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SUMMARY

An analysis method and a design method are developed for one-
dimensional, compressible flow with friction, heat transfer, and area

 change in vaneless diffusers with arbitrary profiles in the axial-radial

plane. The effects of mixing losses due to nonuniform flow conditions
at the impeller discharge are not considered. In the analysis method
the variations in fluid properties, including the velocity and flow
direction, are determined as a function of radius for a prescribed vari-
ation in diffuser wall spacing with radius. In the design method the
variations in effective diffuser wall spacing and in the fluid proper-
ties are determined as a function of radius for an arbitrary prescribed
variation in one fluid property. For efficient diffuser designs the
fluid property selected and the manner in which its variation is pre-
scribed will depend on viscous flow effects that are considered in
boundary-layer studies but are not investigated in this report.

As a result of numerical examples it is concluded that: (1) Even
with relatively low friction coefficients and neglecting mixing losses
near the impeller tip, the friction losses in most vaneless diffuser
designs are considerable, as indicated by computed diffuser efficiencies
in the low 80°'s, and these losses result from the usually large ratios
of wetted surface to flow area in vaneless diffusers. (2) Vaneless
diffuser efficiencies can be improved by increased compressor flow rates
for a given impeller tip radius so that the diffuser walls can be spaced
farther apart (thus, reducing the ratio of wetted surface to flow area)
without increasing the length of the flow path in the diffuser.

INTRODUCTION
In radial- and mixed-flow centrifugal compressors the vaneless

diffuser is an annular duct (fig. 1) immediately following the impeller
and of increasing radius in the direction of flow. The high tangential
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velocity of the fluid entering the vaneless diffuser from the impeller
decreases with increasing radius and, because the tangential velocity is
generally the largest velocity component at the impeller discharge, the
vaneless diffuser is an effective means of diffusing the fluid, that is,
of converting the velocity head to static pressure. The principle by
which this conversion is effected is demonstrated by the case for fric-
tionless flow in the absence of heat transfer. For this case, and
assuming that flow conditions are uniform in the tangential direction,
the moment of momentum of the fluid is constant so that

QT = constant

from which as the radius r increases the tangential velocity dg
decreases and therefore the pressure rises (assuming relatively small
changes in other components of velocity).

Among the advantages of the vaneless diffuser is the fact that
choke flow occurs only if the meridional velocity qp (velocity comum-
ponent normal to the annulus area) is sonic. This condition usually
corresponds to such high flow rates that choke flow occurs in the
impeller, instead of the diffuser as is the usual case for vaned dif-
fusers. The compressor operating range is therefore wider with vaneless
diffusers.

Another, and perhaps the most important, advantage of the vaneless
diffuser is the fact that if the tangential velocity at the impeller
discharge is supersonic the tangential velocity decelerates from super-
sonic to subsonic velocities without shock losses.

Opposed to these several advantages of the vaneless diffuser is the
disadvantage, for aircraft propulsion, of a large frontal area. This
disadvantage may be circumvented to some extent by the use of semivane-
less diffusers (fig. 2) in which, to diffuse the fluid more rapidly and
thus decrease the frontal area of the compressor, vanes are placed in
the diffuser following a vaneless section in which the velocity is
reduced from supersonic to subsonic magnitudes. Thus, shock losses are
avoided by diffusing the flow to subsonic velocities in the vaneless
diffuser and the frontal area of the compressor is somewhat reduced by
the more rapid diffusion in the vaned section.

In order to analyze the performance of vaneless and semivaneless
diffusers and in order to design these diffusers for optimum performance
(including the proper setting of the vane angles in semivaneless dif-
fusers), it is necessary to have adequate theoretical methods of pre-
dicting the variation in flow characteristics through the diffusers.
These methods should include the effects of diffuser geometry, com-
pressibility, heat transfer, friction, and mixing losses caused by the
nonuniform flow conditions at the impeller discharge.
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Published work on the analysis and design of vaneless and semivane-
less diffusers is not extensive (references 1 and 2, for example). In
reference 1 a one-dimensional method of analysis is developed for incom-
pressible flow with friction but no mixing losses in vaneless diffusers
with constant wall spacing and pure radial flow., 1In reference 2 a one-
dimensional method of design is developed for compressible flow with
friction. The method assumes the flow path is a logarithmic spiral and
neglects heat transfer and mixing losses.

In the present report methods of analysis and design, carried out
at the NACA Lewis laboratory, are developed for one-dimensional, com-
pressible flow with friction, heat transfer, and arbitrary variation in
passage height in vaneless diffusers with arbitrary curvature in the
meridional (axial-radial) plane. The effect of mixing losses is not
considered., In the analysis method and in general for the design method
the flow direction, or flow path, is not specified but is a dependent
variable determined by the solution. In the design method the variation
in diffuser wall spacing with radius is determined for a prescribed
variation in one fluid property. For efficient diffuser designs the
selection of the one fluid property and its optimum prescribed variation
will depend on viscous flow effects that are considered in boundary-
layer studies but will not be investigated in this report. The methods
are an extension of the work in reference 3 for one-dimensional gas flow
in ducts with prescribed flow direction.

THECORY OF METHOD

Differential equations are developed that relate the change in
dependent variables with radius to the design and operating character-
istics of the vaneless diffuser. The application of these differential
equations to the analysis of flow in vaneless diffusers and to the
design of vaneless diffusers for prescribed distributions of flow condi-
tions with radius is described in a later section.

Preliminary Considerations

Coordinate system. - The coordinate system for a point on the mean

surface of revolution generated about the axis of the compressor by the
center line between the front and rear shroud of the vaneless diffuser

is shown in figures 3 and 4. The cylindrical coordinates r, 6, and

z give the radial, tangential, and axial positions of the point, respec-
tively. The effective diffuser height h (fig. 3) measured across the
passage in the direction normal to the mean surface of revolution is a
Bunction of ¢« e ionly
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h = h(r) (1)

(A1l symbols are defined in appendix A.) The effective height of the
diffuser at each point on the mean surface of revolution is equal to the
geometric height of the diffuser minus the assumed displacement thick-
ness of the boundary layer on the diffuser walls. Use of this effective
height rather than the geometric height is required by continuity con-
siderations in order to give the proper average value of the velocity
component normal to the cross-sectional flow area of the vaneless dif-
fuser. Only the effective height of the diffuser is considered in this
report; no investigation is made of the boundary-layer displacement
thickness, which can be assumed or estimated from boundary-layer theory.

2391

The slope of the center line between the front and rear shroud of
the vaneless diffuser determines the angle a (fig. 3), which is a
function of  r only,

@ = tan™* %E = a(r) (2)

Assumptions. - The principal assumptions of the analysis and design
methods are that flow conditions are uniform across the vaneless dif-
fuser along the height h and that flow conditions are uniform in the
tangential direction 6. Thus, the flow becomes one-dimensional, being
a function only of the radius along the mean surface of revolution. If
the boundary-layer profile is ignored, the accuracy of the assumption
that flow conditions may be considered uniform across the vaneless dif-
fuser in the direction of h depends on: (1) the angle a, (2) the
derivative of o with respect to r, (3) the derivative of h with
respect to r, and (4) the ratio h/r. For values of o approximately
equal to 90° the assumption is accurate provided dh/dr and do/dr are
small. For values of a 1less than 90° the inaccuracy of the assumption
will depend on the ratio h/r and the derivative da/dr; for the
limiting case in which h/r and dm/dr approach zero the assumption is
good for all values of a. In practice the values of h/r for vaneless
diffusers are usually small and the mean shroud curvature da/dr should
be small to avoid boundary-layer separation. Thus the assumption of
uniform flow conditions across the passage along h should be accurate
for all values of a encountered, except for variations due to the
boundary-layer profile.

