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SUMMARY

The differential equations of the bending of sandwich plates were
integrated to obtain the deflections when the four edges of the plate
are simply supported and the loading consists of either a uniformly dis-
tributed transverse load or a concentrated load applied at the center
of the panel. The deflection patterns are shown in diagrams and the
maximim deflection of the plate is presented in a number of graphs.

INTRODUCTION

A sandwich plate is a composite plate consisting of two thin faces
and a thick core. In airplane construction the faces are usually com-
posed of aluminum alloy, and the core is composed of some lightweight
material such as an expanded plastic or balsa wood. In the latter case,
the fibers of the wood are usually arranged perpendicular to the plane
of the plate. Since the modulus of elasticity of the core is of the
order of magnitude of one-thousandth that of the faces, the normal
stresses in the core are of little importance in resisting bending
moments, although the usual ratio of face thickness to core thickness
lies between one-tenth and one-hundredth. The core performs a task in
transmitting shear forces and undergoes considerable shearing deforma-—
tions because its modulus of shear is low, and therefore shearing defor-
mations cannot be disregarded in the analysis of sandwich plates.

Differential equations have been derived for rectangular sandwich
plates subjected to transverse and edgewise loading (reference 1). In
the present report the differential equations are integrated for the
case when all four edges of the plate are simply supported, and when
the load is either concentrated at the center or uniformly distributed
over the entire plate. The maximum deflection depends upon the thick-
ness ratio r = ¢/t and upon a nondimensional parameter R. Numerical
values of the deflections of a square sandwich plate were calculated for
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a great number of values of these two parameters, and the results of the
computations are presented in the form of diagrams.

The calculations presented here were carried out under the sponsor-
ship and with the financial assistance of the National Advisory Committee
for Aeronautics. The authors are indebted to Doctors N. J. Hoff and
V. L. Salerno for their advice in the course of the calculations and for
their help in preparing the final report, and to Mr. George Booth for
his work in carrying out the calculations and in checking the analysis.

SYMBOLS
Be deflection factor for sandwich plate under concentrated load
By deflection factor for sandwich plate under uniformly distrib-
uted load
c thickness of core, inches
D bending rigidity of thin plate, pound-inches squared per inch
Dy bending rigidity of two independent faces, pound-inches
squared per inch
Dy, bending rigidity of sandwich plate, pound-inches squared
per inch
E Young's modulus of face, psi
F form factor for sandwich plate
Ge shear modulus of core, psi
k side ratio (Lx/Ly)

side length of sandwich plate in x-direction, inches

'side length of sandwich plate in y-direction, inches

A

concentrated load, pounds

compressive end load in x-~direction, pounds per inch

N"U

compressive end load in y-direction, pounds per inch

‘JU
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q distributed load, psi

q, intensity of uniformly distributed load
r =c/t

R stiffness factor for sandwich plate

t thickness of face, inches

u displacement in x-direction, inches

v displacement in y-direction, inches

w deflection in z~direction, inches

X,y rectangular coordinates in plane of faces, inches

Z rectangular- coordinate perpendicular to plane of faces, inches
v Poisson's ratio

A2 Laplace operator

DERTVATION OF EXPRESSIONS FOR DEFLECTIONS

The differential equatioﬁs for the deflections of a sandwich plate
have been derived previously (reference 1), and the problem has been
defined by means of the following three partial differential equations

c +t

D, [2uge + (1 - whugy + (1 + wv, | - 2Gceu - 26ee we =0 (la)

c+t

DO[?v&y + (1= vy + (1 + u)uxi] - 2G,cv - 2G,C > Wy =0 (1b)
D Ahw - G.c —2 + T ) -Gy AW -q+Pw, +Pw =0 (1c)
£ e o7 () -G 7 X% T Yy

together with the following boundary conditions:

w, * vy =0 when x = 0, Ly (2a)
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vyt puy = 0 when y = O, Ly t2b)
u=0 when y = O, Ly (2c)
v=0 when x = 0, Ly (2d)
Wyy = 0 when x = 0, Ly (2e)
Wor = 0 when y = O, Ly (2f)
w=20 when x = 0, L, and when y =0, Ly (2g)

The symbols denoting bending rigidities were defined in the following
manner:

D, = Be(e + )2/[2(1 - u2)] (32)

D, = Et3/|:6(l - u.z):] | (3b)

where Df is the bending rigidity per inch of the faces about their own

centroidal axes, calculated for the two faces. Also, D, is the bending

rigidity of l-inch width of the sandwich panel calculated about the
centroidal axis of the sandwich, when the contribution of the core, as
well as that represented by Df, is neglected.

