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SUMMARY

Inviscid flow in the region of the leading edge of curved airfoils
with attached shock waves is investigated. Tables and charts are pre-
sented for determining the surface-pressure gradient and the shock-wave
curvature in supersonic flow of an ideal diatomic gas. The results cover
a range of Mach numbers from 1.5 to infinity and deflection angles from
zero up to those approaching shock detachment. Calculations of surface-
pressure gradient and shock-wave curvature are also made for curved air-
foils in supersonic flow of a calorically imperfect, diatomic gas. These
calculations are quantitatively applicable in cases where the air temper-
atures, downstream of the shock wave, do not exceed about 5000° Rankine.

When flow conditions approach those at which shock waves detach from
airfoils, the surface-pressure gradient and shock-wave curvature vary
widely from the values predicted by a generalized shock-expansion method.
Otherwise, the use of the shock-expansion method introduces only small
errors, particularly in the case of ideal gas flows. The effect of
caloric imperfections in air is to increase these errors.

An approximate procedure for determining the flow field a short
distance downstream of the leading edge is also presented.

INTRODUCTION

Flow in the region of the leading edge of an airfoil with attached
shock wave has been studied by numerous investigators, including Crocco
(reference 1), and more recently Munk and Prim (reference 2), Schaefer
(reference 3), and Thomas (reference 4). With the assumptions that the

flow is steady, two-dimensional, and inviscid, and that air behaves as an
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ideal (diatomic) gas, it has been found that effects on the flow of
interaction between the shock wave emanating from the leading edge and
other disturbances emanating from the surface can be calculated. It is
to be expected, therefore, that within the limitations of these assump-
tions, such parameters as surface-pressure gradient and shock-wave
curvature at the leading edge of an airfoil can be accurately predicted.
The first purpose of the present report is to present values of these
parameters for a wide range of Mach numbers and flow deflection angles,
thereby supplementing and extending the results presented in reference 2.

Supersonic flow about airfoils was investigated more generally by
Eggers and Syvertson (reference 5) and it was found that caloric imper-
fections in air influence the flow appreciably at higher Mach numbers
where the temperatures of the disturbed air are well above ambient
temperatures. They used a generalized method of characteristics to take
into account these imperfections at temperatures up to about 5000°
Rankine. It was further shown that the shock-expansion method, general-
ized to include major effects of interaction between shock waves and
disturbances incident thereon and to account for effects of caloric
imperfections, should predict the flow field about an airfoil with
reasonable accuracy. The advantage of this method over the method of
characteristics is, of course, its relative simplicity.

Flow in the region of the leading edge of an airfoil was not con-
sidered in detail, however, in reference 5. An additional objective of
the present paper is, then, to determine effects of caloric imperfections
on flow in this region, using a method analogous to that of Munk and Prim
for ideal gas flows, particular attention being given to surface-pressure
gradient and shock-wave curvature at the leading edge. Predictions of
these quantities by the generalized shock-expansion method are also pre-
sented for both ideal and calorically imperfect gas flows.

Since it is useful to know the flow conditions a short distance
downstream of the leading edge (e.g., to start characteristics solutions
for flow about airfoils), an approximate method of determining this flow

field is.also discussed. This method depends on a knowledge of the
surface-pressure gradient and shock-wave curvature at the leading edge.

SYMBOLS

Cy, Co characteristic coordinates, feet
K curvature, feet™ "

M Mach number (ratio of local velocity to local speed of sound)
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ratio of static pressure downstream of the shock wave to free-
stream static pressure

absolute temperature, degrees Rankine

distance measured from leading edge along airfoil sufface, feet
rectangular coordinates, feet

Mach angle <;rc sin i >, degrees

angle between shock wave and flow direction just downstream of
the shock wave, degrees

ratio of specific heat at constant pressure to specific heat at
constant volume

angle between flow direction just downstream of the shock wave
and flow direction of the free stream, degrees

molecular vibrational energy constant, degrees Rankine
{(5500° R for air)

ratio of the shock-wave curvature to that given by the shock-
expansion method

ratio of density Jjust downstream of the shock wave to the free-
stream density

angle between flow direction of free stream and shock wave,
degrees

ratio of surface-pressure gradient to that given by the shock-
expansion method

Subscripts
free-stream conditions
ideal gas quantities

conditions at the leading edge immediately downstream of the
shock wave

conditions along the shock wave

conditions along the airfoil surface
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ANATLYSTS OF FLOW IN THE REGION OF THE LEADING EDGE

Calculation of Surface-Pressure Gradient
and Shock-Wave Curvature

A curved two-dimensional airfoil surface creates pressure disturb-
ances which alter the inclination of an attached leading-edge shock
wave. Figure 1 illustrates the geometry of this phenomenon for a convex
airfoil. The pressure disturbances (expansion waves for a convex
airfoil) travel along first-family Mach lines C; and interact with the
oblique shock wave. In addition to changing the inclination of the
shock wave, this interaction produces another system of disturbances
which travel along second-family Mach lines C, from the shock wave to
the body.

