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SUMMARY 

An anal ysis method and a design method are developed for one­
dimensional, compressible flow with friction, heat transfer, and area 
change in vaneless diffusers with arbitrary profiles in the axial-radial 
plane . The effects of mixing l osses due to nonuniform flow conditions 
at the i mpeller discharge are not considered. In the analysis method 
the variations in fluid propert i e s, including the ve l ocity and flow 
direction, are determined as a function of radius for a prescribed vari­
ation in diffuser wall spacing wi th radius. In the design method the 
variations in effective diffuser wa l l spacing and in the fluid proper­
ties are determined as a function of r adius for an arbitrary prescribed 
variation in one f l uid property . For efficient diffuser designs the 
fluid property selected and the manner in which its variation is pre­
scribed will depend on viscous flow effects that are considered in 
boundary-layer studies but are not investigated in this report. 

As a resul t of numerical examples it is concluded that: (1) Even 
with relatively low friction coefficients and neglecting mixing losses 
near the impeller t i p , the fr i ction losses in most vaneless diffuser 
designs are considerable, as indicated by computed diffuser efficiencies 
in the l ow 80 l s, and these losses result from the usually large ratios 
of wetted surface to flow area in vaneless diffusers. (2) Vaneless 
diffuser efficiencies can be improved by increased compressor flow rates 
for a given impeller tip radius so that the diffuser walls can be spaced 
farther apart (thus, reducing the r atio of wetted surface to flow area) 
without i ncreasing the length of the flow path in the diffuser. 

INTRODUCTION 

In radial - and mixed- flow centrifugal compressors the vaneless 
diffuser is an annular duct (fig . 1) immediately fo l lowing the impeller 
and of increasing radius in the direction of f l ow . The high tangential 
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velocity of the fluid entering the vaneless diffuser from the impeller 
decreases with increasing radius and, because the tangential velocity is 
generally the largest velocity component at the impeller discharge, the 
vaneless diffuser is an effective means of diffusing the fluid, that is, 
of converting the velocity head to static pressure. The principle by 
which this conversion is effected is demonstrated by the case for fric­
tionless flow in the absence of heat transfer. For this case, and 
assuming that flow conditions are uniform in the tangential direction, 
the moment of momentum of the fluid is constant so that 

from which as the radius r increases the tangential velocity qe 
decreases and therefore the pressure rises (assuming relatively small 
changes in other components of velocity). 

Among the advantages of the vaneless diffuser is the fact that 
choke flow occurs only if the meridional velocity qm (velocity COill­

ponent normal to the annulus area) is sonic. This condition usually 
corresponds to such high flow rates that choke flow occurs in the 
impeller, instead of the diffuser as is the usual case for vaned dif­
fusers. The compressor operating range is therefore wider with vaneless 
diffusers. 

Another, and perhaps the most important, advantage of the vaneless 
diffuser is the fact that if the tangential velocity at the impeller 
discharge is supersonic the tangential velocity decelerates from super­
sonic to subsonic velocities without shock losses. 

Opposed to these several advantages of the vane less diffuser is the 
disadvantage, for aircraft propulsion, of a large frontal area. This 
disadvantage may be circumvented to some extent by the use of semivane­
less diffusers (fig. 2) in which, to diffuse the fluid more rapidly and 
thus decrease the frontal area of the compressor, vanes are placed in 
the diffuser following a vaneless section in which the velocity is 
reduced from supersonic to subsonic magnitudes. Thus, shock losses are 
avoided by diffusing the flow to subsonic velocities in the vaneless 
diffuser and the frontal area of the compressor is somewhat reduced by 
the more rapid diffusion in the vaned section. 

In order to analyze the performance of vaneless and semivaneless 
diffusers and in order to design these diffusers for optimum performance 
(including the proper setting of the vane angles in semivaneless dif­
fusers), it is necessary to have adequate theoretical methods of pre­
dicting the variation in flow characteristics through the diffusers. 
These methods should include the effects of diffuser geometry, com­
pressibility, heat transfer , friction, and mixing losses caused by the 
nonuniform flow conditions at the impeller discharge. 
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Published work on the analysis and design of vaneless and semivane­
less diffusers is not extensiv~ (references 1 and 2, for example). In 
reference 1 a one-dimensional method of analysis is developed for incom­
pressible flow with friction but no mixing losses in vaneless diffusers 
with constant wall spacing and pure radial flow. In reference 2 a one­
dimensional method of design is developed for compressible flow with 
friction. The method assumes the flow path is a logarithmic spiral and 
neglects heat transfer and mixing losses. 

In the present report methods of analysis and design, carried out 
at the NACA Lewis laboratory, are developed for one-dimensional, com­
pressible flow with friction, heat transfer, and arbitrary variation in 
passage height in vaneless diffusers with arbitrary curvature in the 
meridional (axial-radial) plane. The effect of mixing losses is not 
considered. In the analysis method and in general for the design method 
the flow direction, or flow path, is not specified but is a dependent 
variable determined by the solution. In the design method the variation 
in diffuser wall spacing with radius is determined for a prescribed 
variation in one fluid property. For efficient diffuser designs the 
selection of the one fluid property and its optimum prescribed variation 
will depend on viscous flow effects that are considered in boundary­
layer studies but will not be investigated in this report. The methods 
are an extension of the work in reference 3 for one-dimensional gas flow 
in ducts with prescribed flow direction. 

THEORY OF METHOD 

Differential equations are developed that relate the change in 
dependent variables with radius. to the design and operating character­
istics of the vaneless diffuser. The application of these differential 
equations to the analysis of flow in vaneless diffusers and to the 
design of vaneless diffusers for prescribed distributions of flow condi­
tions with radius is described in a later section. 

Preliminary Considerations 

Coordinate system. - The coordinate system for a point on the mean 
surface of revolution generated about the axis of the compressor by the 
center line between the front and rear shroud of the vaneless diffuser 
is shown in figures 3 and 4. The cylindrical coordinates r, 8, and 
z give the radial, tangential, and axial positions of the point, respec­
tively. The effective diffuser height h (fig. 3) measured across the 
passage in the direction normal to the mean surface of revolution is a 
function of r only 
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h = h(r) (1) 

(All symbols are defined in appendix A.) The effective height of the 
diffuser at each point on the mean surface of revolution is equal to the 
geometric height of the diffuser minus the assumed displacement thick­
ness of the boundary layer on the diffuser walls. Use of this effective 
height rather than the geometric height is required by continuity con­
siderations in order to give the proper average value of the velocity 
component normal to the cross-sectional flow area of the vaneless dif­
fuser. Only the effective height of the diffuser is considered in this 
reportj no investigation is made of the boundary-layer displacement 
thickness, which can be assumed or estimated from boundary-layer theory. 

The slope of the center line between the front and rear shroud of 
the vaneless diffuser determines the angle a, (fig. 3), which is a 
function of r only, 

= o,(r) (2) 

Assumptions. - The principal assumptions of the analysis and design 
methods are that flow conditions are uniform across the vaneless dif­
fuser along the height h and that flow conditions are uniform in the 
tangential direction B. Thus, the flow becomes one-dimensional, being 
a function only of the radius along the mean surface of revolution. If 
the boundary-layer profile is ignored, the accuracy of the assumption 
that flow conditions may be considered uniform across the vaneless dif­
fuser in the direction of h depends on: (1) the angle 0" (2) the 
derivative of a, with respect to r, (3) the derivative of h with 
respect to r, and (4) the ratio h/r. For values of a, approximately 
equal to 900 the assumption is accurate provided dh/dr and ~/dr are 
small. For values of a, less than 900 the inaccuracy of the assumption 
will depend on the ratio hlr and the derivative ~/dr; for the 
limiting case in which h/r and ~/dr approach zero the assumption is 
good for all values of 0,. In practice the values of hlr for vaneless 
diffusers are usually small and the mean shroud curvature ~/dr should 
be small to avoid boundary-layer separation. Thus the assumption of 
uniform flow conditions across the passage along h should be accurate 
for all values of a, encountered, except for variations due to the 
boundary-layer profile. 