The other symbols, as well as the sign convention, are shown in
figure 1. It should be mentioned that the sign of the last term in
equations (la) and (1b) and that of the second term in equation (lc) are
opposed to those in reference 1 because of the different choice of the
coordinate systems. A single sixth-order differential equation can be
obtained from the above three differential equations by elimination of u
and v (reference 1):

D, 26w - (Do + Df)(ch/Do)Ahw = [%2 - (Gcc/Doj](q = Py = Bywyy) (L)

where

26 = (a6 /axé) + 3(36 Jodiay?) 3(86/ax28y)4) + (b /ay6) (La)
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This problem will be solved by the method of Fourier series
expansion. The deflection w can be represented by a double Fourier
sine series:

x o

W= j{: j{: Wy Sin (mﬂx/Lx) sin (nny/Ly) (5)

m n

which satisfies all the boundary conditions (2e) to (2g). Assumption of
the other two deflections in the form

u = ji: jii u - cos (mnx/LX) sin (nﬂy/Ly) (6a)

v = EZ: E%: Voo Sin (mnx/Lx) cos (nnx/Ly) (6b)

satisfies all the remaining boundary conditions (equations (2)). Equa-
tion (2d) implies vy =0 on x=0 and x =1Ly, and equation (2a)

then reduces to uy = 0 on the edges x =0 and x = Ly. Likewise,
equation (2c) implies u, =0 on y =0 and y = Ly, and equation (2b)
then reduces to vy = O on the edges y =0 and y = Ly. If q is
expressed by means of the Fourier sine series

) 00

q= zz: 2;; qy, sin (mnx/Lx) sin (nny/Ly) @)

m

where the q, can be calculated from the well-known formula

Ly
Q. = (h/LxLy)L/:LyL/; q sin (mﬂx/Lx) sin (nny/Ly) dx dy (8)

then the Fourier coefficients w,,, vy, and wpy can be determined

from the algebraic equations obtained by substituting u, v, w, and
q into equations (1la), (1b), and (lc).’ The knowledge of the coeffi-
cients W and vy, 1is not needed when the transverse deflection oft

the face plate is sought. Therefore, it was found more convenient to
solve the problem by means of the sixth—~order differential equation
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(equation (L4)). Substitution of q from equation (7) and w from
equation (5) into equation (4) yields:

g = (Bc/Gcc)[(%)z‘ * (f‘f,)z - q(qmn/&m) (9)
- @ G2 [ @] e
(@ @ @) @ e
BE |6

In the present solution of the problem, the compressive end

loads Px and Py will be assumed to be zero. With the introduction

of the following notations

k = Ly[Ly (102)

r =¢/t (10b)

p = Bt3/[121 - u?)] (10c)
R = Gcth?/EZD (104)

the deflection coefficients (equation (9)) can be written in the fol-
lowing nondimensional ferm:

Y Cmn(Lx%/%qun . (11)
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where

Cmn = (l/znb) [g(l + r)2/&fﬂ(m? + n2k2) + %}v/éhno (11a)

and

Kn® = [601 + 0%/ + 033 + [0+ 22 + (@2 + n%2)2 (1)

The maximum deflection occurs at the center of plate. Substitution
of x= Lx/2 and y = Ly/2 into equation (5) yields

e S < wmn(_l)1+[<m+n>/ﬂ 1)

m::l’B,-.. n-l,B,.o.

where w_~ is given by equation (11).
UNIFORMLY DISTRIBUTED LOAD

When the load is uniformly distributed over the plate, the coef-
ficients of the Fourier series given by equation (7) can be calculated
as

19
i

by [l
o= (i) | f sin (woxfLy) sin (wy/iy) ax Gy

(16q,, /n%mn) (13)

where q, 1is the intensity of the uniformly distributed load.

Substitution of these coefficients into equation (11) and intro-
duction of the notat.on

By = qoLxly D (1k)
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yield the following expression for the nondimensional deflection
parameter:

w/Bd = (16/ ) i i (Cy/mn) sin (mmx/Ly) sin (nny/Ly)

m=1,3,°°* n=l,3,---
(15)

The maximum deflection parameter Wmax/Bd can be written as

(axfpe) = (643 37 3T (o) ()F Ll g

m=1’3, cee n=1,3, ceo

The maximum deflection can be calculated from the rapidly convergent
series (16).

If ¢ or G, approaches zero, the maximum deflection is reduced

- l+|:(m+n)/:|
e = (Bag D) > > = : S )
LT T () - ()]

This is the formula for the maximum deflection of a simply supported
thin plate under the uniformly distributed load qo/2, as given in

reference 2. In the limiting case of no shear deformation in the core
(infinite Gg), the maximum deflection is given by equation (17), with
‘D replaced by DF. The form factor for the sandwich plate is
F=1+3(Q +c/t). The quantity DF represents the total moment of
inertia of the two faces with respect to the center plane of the sand-
wich plate.

Deflections of sandwich plates under uniformly distributed load are
shown in figures 2 to .
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CONCENTRATED LOAD

In the case of a concentrated load P acting at the center of* the
sandwich plate, the Fourier coefficients qp, in equation (7) are

obtained by a limiting process. Let p be the intensity of the load
uniformly distributed over a small square with sides a parallel to
those of the plate, and with its center at the center of the plate.