Method of characteristics.- An exact solution for the surface-
pressure gradient and shock-wave curvature at the leading edge may be
determined by the method of characteristics in the following manner.
It is clear, referring to figure 1, that the difference in flow angle

‘between points A and C given by the compatibility equations (see

reference 2)

ad Bin2 a
Lags s et oY 1
(dP)Cl 25:F ()
and
z/d_8_> & sin 2 a (2)
\ @ Co 29 P

along the path ABC must equal that determined by the airfoil surface
from A to C. Also, the difference in pressure between points B and D
given by these compatibility equations along the path BCD must equal
that determined by the change in shock-wave inclination between B and D.
In reference 2, these conditions were employed at the leading edge to
obtain equations, in a simple parametric form, for determining the
surface-pressure gradients and the shock-wave curvatures.

These equations can be written in the form

N 0 R (3)

Pngat <§>c

e
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for the surface-pressure gradient, and

K¢ Zsin (o -~ 0+ 8) - sin (@ + 0 - 3)

TR /’d5> (%)

(z-1) sin a \\E;

for the shock-wave curvature, where

S BP/BCE B (d.P/d&)s (ds/@)c, +1 l: sin (o + 0 = 8)

3P/c, | (ap/ad) (da/dP)C2 -1 sin (¢ - 0 + 0) | ()

A procedure for evaluating equations (3) and (4) for. a calorically
imperfect, diatomic gas, as well as for an ideal gas, is presented in the
appendix of this report. The values of surface-pressure gradient and
shock-wave curvature at the leading edge determined using these equa-
tions are exact for two-dimensional, steady, inviscid flows.

Two applications of these equations will be considered: First, the
accuracy of approximate methods of calculating the flow field about a
curved airfoil can be evaluated at the leading edge by comparing the
values of surface-pressure gradient and shock-wave curvature predicted
by these approximate methods to the values obtained using equations (3)
and (4). Second, the pressure gradient and shock-wave curvature can be
used to determine the approximate flow field, between the body and the
shock wave, a short distance downstream of the leading edge and thereby
obtain the initial points of a characteristics solution.

Shock-expansion method.- An approximate solution for the surface-
pressure gradient and shock-wave curvature may be obtained using the
shock-expansion method. Eggers and Syvertson (reference 51, in theiw
general discussion of the entire flow field about airfoils, found that
disturbances incident on an oblique shock wave were almost entirely con-
sumed in changing the shock-wave inclination, and that the reflected
disturbances were weak enough, in most cases, to be neglected. Thus, as
a first approximation, the deflection angle and pressure, but not neces-
sarily the Mach number and entropy, can be considered constant along
first-family Mach lines. The use of this assumption leads to a gener-
alized shock-expansion method for calculating the entire flow field about
an airfoil. The application of this approximate method to the analysis
of flow in the region of the leading edge is now considered.

If the disturbances reflected from the shock wave can be neglected,

oP oP
e (6)

=
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Hence, from equation (5), Z must be large compared to unity. If this
approximation is made, the expression for the surface-pressure gradient
(equation (3)) reduces to

g5

i %

=
Ky

Similarly, the expression for the shock-wave curvature (equation (4))
reduces to

s gini{a. =0 +.B8)

<d6> s8in o

It should be realized that the flow field is determined by the
basic flow equations in conjunction with the shock wave and airfoil
surface as boundary conditions. Thus, the additional requirement for
this shock-expansion method of zero pressure gradient along first-family
Mach lines means that one of the flow relations cannot be satisfied
exactly (i.e., the flow field is overdetermined). Equations (7) and (8)
satisfy the shock relations and the airfoil surface as boundary condi-

tions; however, the compatibility equations are only approximately
satisfied.

(8)

The error in surface-pressure gradient associated with neglecting
the reflected disturbances might be expected to be largest in the region
of the leading edge of a curved airfoil due to the close proximity of
the shock wave and the surface. The magnitude of the error in this region
may be deduced, of course, from the ratios of values of surface-pressure
gradient and shock-wave curvature given by the characteristics method to
those given by the shock-expansion method. The surface-pressure-gradient
ratio and shock-wave-curvature ratio can be written (using equations (3)

and (7))

25 (9)
and (using equations (4) and (8))

_Z sin fa - ~i0.40) -isin (& + g < 5)
S (z - i) gin (@ = o'+ ) (10)

respectively. A procedure for evaluating equations (9) and (10) for
flow of a calorically imperfect gas, as well as for an ideal gas, 1is
presented in the appendix of this report. (The application of equa-
tion (9) for ideal gas flow has already been given in reference 2.)
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Calculation of the Flow Field a Short Distance
Downstream of the Leading Edge