The motion on the mean surface of revolution is assumed to be 
steady and, because flow conditions are assumed to be uniform in the 
tangential direction, mixing losses resulting from nonuniform flow con­
ditions in the tangential direction at the impeller discharge are neg­
lected. These losses are relatively high, but experiments (reference 4, 
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for example) indicate that they take place in the immediate vicinity of 
the impeller discharge and may be neglected in the remainder of the 
vaneless diffuser. The effects of these mixing losses can be accounted 
for (approximately) by adjustments in the flow conditions (pressure, 
density, velocity, and flow direction, for example) at the diffuser 
inlet. 

Velocity components. - The velocity q at a point on the mean sur-
~ face of revolution is tangent to the surface and has components qr' 
~ ge J and gz in the r- J B-, and z-directions, respectively. In 

this analysis it is convenient to consider the meridional velocity qm 
(instead of qr and qz), which is tangent to the center line between 
the front and rear ' shroud of the diffuser in the meridional plane 
(fig . 3) and is related to qr and qz by 

E-3 ) 

The flow direction ~ on the mean surface of revolution is related to 
qm and ~ by (fig . 5) 

tan ~ 
qe 

qm 
(4a) 

from which 

qe q sin ~ 

qm q cos ~ ( 4c) 

Fluid particle. - A f luid particle on the mean surface of revolu­
tion is shown in figure 4. This particle has the dimensions r de and 
dr/Sin a on the surface of revolut ion and the height h normal to the 
surface . 

Outline of method. - The state of the fluid at any point (r) on the 
mean surface of revolution is described by three thermodynamic proper­
ties) by the fluid velOCity, and by the flow direction. These five 
properties can be determined from five fundamental relations: (1) con­
tinuity, (2) equilibrium in the direction of q (meridional equili­
brium), (3) equilibrium in the direction of ~m (tangential equili­
brium), {4) equation of state , and (5) the heat-transfer equation. In 
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addition to these five fundamental relations certain definitions are 
required to express the resulting equations in terms of the desired 
properties. The properties that will be used in this analysis to 
describe the state of the fluid will be the static pressure p, the 
static density p, the total temperature Tt , the local Mach number M, 
and the flow direction ~. 

Mach number. - The local Mach number M is defined by 

where I is the ratio of specific heats, g is the gravitational 
acceleration, R* is the gas constant, and T is the local, static 
temperature . From equation (5) 

1 ~ 1 dq2 1 <iT 
---=- ---
~ dr q2 dr T dr 

Total temperature. - The total temperature T
t 

is defined by 

2 
T T + q 

t 2Jgc 
p 

or 

(5) 

(Sa) 

(6 ) 

where J is the mechanical equivalent of heat and cp is the specific 
heat at constant pressure. From equation (6) 

1 dT 
( 6a) =- -

Tdr 

From equations (5a) and (6a) 
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1 ~ 1 dT
t ---+---

M2 dr T
t 

dr 
C6b) 

Fundamental Relations 

Continuity. - The continuity equation for one-dimensional com­
pressible flow in vaneless diffusers is 

from which 

pqmrh == constant 

1 dp 1 dqm 1 dh 1 
+---+--+-==0 

pdr ~dr hdr r 
(7) 

where changes in r are understood to occur along the mean surface of 
revolution. 

Meridional equilibrium. - The equation for meridional equilibrium 
of a fluid particle (fig. 6) in the direction of qm on the mean sur­
face of revolution is obtained from a balance of the pressure forces, 
shear forces, and inertia forces (appendix B) 

g dp cfq2 cos ~ 
-- + 
p dr h sin ~ r 

where cf is the skin-friction coefficient. 

dqm 
q -
mdr (8) 

Tangential equilibrium. - The equation for tangential equilibrium 
of the fluid particle in figure 6 is obtained from a balance of the 
shear forces and the inertia forces (appendix B) 

Equation of state. - By definition a perfect gas satisfies the 
equation of state 

( 9) 
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p pR*T (lOa) 

from which 

(lOb) 

Heat-transfer equation. - The heat-transfer rate to the diffuser 
casing must equal the heat-transfer rate from the f luid. The heat ­
transfer rate to the diffuser casing is given approximately by 

ely 

sin a. 
(lla) 

where hI is the coefficient of heat transfer, Tw is the wall, or 
diffuser casing, temperature, and dQ is the heat-transfer rate. Equa­
tion (lla) assumes that the recovery factor at the wall is 1.0 (refer­
ence 3, p. A-328). 

The heat-transfer rate from the fluid is given approximately by 

dQ 

Finally, from equations (lla) and (llb) 

2ht (T 
= pq hc sin a. T

W

t m p 

(llb) 

(llc) 

Equation (llc) gives the change in total temperature with radius as a 
function of the heat-transfer coefficient hI. 

Reynolds' analogy. - An approximate value for hi in equation (llc: 
can be obtained from the Reynolds' analogy between friction and heat 
transfer (reference 3) 
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From which equation (llc) becomes 

1 dTt --- cf sec r3 (T 

== h sin a, T: 
(12) 

Equation (12) gives the change in total temperature with radius as a 
function of the skin-friction coefficient and the r at io of wall tempera­
ture to total temperature of the fluid. 

Review. - A review of the theory up to this point indicates nine 
unknowns and nine equat ions for the analysis method. The unknowns are: 
p, p, T, Tt , M, q, qm' qe, and r3 . (For the design method h is 
unknown and replaces one of these nine quantities, which is then speci­
fied as a function of r. The angle a, is a known function of r for 
both analysis and design methods .) The nine equations are: 

Tangential velocity 
Meridional velocity 
Mach number (definition) 
Total temperature (definition) 
Continuity 
Meridional equilibrium 
Tangential equilibrium 
Equation of state 
Heat- transfer equation 

Equation 

(4b ) 
(4c) 
(S a) 
(6a) 
(7) 
(8) 
(9 ) 
(lOb) 

(llc) or (12) 

The solution for the anal ysis method consists in combining the nine 
equations - to obtain three differential equations involving three 
unknowns: Tt , M, and r3 . These three differential equations, in 
turn, can be combined to solve, by numerical methods, for Tt , M, and 
~ successively. (For the design method an auxiliary equation is devel-

oped for ! db in terms of the prescribed f luid property as a function 
hdr 

of r. The three unknowns Tt , M, and ~ are then obtained in the 
same manner outlined for the analysis method.) 

Final Equations 

Auxiliary differential equation. - An auxiliary 
tion for the pressure p in terms of Tt , M, and 
the equilibrium equations} which} after expressing 
terms of q and ~ } combine to give 

differential equa­
~ is obtained from 

qe and ~ in 
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g dp 1 dq2 

But, 

2 2 pq )'pq 

g )'gR*T 

cf sec 13 

h sin a, 
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(13a) 

(13b) 

so that, from equations (6b), (13a), and (13b) 

-where 

and where 

and 

ldP 

PdR 2 

P P = --
Po 

R 
r 

- r
T 

h H =--
~ 

1 ~ 1 dTt 2 h 
-- --- + -- --- + -------
M2 dB T t dB H cos 13 

(13c) 

(13d) 

(13e) 

H(R) 

where p is the compressor-inlet stagnation pressure, r is the 
impellerOtip radius, and ~ is the effective diffuser heIght at the 
impeller tip. Equation (13c) is an auxiliary differential equation that 
relates the change in P to the change in Tt and ~ with radius R. 

