is considered.

For example, with m = 7,

tanh (7Tc/2)= 1-6.74 X 10-9

sech2(7n/2) = 1.3s x 10-8
}

(A6)

If m>7, then 1- tanh (rim/2) and sech2(nrq/2) approach zero
even more rapidly. For the accuracy required this shows that
tanh (Tcm/2) may be set equal to unity and sech2(rcm/2) maybe set
equal to zero for m > 7. This simpkld?iesthe formof equation (A~)~
If the series

S1 = T lJm3
m=lj ,...

(A7)

can be evaluated, this value can be used to determine equation (A5) to
any degree of accuracy, for only the first three terms of equation (A7),
multiplied by n/8, need be subtracted. To this value must be added
the first three terms of equation (As). The result will be S(0,0) to
six significant figures.

.. —.——.-— _ — ——.— .—— — —.
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The series (A7) must be
transfom series (A7) into a
p. 272), from which St may

St =

NACATN 2s81

calculated directly. It is possible to
rapidly convergent series (reference ~,
be determined to be

1.0S1 799 8 ● “o

The value of S(0,0) may now be determined:

S(0,0) = 0.282 S1 ● . ● (A8)

Evaluation of S(a,O); (b = O)

Equation (Al) may be written tithe form

S(a,O) = (1/a2)

m=l~... n=~$ lli(m2 + ‘2) - l-/(m2+ n2 + a2jJ> Y“””

(A9)

Application of series (A2) to series (A9) reduces the double
series (A9) to the single series

S(a,O) = (n/~2) ~ {l/m) tanh (rim/2)-
m=l,3,...

(1/@=+nh ~dd=q} (Ale)

The same approximations (A6) which simplified series (As) into (A7)
may be used to simplMy series (AIO); the typical results (A6) show that
the hyperbolic tangents may be replaced by unity after the tl&d term.
Since the smallest nonzero value of a is approximately ~, the second
hyperbolic tangent of series (AIO) canbe set equal to unity in the
first term. The series (equivalentto series (A7) in the case b = O)
which must now be considered is

w

S*(a,O) = x
m=l,3, ● ● ●

_—— .
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,

.

.

If S7a,0) of series (All) were known, then S(a,O) of series (UO)
could be determined quickly, as before, by taking into account sepa-
rately the first three terms of series (AIO). The series (AU) is not
suitable for accurate and rapid numerical calculation.

The value of S*(ajO) of series (All) maybe determinedto a high
degree of accuracy by means of the following result, which will be
proved,

S*(a,O) Y+ loge a + (-~)n+l (A12)

where y = EulerJs constant (y = 0.577216 ● s “) and K. is the modified
Bessel function of the second kind of order zero. Because of the prop-
erties of K. and the range of tiues of a, it till be shown that
the infinite series in equation (Ai2) can always be neglected, its

largest value being of the order of magnitude 10-19. Then series (A12)
caribe used to evaluate ~(a,O) to a k$gh degree of accuracy and
S(a,O) can then be determined quickly with the known value of S*(a,O).

The result (A12) will be established by converting equation (Ml)
into an infinite integral and evaluattig the result. A check upon the
,workis possible by means of a contour integration; this will be”dis-
cussed briefly later.

To convert equation (All) into an integral representation, the
following result from the theory of Bessel functions is needed (ref&-
ence 6, p. 65)

where Jo is the

c1’
co

e‘mt Jo(at) dt = 1 /(m- (i13)
0

Bessel function of the first kind of order zero;

another “resultneeded is

J

w

e-d dt = l/m (A14)
o

.—. . ... ...——— —.—.. -— —— ——— — ..—
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.

obtained by setting a = O in equation (A13), or by direct means.
Combination of equations (A13) and (~) yields w

~l/m)-(l/~~]=~~ -Jo(at~e-mtdt (u,)

Substitution of equation (AJ-S)into equation (All) yields

S*(a,O) =
.=15... ~m) ‘~/i=jl

1(
m

=

o
~ e-ti)(l--Jo(at))dt

.=1,3,”””
(JU6)