A knowledge of the values of flow parameters along a line from the
body to the shock wave is useful in starting characteristics or shock-
expansion solutions for the entire flow field. A method is now pre-
sented for approximating these parameters along a first-family Mach line
a short distance downstream of the leading edge. In the region of the
leading edge, the airfoil, the shock wave, and a first-family Mach line
are approximated by circular arcs, as shown in figure 2. The equations
of the airfoil surface and the shock wave can then be written (knowing
the slope and curvature at the leading edge)

i 2
cos By g/g - (KWN xy ~ sin By)
- ¥

Ve = (ll)
KwN KwN
and =
tos o (l - (Kgy xg - sin oy)
yS = 7 N + N (12)

SN : KSN

respectively. If it is assumed that the pressure gradient is constant
along the airfoil surface for a short distance downstream of the leading
edge, the pressure distribution and thus all other flow conditions at
the surface are known since the flow conditions at the leading edge are
known (see previous analysis). Since the shock wave is approximated by
a circular arc, the flow conditions just downstream of the shock wave are
also known. Thus, the flow parameters, and consequently the slopes of a
first-family Mach line, will be known at its intersections with the body
and the shock wave. The problem, then, is to determine the curvature,
and thus the equation of this Mach line. The following analysis is
devoted to this matter.

To the accuracy of the present analysis, the flow angle ©® and the
Mach angle o vary linearly with distance along the Mach line. Thus
(see fig. 2)

DR SRl i il
;g—:*zx = tan 5 [(“w + By)p + (ag + SS)BJ (13)
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where the local flow angle and local Mach angle at the airfoil surface

can be written

/
~ das dw ~
SA = BN + \m <a_x'> XA = 6N ok KWN XA Bee 6N (14)
N N
and
A da 15 AP
G.A = (IN o+ <a§ <E m) KWN XA sec 8N (15)
W N
N
respectively.
Similarly, at the shock wave,
(a5
By = By + \EE) KSN Xg sec oy (16)
S
N
and
da
2 P L K. 'xb. ge0 g (17)
CB= 0N \dc)s sy *B N
N \
: ; : do\ dd da
It is possible to determine <dc) ’ (do) , and (a-lg) for
] Sy : WN

(as a first approximation)

imperfect gas flow as well as for ideal gas flow. Thus, an implicit

relation between Xg and X

(17).

can be found from equations (11) through

The =quation of the circular arc approximating the first-family

Mach line may be
intersection of

written, for any initial X (knowing the slopes at the
this line with the shock wave and the body)

: 2
_ cos By J/l_— (KWN b SRR 6 SN)
o i KWN & Ky

N

12
cos (a,, + &) . v/&' %@l %o, ~Kg, - Xy=ain (aw+8w>J

Ko, 2

1

(18)
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At point B, the intersection of the shock wave and the first-family Mach
line, equation (18) may be solved for Kc,» using the implicit relation

between xg and xy. Substituting this value of Kc, 1into equation (18),
an equation relating ycl and XCl along the first-family Mach line can

DENeng ion every value of x.

The pressure and flow angle at A and B and the changes in pressure
and flow angle from A to B may be determined. The change in pressure
with change in flow angle should agree (to the desired degree of accu-
racy) with that calculated using the basic compatibility relation,
namely,

pave)

sin (ap + ag)
A

Any significant difference should be diminished by choosing point A
closer to the leading edge.

The angles ©® and a are known at each point along this first-
family Mach line, and the pressure variation may be determined using
the characteristics compatibility equation (equation (1)). Hence the
entropy variation can also be determined. Therefore, all necessary
flow parameters are defined along this line, rendering it a good start-
ing line for a characteristics solution for the entire flow field.

DISCUSSION

Ideal Gas Flows

Surface-pressure gradient.- The results of the calculations (using
equation (A4) of the appendix) of surface-pressure gradient are presented
in table I and figures 3 and 4. The values presented in table I are for
a range of Mach numbers from 1.5 to « and for leading-edge deflection
angles from 0° to 45°. Where no value appears in the table, the flow
behind the shock wave is subsonic. Additional calculations, not pre-
sented in the table, were made to permit the accurate plotting of curves
to the point where the flow behind the shock wave attains sonic velocity.

lcharts were also presented for surface-pressure gradient, surface-
pressure-gradient ratio, and shock=wave curvature for ideal gas flows
in reference 2; however, the results given in the present report are
somewhat more extensive.
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Surface-pressure-gradient ratio.- The results of the calculations
of surface-pressure-gradient ratio (equation (A6)) are presented in
table IT and figures 5 and 6 in a manner similar to the presentation of
the surface-pressure gradient. From these results, it is seen that,
except near detachment, the surface-pressure-gradient ratio varies
between approximately 0.88 and 1.12 for all Mach numbers including .
Below a Mach number of L4 the ratio varies only from 0.98 to 1.02,
except near detachment. Therefore, little error will result from the
use of the shock-expansion method for the surface-pressure gradient at
the leading edge of airfoils for Mach numbers less than 4. Near detach-
ment, for Mach numbers greater than approximately 2, the surface-
pressure-gradient ratio attains a very large range of values. The maxi-
mum value of the ratio increases with Mach number. The use of the
surface-pressure gradient at the leading edge as given by the shock-
expansion method would result in appreciable error near detachment
conditions.