Set P = pa2. Then according to equation (8),

2 2

Ly~a Ly—a
2 2

o = (4/2ly) (PA?) sin (mrx/iy) sin (wy/ly) ax dy

If this expression is integrated and the quantity a is allowed
to approach zero while P = p32 is kept constant,

Uy = (hP/Lx;w)(—l)l+[(m+n)/é] when m and n are odd, and qg, = O

when m and n are even.

With the notations used before, and with

Be = PL,2/D (18)

the deflection can be expressed in the following nondimensional forms

AR D S St o G PRy G (an/Ly)

m=1,3,+++ n=1,3,°"-
(19)

The maximum deflection is then given by

[o0]

(Wmax/Bc) = ik Z_— i Comn (20)

m=1,3,°** n=1,3,°*

where C,.  is defined by equation (1la).
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In equation (20) if either c¢ or G, approaches zero, the maxi-

mum deflection reduces to that of two thin plates with no core (refer-
ence 2), namely:

(n/Be) = (mAl)  S- > L (21)

m=1,3,+-+ n=1,3,--- (m? + n2k2)2

It is shown in equation (48) of the appendix that the value of the
double series for a square plate (k = 1) is

o0

1

—_— = 0.28251 - - - (21a)
m=1’3,.-- n=1,3’-°- (m2 + n2)

Therefore the maximum deflection of the two thin square plates with
no core is

(Wmax/Be) = 5-80042 x 107 (21b)
=a

For a square sandwich plate the expression for the maximum deflec-
tion given by equation (20) may be transformed as follows:

(wmax/Bc) =a+) jii Ti:r Cpn — @
m=1,3,+++ n=1,3;---

RS S S

m=1’3’ AR n=1’3, ® oo

(ehd) > S L (22)

m=1,3,** n=1,3,"* (m2 + n2k2)
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(Wnax/Be) =5-80042 x 1073 -

(rR /n}") i Zcoj =

m=1,3, " n=1,3,--" (m2+n2>2%u2+n2+ (rR/2) + [rR/6(l+r)%}
(23)

For a square sandwich plate with an infinitely rigid core (i.e.,
R—> ®) the maximum deflection, obtained from equation (20), is:

W = (2/11,4) i i 1
(max C) m=1,3,** n=1,3,°"" (m2+n2)2[§(l+r)2+l:|
= (a/F) (L)
where
F=31+r)+1 (2la)

is the form factor of the sandwich plate.

Another expression for the maximum deflection of a square sandwich
plate may be obtained from equation (20):

("max/Be) = (&/F) + b 50: i . ~(a/F)

m=1,3, -+ n=1,3,""
- 5.80052 x (1073/7) + (2/) [(F - 1)/¥F]

> > s
m=1,3, """ n=1,3,--* (m2 +n2){m2+n2+ (rR/2) + ER/é(l + I‘)E—J}

(25)
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Equations (23) and (25) are alternate expressions for the deflec-
tion at the center of the sandwich plate. Since the series involved
are sums of positive constants, the following inequality holds:

@ > Wpay /B > a/F (26)

This means that the deflection of a sandwich plate is bounded by two
limiting cases: It is smaller than that of a sandwich plate with a core
having no shearing resistance and is greater than the deflection of a
sandwich plate with a core of infinite shearing resistance.

Equation (23) can be used for values of R<1 and r <50 since
the convergence of the series is sufficiently rapid for these values.
This series was used to obtain portions of figure 5. For large values
-of R the convergence of both series in equations (20) and (23) was
too slow to permit direct use. Because of its simpler algebraic form,
the series of equation (25) was evaluated as shown in the appendix. The
series (A12), in conjunction with.other modifications given in the
appendix, was used to obtain figure 6.

PRESENTATION OF RESULTS

The equations derived in the preceding section have been used to
compute the deflections of various square sandwich plates subjected to
uniformly distributed loads or to a concentrated normal load acting at

the center of the plate.

The series solution equation (15) was used to obtain the maximum
deflection of a square sandwich plate supporting a uniformly distributed
load. The deflections for a square sandwich plate at y = Ly/2 and for

different values of x/L, have been obtained for R = 800 and dif-

ferent values of r. These are plotted in figure 2, which shows the
deformation pattern for the sandwich plate. The maximum deflection for
a sandwich plate with prescribed values of r and R is shown in fig-
ure 3. In figure lj, the maximum deflection for values of R from O
to 1 is plotted. As R approaches zero, the deflections approach the
value for-a sandwich plate without shearing deformation, that is,

Wooo/Bg = 2.029 x 1073 inches. Hence the curves of figure |} show the
effect of the core upon the maximum deflection of a sandwich plate.
For a square sandwich plate with a concentrated load at the center,

the maximum deflection for small values-of R is plotted in figure 5.
In figure 6 the maximum deflection for large values of R 1is plotted.
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In both the uniformly distributed and the concentrated-load cases,
as R approaches infinity the deflections approach the asymptotic
values of a sandwich plate without shear deformation. The limiting
values for a square plate are given in figures 3 and 6 for these two
cases, respectively.