The motion on the mean surface of revolution is assumed to be
steady and, because flow conditions are assumed to be uniform in the
tangential direction, mixing losses resulting from nonuniform flow con-
ditions in the tangential direction at the impeller discharge are neg-
lected. These losses are relatively high, but experiments (reference 4,
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for example) indicate that they take place in the immediate vicinity of
the impeller discharge and may be neglected in the remainder of the
vaneless diffuser. The effects of these mixing losses can be accounted
for (approximately) by adjustments in the flow conditions (pressure,
density, velocity, and flow direction, for example) at the diffuser
inlet,

Velocity components. - The velocity q at a point on the mean sur-
face of revolution is tangent to the surface and has components Qs
dg, @nd gy in the r-, 6-, and z-directions, respectively. 1In
this analysis it is convenient to consider the meridional velocity Q%
(instead of 4, and dy), which is tangent to the center line between
the front and rear shroud of the diffuser in the meridional plane
(fig. 3) and is related to g, -and* ug "by

Ay = A9 + 9, (3)

The flow direction B on the mean surface of revolution is related to
an and gy by (fig. 5)

: q
tan B = b (4a)
Ay
from which
dg = a4 sin B (4b)
9y = 4 cos B _ (4c)

Fluid particle. - A fluid particle on the mean surface of revolu-
tion is shown in figure 4. This particle has the dimensions 1 d9 and
dr/sin a on the surface of revolution and the height h normal to the
surface.

Outline of method. - The state of the fluid at any point (r) on the
mean surface of revolution is described by three thermodynamic proper-
ties, by the fluid velocity, and by the flow direction. These five
properties can be determined from five fundamental relations: (l) con-
tinuity, (2) equilibrium in the direction of q (meridional equili-
brium), (3) equilibrium in the direction of g (tangential equili-
brium), (4) equation of state, and (5) the heat-transfer equation. In
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addition to these five fundamental relations certain definitions are
required to express the resulting equations in terms of the desired
properties. The properties that will be used in this analysis to
describe the state of the fluid will be the static pressure p, the
static density p, the total temperature T., the local Mach number M,
and the flow direction B.

Mach number. - The local Mach number M is defined by

2
M2=7g§*T (5)

where 7y 1is the ratio of specific heats, g 1is the gravitational
acceleration, R¥ 1is the gas constant, and T is the local, static
temperature. From equation (5)

B T T (50)
W oar! P a0 oar
Total temperature. - The total temperature Tt is defined by
q2
Ly lioh ors
p
or

,/ _l

t o = J

where J 1is the mechanical equivalent of heat and c is the specifie
: P
heat at constant pressure. From equation (6)

-

1 4T / M \\161\42
—_— = — (6a)
1k dr

Wohar i | M2
Ve
:

=

From equations (5a) and (6a)
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1 dT,
—_—— (6b)
Tt dr

+

1 i \1@42

Fundamental Relations
Continuity. - The continuity equation for one-dimensional com-
pressible flow in vaneless diffusers is

pqmrh = constant

from which

=0 (7)

where changes in r are understood to occur along the mean surface of
revolution.

Meridional equilibrium. - The equation for meridional equilibrium
of a fluid particle (fig. 6) in the direction of q.. on the mean sur-
face of revolution is obtained from a balance of the pressure forces,
shear forces, and inertia forces (appendix B)

2
g dp chg cos B qg dq (8)
i 5 — _q—_
p dr h sin o i . dr
where Cp is the skin-friction coefficient.
Tangential equilibrium. - The equation for tangential equilibrium

of the fluid particle in figure 6 is obtained from a balance of the
shear forces and the inertia forces (appendix B)

S,
¥ cpd sin B 2 dgg Ul
oy qm a5 (9)
Hosdn.a dr 12

Equation of state. - By definition a perfect gas satisfies the
equation of state
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p = ER*T (10a)
from which

(10D)

g |
RlE
!
Bls
+
Ml
=

1
P

Heat-transfer equation. - The heat-transfer rate to the diffuser
casing must equal the heat-transfer rate from the fluid. The heat-
transfer rate to the diffuser casing is given approximately by

(11a)

£ t -
dQ = 2h' (T - T,) 2xr r

where h' is the coefficient of heat transfer, T, is the wall, or
diffuser casing, temperature, and dQ is the heat-transfer rate. Equa-
tion (1lla) assumes that the recovery factor at the wall is 1.0 (refer-
ence 3, p. A-328).

The heat-transfer rate from the fluid is given approximately by

dr,
dQ = pg, 2nrhe, = dr (11b)
Finally, from equations (1lla) and (11b)
1 'ar 2h! P
PE drt 21 % - <E‘E - > (110)
Tt PY, cp sin o +

Equation (11c) gives the change in total temperature with radius as a
function of the heat-transfer coefficient h'.

Reynolds' analogy. - An approximate value for h' in equation (11c
can be obtained from the Reynolds® analogy between friction and heat
transfer (reference 3)

h' Sg
2

2591
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From which equation (1llc) becomes

1 dE G EBC Bi/D
e attg L <—W- > (12)
Tt dr h sin a Tt

Equation (12) gives the change in total temperature with radius as a
function of the skin-friction coefficient and the ratio of wall tempera-
ture to total temperature of the fluid.

Review. - A review of the theory up to this point indicates nine
unknowns and nine equations for the analysis method., The unknowns are:
p, ps T, Ty, M, q, q,, a9, end B. (For the design method h 1is
unknown ang replaces one of these nine quantities, which is then speci-
filedigs a-function of ~r. The angle - is a known functicnier =nifor
both analysis and design methods.) The nine equations are:

Equation

Tangential velocity (4v)
Meridional velocity (4c)
Mach number (definition) (5a)
Total temperature (definition) (6a)
Continuity fody
Meridional equilibrium (8)
Tangential equilibrium (9)
Equation of state (10b)
Heat-transfer equation (11c) or (12)

The solution for the analysis method consists in combining the nine
equations  to obtain three differential equations involving three
unknowns: T,, M, and ' B. These three differential equations, in
turn, can be combined to solve, by numerical methods, for Tt’ M, and
B successively. (For the design method an auxiliary equation is devel-

oped for % %% in terms of the prescribed‘fluid property as a function

of r. The three unknowns T,, M, and B are then obtained in the
same manner outlined for the analysis method.)

Final Equations

Auxiliary differential equation. - An auxiliary differential equa-
tion for the pressure p in terms of Ty, M, eand B 1is obtained from
the equilibrium equations, which, after expressing gy and a9, in
terms of q end B, combine to give
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2
5% et 15849 ce sec B
e sa A Wpic: (13a)
pqz dr 2q2 dr h sin o
But,
oa® _ 7pg
= = = ypM? (13Db)
g 7 gR*T
so that, from equations (6b), (13a), and (13b)
1 dp M 1 1 af 1 ar, 2t
- — = - — + — + (13c)
P 4R 2 5 Z%l M2 M @R T, dR H cos B
where
c r
RPN v phiy
T sin a (hT> (134)
and where
P==X \
pO
M > (13¢)
;i
and
h
H = — = H(R)
hip

where P, is the compressor-inlet stagnation pressure, T is the
impeller tip radius, and is the effective diffuser he?ght at the
impeller tip. ZEquation (13c) is an auxiliary differential equation that
relates the change in P +to the change in 'I‘t and M2 with radius R.