It should be noted that, for the particular case of infinite free-
stream Mach number and zero deflection angle, the pressure-gradient
ratio V¥ is double-valued. From equation (A6), it is apparent that V¥
is 1 for zero deflection. Yet, at infinite free-stream Mach number,

V¥ approaches  0.882% as the deflection angle approaches zero.

The flow along the surface is isentropic. Hence, it can be shown
that V¥, the ratio of surface-pressure gradient to that given by the
generalized shock-expansion method, is also the velocity-gradient ratio,
the Mach number gradient ratio, the Mach angle gradient ratio, the
density-gradient ratio, and the temperature-gradient ratio. Any of these
gradients may be found, then, by calculating the gradient using the
shock-expansion method and applying the appropriate value of Vi Thi's
property of the ratio V¥ makes it useful in the application of the
method of characteristics with any of the coordinate systems commonly
employed in the compatibility equations.

Shock-wave curvature.- The results of the calculations of shock-
wave curvature (equation (A5)) are presented in table III and figures 7
and 8. It is clear from equation (A5) that Kg/K, is zero for zero
deflection angle. However, when the free-stream Mach number is infinite,
KS/KW approaches 0.800% as the deflection angle approaches zero. Thus,
Kg/Ky is double-valued at M = w, 8 = O.

2The precise value of V¥ for this limit is s ;3_1 ,\/z (72- l)-
(7. + 1)

3 red
The limiting value of K is %
i o/ 1 3G D)
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Shock-wave-curvature ratio.- The shock-wave-curvature ratio for
various free-stream Mach numbers and deflection angles has been calcu-
lated by means of equations (8) and (A5). The results of these calcula-
tions are presented in table IV and figures 9 and 10. It is interesting
to note that the curves in figure 9 are similar to the reciprocals of the
curves shown in figure 5. Indeed, this conclusion can be deduced by
comparing equations (9) and (10). Except near detachment, the curvature
ratio varies from 0.92 to 1.08 for all Mach numbers including .

Thus, only moderate errors would result from using the value of shock-
wave curvature given by the shock-expansion method for all flow condi-
tions except near detachment. For zero deflection angle, it is apparent
from equation (10) that k must be 1. However, for infinite free-stream
Mach number, k approaches 1.0724 as the deflection angle approaches
zero. Thus K 1is also double-valued.

Calorically Imperfect Gas Flows

The temperature ratio across an oblique shock wave increases with
increasing Mach number and leading-edge slope, as shown in figure 11.
As the temperature behind the shock wave increases, the behavior of the
air diverges from that of an ideal gas. Below 800° Rankine, the diver-
gence is not significant, and the equations for ideal gas flow can be
applied with only minute errors resulting.

Above 800° Rankine, the energy of the vibrational degrees of freedom
of the gas molecules is appreciable and becomes greater with increasing
temperature. As a result, the ratio of specific heats varies with tem-
perature, as discussed by Eggers in reference 6.

As mentioned previously, equations were developed in reference 5
permitting the calculation of the flow of a diatomic, calorically
imperfect gas about two-dimensional airfoils. These equations apply for
temperatures up to the order of 5000° Rankine and form the basis for the
extension of the solution for surface-pressure gradient, surface-pressure-
gradient ratio, shock-wave curvature, and shock-wave-curvature ratio to
the case of calorically imperfect gases. For a free-stream temperature
of 500° Rankine, the shaded area between lines of constant temperature
ratio of 1.5 and 10, in figure 11, represents the approximate range of
conditions for which the method developed in this report for the flow of
a diatomic, calorically imperfect gas would apply. The range shown in
figure 11 is only approximate, since it was calculated using ideal gas-
flow equations.