With the aid of figures 3 and 6, the maximum deflections of a
square sandwich plate can be calculated. The value of Wmax/Bd may be

read off from the curves of figure 3 for appropriate values of r and
for values of R 1less than 1000. If R exceeds 1000, figure 3 serves
to obtain only an approximation to the value of wmax/Bd' In such cases

only three terms of equation (15) are needed to obtain Wnax/Bq accu~

rately, and in most applications the first term of equation (15) would
be adequate. For values of R less than 1000 the graphs of figure 3
are particularly valuable since in this range many more terms of equa-

tion (15) would be required to calculate Wmax/Bd accurately.

COMPARTSON WITH EXPERTMENT

The calculated values of the maximum deflection under uniform
loading have been compared with the test results obtained by the Forest
Products Laboratory (reference 3, table I). The results calculated from
the present report for a uniformly distributed load are in good agree-
ment with these test results, although of slightly smaller value in 23
of 30 cases. This behavior is to be expected since the theoretical
boundary conditions correspond to a greater degree of constraint along
the edges than do the experimental boundary conditions. Theoretically,
both faces must be simply supported; experimentally, only one face was
simply supported on knife edges.

This comparison is shown in tables I, IT, and III. The average
absolute errors are 4.7, L.9, and 6.5 percent, respectively. In 18 of
30 cases the absolute error is less than 5 percent; in one-third of the
cases the absolute error is less than 3 percent. The four largest per-
centage errors occurred for the case in which the core was composed of
corrugated paper honeycomb.

NUMERICAL EXAMPLE

The following examples show how to find the maximum deflection of
a simply supported square sandwich plate by means of figures 3 and 6.
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Given:

|
I

Ly = 10 inches
¢ = 0.65 inch

t = 0.025 inch

E = 10.5 x 106 psi
L =20.3

G, = 6000 psi

First calculate the following parameters from equations (10b),
(10c), and (10d):

r =c/t =26
D = Et3/12(1 - u?) = 15.0

R = GotL2/n2D = 101

Uniformly Disbributed Load

For the uniformly distributed load, from figure 3,

(wmax/Bd) = 3.9 x 1070

For a uniformly distributed load of intensity Qg = 1l psi the
value of By according to equation (14) is

in
By = Qoly /D = 667
Hence- the maximum deflection is

Wy = 0.00260 inch
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Concentrated Load at Center of Plate

Consider the concentrated load equal to the total uniformly dis-
tributed load in the section above:

P =q.L % =100
Be = PLy2/D
= Bd
= 667

From figure 6

(Wmax/Bc) = 28 x 10-6

Hence the maximum deflection is

Woow = 0.0187 inch

CONCLUDING REMARKS

The deflections of a square sandwich panel were calculated for the
case where all four edges are simply supported and the external loading
is either a uniformly distributed transverse load or a concentrated
transverse load applied at the center of the plate. Diagrams are pre-
sented which show the pattern of deflections for these cases. The main
results of the calculations are the graphs from which the maximum
deflection of the sandwich plate can be read as a function of two non-
dimensional parameters.

The faces were assumed to be isotropic thin plates. The distance
between the faces was assumed to remain unchanged during the defor-
mations, and the contribution of the core to the bending rigidity of the
entire plate was neglected. Theoretical as well as experimental con-
siderations have shown that these assumptions give satisfactory results
for sandwich plates of the types in use today in the United States.

Satisfactory agreement with the experimental results of the Forest
Products Laboratory was obtained.
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APPENDIX

ON EVALUATION OF DOUBLE SERIES S(a,b)

Introduction

The equation for the double series S(a,b) is:

o]

-S(a,b) = i g B :L/[(m2 + n2 + 3_2) (m2 + n2 + b2):| (Al)

m=1’3, cee n:l, 5"

The value of the series S(a,0) was required to a high degree of
accuracy in order to evaluate the deflection equation (25) developed in
the body of this report. The main set of values considered for a2
ranged from 200 to 40,000 (b = 0). In addition, the special value a = O,
b = 0 had to be considered. This latter case S(0,0) was treated
separately.

Direct summation of a finite number of terms of equation (Al) does
not yield the required six-figure accuracy in a reasonable time, par-
ticularly for the larger values of a (b = 0). Methods were developed
to determine S(a,b) quickly to any degree of accuracy.