Now

m

E e-ret .
.=1,3, ● ● ●

(e-t 1 + e-2t + e -Lt+ ..O )

( )/(e-t 1 _ e- )2t (s- g the geometric series)

/
1 (et - e-t)

1/(2 Sinht) (A17)

Insertion of equation (A17) into equation (A16) yields

Js[m 1- Jo(~t)] dt

S*(a,O) = z o
(sinh t)

(JU8)

Equation (A18) is the required integral representation of S*(a,O).
This integral can be simplified by using the result (reference 7,
p. 136):

.

1 1=--
Sinht t

2t n_l> (-l)n+~(t2 + n2~2)
...-Y>

(A19) .
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Insertion of equation (A19) into equation (A18) yields

S*(a,O)
=:[ P- J@l p’ - 2t.=,~... ‘-’)n+Y(’2‘n2~2J‘t

(A20)

One of the typical integrands to be considered in equation (A20) is

of the form tJo(at)/(t2 + n2n2); but

is a known retit (reference 6,

~
+ n2n2 dt . K (Ma)

o (A21)

p. 78), where K. is the modified

Bessel function of the second ldnd of order zero. This function is
tabulated, for example, h Watsonls lt~ssel Functionsllfrom O to I-6at
intervals of 0.02 (reference 8, table II, pp. 698-713). The asymptotic
fommla for Ko(x) is (reference 6, p. %):

.

Ko(x) = e-x

{

~ - @(8x]+ &2 X 32)\2! (8x)2 -...

1} (A22)

The usual series representation (reference 6, p. 22) may be used for
small values of x.

If the smallest value of a2 is 200, then a is approximately Q.

For the case n = 1, e-nna = e‘~ = 10-19 (approximately). This is

the largest exponential term that can occur and shows that aIl contri-
butions of the form of equation (A21) wi~ be entirely without influence
if numerical work to sti or seven places is required. However, if a
were smaU (a = 1, or less) it would still be a simple ‘matterto
include terms such as those in equation (A21). With the terms (A21)
considered negligible, equation (A20) may be rewritten as

f{

m

S*(a,O) = (1/2)

}

(1/sinh t) - ~o(at)/~ dt
o

(A23)

..__ . ..-. —- —— —.— —.—e . . . . . .-
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The integral in equation (A23) is f= s~ler than that in equa-
.

tion (A18) since the term sinh t in equation (A23j has now been sepa-
rated from Jo(at). The integrals in equations (KL8) and (A23) converge ‘

at t = O, and both infinite integrals exist. The integral (A23) can
be treated as two integrals, one over the range O S t S l/a and another

over the range l/a~t<w. Let these titegrals be S1* and S2*,
respectively; then

f{

l/a
s~* = (1/2) (1/sinh t) -

[ 1}Jo(at)/t dt
o

J[=(1/2) l’a (1/SiIlht) - (l/t)] dt + (1/2)
o ~{kJ@p}dt

(A2iJ)

The term l/t was added and subtracted in equation (A24) so that both
integrals still converge at t = O. After.an integration by parts, the
second integral of equation (A24) becomes (using dJo(x)/dx = -Jl(x))

$W-JW 10ge@:’a-:JwJl@J 10ge‘at)‘t
(A25)

The first term of equation (A2~) is zero at both limits. The first inte-
gral of equation (A24) may be written as

[

l/a
Iim (1/2) [(/lsinh t)- (1/t~ dt =

++0 6

lti (1/2) 10ge plh (t/2)/q:::/a
~ .—> o

which is equal to

(1/2) 10ge ~tanh l/2a) /(1/a~ - (1/2) 10ge (1/2)



NACA TN 2581 23
.