Total temperature. - The change in T4 1s given by equation (11c)

or (12), which from equations (13d) and (13e) become

23581




NACA TN 2610 11

L, dwg Y 2h! <EE ) > ii (142)"

Ty dR pqucp sin o Tt

and, for the case of Reynolds' analogy,

Sl ot (EE : %> (14v)

TRy H cos ST

16¢€2

Mach number. - In order to determine the differential equation for
the Mach number squared it is first necessary to express the second term
of the continuity equation (7) in terms of known variables. From the
meridional equilibrium equation (8) together with equations (4) and

(13b)
2 2
i dqm tan™B sece Bl dp cy sec B ( )
L = & —_— - — 15a
Uy dr T 7M2 Padn b gin o

The first term of the continuity equation (7) is expressed in terms of
known variables by the equation of state (10b) together with equation (Ba

y-1
1 dp 1 dp 1k &Tt 2 Mz gt dMZ
b B o T S T (15b)
P dr P dr Tt dr - Z%_ MZ dr

Substituting equations (15a) and (15b) into the continuity equation (7)
and combining it with equations (13d) and (13e) result in

2 L8
1 ap yM 2 Ny oaf 2 ar,
Par yM° - sec?p |\1 , 2-1 aR ;s ST, dR

M

¢ 1 dE sec? B

: —_— 4t = — 4 —
H cos B H dR R
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, Tinally gives

B8

which, combined with equation (13¢) to eliminate %

1 af £ - (1 + 7M® - tan®p) t

maslip

M aR MZ = seczB 2T, dr
¢ LidH- Tegeci,p
I L S W SRR o (15¢)
H cos B H dRr R

Equation (15c) determines the change in M? with radius R along the
I dT

mean surface of revolution in terms of — ——, Wwhich is known from
MadR
17

equations (14a) or (14b).

Flow direction. - The differential of the flow direction B is
obtained from equation (4a)

S d Sbane B Ak dgg il dqm

tan B dr dg dr q, dr

which from the tangential equilibrium equation (9) and equation (15a)
becomes

L d tan B seczB P seczB

tan B R yM* P arR R

and from equations (13c) and (15c¢)

2
e datan B __sec B : <\1 X Py~ 1 W _E_EEL +
tan B dR M2 - sec™B 2 Ty dR
; LG R i O
E+(71)Mﬂﬂcosﬁ H AR R el

Equations (14a) or (14b), (15c), and (16) are three_differential equa-
tions that can be solved simultaneously for Tt’ Ma e Sand S8

2594
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Pressure. - After the varietions in T, Mz, and B with radius
R are known the pressure P can be obtained from the continuity equa-

where the subscript 1 refers to known conditions (appendix C) at the
diffuser inlet (where R 1is equal to 1.0). TFrom the equation of state
(10a) and from the definition of Mach number (equation (5)), equa-

tion (17a) becomes

P
-rIT:'L- M:I_'\]E:_L cos Bl rThT = % MWCOS B rh
i3

Finally, from equations (6) and (13e)

& T
e Mé)
z

(17b)

P, RHcos B M
1 (L), (1

Equation (17b) determines P from the known conditions at the diffuser
inlet and from the known values of T, , MZ, and B determined by the
simultaneous solution of equations (lﬁa) or (14v), (15c), and (16).

After the quantities P, MZ, T , and B are known, all other
quentities (p, T, q, gy, and gg) can be determined directly from
equations (4), (5), (6), and the equation of state (10a).

Flow path. - The flow path on the mean surface of revolution in the
vaneless diffuser can be obtained from the known variation in tan B
with R given by the solution of equation (16). From figure T whiiich
shows the flow path on a developed view of the mean surface in the
vicinity of R,

tan iz R dé
P dR?sin a
or
_d_G Ed tan B (18)

drR - R sin o

Because B and a are known functions of R, equation (18) determines
the flow path on the mean surface of revolution.
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Influence coefficients. - In some analysis problems it may be con-
venient or desirable to solve directly for one or more of the other
dependent quantities rather than Ty, Mz, and B. Also, in the design
problem it may be desired to specify one of these quantities as a func-

tion of R and to solve for the required value of % %%. For these

cases the change in the dependent variables P, p, T, q, 50 sand Fdq
with radius R along the mean surface of revolution, as well as the
change in ng M®, and B, must be expressed in terms of the known
A t ; : 1
quantities T, @ (given by equations (14a) or (14b)), CRY TR
and % %% (not known in the design problem), which quantities are

multiplied by influence coefficients. Thus, if X 1is any one of the
dependent variables,

AR et y-1 2>1_ t
(M secp) === I; <l + MR

AN PO
T Iz (19)

gl el
i . AT

M~

where Li through I4 are influence coefficients that are determined
in the same way that equations {(15c) and (16) were developed. The
influence coefficients for various dependent variables X are given in
the following table:

Influence Coefficients

X
Il IZ 15 14
P 7M2 7M2 l+(7—l)M§_} —7M2 -7M25ec23
o secZB M?(y seczﬁ-tanZB) M —Mzseczﬁ
7M2- sec®p (7—1)M2(7M2—tan26) —(7—1)M2 —(7—1)Mzseczﬁ

T
2 2 - 2 2 A &
e tan B-1-yM 2<1+Z§lM2)(tan B -yM ) 2(1+Z§£M2) 2(1+ Zgl Mz)seczﬁ

2 a
q2 -2 2(tan B -yM ) 2 2 seczﬁ
a -seczﬁ Mz(tanzB 3y seczﬁ) sec?p secZB +M2tanzﬁ
m <,
dg 0 secZB - Mz 0 seczB - M2

2
tan B sec B sec?p 1+(7-1)M§} —secZB —Mzseczﬁ

T6¢2
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If M is equal to sec’p, the left side of equation (19) is

equal to zero because % g% cannot be infinite. For this condition

(M2 = seczB), which occurs when q_ 1s equal to the local speed of
sound, that is when choke flow occurs (appendix D), equation (19)
becomes

% 1 ar 2 ¢ 1 dH 2
it O S et W S :] cnd S/ LG SBREE
e neath) T, & A Tl Radle e e B IR R 5
(19a)

where the influence coefficients given in the table have been substi-
tuted in equation (19) with M2 equal to sec?p. (All sets of influ-
ence coefficients result in the same equation (19a).) Equation (19a) is
a condition that must be satisfied at the location of choke flow in a
vaneless diffuser. In particular, if heat transfer and friction are
absent, equation (19a) becomes

d(ER) _ ~tan’p

L
ER ~dR R

Because HR 1is directly proportional to the flow area, it is seen that
choke flow does not occur at the throat, or position of minimum flow area

(déRER = O), but at a point where the flow area is decreasing in the

direction of increasing R.