Total temperature. - The change in Tt is given by equation (llc) 
or (12), which from equations (13d) and (13e) become 
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(14a) . 

and, for the case of Reynolds' analogy, 

(14b) 

Mach number. - In order to determine the differential equation for 
the Mach number squared it is first necessary to express the second term 
of the continuity equation (7) in terms of known variables. From the 
meridional equilibrium equation (8) together with equations (4) and 
(13b) 

1 dq 
-~ 

<1mdr 

2 tan i3 

r 

2 sec i3 1 dp 
- --

rM2 p dr 

cf sec i3 

h sin a. 
(15a) 

The first term of the continuity equation (7) is expressed in terms of 
known variables by the equation of state (lOb) together with equation (6a 

1 d.p 1 dp 1 dTt ---+ 
Tt dr 

(15b) 
pdr pdr 

Substituting equations (15a) and (15b) into the continuity equation (7) 
and combining it with equations (13d) and (13e) result in 

2 ~ r-lif ~ 2 
ldP -rM 2"'"" 1 dM _ ~ dTt _ 
-- = 

1 + r;l ~ ~ dR PdR 1M2 - sec2i3 Tt dR 

t IdE 2 

~ sec 
+ -- + 

R cos i3 RdR R 
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which, combined with equation (13c) to eliminate ldP 
P dR' 

finally gives 

1 ~ -2(1 + ~ ~) 
~ - sec2

13 

2 2 1 dTt 
+),M - tan 13) - - + 

2Tt d.r 

h 1 dE 

H cos 13 H dR 
~15c) 

Equation (15c) determines the change in ~ with radius R along the 
1 dTt mean surface of revolution in terms of which is known from T dR ' t 

equations (14a) or (14b). 

Flow direction. - The differential of the flow direction 13 is 
obtained from equation (4a) 

1 d tan 13 1 d<le 1 dqm 
------

tan 13 dr 'Ie dr ~ dr 

which from the tangential equilibrium equation (9) and equation (15a) 
becomes 

1 d tan 13 
= 

tan 13 dR 

and from equations (13c) and (15c) 

1 

tan 13 

d tan 13 

dR 

2 sec 13 1 dP 
2 

sec 13 

)'M2 P dR - R 

),-1 _~) 1 dTt +-!1 - + 
2 Tt dR 

ldE 
HdR ~} (16) 

Equations (14a) or (14b), (15c), and (16) are three
2
differential equa­

tions that can be solved simultaneously for T
t

, M, and 13. 



NACA TN 2610 13 

Pressure. - After the variations in Tt , Mt, and ~ with radius 
R are known the pressure P can be obtained from the continuity equa­
tion as follows~ 

(17a) 

where the subscript 1 refers to known conditions (appendix C) at the 
diffuser inlet (where R is equal to 1.0). From the equation of state 
(lOa) and from the definition of Mach number (equation (5)), equa-
tion (17a) becomes 

Finally, from equations (6) 

P 1 cos 
(17b) 

Equ~tion (17b) determines P from the known conditions at the diffuser 
inlet and from the known values of T, M2, and ~ determined by the 
simultaneous solution of equations (lla) or (14b), (15c), and (16). 

2 After the quantities P, M, Tt , and ~ are known, all other 
quantities (p, T, q, qm' and ~) can be determined directly from 
equations (4), (5), (6), and the equation of state (lOa). 

Flow path. - The flow path on the mean surface of revolution in the 
vaneless diffuser can be obtained from the known variation in tan ~ 
with R given by the solution of equation (16). From figure 7, which 
shows the flow path on a developed view of the mean surface in the 
vicinity of R, 

tan ~ R dB 
dB/Sin a, 

or 

de tan ~ 
dR R sin a, 

(18) 

Because ~ and a, are known functions of R, equation (18) determines 
the flow path on the mean surface of revolution. 
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Infl uence coefficients . - In some analysis problems it may be con­
venient or desirable to solve directly for one or more of the other 
dependent quantities rather than Tt ) M2) and ~ . Also) in the design 
problem it may be desired to specify one of the se quantities as a func -

tion of R and to solve for the required value of ! dE For these 
EdR 

cases the change in the dependent variabl es p) p) T)' q) 
with radius R along the mean surface of revol ution) as 
change in Tt ) M2) and ~) must be expressed in terms 

1 dT t 
quantities ~ dR (given by equations (14a) or (14b») 

t 

'\n) and qe 
well as the 
of the known 

~ 1 
E cos ~) 

ldH and -­
EdR 

(not known in the design problem») which quantities are 

multiplied by influence coefficients . Thus) if x is anyone of the 
dependent variables) 

(M2 _ sec2~) ldX 
11 (1 + ,;1 M2) 1 dTt 

XdR ---+ Tt dR 

12 E 
~ ldH 1 

(19) cos ~ + 13 If dR + 14 R 

where 11 through 14 are influence coefficients that are determined 
in the same way that equations {15c) and (16) were developed . The 
influence coefficients for various dependent variables X are given in 
the following table: 

Influence Coefficients 
X 

I I 13 14 1 2 
2 

,M
2 ~+(, - l)M~ 2 2 2 P ,M - ,M -,M sec ~ 

p 
2 

sec 13 Nf(, sec2~-tan2~) -~ 2 2 
- M sec 13 

T ,~- sec2 13 
222 

(, - l)M (,M -tan ~) -( , -l)~ ( 2 2 - l' - l)M sec ~ 

~ tan2~_ 1_,~ 2 (1+1'~1~)(tan2~ _I'M2) 2(1 I ,;1~) 2(1+ ,;1 M2)sec2~ 
2 2 2 2 q - 2 2 (tan !3 - I'M ) 2 2 sec 13 

- sec2~ ~(tan2~ 2 q - I' sec ~) 
m 

sec2~ 2 sec ~ 
2 2 

+M tan ~ 

qe 0 sec2!3 - ~ 0 sec2!3 - ~ 

tan ~ 
2 

sec2!3 ~+.(I' - l)~ 2 2 2 sec ~ - sec ~ -M sec ~ 
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If 
2 

is equa] to sec~, the left side of equation (19) is 

i ~ cannot be infinite. equal to zero because 

( 22 
For this condition 

M = sec ~), which occurs when qm is equal to the local speed of 
sound, that is when choke flow occurs (appendix D), equation (19) 
becomes 

IdH - - --EdR 

15 

(19a) 

where the influence coefficients given in the table have been substi­
tuted in equation (19) with M2 equal to sec2~. (All sets of influ­
ence coefficients result in the same equation (19a).) Equation (19a) is 
a condition that must be satisfied at the location of choke flow in a 
vaneless diffuser. In particular) if heat transfer and friction are 
absent) equation (19a) becomes 

1 d{RR) 
RR dR 

Because ER is directly proportional to the flow area) it is seen that 
choke flow does not occur at the throat) or position of minimum flow area 

(ddR(RR) -_ 0)) '\ but at a point where the flow area is decreasing in the 

direction of increasing R. 

Small-stage effiGiency. - The small-stage) or polytropic) efficiency 
at a given radius R on the mean surface of revolution in a vaneless 
diffuser is de~ined as the ratio of the ideal (ignoring friction and heat 
transfer) to the actual differential change in static enthalpy with 
radius required to accomplish the actual differential change in static 
pressure with radius. This definition leads to the following expression 
for the small-stage efficiency ~ (appendix E) 

IdP 
PdR 

~ = ---------,~~=-------------------(1 + r-l M2) 1:... dTt + 1M2 t 
\ 2 Tt dR E cos ~ 

(20a) 

Equation (20a) indicates that in the absence of heat transfer 
(dTt/dR = 0) and friction (t = 0) the small-stage efficiency is 100 
percent. Also) for heat transfer from the fluid to the diffuser walls) 
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1 dTt 
--- ~u is negative and 
Tt u.L\ 
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therefore results in an apparent increase in the 

Thus, in the presence of heat transfer, the 
as just defined, is not a good measure of the 
diffusers in that it is not a measure of thedT 
involved. In the absence of heat transfer ~ 

small-stage efficiency. 
small-stage efficiency, 
performance of vaneless 
magnitude of the losses 

dB 
is zero and equation (20a) can be rearranged to give (appendix E) 

1]=:1-

tan2~) _ cos ~ (~ + H S~C2~) 
(20b) 

If M2 is equal to sec2~ (choke flow condition, appendix D), the 
efficiellcy given by equation (20b) becomes indeterminate, because the 
numerator of the fraction is zero and, from equation (19a), so is the 
denominator. 