since the limit of (tanh c)/6 is unity as c approaches zero. Then,
+

sl* = (1/2) loge tanh (l~2a) + (1/2) loge a +

J
l/a

(1/2) loge 2- (a/2) Jl(at) loge (at)dt (426)

o

The remaining integral is

S2*
f{

= (1/2) m (1/sinht) -
l/a

~o(at)/t]} dt

J= (1/2) m (1/sinht) dt -
l/a (@Jai@@ ‘A27)

Since both integrals of equation (A27) converge separately-at the
lower limits, the integrals may be considered separately. Integration
of the second integral of equation (A27) by parts leads to the result

[ 1(-1/2)Jo(at) loge at ‘=m

Jt=l/a - ‘a/2) ~~a
Jl(at) loge (at) dt (A28)

The first term of equation (A28) is zero at both limits. The first
integral of equation (A27j is

[/)(1 2 10ge taI1.h (t/2~ “m = (-1/2) loge tanh (1/2a)
t=l/a

Addition of %* and S2* yields

S~a,O) = S1* + S2*

=~loge (2a)
J

- (a/2) ‘“J1(at) loge (at) dt (A29)
o

.— —- - -- —-———— -—-—— — —.
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.

The terms containing tanh l/2a cancel and the two integrals can
be combined into one integral. Now (reference6, p. 76), .

J
m

J
co

Jl(at) loge (at) dt = Jl(x) loge X dxa
o 0

= -y + loge 2 (setting x= at) (A30)

where y = Eulerls constant = 0.s77 216 ● ● ●. Insertion of equi-
tion (A30) into equation (A29) and simplificationyield

Swa,O) = (1/2)y + (1/2) loge a (A31)

Terms of the type in equation (A21) have been neglected in equation (A31).
The exact result (A12) is valid for all a > 0 and is repeated here for
conveniencee:

S~a,O) =
.=,~... [(1/”) - (1/Pfl>

= (1/2)y + (1/2) loge a + ~ (-l)n+’ Ko(nfla) (A32)
n=l 29 9“””

General Case S(a,b) for a~O and b#O

The use of equation (A32) permits S*(b,O) - S*(a,O) to be written
as (a> O, b> O):

w

G (-l)n+l~o(n.b) - Ko(n.a~
n=l, ,“.=

(A33)

.

,?
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The series
series S(a,b),
is now possible
the series (Al)
of a= 0, b =

25

(A33) wouldbe needed in the evaluation of the general
which is a natural gener~ization of equation (25). It
to evaluate equation (A33) in precisel,-~ the same way as
was evaluated for the case of a # 0, b = O. The case
O has already been treated. only the case of a =b+ o

must be c&sidered to complete the discussion of ~quation (A33). I?quaL
tion (A33) can be written as

r ]m=l~D..n=~$.qo{F/(m2+n’ + a2~ -
S(a,b) = l/(b2 - a2)

>3

[/( 1)
lm2+n2+b2) (A34)

The auxil.i~ series for equation (A34), which corresponds to equa-
tion (All) in relation to equation (A9), is

Application of equation (A33) yields

S*(a,b)=
(b~ a)

{

loge b -loge a+ m

T [

Ko(nnb)-Ko(nna)
(-l)n+l

b-a n=l, ,... b-a J

(A36)

It is possible to let b approach a in equation (A36) to obtain

(A37)

since the expressions of equation (A36) define the derivatives of (loge a)

and of Ko(nrca), respectively, with dKo(x)/dx = - Kl(x). The func-

tion Kl(x) is the modified Bessel function of the second kind of,order
one and is also ~abulated in Watson~s llBesselFunctionsll(reference 8,
table II, pp. 698-713). Thus equations (A37) and (A33) can in general be
used to evaluate equation (Al) for all values of (a,b) which are not
both zero.