Small-stage efficiency. - The small-stage, or polytropic, efficiency
at a given radius R on the mean surface of revolution in a vaneless
diffuser is defined as the ratio of the ideal (ignoring friction and heat
transfer) to the actual differential change in static enthalpy with
radius required to accomplish the actual differential change in static
pressure with radius. This definition leads to the following expression
for the small-stage efficiency 7 (appendix E)

1. = (20a)
ld£+_7_<l 7_'1_M2>Lth+_ZM2§
P drR G T, &  H cos P

Equation (20a) indicates that in the absence of heat transfer
(th/dR = 0) and friction (§ =0) the small-stage efficiency is 100
percent. Also, for heat transfer from the fluid to the diffuser walls,
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T
AR
small-stage efficiency. Thus, in the presence of heat transfer, the
small-stage efficiency, as just defined, is not a good measure of the
performance of vaneless diffusers in that it is not a measure of ‘l:h.edT
magnitude of the losses involved. In the absence of heat transfer Eﬁz

is negative and therefore results in an apparent increase in the

is zero and equation (20a) can be rearranged to give (appendix E)

t (2 - sec®p) z
n=1- > (20b) N
2 dH H sec“B
¢ (7M2 - tan“B) - cos B =+ T >
If M2 is equal to sec?d (choke flow condition, appendix D), the
efficiency given by equation (20b) becomes indeterminate, because the
numerator of the fraction is zero and, from equation (19a), so is the
denominator.,
NUMERICAL PROCEDURE
A specific numerical procedure is outlined for both the analysis -

and design problems, however, any other standard numerical procedure can
be used. In the analysis problem the variation in fluid properties

with R are determined for a specified geometry of the vaneless dif-
fuser. In the design problem the variation with R in one of the fluid
properties is prescribed and the remaining fluid properties together
with the variation in diffuser height H with radius R are deter-
mined. The numerical procedures for both the analysis and design prob-
lems are essentially the same but differ in detail and are therefore
discussed separately in this section.

Analysis Problem

Primary quantities. - In the analysis problem the variation with
R in three primary quantities (T, Mg, and B) are obtained from
three differential equations: (14a) or (14b), (15c), and (16). These
equations are nonlinear and it is necessary to solve them by numerical
methods. The suggested stepwise procedure is as follows:

(1) The values of T,, Mg, and B at the diffuser inlet are
estimated from the impeller design and operating characteristics
(appendix C).




3S

16%2

NACA TN 2610 17

(2) At any radius R, if Ty, M°, and tan B are known, the
change in T (that is, ATt) for a small increase in R (that is,
AR) is computed directly from equation (l4a) or (14b).

(3) The change in M® (that is, AMZ) for the same small change
in R (that is, AR) is computed directly from equation (15¢) in which
L =t 5 obtained from step (2).

Tt dR
(4) Finally Atan B is computed from equation (16).

(5) Thus, at (R + AR) the approximate values of Ty, Mz, and
tan B are known from the values of T, Mz, and tan B at. R and
the approximate values of ATy, AM?, and Atan B given by steps (2)

through (4).
daT
(6) at (R + AR) approximate values of i A ‘lé gﬁz,
Ty dR M
ta; 5 g ggn B can then be determined by equetions (14a) or (14b), (15c),

and (16) from the approximate values of Ty, Mz, and tan B obtained
in step (5).

and

(7) The final values of ATy, AMZ, and Atan B between R and
ar
(R + AR) are obtained directly from the arithmetic average of L __E,
and so forth, at R and (R + AR) as given in steps (2), (3), (4?,
and (6).

(8) The values of T,, M?, and tan B at (R + AR) are deter-
mined from the known values of Ty, Mz, and tan B at R and from
the values of AT,, AMZ, and Atan B obtained in step (7).

(9) The stepwise procedure outlined in steps (2) through (8) is
repeated for small values of AR starting at R equal to 1.0 (where
iy MZ, and tan B are obtained by step (1)) and continuing to the
diffuser exit. For the numerical examples of this report AR was 0.02,
0.03, and 0.05 for the first three increments and 0.10 for the remaining.

Secondary quantities. - After the distribution of Tt’ MZ, and
tan § with R are known, the distribution of P, p, T, q, qp, and P
can be determined directly from equation (17b) and from equation (4),
(5), (6), and the equation of state (10a).

Flow path. - The flow path on the mean surface of revolution in the
vaneless diffuser is given by 6 as a function of R along the sur-
face. Because tan B .and sin o are known functions of R, the flow
path (6 = 6 (R)) can be determined by the numerical integration of
equation (18) assuming 6 equals zero at R equals 1.0.
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Efficiency. - The small-stage, or polytropic, efficiency mtuat
each radius R is given by equation (20a). The diffuser efficiency
(nD)R between radius R equals 1.0 and R is given by equation (E6)
in appendix E.

Design Problem

In the design method the variation in effective diffuser wall
spacing with radius is determined for a prescribed variation in one
fluid property. For efficient diffuser designs the selection of the one
fluid property and its optimum prescribed variation will depend on
viscous flow effects that are considered in boundary-layer studies but
will not be investigated in this report. (Nor is the magnitude of the
boundary-layer displacement, required to obtain the geometric wall
spacing from the effective spacing, considered in this report.)

Auxiliary equation. - In the design problem the variation in H
with R 1is unknown and must be determined to satisfy a specified varia-
tion in one characteristic of the flow (qm, for example) with R. From

l at can be
H dR
determined from equation (19). The quantity AH between R and

% %g at " R: rand

(R + AR). Agter H has been determined at (R + AR) the final values
of AT,, AM°, AP, and Atan B between R and (R + AR) are
obtained by the same procedure previously outlined for the analysis
problém. The process starts at R equals 1.0 (where H equals 1.0)

and is repeated for specified increments of R up to the diffuser exit.

this specified variation in one characteristic of the flow

(R + AR) is obtained from the average value of

Complete solution. - After the variation in H, Ty, M?, and
tan B with R are known, the variation in P, p, T, q, qp, and g
can be determined directly from equation (17b) and from equations (4?,
(5), (6), and the equation of state (10a). The flow path is determined
by equation (18) as outlined previaisly, and the small-stage, or poly-
tropic, efficiency is determined by equation (20a).

NUMERICAL EXAMPLES

The numerical examples of this report are divided into three groups:

(1) effects of some operating conditions, (2) effects of diffuser wall
spacing, and (3) a vaneless diffuser design problem.

6%e
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Effects of Some Operating Conditions

The first group of numerical examples shows the effects of heat
transfer and friction on the flow in vaneless diffusers. Three numer-
ical examples are given: (1) isentropic compressible flow, (2) com-
pressible flow with friction, and (3) compressible flow with friction
and heat transfer.

Inlet conditions. - For the first group of numerical examples the
flow conditions at the diffuser inlet (R = 1.0) are:

Pl =.5.022

Ml2 = 35170
(Ty)1 = 941° R

(tan B)l = S.B8

These conditions were estimated (by methods given in appendix C) for
the following design and operating conditions of the impeller:

D OER 0T TI0W (COOBPLIORONE, 0. & 4 10 5 e e e 1 s o e et CL
Impeller tip Mach number, MT SR S W e L S g Y5
Impeller slip factor, p . SIS efnliony doal o s o b ol oL ST BRI k]
Impeller polytropic effic1ency, N ASTR R s UL SO R T L e (01
Compressor: stagnation inlet temperature, To, O e it 520
Diffuser design. - The design characteristics of the diffuser are:
Bl e Honohts SN S N e s A S SR S
(constant flow area normal to Q)
Wall temperature, T, g - I R o L O G o St By S 750
Friction parameter, Q T o 8 8 dhle T e s el e e e st e (i IO CISMEE S O O S 6)

cf 02003 (a relatively low value, see reference 4)

p
T BE) =10 (so that sin o is constant)

The Reynolds' analogy was used to determine the heat-transfer coefficient
so that equation (12) was used to determine the change in total tempera-
ture with radius.