NUMERICAL PROCEDURE 

A specific numerical procedure is outlined for both the analysis 
and design problems, however, any other standard numerical procedure can 
be used. In the analysis problem the variation in fluid properties 
with R are determined for a specified geometry of the vaneless dif­
fuser. In the design problem the variation with R in one of the fluid 
properties is prescribed and the remaining fluid properties together 
with the variation in di~user height H with radius R are deter­
mined. The numerical procedures for both the analysis and design prob­
lems are essentially the same but differ in detail and are therefore 
discussed separately in this section. 

Analysis Problem 

Primary quantities. - In the anal~sis problem the variation with 
R in three primary quantities (Tt , Mf, and ~) are obtained from 
three differential equations: (14a) or (14b), (lSc), and (16). These 
equations are nonlinear and it is necessary to solve them by numerical 
methods. The suggested stepwise procedure is as follows: 

(1) The values of Tt , ~, and ~ at the diffuser inlet are 
estimated from the impeller design and operating characteristics 
(appendix C). 
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(2) At any radius R, if, Tt , M2, and tan j3 are known, the 
change in Tt (that is, ~Tt) for a small increase in R (that is, 
~) is computed directly from equation (14a) or (14b). 

(3) The change in M2 (that is, ~M2) for the same small change 
in R (that is, ~) is computed directly from equation e15c) in which 

~ dBdTt is obtained from step (2). 
Tt 

(4) Finally ~tan f3 is computed from equation (16). 

(5) Thus, at (R +~) the approximate values of Tt, M2, and 
tan j3 are known from the values of Tt, M2, and tan j3 at Rand 
the approximate values of ~Tt, ~M2, and ~tan f3 given by steps (2) 
through (4). 

(6) At 

1 d tan f3 
tan f3 dB 
and (16) from 
in step (5). 

(7) The 

(R +~) are 

and so forth, 
and (6). 

1 dTt 1 ~ (R + ~R) approximate values of -- ___ , __ ---, dnd 
Tt dB M2 dB 

can then be determined by equations (14a) or (14b), (15c), 

the approximate values of Tt, ~, and tan f3 obtained 

final values of ~Tt, AMt, and ~tan f3 between Rand 

obtained directly from the arithmetic average of ~ dTt, 
T dB 

at Rand (R + ~R) as given in steps (2), (3), (4Y, 

(8) The values of Tt , M2, and tan f3 at (R +~) are deter­
mined from the known values of TtJ M2, and tan f3 at R and from 
the values of ~Tt, ~M2, and ~tan f3 obtained in step (7). 

(9) The stepwise procedure outlined in steps (2) through (8) is 
repeated for small values of ~ starting at R equal to 1.0 (where 
Tt , M2, and tan j3 are obtained by step (1») and continuing to the 
d~ffuser exit. For the numerical examples of this report ~ was 0.02, 
0.03, and 0.05 for the first three increments and 0.10 for the remaining. 

Secondary quantities. - After the distribution of Tt , M2, and 
tan f3 with R are known, the distribution of P, p, T, q, qm' and qe 
can be determined directly from equation (17b ) and from equation (4), 
(5), (6), and the equation of state (lOa). 

Flow path. - The flow path on the mean surface of revolution in the 
vaneless diffuser is given by e as a function of R along the sur­
face. Because tan f3 and sin ~ are known functions of R, the flow 
path (e = e (R») can be determined by the numerical integration of 
equation (18) assuming e equals zero at R equals 1.0. 
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Efficiency. - The small-stage, or polytropic, efficiency ~ at 
each radius R is given by equation (20a). The diffuser efficiency 
(~D)R between radius R equals 1.0 and R is given by equation (E6) 
in appendix E'. 

Design Problem 

In the design method the variation in effective diffuser wall 
spacing with radius is determined for a prescribed variation in one 
fluid property. For efficient diffuser designs the selection of the one 
fluid property and its optimum prescribed variation will depend on 
viscous flow effects that are considered in boundary-layer studies but 
will not be 'investigated in this report. (Nor is the magnitude of the 
boundary-layer displacement, required to obtain the geometric wall 
spacing from the effective spacing, considered in this report.) 

Auxiliary equation . - I n the design problem the variation in H 
with R is unknown and must be determined to satisfy a specified varia­
tion in one characteristic of the flow (qm' for example) with R. From 

this specified variation in one characteristic of the flow i ~ can be 

det ermined from equation (19). The quantity llE between Rand 
ldH 

(R + llR) is obtained from the average value of R dB at Rand 

(R + llR). ~ter H has been determined at (~+ llR) the final values 
of llTt , !:1M, llP, and lltan ~ between Rand (R + llR) are 
obtained by the same procedure previously outlined for the analysis 
problem. The process starts at R equals 1.0 (where E equalp 1.0) 
and is repeated for specified increments of R up to the diffuser exit. 

Complete solution . - After the variation in H, Tt , ~ , and 
tan ~ with R are known, the variation in P, p, T, q, qm' and q$ 
can be determined directly from equation (17b) and from equations (4), 
(5), ( 6L and the equation of state (lOa). The flow path is determined 
by equation (18) as outlined previously, and the small-stage, or poly­
tropic, efficiency is determined by equation (20a). 

NUMERICAL EXAMPLES 

The numerical examples of this report are divided into three groups: 
(1) effects of some operating conditions, (2) effects of diffuser wall 
spacing, and (3) a vaneless diffuser design problem . 
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Effects of Some Operating Conditions 

The first group of numerical examples shows the effects of heat 
transfer and friction on the flow in vaneless diffusers. Three numer­
ical examples are given: {l) isentropic compressible flow, (2) com­
pressible flow with friction, and (3) compressible flow with friction 
and heat transfer . 

:rnlet conditions . - For the first group of numerical examples the 
flow conditions at the diffuser inlet (R = 1.0) are: 

Pl = 3.022 

2 
1.370 1\ 

(Tt)l 9410 R 

{tan f3) 3.829 
1 

Those conditions were estimated (by methods given in appendix C) for 
the following design and operating conditions of the impeller: 

Compressor flow coefficient, ~. 

I mpeller tip Mach number, MT 
Impeller slip factor, ~ . .. . 
Impeller polytropic efficiency, ~ 

Compressor- stagnation inlet temperature, To' ~ 

0.75 
1.5 
0.9 
0.9 
520 

Diffuser design. - The design characteristics of the diffuser are: 

Passage height, H. . . . . . . . 
(constant flow area normal to qm) 

Wall temperature, Tw' ~ .. 
Frict~on parameter, h .. •. 

[

Cf ~ 0 . 003 (a relatively 

Si! CL(~) = 10 (so that 

low value, see reference 4] 

sin CL is constant) 

R- l 

750 
0.030 

The Reynolds ' analogy was used to determine the heat-transfer coefficient 
so that equation ~12) was used to determine the change in total tempera­
ture with radius . 

Results. - The resul ts of the first group of three numerical 
examples are given in figure 8 . In figure 8(a) is shown the change in 
M2 with R fo~ the three numerical examples. The effect of friction 
is to reduce Mt at each radius R (because, although the smaller 
meridional velocity component ~ is increased as usual, the larger 
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tangential component ~ is detreased) and the effect of heat transfer 
from the fluid is to increase M2 slightly (primarily because of tbe 
reduced speed of sound at the lower temperature) for the magnitudes of 
Tt and Tw involved in these examples. 