Evaluation of S(0,0)

For the case a =0, b = 0, equation (Al) becomes

00 [>:]

5(0,0) = 1/(n? + n2)° >
0o o w

The series (A2) can be summed explicitly by rows by using the
partia%—fraction expansion of the hyperbolic tangent (reference l,
p. 362):

o0

n=1,§3i,-.. 1/(n2 + 192) = (0/L9) tanh (n§/2) (43)
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Differentiating both sides of equation (A3) with respect to § and
replacing 9 by ‘'m din the result lead to

]

12 l/(m? + n2)2 = (n/%mB)E;uﬂ1(nm/2) - (nm/2) sechz(nm/éﬂ
n= ’3,aco
(AL)

The result (Al) permits the summation with respect to n to be
carried out in equation (42); S(0,0) may now be written as the single
series

_ © 3 _ ecz
s(0,0) = (n/8) m;lg - (l/& )]tanh (m/2) - (nm/2) sech (nm/2)|
(45)

It would be difficult to treat equation (A5) explicitly in the
form shown, but the evaludtion can be simplified if the dependence of
the hyperbolic functions upon m is considered.

For example, with m = 7,

tanh (7n/2) = 1 - 6.74 x 1077
(A6)

sech®(7n/2) = 1.35 x 10-8

If m>7, then 1 - tanh (mm/2) and sech?(mm/2) approach zero
even more rapidly. For the accuracy required thls shows that
tanh (mm/2) may be set equal to unity and sech?(mm/2) may be set
equal to zero for m & 7. This simplifies the form of equation (A5).
If the series

St = Zgi 1/n3 (A7)
m=1,3,---

can be evaluated, this value can be used to determine equation (A5) to
any degree of accuracy, for only the first three terms of equation (A7),
multiplied by n/8, need be subtracted. To this value must be added
the first three terms of equation (A5). The result will be S(0,0) to
six significant figures.
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The series (A7) must be calculated directly. It is possible to
transform series (A7) into a rapidly convergent series (reference 5,
p. 272), from which S' may be determined to be

St =1.051 799 8 ---

The value of S(0,0) may now be determined:

S(0,0) = 0.282 51 - - - (A8)

Evaluation of S(a,0); (b = 0)

Equation (Al) may be written in the form

00 = 0 S0 S5 /) - (e oo ]

(49)

Application of series (A42) to series (A9) reduces the double
series (A9) to the single series

o]

S(a,0) = (n/haz) Z {(l/m) tanh (nm/2) -

m=1’3, ceeo

(1/AI;§_:_;§) tanh [En/z)\fgé_:—;é]i} (A10)

The same approximations (A6) which simplified series (45) into (A7)
may be used to simplify series (A10); the typical results (A6) show that
the hyperbolic tangents may be replaced by unity after the third term.
Since the smallest nonzero value of a is approximately 1l, the second
hyperbolic tangent of series (A10) can be set equal to unity in the
first term. The series (equivalent to series (A7) in the case b = 0)
which must now be considered is

S*(a,0) = [Fl/m) - /«Ln + a j] (a11)

m=1 3,...
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If S™a,0) of series (All) were known, then S(a,0) of series (A10)
could be determined quickly, as before, by taking into account sepa—
rately the first three terms of series (410). The series (All) is not
suitable for accurate and rapid numerical calculation.

The value of S*(a,0) of series (All) may be determined to a high
degree of accuracy by means of the following result, which will be
proved,

o]

8%(a,0) = % y + % loge a + 12;: (—1)n+1 Ko(nna) (a12)
. n=1,7, .-

where y = Euler's constant (y = 0.577216 + - -) and K, is the modified
Bessel function of the second kind of order zero. Because of the prop-
erties of K, and the range of values of a, it will be shown that

the infinite series in equation (A12) can always be neglected, its

largest value being of the order of magnitude 10717, Then series (a12)
cani be used to evaluate S*(a,0) to a high degree of accuracy and
S(a,0) can then be determined quickly with the known value of S¥(a,0).

The result (A12) will be established by converting equation (411)
into an infinite integral and evaluating the result. A check upon the
work is possible by means of a contour integration; this will be dis-
cussed briefly later.

To convert equation (Al1l) into an integral representation, the
following result from the theory of Bessel functions is needed (refer-
ence 6, p. 65)

f: e™™ g _(at) dt = 1/\fm2 + a2 (413)

where Jb is the Bessel function of the first kind of order zero;

another result needed is

L/1 e gt = 1/m (A1l)
0
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obtained by setting a = O in equation (A13), or by direct means.
Combination of equations (413) and (All) yields

(1/m) - (1/\|m2 + a2) = j:o [ - 3,(at) oM gt (A15)

Substitution of equation (A15) into equation (A1l) yields

s*(a,0) i [(—1/m) - (]_ /W)

m=1,3,...

fm< 5 e—mt>(1 - Jo(at)) dt (A16)
0 \m=i,3;---

oMb - o b1 + e 2b 4 ohb 4 ..