Results. - The results of the first group of three numerical
examples are given in figure 8. 1In figure 8(a) is shown the change in
M2 with R for the three numerical examples. The effect of friction
is to reduce M§ at each radius R (because, although the smaller
meridional velocity component qm is increased as usual, the larger
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tangential component qg is decreased) and the effect of heat transfer
from the fluid is to increase M2 slightly (primarily because of the
reduced speed of sound at the lower temperature) for the magnitudes of
Tt and T, dinvolved in these examples.

In figure 8(b) is shown the change in P with R. As expected,
the effect of friction is to reduce P at each radius (primarily
because of the decreased values of qg, which require a smaller pressure
gradient for equilibrium). The effect of heat transfer from the fluid
is to raise P slightly for the magnitudes of T{ and T, involved in
these examples.

In figure 8(c) is shown the change in flow direction B with R.
The effect of friction is to reduce B because gqp 1is reduced and
is increased to satisfy continuity with lower density due to lower P.
The effect of heat transfer from the fluid is to increase p slightly
because of the reduced value of qp resulting from the increased value
onit o8

In figure 8(d) is shown the flow path in the vaneless diffuser.
The effect of friction is to shorten the flow path because f 1is
decreased (fig. 8(c)). The effect of heat transfer is to lengthen the
path slightly.

In figure 8(e) is shown the change in polytropic, or small-stage,
efficiency 7 with radius R. The effect of friction is to reduce the
efficiency at each radius. The effect of heat transfer from the fluid
is to increase mn greatly. 1In fact for the larger values of R where

Al : aT
M~ 1is relatively small the term involving éﬁ-aﬁz becomes greater than
t
the term involving the friction parameter § (see equation (20a)) and,
dT
because for heat transfer from the fluid Tl'ﬁﬁz is megative, 1
t

becomes greater than 100 percent.

For the example with friction but no heat transfer it is interesting
to note that, although the friction losses must be greater at the lower
values of R because of the larger velocities, the polytropic effi-
ciency is higher. ZFrom equation (20a) the higher efficiency must result

\ Rt : yMEL
from a h e gite ol = = —_
igher r pressure rise P @ compared with Bicon b

the lower values of R. In current compressor designs the local poly-
tropic efficiency at the lower values of R will be considerably reduced
(reference 4, for example) because of mixing losses resulting from the
nonuniform flow conditions at the impeller discharge.

at

2391
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The diffuser efficiency ﬂnD)z at R equal to 2.0 is determined by
equation (E6) of appendix E and is indicated for each of the three numer-
ical examples in figure 8(e). The value of (7 )2, for the example
with heat transfer, is considerably less than tEe values of the poly-
tropic efficiency mn at the larger values of R for this example,
because for these larger values of R the rate of pressure rise is
smaller and therefore 1 has less effect upon the value of (nD)z.

Even so, the value of (1q) for the example with friction and heat
transfer is almost 100 percent. But from figure 8(b) the pressure P
at R equal to 2.0 is not much different for the two examples with and
without heat transfer (but with friction) so that the losses are about
equal for these examples and (7p),, which is considerably different,
is therefore not a rellable measure of the losses when heat transfer
effects are present.

For the example with friction and no heat transfer the value of
(np), 1s as low as 0.824 in spite of the relatively low friction
coefficient (cf = 0.003) and in spite of neglecting the mixing losses
due to nonuniform flow conditions at the impeller discharge. Thus, the
friction losses in most vaneless diffuser designs are considerable and
result from the (usually) large ratio of wetted surface to flow area.
The diffuser efficiency can be improved by lower values for ( (pro-
vided other design and flow variables remain unc?anged) and these lower

el
hT)

example, larger compressor flow rates for a given impeller tip radius.

values for { can result from lower values of which means, for

A general conclusion resulting from the first group of numerical
examples 1s that heat transfer from the fluid has the opposite effect of
friction on pressure rise in vaneless diffusers and is therefore to be
desired. Heat transfer to the fluid, on the other hand, can be expected
to have the same effect as friction and is therefore to be avoided.

Effects of Diffuser Wall Spacing

The second group of numerical examples shows the effects of passage
height h (that is, spacing of the diffuser walls normal to the mean
surface of revolution) on the flow in veneless diffusers. The losses
in a vaneless diffuser should increase with the velocity squared, with
the ratio of wetted perimeter (at each radius) to diffuser wall spacing
(that is, with the ratio of friction area to flow area), and with the
length of the flow path in the vaneless diffuser. TFor a given com-
pressor flow rate the square of the velocity and the ratio of wetted
perimeter to diffuser wall spacing increases as the diffuser wall spacing

~h is decreased, but the length of the flow path decreases. The object

of the second group of numerical examples is to determine the relative
magnitudes of these opposing effects on the losses in vaneless diffusers,
and to determine the optimum wall spacing h, if such an optimum exists.
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Diffuser design. - As for the first group of numerical examples the
diffusers of the second group were designed for constant flow area

(2 = R™1) but with the diffuser wall spacing hp at the impeller dis-
charge (diffuser inlet), and therefore throughout the diffuser, varying
(among examples) over a wide range. The values of hyp were selected
for the eight numerical examples of the second group such that the
friction parameéter § varied from 0.010 to 0.038 in seven increments of
0.004, ({ varies inversely with hn, equation (13d).) The friction
coefficient was assumed to be constant, that is independent of diffuser
wall spacing, and therefore the possibility of separated flow for large
spacing of the diffuser walls was not considered. Heat-transfer effects
were not considered. The example for L = 0.030 was the same as that in
the first group of numerical examples with friction but no heat transfer.

Inlet conditions. - For the second group of numerical examples the
diffuser inlet conditions varied with the diffuser wall spacing because
for a constant compressor flow rate W the compressor flow coefficient
¢ (equation (Cll), appendix C) varies inversely with the passage height
hp at the impeller tip. (Note that the blade height at the impeller
tip is also assumed to vary with hp and this variation is assumed to
have no effect on the impeller efficiency, and so forth.) For the
selected variation in hp the flow coefficient varies from 0.25 to 0.95
in seven increments of 0.10. The remaining design and operating condi-
tions of the impeller are the same as for the first group of examples.
Thus,

Impeller Gip Mach oy My . G el s Sas e e e e T Ll T T S
Impeller slip factor, p . o e R TICI Ul e B SRR L STV R
Impeller polytropic eff101ency, N 2a tadite = e n e o ey Tiat ettt Ahik S e O SR I
Compressor stagnation inlet temperature, T,, °R . . . .. . .. . 520

The flow conditions at the diffuser inlet were estimated (by methods
given in appendix C) from the impeller design and operating conditions
and are given in the following table:

Example ¢ o Py M12 (tan B)l (Tt)
(or)*

a 0.010 @525 3.174 272 1552879 941

b .014 oD 3 L5 IZ835 8.453 941

e .018 .45 B. 133 1,298 6.541 941

a <022 <99 5103 A8 507 SheonsT. 941

= .026 .65 3.066 1. 343 4.462 941

i .030 15 0 Vi LSO SIS, 941

g J034 185 25970 1.406 55889 941

h .038 29 2908 1.448 2,945 941

2391
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Results. - The results of the second group of eight numerical
examples are given in figure 9. All results are based on the assumption
that as the diffuser wall spacing increases, that is as ® descreases,
the friction coefficient remains constant and flow separation does not
occur on the diffuser walls. In figure 9(a) is shown the change in
with R for the eight examples. The effect of decreasing @ (that is,
of increasing ) is to decrease M2 at each value of R. This
decrease in M" results primarily from the decrease in Qn resulting
from the increased flow area that occurs when hp 1s increased.