In figure 8(b) is shown the change in P with R. As expected) 
the effect of friction is to reduce P at each radius (primarily 
because of the decreased values of ~) which require a smaller pressure 
gradient for equilibrium). The effect of heat transfer from the fluid 
is to raise P slightly for the magnitudes of Tt and Tw involved in 
these examples. 

In figure 8(c) is shown the change in flow direction ~ with R. 
The effect of friction is to reduce ~ because qe is reduced and ~ 
is increased to satisfy continuity with lower density due to lower P. 
The effect of heat transfer from the fluid is to increase ~ slightly 
because of the reduced value of qm resulting from the increased value 
of p. 

In figure 8(d) is 
The effect of friction 
decreased (fig. 8Cc). 
path slightly. 

shown the flow path in the vaneless diffuser. 
is to shorten the flow path because ~ is 
The effect of heat transfer is to lengthen the 

In figure 8(e) is shown the change in polytropic) or small-stage) 
efficiency ~ with radius R. The effect of friction is to reduce the 
efficiency at each radius. The effect of heat transfer from the fluid 
is to increase ~ greatly. In fact for the larger values of R where 

M2 is relatively small the term involving ~ d~t becomes greater than 
Tt dB 

the term involving the friction parameter t (see equation (20a» and) 
1 dTt because for heat transfer from the fluid - -- is negative) ~ 

Tt dB 
becomes greater than 100 percent. 

For the example with friction but no heat transfer it is interesting 
to note that) although the friction losses must be greater at the lower 
values of R because of the larger velocities) the polytropic effi­
ciency is higher. From equation (20a) the higher efficiency must result 

1 dP )'M2t from a higher rate of pressure rise p dB compared with R cos ~ at 

the lower values of R. In current compressor designs the local poly­
tropic efficiency at the lower values of R will be considerably reduced 
(reference 4) for example) because of mixing losses resulting from the 
nonuniform flow conditions at the impeller discnarge. 
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The diffuser efficiency .( TJD) 2 at R equal to 2.0 is determined by 
equation (E6) of appendix E and is indicated for each of the three numer­
ical examples in figure 8(e). The value of (TJD)2' for the example 
with heat transfer, is considerably less than the values of the poly­
tropic efficiency TJ at the larger values of R for this example, 
because for these larger values of R the rate of pressure rise is 
smaller and therefore TJ has less effect upon the value of (~D)2' 
Even so, the value of (TJD)2 for the example with friction and heat 
transfer is almost 100 percent. But from figure 8(b) the pressure P 
at R equal to 2.0 is not much different for the two examples with and 
without heat transfer (but with friction) so that the losses are about 
equal for these examples and (TJD)2' which is considerably different, 
is therefore not a reliable measure of the losses when heat transfer 
effects are present. 

For the example with friction and no heat transfer the value of 
(TJD) is as low as 0.824 in spite of the relatively low friction 
coefricient (cf = 0.003) and in spite of neglecting the mixing losses 
due to nonuniform flow conditions at the impeller discharge. Thus, the 
friction losses in most vaneless diffuser designs are considerable and 
result from the (usually) large ratio of wetted surface to flow area. 
The diffuser efficiency can be improved by lower values for ~ (pro­
vided other design and flow variables remain unchanged) and these lower 

values for can result from lower values of 
rT 
hr' which means, for 

example, larger compressor flow rates for a given impeller tip radius. 

A general conclusion resulting from the first group of numerical 
examples is that heat transfer from the fluid has the opposite effect of 
friction on pressure rise in vaneless diffus~rs and is therefore to be 
desired. Heat transfer to the fluid, on the other hand, can be expected 
to have the same effect as friction and is therefore to be avoided. 

Effects of Diffuser Wall Spacing 

The second group of numerical examples shows the effects of passage 
height h (that is, spacing of the diffuser walls normal to the mean 
surface of revolution) on the flow in vaneless diffusers. The losses 
in a vaneless diffuser should increase with the velocity squared, with 
the ratio of wetted perimeter (at each radius) to diffuser wall spacing 
(that is, with the ratio of friction area to flow area), and with the 
length of the flow path in the vaneless diffuser. For a given com­
pressor flow rate the square of the velocity and the ratio of wetted 
perimeter to diffuser wall spacing increases as the diffuser wall spacing 
h is decreased, but the length of the flow path decreases. The object 
of the second group of numerical examples is to determine the relative 
magnitudes of these opposing effects on the losses in vaneless diffusers, 
and to determine the optimum wall spacing h, if such an optimum exists. 
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Diffuser design. - As for the first group of numerical examples the 
diffusers of the second group were designed for constant flow area 

(R = R- l ) but with the diffuser wall spacing ~ at the impeller dis­
charge (diffuser inlet), and therefore throughout the diffuser, varying 
(among examples) over a wide range. The values of ~ were selected 
for the eight numerical examples of the second group such that the 
friction parameter h varied, from 0.010 to 0.038 in seven increments of 
0.004. (~ varies inversely with ~, equation (13d).) The friction 
coefficient was assumed to be constant, that is independent of diffuser 
wall spacing, and therefore the possibility of separated flow for large 
spacing of the diffuser walls wa s not considered. Heat-transfer effects 
were not considered. The example for ~ = 0.030 was the same as that in 
the first group of numerical examples with friction but no heat transfer. 

Inlet conditions. - For the second group of numerical examples the 
diffuser inlet conditions varied with the diffuser wall spacing because 
for a constant compressor flow rate W the compressor flow coefficient 
cp (equation (ell), appendix C) varies inversely with the passage height 
~ at the impeller tip. (Note that the blade height at the impeller 
tip is also assumed to vary with ~ and this variation is assumed to 
have no effect on the impeller efficiency, and so forth.) For the 
selected variation in hr the flow coefficient varies from 0.25 to 0.95 
in seven increments of 0.10. The remaining design and operating condi­
tions of the impeller are the same as for the first group of examples. 
Thus, 

Impeller tip Mach number, MT. 
Impeller slip factor, ~ 

Impeller polytropic efficiency, ~ 

Compressor stagnation inlet temperature, To' ~ •. 

1.5 
0.9 
0.9 
520 

The flow conditions at the diffuser inlet were estimated {by methods 
given in appendix C) from the impeller design and operating conditions 
ahd are given in the following table: 

Example t cp PI M 2 (tan (3)1 tTt)l 1 
tOR) 

a 0.010 0.25 3.174 1.272 11.879 941 

b .014 .35 3.157 1.283 8.453 941 
c .018 .45 3.133 1.298 6.541 941 

d .022 .55 3.103 1.317 5.317 941 

e .026 .65 3.066 1.341 4.462 941 

f .030 .75 3.022 1.370 3.829 941 

g .034 .85 2.970 1.406 3.339 941 
h .038 .95 2.909 1.448 2.945 941 
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Results. - The results of the second group of eight numerical 
examples are given in figure 9. All results are based on the assumption 
that as the diffuser wall spacing increases, that is as ~ descreases, 
the friction coefficient remains constant and flow separation does nO~2 
occur on the diffuser walls. In figure 9(a) is shown the change in Ml 
with R for the eight examples. The effect of decreasing ~ (that is, 
of increasing b.r) is to decrease M2 at each value of R. This 
decrease in M2 results primarily from the decrease in qm resulting 
from the increased flow area that occurs when ~ is increased. 

In figure 9(b) is shown the change in P with R for various 
values of ' ~. The effect of decreasing ~ is to increase P because 
M2 is decreased (fig. 9(a». 

The change in ~ with R for various values of ~ 

figure 9{ c) . As ~ is decreased the velocity co'mponent 
so that the flow direction ~ increases as shown. As ~ 

zero, ~ approaches 900 for all values of R. 

is shown in 
qm decreases 
approaches 

In figure 9fd) is shown the flow path in the vaneless diffuser for 
the various values of ~. The effect of increasing ~ is to decrease 
the length of the flow path because ~ is reduced (fig. g(c». 