(e‘t)/(l - e-2t) (summing the geometric series)

1 / (et - e-t)

1/(2 sinh t) (417)

]

Insertion of equation (A17) into equation (A16) yields

1 ”[1—J(ét):|

Equation (418) is the required integral representation of S*(a,O).
This integral can be simplified by using the result (reference 7,

p. 136):

1. % - 2t Z.o (—1)n+]/(t2 + n252) (A19)
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Insertion of equation (Al9) into equation (418) yields

5*(a,0) = %J: [1 - Jo(atﬂ El/t) - 2% n=l,Z;,--- (—1)n+}/(t2 + nznzﬂ dt

(A20)

One of the typical integrands to be considered in equation (A20) is
of the form tJo(at)/(t2 + n2n2); but

J; ) E:Jo(at)/(tz + n2n2):l dt = Ky(nna) (a21)

is a known result (reference 6, p. 78), where K, is the modified

Bessel function of the second kind of order gzero. This function is
tabulated, for example, in Watson's "Bessel Functions" from O to 16 at
intervals of 0.02 (reference 8, table II, pp. 698-713). The asymptotic
formula for K (x) is (reference 6, p. 55):

K (x) = e {n/2x { - Ez/ll(Bx] + B12 x 32)/2!(8;(){] - }

The usual series representation (reference 6, p. 22) may be used for
small values of x.

(a22)

If the smallest value of a2 is 200, then a is approximately 1.

For the case n =1, e M@ = e~ = 10719 (approximately). This is
the largest exponential term that can occur and shows that all contri-
butions of the form of equation (421) will be entirely without influence
if numerical work to six or seven places is required. However, if a
were small (a = 1, or less) it would still be a simple matter to
include terms such as those in equation (A21). With the terms (A21)
considered negligible, equation (A20) may be rewritten as

S*(a,0) = (1/2)f) (1/sinh t) —Ero(at)/t:] dt (423)
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The integral in equation (A23) is far simpler than that in equa-
tion (A18) since the term sinh + in equation (A23) has now been sepa-
rated from Jy(at). The integrals in equations (418) and (A23) converge

at t = 0, and both infinite integrals exist. The integral (A23) can
be treated as two integrals, one over the range O St £ 1/a and another

over the range 1/a £t < . Let these integrals be S;* and So¥,
respectively; then

1/a
Sy =(1/2)f {(l/sinh £) - Elo(at)/iz] at
0

=(1/z)f1/a [ (1/sinh +) - (1/4) | dt+(1/2)f/a [L-9oat)] /v b at
0 o)

(a24)

The term 1/t was added and subtracted in equation (A2}) so that both
integrals still converge at t = 0. After an integration by parts, the
second integral of equation (A2l4) becomes (using dJ,(x)/dx = —Jl(x))

t=1/a

{1-/2)[1 - Jo(at):l log, (ati} - %j; Jp(at) log, (at) dt

t=0
. (425)
The first term of equation (A25) is zero at both limits. The first inte-
gral of equation (A24) may be written as

1/a
lim (1/2)f [(l/sinh t) - (l/tZl dt =
€

< —>0
. t=1/a
E 1__1; . (1/2) log, Eanh (’0/2)/€|t=G

which is equal to

(1/2) logy |(tanh 1/2a)/(1/a)] - (1/2) loge (1/2)
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since the limit of (tanh ¢)/¢ is unity as ¢ approaches zero. Then,
59* = (1/2) log, tanh (1/2a) + (1/2) logg a +

. 1/
(1/2) log, 2 - (a/Z)f * Jl(at) log, (at)-dt (1}26)
0

The remaining integral is

Sp* = (1/2)J;;a {(1/sinh t) - [Jo(at)/t:l} dt

= (1/2)fm (1/sinh t) dt - (1/2)f°° Ero(at)/t:l dt  (427)
1 1/a '

a

Since both integrals of equation (A27) converge separately-at the
lower limits, the integrals may be considered separately. Integration
of the second integral of equation (427) by parts leads to the result

t=co s
|:(—1/2)J0(at) log, at:l v1/a - (a/2) e Jy(at) log, (at) dt (a28)

The first term of equation (428) is zero at both limits. The first
integral of equation (A27) is

[:(1/2) log, tanh (t/2Z| :Z::/ = (-1/2) loge tanh (1/2a)
= a

Addition of S{* and S,* yields

I

5*a,0)

Sl* + 32*

%—-loge (2a) - (a/2)f Jp(at) log, (at) dt (429)
0
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The terms containing tanh 1/2a cancel and the two integrals can
be combined into one integral. Now (reference 6, p. 76),

o0 [« ]
ak/; Jl(at) log, (at) dt =k/; Jq(x) log, x dx

-y + log, 2 (setting x = at) (A30)

where ¥ = Euler's constant = 0.577 216 - - -. Insertion of equa-
tion (A30) into equation (A29) and simplification yield

5%(a,0) = (1/2)y + (1/2) log, a (A31)
Terms of the type in equation (A21) have been neglected in equation (A31).