In figure 9(b) is shown the change in P with R for various
values of '@. The effect of decreasing @ is to increase P because
M2 is decreased (fig. 9(a)).

The change in B with R for various values of ® is shown in
figure 9(c). As ® is decreased the velocity component 9y decreases
so that the flow direction B increases as shown. As ¢ approaches
zero, B approaches 90° for all values of R.

In figure 9€d) is shown the flow path in the vaneless diffuser for
the various values of . The effect of increasing @ is to decrease
the length of the flow path because B is reduced (fig. 9(c)).

The change in polytropic efficiency n with R for the various
values of ® 1is shown in figure 9(e). The effect of decreasing ®@ is
to increase n at the larger values of R. As the value of
decreases the length of the flow path increases (Efe: 9(d)), which
should increase the diffuser losses, but MZ (fig. 9(a)) and the fric-
tion parameter { decrease, which should decrease the losses. At ®
equal to zero B 1is 909, or cos B 1is zero, and § 1is zero so that
the ratio {/cos B contained in the expression for 1 (equation (20a))
becomes indeterminate. However, extrapolation of the results in
figure 9(f) indicates that n has its peak value for @ equal to zero;
and thus, if separation does not occur and if the friction coefficient
Ccg 1s unaffected by the diffuser wall spacing, the diffuser efficiency
is always improved (slightly, see fig. 9(f)) by spacing the diffuser
walls farther apart. Furthermore, if the diffuser walls are spaced
farther apart and the compressor flow rate is increased proportionately
so that ¢ remains unchanged, the diffuser efficiency should be improved
markedly because the ratio of wetted surface to flow area is decreased
without increasing the length of the flow path in the diffuser and with-
out introducing the risk of boundary-layer separation, which must other-
wise be expected if the diffuser walls are spaced far apart. Thus, as
also concluded from the first group of numerical examples, the diffuser
efficiency can be improved by increased compressor flow rates for a
given impeller tip radius so that the diffuser walls can be spaced
farther apart without resulting in boundary-layer separation or
increasing the length of the flow path.
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In figure 9(f) is shown the effect of ¢ on the diffuser efficiency
(N4),. As expected from figure 9(e), (nD)2 increases as' @ decreases,
buP %he rate of increase is less for the smaller values of ¢ and in no
case are large gains in efficiency to be realized by decreasing ®,
that is, increasing the diffuser wall spacing. Thus, unless the flow
rate is increased proportionately so that ¢ remains constant, very wide
spacing of the diffuser walls is not recommended because of (only) a
small gain in efficiency and a great risk of boundary-layer separationm.

2591

A Vaneless Diffuser Design Problem

The third part of the section on numerical examples is a sample
vaneless diffuser design problem. The design variables in a vaneless
diffuser are

==}
]

H(R)
and

a

]

a(R)

In this sample design problem o(R) will be specified (constant and
equal to 90°) and the design problem will be to determine H(R) for.a
prescribed variation in qp.

For purposes of demonstrating the design method it is assumed that
the deceleration of qp is the criterion for boundary-layer separation
in a vaneless diffuser and that the criterion is that given in refer-
ence 5, page 159, so that a safe rate of deceleration is

where O is proportional to the boundary-layer thickness. For purposes
of this design example it is assumed that & 1s equal to h/B, which is
the effective thickness of a fully developed boundary layer in the vane-
less diffuser. Thus,

Fp )

@) Za(2). o
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199, 1

q dR H

1k rT/hT is equal to 10. Because of the assumptions involved this
d

specified variation in e with H may have no practical significance

with regard to vaneless diffuser performance and has been selected only
to demonstrate an application of the design method. It should be
pointed out that design variations in H affect Primarily the velocity
component gq, and through this component the flow direction B%

Inlet conditions. - The impeller design and operating conditions
are the same as for the first group of numerical examples and so the
diffuser inlet conditions are the same

Pl = .02z
M12 =S50
o o
(Tt)l = 941° R
(tan B)l =usigrg
Diffuser design. - The variation in H with R 1is to be deter-

mined. Heat-transfer effects are neglected, and the value of the fric-
tion parameter § i1s the same as for the first group of numerical
examples (0.030).

Results. - The results of the design problem are given in figure 10.

dg.
In figure 10(a) is shown the variations in o é; Eﬁg’ MZ, P By tend
dq . e
N with radius R. As specified, — —B ig agusl to  ~E L./ Tn order
AT ok ol

m
to accomplish this variation, H at first decreases with increasing R

and then increases to approximately its initial value at R equal to
2.0. At the larger values of R this variation in H results in some-
what wider spacing of the diffuser walls than existed in the previous
numerical examples where the wall spacing decreased continuously with
increasing R 1in order to maintain a constant flow area normal to Ay «
As a result of this wider spacing of the diffuser walls the values of M
are somewhat higher (in keeping with the results of the second group of
numerical examples) than for the previous examples with the same values
of @ and {. The variation in B with R was slightly more than 3°
50 that the flow path (fig. 10(b)) is approximately a logarithmic spiral.
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SUMMARY OF RESULTS AND CONCLUSIONS

An analysis method and a design method have been developed for one-
dimensional, compressible flow with friction, heat transfer, and arbi-
trary area change in vaneless diffusers with arbitrary profiles in the
axial-radial plane. The effects of mixing losses due to nonuniform flow
conditions at the impeller discharge are not considered. In the analysis
method the variation in fluid properties, including the velocity and
flow direction, can be determined as a function of radius for a prescribed
variation in diffuser wall spacing with radius. In the design method
the variation in diffuser wall spacing and all fluid properties except
one can be determined as a function of radius for a prescribed variation
in the one fluid property. For efficient diffuser designs the selection
of the one fluid property and its optimum prescribed variation will
depend on viscous flow effects that are considered in boundary-layer
studies but are not investigated in this report.

239L

Three groups of numerical examples are presented in which the
effects of friction, heat transfer, and diffuser wall spacing are
investigated; and a sample design problem is presented. As a result of
these examples it is concluded that:

1. Heat transfer from the fluid has the opposite effect of friction
on pressure rise in vaneless diffusers and is therefore to be desired.
Conversely, heat transfer to the fluid has the same effect as friction
and is therefore to be avoided.

2. If the friction coefficient is unaffected by the diffuser wall
spacing, and if flow separation does not occur, the diffuser efficiency
is improved slightly (for a given compressor flow rate) by spacing the
diffuser walls farther apart.

3. Even with relatively low friction coefficients and neglecting
mixing losses at the impeller tip, the friction losses in most vaneless
diffuser designs are considerable, as indicated by computed diffuser
efficiencies in the low 80's, and these losses result from the usually
large ratio of wetted surface to flow area in vaneless diffusers.

4. Diffuser efficiencies can be improved by increased compressor
flow rates for a given impeller tip radius so that the diffuser walls can
be spaced farther apart (thus, reducing the ratio of wetted surface to
flow area) without increasing the length of the flow path in the diffuser.