“The exact limiting value of K is T el :

2(2y - 1) <fl =N

8
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The excitation of the vibrational degrees of freedom of the gas
molecules requires a finite number of collisions, causing the well-known
heat-capacity lag discussed by Bethe and Teller in reference 7. The
flow distance (i.e., along the streamline) required to establish equi-
librium conditions is usually small in dense air and will be considered
infinitesimal in this report.>

Since the free-stream static temperature is an additional parameter
in calculations of flow of imperfect gases, only a limited number of
calculations of (1/Ky)(dP/dW), ¥, Ks/Kw, and k were made. The purpose
of these calculations is to compare the variations of these quantities
with the values as given by the ideal-gas-flow computations. The calcu-
lations followed the procedure described in the appendix. A free-stream
static temperature of 500° Rankine was used. The results of these calcu-
lations are presented in table V for various Mach numbers and leading-
edge deflection angles.

The surface-pressure gradients for an ideal gas and for a calorically
imperfect, diatomic gas are compared in figure 12. In all cases calcu-
lated, the gradient is smaller for the imperfect gas and diverges gradu-
ally, with increasing free-stream Mach number and deflection angle, from
the value of the gradient for an ideal gas. This divergence is consist-
ent with the increasing effects of the caloric lmperfections due to the
increasing temperature behind the shock wave.

The surface-pressure-gradient ratio for the imperfect gas is
compared in figure 13 with the ratio for an ideal gas. The angle B
between the shock wave and the leading edge of the airfoil is smaller
for imperfect gas flows than for ideal gas flows, and shock-wave
expansion-wave interaction effects are increased. As a result, the
surface-pressure-gradient ratio is smaller for imperfect gas flows than
for ideal gas flows. This difference in the angle B 1is a function of
the temperature behind the shock wave. Thus, the surface-pressure-
gradient ratio for imperfect gas flows diverges from the ratio for ideal
gas flows with increasing Mach number and deflection angle.

A divergence with Mach number and deflection angle is also apparent
in figure 14 in which is compared the shock-wave curvature for an ideal
gas and a calorically imperfect, diatomic gas. This divergence is
compatible with the change in surface-pressure gradient due to the caloric
imperfections of the gas.

S5The dissociation of air at temperatures greater than about 5000° Rankine
is also discussed in reference 7. This phenomenon is not considered in
the present report.
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The shock-wave-curvature ratio for a calorically imperfect,
diatomic gas and this ratio for an ideal gas are shown in figure 15.
Again it is seen that the effect of caloric imperfection is to increase
the effects of shock-wave expansion-wave interaction.

CONCLUDING REMARKS

The supersonic flow field in the region of the leading edge of
curved two-dimensional airfoils has been investigated.

A set of tables and charts has been presented giving the surface-
pressure gradient and shock~wave curvature at the leading edge for an
ideal gas for a large range of free-stream Mach numbers and leading-edge
deflection angles. Previously derived equations for surface-pressure
gradient and shock-wave curvature have been extended to permit the
determination of these quantities for flow of a calorically imperfect,
diatomic gas. Both the previously derived equations and the extended
equations have been modified so that the shock-wave curvature and
surface-pressure gradient are consistent with the assumptions of a
generalized shock-expansion method. Values of surface-pressure gradient
and shock-wave curvature have been compared with the values given by the
modified equations. It has been shown that, except near conditions at
which the shock wave detaches from the airfoil, only moderate errors
would result from using the values given by shock-expansion equations
for flow of an ideal gas. It has also been shown that caloric imper-
fections of air increase the error.

An approximate procedure has been presented for determining the
flow field a short distance downstream of the leading edge. This pro-
cedure depends on a knowledge of the surface-pressure gradient and shock-
wave curvature at the leading edge.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Mar. 31, 1952.
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APPENDIX

EVALUATION OF (1/Ky)(dP/awW), Kg/Kw, ¥, and k

For an ideal gas, the Mach number, Mach angle, shock-wave angle,
and pressure ratio can be calculated at the leading edge using the
standard Rankine-Hugoniot shock relations and utilizing the free-stream
Mach number and leading-edge deflection angle. Hence (dS/dP)Ce can be

determined from equation (2) of the analysis. With these flow parameters
known, the only terms still to be determined in equations (3), (%), (5),
(9), and (10) are (dP/dd), and (dd/dc)g.

Now (see reference 2)

/&P\ (dP/do) o

\3&/, = (35/do) (549
where
<'92) i 2py Mo2 sin 2 ¢ (a2)
do = p A S -
and

7 s 0 A Bl 0. o) T wfae. M gin® c‘fzil cos 2 ¢
2(y-1) o \7-1 /)\7- o” )

5%;ii% Mo sin 2 012

L J
<_o1§> gl
do A 2 2

LR
50 + My~ 8in® o
1+ 1
+
=y 2 8in 2 a
2(y-1)

(A3)