The change in polytropic efficiency ~ with R for the various 
values of ~ is shown in figure 9(e). The effect of decreasing ~ is 
to increase ~ at the larger values of R. As the value of ~ 

decreases the length of the flow path increases (fig. 9(d», which 
should increase the diffuser losses, but M2 (fig. 9(a» and the fric ­
tion parameter ~ decrease, which should decrease the losses. At ~ 
equal to zero ~ is 900 , or cos ~ is zero, and t is zero so that 
the ratio h/cOS ~ contained in the expression for ~ (equation (20a» 
becomes indeterminate. However, extrapolation of the results in 
figure 9~f) indicates that ~ has its peak value for ~ equal to zeroj 
and thus, if separation does not occur and if the friction coefficient 
cf is unaffected by the diffuser wall spacing, the diffuser efficiency 
is always improved (slightly, see fig. 9(f» by spacing the diffuser 
walls farther apart. Furthermore, if the diffuser walls are spaced 
farther apart and the compressor flow rate is increased proportionately 
so that ~ remains unchanged, the dilfuser efficiency should be improved 
markedly because the ratio of wetted surface to flow area is decreased 
without increasing the length of the flow path in the diffuser and with­
out introducing the risk of boundary-layer separation, which must other­
wise be expected if the diffuser walls are spaced far apart. Thus, as 
also concluded from the f irst group of numerical examples, the diffuser 
efficiency can be improved by increased compressor flow r ates for a 
given impeller tip radius so that the diffuser walls pan be spaced 
farther apart without resulting in boundary-layer separation or 
increasing the length of the flow path. 
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In figure 9(f) is shown t he effect of ~ on the diffuser efficiency 
(T) ) . As expected from f i gure 9 (e) , (T)D) 2 increases as' ~ decreases, 
bu~ ~he rate of increase is less for the smaller values of ~ and in no 
case are large gains in efficiency to be realized by decreasing ~, 

that is, increasing the diffuser wall spacing. Thus, unless the flow 
rate is increased proportionately so that ~ remains constant, very wide 
spacing of the diffuser walls is not recommended because of (only) a 
small gain in efficiency and a great risk of bo~ndary-layer separation. 

A Vaneless Diffuser Design Problem 

The third part of the section on numerical examples is a sample 
vaneless diffuser design problem. The design variables in a vaneless 
diffuser are 

H HCR) 

and 

In this sample design problem a,(R) will be specified (constant and 
equal to 900

) and the design problem will be to determine HCR) for a 
prescribed variation in qm' 

For purposes of demonstrating the design method it is assumed that 
the deceleration of qm is th~ criterion for boundary-layer separation 
in a vaneless diffuser and that the criterion is that given in refer­
ence 5, page 159, so that a safe rate of deceleration is 

-0.05 

where 6 is proportional to the boundary-layer thickness. For purposes 
of this design example it is assumed that 6 is equal to h/2, which is 
the effective thickness of a fully developed boundary layer in the vane­
less diffuser. Thus, 

or 

(H/2) d~ (~) = -0.05 
~ dR r T 
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if rT/~ is equal to 10. Because of the assumptions involved this 
d~ 

specified variation in dR with H may have no practical significance 

With regard to vaneless diffuser performance 'and has been selected only 
to demonstrate an application of the design method . It should be 
pointed out that design variations in H affect primarily the velocity 
component qm and through this component the f l ow direction ~. 

Inlet conditions. - The impeller design and operating conditions 
are the same as for the first group of numerical examples and so the 
diffuser inlet conditions are the same 

Pl 3.022 

~2 == 1.370 

(trt \ 9410 R 

(tan i3\ == 3 . 829 

The variation in H with R Diffuser design . is to be deter-
mined. Heat-transfer effects are neglected) and the value of the fric­
tion parameter t is the same as for the first group of numerical 
examples (0.030). 

Results. - The results of the design problem are given in figure 10. 
1 dqm 

In figure 10(a ) is shown the variations in H) qm dR) M2) p) i3) and 
_1 dqm 1 

~ with radius R. As specified) is equa l to -H-. In order 
qm dR 

to accomplish this variation) H at first decreases with increasing R 
and then increases to approximately its initial value at R equal to 
2.0 . At the larger values of R this variation in H results in some­
what wider spacing of the diffuser walls than existed in the previous 
numerical examples where the wal l spacing decreased continuously with 
increasing R in order to mai ntain a constant flow area normal to qm' 
As a result of this wider spacing of the diffuser walls the values of ~ 
are somewhat higher (in keeping with the results of the second group of 
numerical examples) than for the previous examples with the same values 
of cp and t. The variation in i3 with R was s l ightly more than 30 
so that the flow path (fig . lOeb)) is approximately a logarithmic spiral. 
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SUMMARY OF RESULTS AND CONCLUSIONS 

An analysis method and a design method have been developed for one­
dimensional, compressible flow with friction, heat transfer, and arbi­
trary area change in vaneless diffusers with arbitrary profiles in the 
axial-radial plane. The effects of mixing losses due to nonuniform flow 
conditions at the impeller discharge are not considered. In the analysis 
method the variation in fluid properties, including the velocity and 
flow direction, can be determined as a function of radius for a prescribed 
variation in diffuser wall spacing with radius. In the design method 
the variation in diffuser wall spacing and all fluid properties except 
one can be determined as a f unction of radius for a prescribed variation 
in the one fluid property. For efficient diffuser designs the selection 
of the one fluid property and its optimum prescribed variation will 
depend on viscous flow effects that are considered in boundary-layer 
studies but are not investigated in this report. 

Three groups of numerical examples are presented in which the 
effects of friction, heat transfer, and diffuser wall spacing are 
investigated; and a sample design problem is presented. As a result of 
these examples it is concluded that: 

1. Heat transfer from the fluid has the opposite effect of friction 
on pressure rise in vaneless diffusers and is therefore to be desired . 
Conversely, heat transfer to the fluid has the same effect as friction 
and is therefore to be avoided. 

2. If the friction coefficient is unaffected by the diffuser wall 
spaCing, and if flow separation does not occur, the diffuser efficiency 
is improved slightly (for a given compressor flow rate) by spacing the 
diffuser walls farther apart. 

3. Even with relatively low friction coefficients and neglecting 
mixing losses at the impeller tip, the friction losses in most vaneless 
diffuser designs are conSiderable, as indicated by computed diffuser 
efficiencies in the low 80's, and these losses result from the usually 
large ratio of wetted surface to flow area in vaneless diffusers. 

4. Diffuser efficiencies can be improved by increased compressor 
flow rates for a given impeller tip radius so that the diffuser walls can 
be spaced farther apart (thus, reducing the ratio of wetted surface to 
flow area) with?ut increasing the length of the flow path in the diffuser. 