. . —_._. -—. ..-— .— .—~— —, -.— .—



26 NACA TN 2s81

The result (A33) can be checked by a contour integration over the
contour shown in figure 7; the details will be omitted. The proper ~
integral to consider is

J{[(1A) ~ Ho(l)(az) - H$l)(bz]/(sti Z] dz

The contribution over the large semicircle approaches zero as R ~rn
while along the real axis the result is

1r {[50
Jo(at) - Jo,(bt]]/@h t} dt

which is the integral representation of equation (A33). The residue
at z =’0 can be shown to be (1/2) loge (b/a) while the poles at

= nni (n=l,2,...) contribtie residues which are the terms of the
&finite series (A33). This method shows why the original integral (A18) “
could not be evaluated-in this manner, for it is not possible to let a
or b approach zero in equation (A33). The case a = O must be treated I
separately.

The method developed here for the evaluation of equation (Al) was
not tha$ used at the start of the calculations but was completed later
and then used for all calculations. The method originally used may M
summarized briefly as follows: Since equation (A3) permits an explicit ‘
summation of equation (Al) by rows, a definite number of rows (actually, 1S)
was summed quickly by this method. I& symmetry that is also the sum of
the first 15 columns. To illustrate the procedure graphically (see
fig. 8) let the entire quadrant represent S(a,O). s~tion of the rows
is represented by the shaded area 12s678, and summation of the same”num-
ber of columns, by 123458. The terms 12s8 are counted twice and must be
found separately. Thus, the sum of the terms contained in the L-shaped
region 12345678 is known; if this sum is subtracted from the series
itself, the remaining terms correspond to the unshaded area 4~6rn. This
remainder

where the
number of
upper and

of the series was appro-ted by the integral

[[

Ca w
dxdy

Uu (x2 +y2)(x2 + y2 + a2)

lower limits u were chosen appropriately, depending upon the
columns taken initially. This integral was used to determine
lower bounds for the remainder of the series. Much of the
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work was directed toward obtaining a useful value of the integral for
large values of a. In this way, bounds on S(a,O) were computed. This
established an upper limit to the percentage errur in the results.

One such calculation led to the

Upper bound:

Lower bound:

The method using equation (A12)

values (a2 = 40,000):

56.5715x 104

SS.912 x 10-6

yields the value
which lies between the calculated values of the upper

56.OSS1x 10-6
bound and lower

bound.

Generalization

The series

02

S(a,b,c) = r ~ l/(m2 + c2n2 + a2)(m2 + c2n2 + b2) (A38)
m=l,3,*** n=l,3,==* .

of Series S(a,b)

is the generalization of series (Al) to the plate of rectangular shape;
c = 1 corresponds to the case of a square. E@a~ion (A38) may be
written in the form .

S(ajb,c) = l/(b2 - a2) ~
n-1~. .. {[’/(m2 + c2n2 + a2)l _m=lj3,**” - ,

[/( 1}
1 m2+ c2n2+ b2) (A39)

The summation with respect to m may be carried out as before; the use
of equation (A3) yields

a

S(a,b,c) = n
E

4(b2 _ a2) n=l,3, ● ● ●

L.

tanh (n/2)d c2n2 + b2

m 1 (m)

. —...—..— . .. ——--- ..— — ——— -. —. -.
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In this case, the atiliary series is

#(a,b,c) = ~
.=,z... [)’/-) - (1/’-)] (~)

which can be evaluated by equation (A33). The case a = b can be
treated as before by the use of equation (A37). Thus the general
series (A38) can also be evaluated by the methods already developed.

Polytechnic Institute of Brool@n
BrooHyn, N. Y., June 19, 19s1

.
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TABLE I

COMPARISON OF TESTED AND CALCOLM33D DEFLECTIONS OF A SIMPLY

SUPPOIU’EO SQUARE SANDWICH PLATE UNDER UNIFORM LOAD

&ubum faces with E -10x ld pei and balm core

with Gc = 12,6% psi (referenoej); average

absolute error, 4.7 peroenfl

Thiokneaa Thickness Unit load
Test

Calculated

Plate of faoeo of core
deflection Percent

(in. ) (In. )
(?Y) ‘~p:~e (referre 3) defyy;”n error

AB-4 0.032 O*5U 44.20 0..5’408 0.168 0.171 1.8
AB-3 .032 .390 44.20 .72u .359 .377 5.0

AE!-4 0.032 0.501 ;:.$ o.721J. 0.123 0.134

AB-3 .032 .381 . .649Q .189 .198
::;