The exact result (A12) is valid for all a >0 and is repeated here for
convenience:

$*(a,0) fo: [(1/m) - (1/\[?+—a2>:|

m.__1,3’ cee

0

(1/2)y + (1/2) log, a + E:: (--1)n+l K, (nma) (432)

n=1,7, -

General Case S(a,b) for a #0 and b #0

The use of equation (A32) permits S*(b,0) - S*(a,0) to be written
as (a >0, b >0):

—12:--- <1/4m2 + a2>__ (1/\’m2 + b2> = (1/2) logg (b/a) .

o)

n=1,Z[,' (-1)™ [ko(amb) - K, (nna) ] (433)
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The series (A33) would be needed in the evaluation of the general
series S(a,b), which is a natural generalization of equation (25). It
is now possible to evaluate equation (A33) in preciselrr the same way as
the series (A1) was evaluated for the case of a # 0, b = 0. The case
of a=0, b=0 has already been treated. Only the case of a =b # 0
must be considered to complete the discussion of equation (433). Equa-
tion (A33) can be written as

5(a,b) = l:l/(bz - 32):] m=1§n,-.. n=l§”,-q- {B/(mz ot 322__] )
[/ o2 2]} | )

The auxiliary series for equation (A3lL), which corresponds to equa-
tion (A11) in relation to equation (A9), is

5%(a,b) = 1/(12 - a2) _f; (1/m>- (1/\[m) (435)

m_l’ PR

Application of equation (433) yields

(A36)
It is possible to let b approach a in equation (A36) to obtain

o0

S¥a,2) =g |G/ ¢ (D) Ky (na) (437)
e

since the expressions of equation (A36) define the derivatives of (1oge a)
and of Ky(nna), respectively, with dK,(x)/dx = - K;(x). The func-
tion Kl(x) is the modified Bessel function of the second kind of order
one and is also tabulated in Watson's "Bessel Functions" (reference 8,

table II, pp. 698~713). Thus equations (A37) and (A33) can in general be
used to evaluate equation (Al) for all values of (a,b) which are not
both zero.
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The result (A33) can be checked by a contour integration over the
contour shown in figure 7; the details will be omitted. The proper -
integral to consider is

(1/h)f {I:Ho(l)(az) - Ho(l)(bzil/(sinh z)} dz
C

The contribution over the large semicircle approaches zero as R —> o
while along the real axis the result is

%E {[Jo(at) - JOA(bt)]/(sinh t)} dt

which is the integral representation of equation (A33). The residue

at 2z =0 can be shown to be (1/2) log, (b/a) while the poles at

z = nni (n=1,2,--+) contribute residues which are the terms of the
infinite series (A33). This method shows why the original integral (A18)
could not be evaluated -in this manner, for it is not possible to let a
or b approach zero in equation (A33). The case a = O must be treated
separately.

The method developed here for the evaluation of equation (Al) was
not that used at the start of the calculations but was completed later
and then used for all calculations. The method originally used may be
summarized briefly as follows: Since equation (A3) permits an explicit
summation of equation (Al) by rows, a definite number of rows (actually, 15)
was summed quickly by this method. By symmetry that is also the sum of
the first 15 columns. To illustrate the procedure graphically (see
fig. 8) let the entire quadrant represent S(a,0). Summation of the rows
is represented by the shaded area 125678, and summation of the same ‘num-
ber of colums, by 123458. The terms 1258 are counted twice and must be
found separately. Thus, the sum of the terms contained in the L~-shaped
region 12345678 is known; if this sum is subtracted from the series
itself, the remaining terms correspond to the unshaded area 456, This
remainder of the series was approximated by the integral

o © dx dy
w Ju (72 (@ + y2 + a2)

where the lower limits wu were chosen appropriately, depending upon the
number of columns taken initially. This integral was used to determine
upper and lower bounds for the remainder of the series. Much of the
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work was directed toward obtaining a useful value of the integral for
large values of a. In this way, bounds on S(a,0) were computed. This
established an upper limit to the percentage error in the results.

One such calculation led to the values (a2 = 1,0,000):
Upper bound: 56.575 x 10-6
Lower bound: 55.912 x 10"6

The method using equation (A12) yields the value 56.0551 x 10~0
which lies between the calculated values of the upper bound and lower
bound.

Generalization of Series S(a,b)

The series

S(a,b,c) = E:: }::j l/(m? + ¢2p? ; az)(m2 + ¢2n? + b2) (A38)
m=1,3,°+ n=1,3,-- -

is the generalization of series (A1) to the plate of rectangular shape;
c =1 corresponds to the case of a square. Equation (A38) may be
written in the form .