5. In the presence of even small heat-transfer effects the usual 
definition of diffuser efficiency, whieh definition neglects corrections 
for heat transfer, is not a measure of the diffuser losses. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, September 11, 1951 
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SYMBOLS 

The following symbols are used in this report: 

c 

cf 

g 

H 

h 

h I 

1
1

, 12 , 13 , 14 

i 

J 

M 

~ 

n 

p 

p 

Po 

dQ 

annulus flow area a t impeller tip, e~uation (C12) 

local speed of sound 

skin-friction coefficient, equation (B2) 

stagnation speed of sound upstream of impeller 

specific heat at constant pressure 

local stagnation speed of sound 

acceleration due to gravity 

effective passage height, or diffuser wall spacing, 
ratio, h/hT 

effective passage height, or diffuser wall spacing 
• 

coefficient of heat transfer, e~uation (lla) 

influence ~oefficients, e~uation (19 ) 

enthalpy 

mechanical e~uivalent of heat 

local Mach number, e~uation (5) 

impeller tip Mach number, e~uation (C3) 

polytropic exponent, equation (C 6) 

pressure ratiO, p/po 

static (stream) pressure 

stagnation pressure upstream of impeller 

heat transfer r ate from the fluid 

27 
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q 

R 

R* 

r) S) z 

T 

Tt 

t 

w 

x 

y 
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velocity 

velocity component in meridional) or axial- radial) 
plane) equation (3) 

velocity components in r-) S-) and z- directions) 
respectively 

radius ratio) r/rT 

perfect ga s constant 

cylindrical coordina tes) S considered positive in 
counterclockwi se direction when rS- plane is viewed 
from negative z- direction 

static (stream) temperature 

stagnation temperature upstream of impell er 

local stagnation) or total) temperature 

diffuser wall temperature 

time 

compressor flow rate 

dependent variable 

slope of center line between diffuser walls in meri­
dional) or axial - radial plane) equation ( 2) 

flow direction on mean surface of revolution between 
diffuser walls) equation (4a) 

r atio of specific heats 

small finite increment 

friction parameter) equation (13d) 

polytropic) or small- stage) efficiency) equation (El) 

diffuser adiabatic eff iciency based upon change in f low 
conditions for change in radii from 1 . 0 to R) equa­
tion (E5) 
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T 

cp 

Subscripts: 

a 

i 

R 

T 

impeller slip factor 

static (stream) weight density 

stagnation density upstream of impeller 

local stagnation density 

shear stress due to skin friction 

compressor flow coefficient) equation (ell) 

angular velocity of impeller 

actual 

ideal 

value at R 

impeller tip 

value at R equal to 1.0 or 2.0 

29 
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AJ?PENDIX B 

EQUILIBRIUM EQUATIONS 

Meridional and tangential equilibrium equations are developed for a 
fluid particle on the mean surface of revolution in a vaneless diffuser. 

Meridional equilibrium. - The equation for meridional equilibrium 
of a fluid particle (fig. 6) in the direction of ~ on the mean surface 
of revolution is obtained from a balance of the pressure and shear 
forces with the force required for acceleration. 

The differential pressure forces (oppos ed to the direction of ~) 
are equal to the differential change of end forces on the particle minus 
the component of the differential side forces on the particle in the 
direction of ~, 

Differential pressure forces = d(P~ de)dr _ pd(hr ~e)dr (Bl) 

where the component of the differential side forces in the direction of 
~ (last term in equation (Bl)) is equal to the pressure p multiplied 
by the projected area (in the direction of ~) of the side surfaces of 
t he particle (fig. 6). 

The differential shear stress T on a diffuser wall is opposed to 
t he direction of q and is given by 

(B2) 

where c is the skin friction coefficient. The differential shear 
force s it the meridional direction on the fluid particle in figure 6 are 
opposed to the direction of ~ and act on both walls of the diffuser. 
From equation (B2), 

Differential shear forces = 2T cos i3 r de dr 
sin a. 

(B3) 

The acceleration of the fluid particle in the direction opposed to 
is made up of: (1) the component of the centripetal acc~leration <hn 

q 2 
--IL sin a., 

r 

d~ 
and (2) the negative of the acceleration dt. But, 
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so that the differential force re~uired for acceleration of the fluid 
particle in figure 6 becomes 

(

Differential force reqUired) 
for acceleration in direc­
tion opposed to ~ 

= e. hr ~e dr (qe
2 

sin a,­
g Sln a, \ r sin ~ 

31 

(B4) 

The sum of the differential pressure forces and shear forces must 
e~ual the force re~uired for acceleration so that from e~uationp (Bl), 
(B3), and (B4) 

~ 2 e 
r 

( 8) 

E~uation (8) is the equation for meridional e~uilibrium of a fluid par­
ticle on the mean surface of revolution in a vaneless diffuser. 

Tangential equilibrium . - The equation for equilibrium of a fluid 
particle (fig . 6) i n the tangential direction on the mean surface of 
revolution is obtained from a balance of the shear forces with the force 
required for acceleration. 

The differential shear forces in the tangential direction on the 
fluid particle in figure 6 are opposed to the direction of ~e and act 
on both walls of the diffuser . From equation (B2), 

A r de dr Differential shear forces = 2T sin ~ sin a, 

The tangential acceleration 
direction of ~ is made up of: 

2 
p~ . [3 r de dr = c f S1n . 

g Sln a, 
(B5) 

of the fluid particle oppos~d to the 
(1) the negative of the tangential 

acceleration r it ( q: } and (2) the negative of the Coriolis acce1era-

tion 
sin a, 

r But, 
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~ (qe) 1 dqe ~d.r 
::::: r dt - r2 dt dt r 

1 d~ d.r Cle d.r 
r d.r dt - r2 dt 

::::: 
~ sin ex. (d~ _ ~) 

r d.r r 

so that the differential force reQuired for acceleration of the fluid 
particle i n figure 6 becomes 

(

Differential force reQUired) 
for acceleration in direc- ::::: 
tion opposed to Qe 

( 
dQe q Qe rSin ex.) _ _p hr de d.r --m 

g q d.r sin ex.+ -----sin ex. "'m 

(B6) 

The differential shear force must 
reQuired for acceleration so that from 

cfQ2 sin ~ 
h sin ex. 

eQual the differential force 
eQuations (B5) and (B6) 

EQuation (9) is the eQuation for tangential eQuilibrium of a fluid 
particle (fig. 6) in the tangential direction on the mean surface of 
revolution in a vaneless diffuser . 

(9) 
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APPENDIX C 

ESTD1A.TED VALUES OF 2 
TV M ) P, AND TAN 13 AT DIFFUSER 

INLET (IMPELLER TIP) 

Total temperature. - The total temperature (Tt)l at the diffuser 

inlet) or impeller tip) can be obtained from the steady flow energy equa­
tion, where for convenience heat-transfer effects have been considered 
negligib le, 

(Cl) 

where ~ is the impeller slip factor and ill is the angular velocity of 
the impeller so that ~(mrT)2/g is the impeller work per pound of fluid. 
But 

and 

R* Jc = L P y-l 

so that dividing equation (Cl) by J~To 

~~ ~ 1 + Y21 ~2~ - ~2) Mr2 - (~~~2J 
where the impeller tip Mach number NT is defined by 

mrT Mr= -

The total temperature 

(qe) 12 
and 2 (equal to 

Co 

Co 

(Tt)l is given by equation (C2) when 

~2MT2) are equal to zero so that 

(C2) 

( C4) 

Pressure. - The pressure Pl at the diffuser inlet is obtained 
from the temperature ratio (equation (C2)) by 
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(C5) -= 
Po 

where the flow in the impeller) which involves viscous losses ) is rep­
resented by a polytropic process for which the polytropic exponent n 
is related to the polytropic efficiency of the impeller Tj by (refer­
ence 8) p . 449) for example) 

n y ( ) 
n - l :::: Tj y-l C6 

The quantity (qm)l in equati on (C2) is unknown but will be determined 

later from continuity consider ations . 

I n like manner the density Pl is rela ted to the temperature ratio 
(equation (C2) ) by 

1 

( C7) 

Mach number. - The local Mach number squared (M2)1 at the diffuser 
i nlet i s defined by 

(q ) 2 + (q ) 2 
elm 1 

2 
c 

= 
(q ) 2 + (q ) 2 To 
elm 1 

Co 
2 Tl 

where To/Tl is given by equation (C2)J where 

and where 
continuity 

or 

(~)l 
is determined from continuity considerations . 

(C8) 

(C9) 

From 

(CIO) 
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where the compressor flow coefficient ~ is defined by 

(011) 

in which the annulus area at the impeller tip ~ is given by 

(012) 

Equations (07) and (010) are solved simultaneously for 
equation (08) can be solved for (Ml)2. 