Equations (A2) and (A3) are the derivatives of the forms of the Rankine-
Hugoniot shock relations given in reference 2.
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Using the standard forms of the Rankine-Hugoniot shock relations,
it is possible to transform equations (3), (4), and (9) (given in the

analysis) into

oy <c032 a 1 )
fi— +
eGPy tan B 2 \cos® B M02 sin® ¢ 2 7y Mg~ sin® o -(y-1)
oW BTt o [ tan® 8 1 feos® 4 1 b S &
+ —
fat e, 2 <cos2 B . M sin® 0>
ke o
(Ak)
for the surface-pressure gradient,
tan® B
§§ Be Tt L " tan® o (A
Ky *+C08B |tan? B -1 /cos'a 3; )
: NPy - ‘>
tan® o cos® B Mo2 sin® ¢
for the shock-wave curvature, and
ik c032 a 3k
i s e 2
¥ 2 \cog? B - Mo~ 8in~'g tan B
Rt 1 eopSie 1 tan a
tan® o 2 \cos2 g Mo2 sin® ¢

for the surface-pressure-gradient ratio.

These equations are similar to

those given by Schaefer in reference 3 and require less work to compute

than equations (3), (4), and (9).

For a calorically imperfect, diatomic gas, the standard shock

relations obviously are not applicable.

However, expressions for the

relations for flow of a calorically imperfect gas through an oblique

shock wave have been developed in reference 5.
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Thus we have, as a function of the local static temperature and
free-stream conditions

74 T % 9/T>2—
Y =71 = (AT)
2 O
1ot (73r1) <9> -
I 6/T\?
@)
where 7; = 1.400  and". 0 = 5500° R.
The Mach number immediately downstream of the shock can be written
fi
|
2 P 2 Lk ; 4
Heo e as <_9> Zoo & 74 <1-T—S Lial S R V| (a8)
€ SIERC -l/_J

The relations for the pressure and density ratios across the shock are

et 2
Pl= SR 5 = = - R (A9)
ol e 2Nk L0 |
(1+ygMg =) T (I+y Mg 5) + i, [(leMs ) T (L+7 Mg )j i Ta
and
i
00 (A10)
Pa TP

respectively. The expressions for the shock-wave angle and the flow
deflection angle are P
7s Tg Ms> 1

R LU M
sin® g = o/i 20 (A11)
(o) T
N

and

2
eot 65 = tan o 19_%‘;1_ ~ 1> (A12)
Pg-
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respectively. Equations (A7) through (Al2) are valid for temperatures
downstream of the shock wave up to the order of 5000° R.

The primary variable is the temperature, immediately downstream of
the shock wave. Hence, we can write

(apP/4aT)
(aP/dd) g = ———> (A13)
/38)s (a5/aT)
and
(ad/aT)
(48/do)g = ———= (A1)
(do/dT)
Differentiation of equation (A9) yields
dy To
2y M =) +[1+
oy | [ (@) (@) )]
ST { = TO]Z
P+ F +711:
am a: /Ay 2\ To To
Fl|2yMg (— ) + M (;— +( 1+y M -2 —
2o (@), +oom (@) < (rom) iz | 2 5
i TT
[F+ /F +—-:l /F2+_3
Tg Tg
(A15)

7 ;
0

where F = 1 + ygMg® - T <i + 7oMoé)

s




where
e 4 < ) o __<
s )Ts

2)-
aT/ ¢ : = S
e To) . < AN 1 1
P <TS ;R F . Ty ) 0ok 0705 1_ 6/Tg i
< & e ot

and @7 = Z_%_]: [ <—l+e9 15 )K 02 ee/'rs <TZS ) 26/T, J
2 eG/Ts a2
1+ (7y-1) <-'l%) <_l+e9/Ts )2 <—1+e9/’1‘>

s i
e 6/T
0% - 8
[1 > (71-1) /9> e (1) 9/T> 292 6 /Tg 5, ~6° 20/T,
5 ke P 1F s -
1 71 | \s ( T l+e Tg*
[y -l+e 2 a
( Q/Ts G/TS.s
1 kg 7L) < ) <-l + e )
{ < B eG/T \d %
| - (A17)
‘Equations (Al6) and (Al7) are obtained by dlfferentlatlng equations (A8) and (AT), respectively. %
Similarly, differentiation of equation ( yields o
tan © [70 < l:] E
2 n
=
<d_8 = - 8in2 % e l> sec? ¢ <%% 3
i (Pg-1)° Paal (a18)
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preceding equations and may be summarized as follows:

The procedure for calculating Ysisand TiKkS s straightforward with the aid of the

1. For any My, Ky, and By, choose T, and Tg/To. An approximate value of Tg/T, may be
obtained from figure 11.

2+, Galculate 7 (equation (A7))
3. Calculate Mg (equation (A8))
4, Calculate Pg (equation (A9))
5. Calculate ét (equation (A10))
6. Calculate oy (equation (A11l))
7. Calculate &g (equation (Al12))

If this value of 8g 1s not close enough to the desired value of By, iterate, choosing a
new TS/TO. :
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| 13,
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16.
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19.
20.