5. In the presence of even small heat-transfer effects the usual
definition of diffuser efficiency, whieh definition neglects corrections
for heat transfer, is not a measure of the diffuser losses.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 11, 1951
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

Po

aQ

annulus flow area at impeller tip, equation (C12)
local speed of sound

skin-friction coefficient, equation (BZ)
stagnation speed of sound upstream of impeller
specific heat at constant pressure

local stagnation speed of sound

acceleration due to gravity

effective passage height, or diffuser wall spacing,
ratio, h/hp '
effective passage height, or diffuser wall spacing
L 4

coefficient of heat transfer, equation (1la)

influence coefficients, equation (19)

enthalpy

mechanical equivalent of heat

local Mach number, equation (5)

impeller tip Mach number, equation (C3)
polytropic exponent, equation (C6)
pressure ratio, p/po

static (stream) pressure

stagnation pressure upstream of impeller

heat transfer rate from the fluid
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dr» 9, 4y

(nD)R
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velocity

velocity component in meridional, or axial-radial,
plane, equation (3)

velocity components in r-, 6-, and z-directions,
respectively

radius ratio, r/rT

perfect gas constant

cylindrical coordinates, 6 considered positive in
counterclockwise direction when r6-plane is viewed
from negative z-direction

static (stream) temperature

stagnation temperature upstream of impeller

local stagnation, or total, temperature

diffuser wall temperature

time

compressor flow rate

dependent variable

slope of center line between diffuser walls in meri-
dional, or axial-radial plane, equation (2)

flow direction on mean surface of revolution between
diffuser walls, equation (4a)

ratio of specific heats
small finite increment
friction parameter, equation (13d)

polytropic, or small-stage, efficiency, equation (El)

diffuser adiabatic efficiency based upon change in flow

conditions for change in radii from 1.0 to R, equa-
tion (ES)

2591
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w
Subscripts:

a

29

impeller slip factor

static (stream) weight density

stagnation density upstream of impeller
local stagnation density

shear stress due to skin friction
compressor flow coefficient, equation (C11)

angular velocity of impeller

actual

ideal

value at R
impeller tip

value at R equal to 1.0 or 2.0
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EQUILIBRIUM EQUATIONS

Meridional and tangential equilibrium equations are developed for a
fluid particle on the mean surface of revolution in a vaneless diffuser.

Meridional equilibrium. - The equation for meridional equilibrium
of a fluid particle (fig. 6) in the direction of g, on the mean surface
of revolution is obtained from a balance of the pressure and shear
forces with the force required for acceleration.

The differential pressure forces (opposed to the direction of qm)
are equal to the differential change of end forces on the particle minus
the component of the differential side forces on the particle in the
direction of qp,

Differential pressure forces = d(EhgrdG)dr 0 Pd(hrdie)dr (B1)

where the component of the differential side forces in the direction of
qy (last term in equation (Bl)) is equal to the pressure p multiplied
by the projected area (in the direction of gqp) of the side surfaces of
the particle (fig. 6).

The differential shear stress T on a diffuser wall is oppesed to
the direction of g and is given by

pqg
T = Cf Z—g—— (BZ)

where: ¢ is the skin friction coefficient. The differential shear
forces in the meridional direction on the fluid particle in figure 6 are
opposed to the direction of ¢, and act on both walls of the diffuser.
From equation (B2),

rodordn

2T cos B et

Differential shear forces

It

0g° T d6 ar

Cf —é— cos B R (BS)

I

The acceleration of the fluid particle in the direction opposed to
qn is made up of: (1) the component of the centripetal acceleration
q d.

2
Z6_ gin @, and (2) the negative of the acceleration E%E'

% But,

2391
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so that the differential force required for acceleration of the fluid
particle in figure 6 becomes

5 3 s Z
Differential forcg regulred p br a6 dr g . d%m ‘
for acceleration in direc- | = sina - 4, g7 sin o

tion opposed to A & e Y

(B4)

The sum of the differential pressure forces and shear forces must
equal the force required for acceleration so that from equations (Bl),
(B3), and (B4)

2 2
dp C.q” cos B 4 dqm

S e x -7 " YWFT (8)

O |’

Equation (8) is the equation for meridional equilibrium of a fluid par-
ticle on the mean surface of revolution in a vaneless diffuser.

Tangential equilibrium. - The equation for equilibrium of a fluid
particle (fig. 6) in the tangential direction on the mean surface of
revolution is obtained from a balance of the shear forces with the force
required for acceleration.

The differential shear forces in the tangential direction on the
fluid particle in figure 6 are opposed to the direction of dg and act
on both walls of the diffuser. From equation (B2),

r~do.dr

2T s8in B T

Differential shear forces

Bl win gl te OB (B5)
sin a

The tangential acceleration of the fluid particle oppos=d to the
direction of qg 1s made up of: (1) the negative of the tangential

q
A 0
acceleration r é%'(ﬁ?>’ and (2) the negative of the Coriolis accelera-
tion 2quqg 7. But,
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iz
i q. sin o (dqe Eﬁ)
r dr r

so that the differential force required for acceleration of the fluid
particle in figure 6 becomes

Differential forc§ regulred o hr 40 dr dqe ' 9.9, sin @
for acceleration in direc- |= - £ —MM— — sin o+ —m—
g sin dr %

tion opposed to q@
(B6)

The differential shear force must equal the differential force
required for acceleration so that from equations (B5) and (B6)

2
ceq” sin B 3 dqe + .95 (9)
GO T e T

Equation (9) is the equation for tangential equilibrium of a fluid
particle (fig. 6) in the tangential direction on the mean surface of
revolution in a vaneless diffuser.

2331k
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APPENDIX C

ESTIMATED VALUES OF Ty, M, P, AND TAN B AT DIFFUSER

INLET (IMPELLER TIP)

Total temperature. - The total temperature (T¢)7 at the diffuser

inlet, or impeller tip, can be obtained from the steady flow energy equa-
tion, where for convenience heat-transfer effects have been considered
negligible,

(wrg) 2 (95" + a9%)1
JepTy + p ——EE——-= Je,Tp + % (c1)

where p is the impeller slip factor and « is the angular velocity of
the impeller so that p(mrT)z/g is the impeller work per pound of fluid.
But

LHER T
JCP v

and
(ag), = pory,

80 that dividing equation (Cl) by Je T,

T g (g
== 1e 5 (e - u?) P - L (c2)
@) CO

where the impeller tip Mach number Mp 1is defined by
wr,

L
kot v e
4 2
(g,),
The total temperature (Tt)l is given by equation (C2) when e Ao
7
(qe)l B o o
e ——— (equal to p M ) are equal to zero so that
Lo
2
(Te)y = To [ 1 + (r-1) we] (ca)
Pressure. - The pressure P, at the diffuser inlet is obtained

from the temperature ratio (equation (C2)) by
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n

n-1
it

P <Ei> (cs)
o : To

yel

where the flow in the impeller, which involves viscous losses, 1s rep-
rYesented by a polytropic process for which the polytropic exponent n
is related to the polytropic efficiency of the impeller n by (refer-
ence 8, p. 449, for example)

e e
S g R 100 (ce)

The quantity (qp )y in equation (c2) is unknown but will be determined

later from continuity considerations.

In like manner the density P is related to the temperature ratio
(equation (C2)) by
n-1
R
== e (C?)