S(a,b,c) = l/(b2 - a2) }fﬁ Zfi . [;/sz + c2n? + azi] -

e+ i T

The summation with respect to m may be carried out as before; the use
of equation (A3) yields

[ee]
Z tanh (m/2 c2n? +. a2
S(a’b’c) = ___._.n___ ( / ) —

h(b2 - a2) n=1,3,--- chnz + a2 .

tanh (1/2) \c2n2 + b2
\’c2n2 + b2 (a40)
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In this case, the auxiliary series is

S*(a,b,c) =;c]:'- _1i“. (l/\}nz + 32/c2> - (1/\/112 + b2/c2) (A)-ll)

which can be evaluated by equation (A33). The case a =b can be
treated as before by the use of equation (A37). Thus the general
series (438) can also be evaluated by the methods already developed.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., June 19, 1951
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CATOOLATED DEFLEOTTONS OF
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SUPFORTED SQUARE SANDWICH FLATE UNDER UNIFORM LOAD

[Aluminum faces with B = 10 x 106 psi and balsa core

0O a 12 A70 nad (rafoarannas 1)

h nTMTA S
PV ke WAL No L gV MOL \LVLULOLIVO /s arvlliaps

gbsolute error, 4.7 percent]

‘Thickneas | Thickness Unit load a f’:il_‘-eszi Calculated
Plate of faces of core opan on plate | d8fleotdon | 4orjection | Fercent
(in.) (in.) \1n. )} (PBi) \rer?iinge 3) (in.) arror
AB-L 0.032 0.51) 4,20 0,5408 0.168 0.171 1.8
AB-3 ,032 .390 L) .20 L7211 .359 377 5.0
AB-) 0.032 0.501 38.04 0.7211 0.123 0.134 8.9
AB=-3 .032 .381 38.04 L6450 .189 .198 4.8
AB-L 0.032 0.507 32.0L 0.7211 0.072 0.069 -4.2
AB-3 .032 .385 32,04 .7211 12 111 -.9
AB-), 0.032 0.503 28.0L 0.5768 0.035 0.03L -2.9
AB-3 .032 .388 28.0L L7211 .065 .066 -1.5
AB-)y 0.032 0.513 21.97 1.803 0.0460 0.0422 -8.3 &
AB-3 .032 .390 21.97" 1.082 .ol .0),02 -8.9 =
; =
*:EE;E:’ =
N

185



TABLE II

COMPARISON OF TESTED AND GALCULATED DEFLECTIONS OF A SIMPLY

SUPPORTED SQUARE SANDWICH PLATE UNDER UNIFORM LOAD

Alumnum faces with E = 10 x 10° psi and cellular
cellulose-acetate core with G, = 11,860 psi
(reference 3); average absolute error, L.9 percen@]

Thickness | Thickness Unit load Test Calculated

Plate of faces of core Span on plate deflection deflections Percent

(1n.) (in.) {in.) (pei) (ref?iznie 3) (11.) errOT
AC-L 0.032 0.1493 Ly .20 0.5047 0.197 0,186 -5.6
AC-3 ,032 .37 4,20 L5047 .316 .306 -3,2
AC-) 0.032 0.489 38,04 0.5768 0.132 0.121 -5.0
AC-3 .032 .367 38,04 5768 .210 .203 -3.3
AC=L 0.032 0.489 32.04 0.7211 0.090 0.083 -7.8
AC=-3 .032 .36L 32.04 L7211 46 .137 -6.2
AC-L 0,032 0.1,93 28.0L 1.010 0.073 0.072 -1.L
AC-3 .032 .370 28.0L L7211 .08) .082 2.l
AC-L 0.032 0.19] 21.97 1.082 0.0378 0.0339 -10.3.
AC-3 ,032 367 21.97 L7211 .035Y .0359 1.4
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TABLE III

COMPARISON OF TESTED AND CALCULATED DEFLECTIONS OF A SIMPLY

SUPPORTED SQUARE SANDWICH PLATE UNDER UNIFORM LOAD

F@luminum faces with E = 10 x 109 psi and corrugated
" paper honeycomb core with @, = 58L0 psi (refer-
ence 3); average absolute error, 6.5 percent]

Thickness | Thickness A Unit load A;szfh . Calculated Pt
Flate of faces of core (;;“7 on plate (‘“}*““*““ ) deflection | - °rcent
(in.) (4n.) : (pei) re ?ignge 3 (in.) error
aF_) 0.032 0.755 4,20 0.7211 0.110 0.11} 3.6
AP-3 .032 637 4,20 7211 158 155 -1.9
APy 0.032 0.751 38.0L 0.7211 0,072 0,0653 -9.3
AF-3 .032 632 38.04 L7211 087 .0890 2.3
AF-Y 0.032 0,752 32,04 0.7211 0.0l11 0.035 -15
AF=3 .032 632 32.04 L7211 .08 OoL7 -13
AR-Y 0.032 0.753 28,04 0.7211 0.02)y 0.021 -12
AF-3 .032 .633 28.04 L7210 .030 .029 -3.3
AF-) 0.032 0,754 21,97 2.88L 0.0391 0.038} -1.8
AF-3 .032 636 21.97 2.163 .0368 .0359 -2.1
*:EEEE;;P
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Figure 1.- Sandwich plate.
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] R = 800 / \
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LX
Figure 2.- Deflection of square sandwich plate with strong core under

. L., .
uniform normal load at y = —EX .
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Figure 4.- Maximum deflection of square sandwich plate with very weak

core under uniform load.



Figure 5.- Maximm deflection of square sendwlch plate with very weak
core with concentrated load et center.
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for summing S(a,0).