2k

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

(equation (A17))
(equation (A16))
(equation (A15))
(equation (A20))
(equation (A19))
(equation (A18))
(equation (Al3))
(equation (2))
(equation (5))
(equation (3))
(equation (9))

(equation (Alk4))
(equation (4))

(equation (10))
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TABLE T.- SURFACE-PRESSURE GRADIENT

Surface-pressure gradient, %- %%
&a LoDl 2d0 3.0 k.0 5.0 6.0 8.0 10.0 E5:0 20.0 |
0° 12.8175(3.2332 | 4.4550| 5.7827| T.1426| 8.5226| 11.2897| 14.0686| 21.0460| 28.0350| %
2.09(3.0893|3.5297 | 5.0384| 6.8091| 8.7576|10.8700| 15.5882| 20.9907| 37.7826| 59.8143| e
5.0°|3.6146|%4.0135| 6.0077| 8.5769 |11.6359]15.1989 23.9418| 35.0225( T74.0084| 130.205 |
7.5%4.2985|4.4580 | 6.8962]10.2428|14.4132(19.4482 | 32.2994 | 49.1026| 109.319 | 195.900 |
10.0°|5.8776|4.9502| 7.8492|12.0538 [17.4590|2k.1212 | 41.42k7| 64.2295( 145.662 | 261.647 |
15.0° 6.1853| 9.907815.960k [2L.0001|34.0605| 60.3209| 9k4.7569| 216.102 | 387.105 | =
S0.0° 8.7654112.1185(19.9892(30.5936|43.8720 | 78.3454(123.225 | 280.229 | 500.683 | w
25.0° 14.5607(23.9362|36.7961(52.8797 | 94.4435[{148.323 | 336.203 | 599.631 |
300" 18.2498|27.9349 | k2.5428 |60.9129 |108.339 |169.705 | 383.415 | 682.891 |«
35.0° 33.8949|48.8338(68.8023 |120.915 (188.457 | 423.792 | 753.506 |w
40.0° 71.7623(84.902k4 |1139.218 [212.761 | 471.107 | 833.770 |
45.0° 172739 1171k.33 4%
TNACA_

A
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TABLE II.- SURFACE-PRESSURE-GRADIENT RATIO

Surface-pressure-gradient ratio, V

By 1.5 240 3.0 4.0 5.0 6.0 8.0 10.0 15:0 20.0 w
0°  {1.00000]| 1.00000 [1.00000 [1.00000 |1.00000]1.00000 |1.00000|1.00000 1.00000|1.00000 | .88200
2.0%1.00003| 1.00001 | .99999| .99996| .99992| .9998%| .99962| .99927 .99762| 99477 | .88200
5.0°|1.00039|1.00012 | .9998k| .99942| .99874| .99779| .99ug7 .99097| -97728| .96181| .88218
7.5°[1.0013k4| 1.00046 | .99948| .9981k| .99614| .99348| .98638| .97773| .95u97 .93622| .88251
10.0°| .99781|1.00118| .99883| .9959k| .99197| .9870k 97535 .96305| .93693| .91979| .88305
15.0° .00561! .99696| .98947| .98076| .97150| .95428 .93913( .91583| .90411| .88462
20.0° 02497 .99582| .9824k| .96961| .95779| .93868| .925028 .90714| .8991k4 | .88717
85,00 -99972| .97831| .96225| .94932| .93090| .91939| .90521| .899k2 .89117
30.00 1.02540| .98254| .96218| .94820| .93049| 92036 .90872| .90417| .89790
35.0° 1.01645] .97870] .96029| .9%073| .93066] .91990 .915851. .920L2
Lo.0° 1.11k0k]1.02772] .98347| .96724| .95228| .94718] .94066
45.0° 1.73742|1.32519|1.18808
TSNACA
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TABLE III.- SHOCK-WAVE CURVATURE

Shock-wave curvature, Kg/K,

By 1.5 2.0 3.0 4.0 5.0 6.0 TS B T e o s el YT ®
o° |0 0 0 0 0 0 0 0 0 0.80000
2.0°| .065969| .ouskTS| .OWBO52| .057669| .068912| .080794| .10542| .13051| .19314| .25373| .8002k
5,0°| .19513 | .11748 | .12117 | .14497 | .17278 | .20179 | .25987| .31557| .4357h4| .52642| .80185
7.5°| .36983 | .18267 | .18275 | .21696 | .25659 | .29688 | .37332| L4059 565241 .641T72| .80k25
10.0°| .79882 | .25534 | .20 | .2869% | .33539 | .38294 | .L6763| .53568| .64596| .TOM24| .BOTOL
150" 44870 | 37040 | .141833 | 47374 | .52hk2 | 60443 | .65972| .T3454| .TETT9| .81815
20.0° .91907 | .50509 | .53988 | .58947 | .63325 | .69700| .73702| .78626| .806M6| .83520
25,09 67561 | 66337 | .69563 | 72708 | 77233 .79964| .83183| .8W451( .86212
30..0° 1.01371 | .82220 | .81683 | .82937 | .85366| .86952| .88850| .8960L | .90643
35,02 1.16770 [1.02118 | .98902 | .97730| .97794| .98180| .98Lk03| .98750
10 . 0° 2.03983 [1.49218 |1.29256)1.23976}1.20180]1.19114|1.17917
15.0° T7.66889(3.82862 [2.81101
“~NACA
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TABLE IV.- SHOCK-WAVE-CURVATURE RATIO