(~)l 
so that 

Flow direction. - ,The tangent of the flow direction ~l at the 
diffuser inlet is defined by 

where (~)l and (~)l are given by equations (09) and (010), 

respectively. 

Thus, (Tt)l' Pl , M12, and (tan ~)l are estimated by equa­
tions (04), (05), (08), and (013), respectively. 
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APPENDIX D 

CONDITION FOR MAXIMUM} OR CHOKE, FLOW IN VANELESS DIFFUSERS 

If W is the flow rate through a vaneless diffuser 

W = 2nrhp~ (Dl) 

where p is related to the stagnation density Pt at a given radius r 
by (reference 7, p . 26, for example) 

1 

P ~ Pt [1 -r;;l ('\n2
c
: 2'1e

2)r-1 (D2) 

(In the presence of heat transfer and friction Pt is a function of 
radius.) At any given radius as ~ is increased from low values W 
increases until a maximum) or choke) flow occurs . This maximum occurs 
when 

or) from equation (Dl), 

but, from equation (D2)) 

~== 
dq 

m 

dW 
d<1m == 0 

O=P+<1m~ 

where from reference 7, page 26, for example 

1 _ y -1 (~ 2 + qe 2) = ~ 
2 Ct2 Tt 

so that equation (D4) becomes 

(D3) 

(D4) 

(D5) 
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where 

c2 T c 2 
= Tt t 

After equations (D3) and (DS) are combined 

~ = c (D6) 

so that the maximum, or choke, flow occurs in vaneless diffusers when 
the meridional component of velocity ~ is equal to the local speed of 

sound c. Expressed in terms of M2 equation (D6) becomes 

(D7) 

which is the condition for maximum, or choke , flow in vaneless diffusers. 
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APPENDIX E 

SMALL-STAGE EFFICIENCY AND DIFFUSER EFFICIENCY 

The small-stage, or polytropic, efficiency ~ at a given radius 
R on the mean surface of revolution in a vaneless diffuser is defined 
as the ratio of the ideal to the actual differential change in static 
enthalpy with radius required to accomplish the actual differential 
change in static pressure with radius 

where the ideal differential change in static enthalpy with radius 
(di/dr)i is given by (reference 6, p. 102) 

(di\ = !dP:::R*T!dp 
dr{ pdr pdr 

eEl) 

(E2) 

and where the actual differential change in static enthalpy with radius 
(di/dr)a is by definition 

( di) ::: Jc..- dT ::: yR * dT 
dr a l' dr y-l dr 

(E3) 

Equation (El) is the usual definition of small-stage, or polytropic, 
efficiency and as sumes that heat-transfer effects are negligible. From 
equations (El) to (E3) and equation (13e) 

ldP 
PdR 

~ = ---::-:-= 
y 1 dT 

y-l T dR 

which from equations ( 6a) and (13c) becomes 

ldP 
PdR 

~ ::: ----------,-----=-~------------~~ 
! _dp + _y_ (1 + Y2-l M2) _1 dTt + yM2 ~ 
P dR y- l Tt dR R cos ~ 

(E4) 

(20a) 
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Equation (20a) gives the small-stage, or polytropic, efficiency in terms 
of the local pressure differential, the total temperature differential 
and the parameter ~, which involves the local skin-friction coeffi­
cient. 

In the absence of heat transfer 

tions (13c) and (15c) 

ldP 
PdR=1f 

so that equation (20a) becomes 

TJ = 1 -

equals zero and from equa-

1 dE se~ J3] _ H 1M2 S 
H dR - cos ~ 

(2Ob) 
dE + H sec2 t3 
dB R 

Equation (20b) expresses 11 in terms of the friction parameters S and 
the diffuser geometry . 

The diffuser efficiency (TJD)R' which measures the diffuser per­
formance between the diffuser inlet at R equals 1.0 and a point R 
on the mean surface of revolution in the vaneless diffuser, is defined 
as the ratio of the ideal to the actual static temperature rise required 
to accomplish the actual static pressure rise between the radii 1.0 and 
R. 

(E5) 

where the ideal temperature ratio (~) 
Tl i 

is related to the actual 

static pressure ratio by 

y- l 

G~)i -~) r 
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so that equation (E5) becomes 

Equation (E6) gives (~D)R 
at the radii 1.0 and R. If 

in terms of the known values of 
R approaches 1.0) 

and 

TR ~(T + dT) ~ 1 +(dT) 
Tl T 1 T 1 

so that 

NACA TN 2610 

(E6) 

P and T 

which corresponds to the definition for the small-stage efficiency given 
by equation (E4). 
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Impeller 
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Air - flow 
path 

Figure 1 . - Assembly of vaneless diffuser with mixed- flow impeller . 
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Figure 2. - Mixed- flow impeller and semivaneless diffuser with front shroud removed. 
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Figure 3 . - Diffuser profile ) velocity components) and 
coordinates in meridional) or axial-radial) plane . . 



z-axis 

Center line 
between 

diffuser walls 

r 

/ 

a, 

r+dr 

dz 

2391 

~ 

dr 

r 

+--

I 
Figure 4. - Fluid particle on surface of revolution generated by center line between 

diffuser walls. 

~ 
f) 
:x> 

~ 
N 
O"l 
I--' o 

"'" ()1 



46 NACA TN 2610 

__ --'fog 

\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 
I 

Figure 5 . - Mean surface of revolution with coordinates and velocity components. 
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Figure 6 . - Fluid part i cle with pressure and shear forces. 
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Figure 7. - Developed view of mean surface of 
revolution (fig. 5) in vicinity of R, 
showing relation between ~,R de, and 

dR ---. sin a. 
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(a) Variation in M2 with radius . 

Figure 8 . - First group of numerical examples, showing effects 
of friction and heat t ransfer . 
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(b) Variation in pressure ratio with radius. 

Figure 8. - Continued . First group of numerical examples, 
showing effects of friction and heat transfer . 
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Fi gure 8 . - Cont inued . Fi rs t group of numerical examples, 
sho~ing effects of friction s nd heat transfer. 
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(d) Flow path for sin n = 1 .0 . 

Figure 8. - Continued . First group of numerical examples , showing effects of 
friction and heat transfer. 
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Figure 8 . - Concluded. First group of numerical examples, 
sho"ing effects of friction and heat transfer . 
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Figure 9. - Second gro~p of numerical examples, showing 
effect of diffuser wall spacing as affected by changes 
in compressor flow coefficient q>. 

2.0 

NACA TN 2610 



NACA TN 2610 

p 

5. 6 

~ 

2 ~ ~ ~ 
~ ~ ~0~2L A 

A~ ~ "\ ~ :~; 
f\ .5L 

~V 1~ · 65 
~ 

.75 

.85 _ 

~ ~ 
'C .95 

4 

A r 

5 . 

4. 

4 . 

Ii. ~ 
4. 

A w 

rII 
3 . 

~ w 

1/ 
3 . 

2 W 

8 2. 
1.0 1.2 1.4 

~ 
1.6 1.8 2.0 

R 

(b) Variation in static pressure ratio ~ith radius . 

Figure 9. - Continued . Second group of numerical examples, 
showing effect of diffUser ~all spacing as affected by 
changes in compressor flo~ coefficient ~. 
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Figure 9. - Continued . Second group of numerical examples, 
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(d) Flow path for sin a = 1.0. 

Figure 9. - Continued . Second group of numerical examples, showing effect of diffuser wall spacing 
as affected by Changes in compressor flow coeff icient t:p. 
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Figure 9 . - Continued . Second group of numerical examples , 
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Figure 9. - Concluded . Second group of numerical examples, shOWing 
effect of diffuser wall spacing as affected by changes in compressor 
flow coefficient <p. 
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Figure 10. - Design problem . 
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(b) Flow path for sin ~ = 1 . 0 . 

Figure 10. - Concluded. Design problem. 
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