AE?-4 0.032 0.507 32.@ 0.72u o.o72 o.ch59 -4.2
AS-3 .032 .385 32.04 .72fi .U2 .111 -, 9

M-4 0.032 0,503 28.04 0.5768 0.035 0.034 -2.9
AB-3 .032 .388 28.04 . T211 . O& .0-66 -1.5

AE!-4 0.032 0.513 21.9’7 1.803 0.0460 0.0422 -8.3
M--3 .032 .390 21.97” 1.082 .04141 .0402 -8.9
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TABLE II

COMPARISON OF TESTED AND CALCULATED DEFLECTIONS OF A SIMPLY

SUPPOR173D SQUARE SANDWICH PLATE UNDER UNIFORM LOAD

rhnninum faom with E = 10 x 106 psi and cellular

cellulose-acetate core vvlth Gc = U, 860 psi

(reference 3); average absolute error, 4.9 percen~

Thichess TMcka-iess Unit load
TeB6

deflection
Calculated

Plate of faces of core
Percent

(in. ) (in. )
(?5 ‘yp:y (ref~~;e 3) *fy;yon’ error

.

AC-4 0.032 0.h93 44.20 0.5047 0.197 0.186 -5.6
AC-3 .032 .371- 411..2o .5047 .316 .306 -3.2

AC-4 0.032 oO~89 38.@ O. s’768 0.132 o.1~ -6.0
AG3 .032 .367 38. o4 .S768 .210 .203 -3.3

AC-4 0.032 0.489 32.04 o.721J_ 0.090 0.083 -7.8
AC-3 .032 .364 32.04 .7211 .U6 .137 -6.2

AC-4 oo032 0.493 28.04 1.010 0.073 0.072 -1.4
AG3 .032 .370 28.04 . 72u .084 .082 -2.4

AG4 0.032 o:~$ 21.97 1.082 0.0378 0.0339 -10.3,
AC-3 .032 21.97 .7211 .0354 .0359 1.4

u
P
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TABLE III

CXMPARIWN OF TESTED AND CALCULNI’ED DEFLECTIONS OF A SIMPLY

SUPPORTED NU~ SAXCMICHPLATE _ ~FORM LOAD

[~uminum faces with E = 10 x d psi and corrugated

paper honeycomb core with Gc = 5840 psi (refer-

ence 3); average absolute error, 6.5 p,rcent]

Thiclmess Thick-mm Unit load
Teat

deflection
Calculated

Plate of faces
Peraent

of core

(in. ) (in. ) (5’ O&:;:te (ref~~e 3) ‘f:::~on error

.

nF.4 0.032 O::;; 44.2,0 0.’7211 0.1.1o o:llJ 3.6
M?-3 .032 44.20 .7211 .158 -1.9

M-L 0.032 0.751 ;;.$ 0.7211 0.072 0.055’3 -9.3
AF-3 .032 .632 . .72= .087 .0890 2.3

U-4 0.032 0.752 s2.oL 0.’721.1 O.obl 0.335 -15
N-3 .032 .632 32.% .72U .054 .047 -13

AF-4 0.032 0.753 28.@ 0.72u O.oa 0.021 -12

AF-3 .032 .633 28.04 . 72U .030 .029 -3.3,

AF-4 0.032 0.754 21.97 2.884 0.0391 0.0384 -1.8 ~

M-3 .032 .636 21.97 2.163 .036B .0359 -2.4 *
H
z

Gmw
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Figure 2.- Deflection of square sandwich plate with

uniform normal “load at y = ~ ●‘
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Figure 4.- Maximum deflection of sqmre sandwich plate with very weak
core under uniform load.
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. Figure T.- Contour for S*(b,O) - S+fa,O).

I 8 7

Figure 8.- Schematic representation for summing S(a,O).
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