Shock-wave-curvature Ratio, k
5N.M0 et 2.0 3.0 4.0 50 6.0 8.0 100 150 20.0 ®
0° |1.0000 [1.0000 |1.0000|1.0000 |{1.0000 |1.0000 |1.0000 |1.0000}1.0000 |1.0000 |1.0718
2.0°% .99947 | .99987 {1.000k{1.000% {1.0007 [1.0011 {1.0021 {1.0034{1.0062 {1.0122 |{1.071T
5.0° .99833| .99927 {1.0008 |1.0025 |1.0043 |1.0066 |1.01148{1,0171{1.0297 |1.0k01 |1.0715
7.5°| 99699 | .99825 |1.0018 |1.0052 [1.0090 [1.0131 |1.02118]1.0289|1.0436 |1.0526 |1.0712
10.0°(1.0024 | .99679 |1.0030 [1.0086 |1.0142 |1.0199 [1.03007|1.038%[1.0519 1.0589 |1.0706
35.0° 99117 |1.0051 |1.0150 [1.0236 [1.0309 [1.04203(1.0495[1.0590 [1.0631 |1.0691
20.0° 97958 |1.0052 |1,0192 [1.0295 [1.0372 [1.04737|1.0533|1.0602 [1.0630 |1.0667
25 0% 1.0003 [1.0194 |1.0309 [1.0386 [1.04785|1.0528{1.0582 |1,0603 |1.0630
30.0° .9830 [1.0128 [1.0266 [1.0348 |1.04389|1.0484|1.0532 [1.0550 |1.0573
35,0 .9908411.0126 |1.0232 |1.03362|1.0387 |1.0435 [1.0453 [1.0476
L4o.0° .95871| .98788|1.00774|1.0155 |1.0227 |1.0252 |1.0282
45,0° .885471 .92416| .94753
T NACA
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TABLE V.- SURFACE-PRESSURE GRADIENT, SURFACE-PRESSURE-GRADIENT
RATIO, SHOCK-WAVE CURVATURE, AND SHOCK-WAVE-CURVATURE
RATIO FOR A CALORICALLY IMPERFECT, DIATOMIC GAS A
[T, = 500° RANKINE]

1 46p
Mo 5° i cal| v Ke/K,r K

0UT75T| - 2.002 18.36 | 1.0262 |1.0212 |0.9828
20.4748 | 2.138 30.94 | .9675 | .5866 |1.0312
310068 |- +3.127 42.63 [ 1 .9548 | .798T |1.0313

AO] b )| SO 4 [ R

41.0064 | k.300 60.76 | 1.0419 {1.5991 |1.0000
101 10.0129| 2.108 | 63.87 | .9622 | .5266 |1.0394
10 | 20.5239| 4.k00 | 123.6 9111 | <TI3T |1.0621
10 | 31.2637| T.640 | 169.8 .8889 | .8363 |1.0636 <
10 | 42.9772 *12.000 | 205.2 | .9178 |1.1678 |1.0365
20 | 10.6610| k4.700 | 274.1 .902k | .6912 |1.0685
20 | 20.9696 [*12.600 | 515.0 .8592 | .8041 [1.0787
20 | 32.5087 [#25.800 | 705.1 8492 | .8915 |1.0753
20 | 39.1836%35.000 | 770.4 .8559 | .9858 |1.0664

8values of temperature greater than 5000° R downstream

of the shock wave. ~_NACA
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Shock Wave

Figure |.— Schematic diagram of supersonic flow
past a curved sharp-nose airfoil
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Figure 3.—Variation of surface-pressure gradient with leading-edge
deflection angle for various free-stream Mach numbers.
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Figure 6.—Variation of surface-pressure-gradient ratio with free-stream
Mach number for various leading-edge deflection angles.
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Figure 7.—Variation of shock-wave curvature with leading-edge
deflection angle for various free-stream Mach numbers.
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calorically imperfect, diatomic gas.
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deflection angle for various free-stream Mach numbers for an ideal gas and for a
calorically imperfect, diatomic gas.
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Figure /5. -Comparison of the variation of shock-wave.
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