Mach number. - The local Mach number squared (Mz)l at the diffuser
inlet is defined by

()% (- C Ui Sl T fn

2 O 1L ger 15 Tiyks 1o,
(M%), = = = = = (c8)
(o) Co 1
where T,/T; is given by equation (C2), where
(qe)l
c = HMT (09)
o
(q,)
and where is determined from continuity considerations. From
continuity <
W = 2nrphppey (ap)q
or
(a)1
W % (c10)
o i35 e

Y174
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where the compressor flow coefficient ¢ is defined by

W
NG e (c11)
Po?1%
in which the annulus area at the impeller tip am is given by
8y = 2mr hn, (c12)
(a,),
Equations (C7) and (Cl0) are solved simultaneously for so that
equation (C8) can be solved for (Ml)z. o

Flow direction. - .The tangent of the flow direction B1 at the
diffuser inlet is defined by

(ag/c,)
1
(tan B). = T_7To (c13)
¢ G/ 0’1
where (qe)l and (qm)l are given by equations (C9) and (C10),
respectively.

Thus, (Ty)1, Pq, Mlz, and (tan B); are estimated by equa-
tions (C4), (C5), (C8), and (C13), respectively.
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APPENDIX D

CONDITION FOR MAXIMUM, OR CHOKE, FLOW IN VANELESS DIFFUSERS

If W is the flow rate through a vaneless diffuser
W = 2xrhpq (D1)

where p 1s related to the stagnation density py at a given radius r
by (reference 7, p. 26, for example)
i
1
2 2
LR Uy ¢ 9

p g b =it oz

(p2)

(In the presence of heat transfer and friction pt 1is a function of
radius.) At any given radius as dy 1s increased from low values W
increases until a maximum, or choke, flow occurs. This maximum occurs
when

aw

T
or, from equation (D1),
0=p+aq, B (D3)
Ay dqm
but, from equation (D2),
dp . - -p !
e 7 AN (D4)
e AN R R
2 e
t
where from reference 7, page 26, for example
2 2
1 v-1 Iy + g B
Z th Ty
so that equation (D4) becomes
q
. (D5)
dqm 2

c

25918




1622

NACA TN 2610 51

where

After equations (D3) and (DS) are combined

4, = ¢ (De)

sO that the maximum, or choke, flow occurs in vaneless diffusers when
the meridional component of velocity 9, is equal to the local speed of

sound c. Expressed in terms of M2 equation (D6) becomes

0 =M - sec? B (D7)

which is the condition for maximum, or choke, flow in vaneless diffusers.
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APPENDIX E

SMALL-STAGE EFFICIENCY AND DIFFUSER EFFICIENCY

The small-stage, or polytropic, efficiency 1n at a given radius
R on the mean surface of revolution in a vaneless diffuser is defined
as the ratio of the ideal to the actual differential change in static
enthalpy with radius required to accomplish the actual differential
change in static pressure with radius

di
() s

where the ideal differential change in static enthalpy with radius
(di/dr)i is given by (reference 6, p. 102)

ai) _1dp _ 1 dp
(dr>i pdr_R*Tpdr (E2)

and where the actual differential change in static enthalpy with radius
(di/dr), dis by definition

di dr’ yR* ar
(dr)a il It {ESS

Equation (El) is the usual definition of small-stage, or polytropic,
efficiency and assumes that heat-transfer effects are negligible. From
equations (E1l) to (E3) and equation (13e)

1 db
BAdR
= E4
G LT S
-1 T dR
which from equations (6a) and (13c) becomes
1 ap
L oR (20a)

2391
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Equation (20&) gives the small-stage, or polytropic, efficiency in terms
of the local pressure differential, the total temperature differential
and the parameter ¢, which involves the local skin-friction coeffi-
cient.

T dl
In the absence of heat transfer — —=& equals zero and from equa-

T, aR
tions (13c) and (15c)
1 ap e 2 2 ¢ 1 dE sec® B ™E ¢
PaR = T 8 [(YM - tan® p) Hcos p  HAR = R } " H cos B
so that equation (20a) becomes
%
& R §(M2 - sec B) ! (20p)
¢(YM? - tan® B) - cos B <%;;+ E%E)

Equation (20b) expresses 17 in terms of the friction parameters ¢ and
the diffuser geometry.

The diffuser efficiency (nD)R, which measures the diffuser per-
formance between the diffuser inlet at R equals 1.0 and a point R
on the mean surface of revolution in the vaneless diffuser, is defined
as the ratio of the idealto the actual static temperature rise required
to accomplish the actual static pressure rise between the radii 1.0 and
R.

() (Tp - T4)3 (g§ ’ >i (E5)
T]]JR='(E['R-'I'l)a‘ =<-§E-l>
ki i a

T

where the ideal temperature ratio (EB> is related to the actual
R

static pressure ratio by

>
ORE
/i \Pp
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so that equation (E5) becomes

r-1
T
P
-
(n.), = ! (E6)

D/R po

S |
T

Equation (E6) gives (np)g in terms of the known values of P and T
at the radii 1.0 and R. If R approaches 1.0,

Y-1 -1
R T
<_R> 9<P_+d_1z> T s _;l_<dlf>
P; DR 1
and
TR /T + ar aT
Ssfierale b L aCI G
I L) 1
so that
1l4p
( ) <& PdR
5 ST R
e dR A

which corresponds to the definition for the small-stage efficiency given
by equation (E4).
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Vaneless diffuser

. ; U § =

Air-flow
path

Figure 1. - Assembly of vaneless diffuser with mixed-flow impeller.
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Figure 2.

- Mixed-flow impeller and semivaneless diffuser with front shroud removed.
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A

Center line
between
diffuser walls

T6S2

dr or g,

//// h'=hlr)

’ (effective height

///// adjusted for boundary-
layer displacement)

:

Figure 3. - Diffuser profile, velocity components, and
coordinates in meridional, or axial-radial, plane.
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Figure 4. - Fluid particle on surface of revolution generated by center line between

diffuser walls.
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Figure 6. - Fluid particle with pressure and shear forces.
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(2) Variation in M? with radius.

Figure 8. - First group of numerical examples, showing effects
of friction and heat transfer.
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1622
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(b) Variation in pressure ratio with radius.

Figure 8. - Continued. First group of numerical examples,

showing effects of friction and heat transfer.
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(c) Variation in flow direction with radius.

Figure 8. - Continued.

First group of numerical examples,

showing effects of friction and heat transfer.
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Figure 8.

- Continued.
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(d) Flow path for sin a = 1.0.

First group of numerical examples, showing effects of
friction and heat transfer.
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(a) Variation in M2 with radius.

Figure 9. - Second group of numerical examples, showing
effect of diffuser wall spacing as affected by changes
in compressor flow coefficient .
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(b) Variation in static pressure ratio with radius.

Figure 9. - Continued. Second group of numerical examples,
showing effect of diffuser wall spacing as affected by
changes in compressor flow coefficient Q.
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(c) Variation in flow direction with radius.

Figure 9. - Continued. Second group of numerical examples,
showing effect of diffuser wall spacing as affected by

changes in compressor flow coefficient .
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(e) Variation in polytropic efficiency with radius.

1 examples,
ected by

=
[N
m

- Continued. f nume
ect of diffuser wall cing as
in compressor flow coefficient @.

NACA TN

2610




9S8

NACA TN 2610

—

84 |

(np)z

®

(f) variation in vaneless diffuser efficiency (Np) o with
flow coefficient. 5
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(a) Variation in flow conditions with radius.

Figure 10. - Design problem.




108

NACA TN 2610

61




