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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2582

GENERAL CONSIDERATION OF PROBIEMS IN COMPRESSIBLE
FLOW USING THE HODOGRAPH METHOD

By Chieh-Chien Chang
SUMMARY

The purpose of the present report is to investigate the hodograph
method as it is applied in general to the problem of compressible flow.
First, the hodograph equations are given in various canonical forms
which are convenient for obtaining solutions in the different flow
regimes,

Since the coefficients of the canonical differential equations are
implicit functions, exact solutions are difficult to find. Consequently
different approximations are chosen so that some simpler differential
equations capable of solution can be obtained. For most of the cases,
fundamental or singular solutions are given or indicated.

The detailed development is concentrated on Chaplygin's second
equation. The first-order approximation is well-known as the Tricomi
equation. The second- and third~order approximations have a rather new
approach. Both approximations follow the exact gas law closely in the
neighborhood of the sonic velocity. The solutions are found to be
Whittaker functions and the associated confluent hypergeometrical
functions. Both approximations can be applied to the incompressible
flow so that Chaplygin's procedure of borrowing the boundary conditions
can be used if necessary. For the third-order approximation, the corre-
sponding hypothetical gas law is derived and is found to differ very
little from the exact gas law. The transformation relation between the
hodograph plane and the physical plane is also given for the various
solutions considered.

To make a comparison of the present approximate solution with the
exact Chaplygin solutions, the flow through an aperture, studied by
Chaplygin and Lighthill, is reexamined. There is some difference in
the problem itself, as well as in the method of Chaplygin and Lighthill.
First, the vessel with straight walls inclined at an arbitrary angle is
considered rather than that with the wall at right angles. Second, no
association of the boundary conditions with those for incompressible
flow is made. The problem is treated directly as a boundary-value
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problem. The result calculated with the Whittaker function checks
well with that obtained by Chaplygin and Lighthill.

1 - INTRODUCTION

For the isentropic steady two-dimensional flow of nonviscous com-
pressible fluids, the pair of differential equations in terms of the
stream function V¥ and the potential @ are nonlinear, and cannot
be solved analytically except for a few special cases. Chaplygin

(reference 1)1 introduced the hodograph method in order to transform
these nonlinear equations to linear ones, so that the available
classical mathematical analysis and the principle of superposition can
be applied. While there is a gain in the linearity of the equations,
some new difficulties arise in the hodograph method. First of all,

it is difficult, in general, to transfer the physical boundary condi-
tions to the hodograph plane. Second, the flow in the hodograph plane
usually consists of multiple-sheeted Riemann surfaces with a number

of singularities where the analytic continuation of the series solu-
tions becomes very complicated. Third, only one kind of a particular
solution of the stream function - hypergeometrical functions and
trigonometrical functions - has been obtained so far for the equations
in the hodograph plane. By superposition, a series solution is
achieved, but is difficult to apply even if the boundary conditions
are known. Fourth, the transformation between the physical and hodo-
graph planes becomes singular when the Jacobian determinate becomes
zero or infinite. This is likely to happen when the supersonic flow
is imbedded in a subsonic flow region. The existence of the so-called
limiting line (reference 7) causes a breakdown of the entire flow.

In order to obtain some solutions in the case of subsonic flow,
Chaplygin discovered an ingenious method of obtaining usable solutions
for compressible flows by comparison with the corresponding series
solutions of the incompressible-flow patterns as the limiting case in
the hodograph plane. 1In the case of no circulation around the closed
body, the derived series solutions involve a free constant to be chosen
at pleasure. But fortunately each solution chosen corresponds to a
reasonable flow pattern in the physical plane. As the free-stream
Mach number increases, the body shape deviates from the image body in
the incompressible flow. Thus, in general, the body shape cannot be
preassigned and the compressible flow about it determined at a certain
Mach number. This method has been carried further by Tsien and Kuo
(references 2 and 3), Lighthill (reference 4), and Cherry (reference 5)
on transonic flow up to the occurrence of the limiting line. Some of

lA classified bibliography is given at the end of the paper.
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their solutions apply to simple closed bodies with circulation. There
are difficulties in the analytic continuation for an arbitrary flow
pattern.

Although Chaplygin and others were pioneers in developing and
adapting the hodograph method to gas dynamics in the early part of this
century, results of the later Russian investigators were not available
in the English language up to 1940. Since the second World War, the
work of Russians has again assumed prominence in the field, namely,
Frankl (reference 11), Falkovich (reference 34), and Christianovitch
(reference 42). Along the line of formulation by Tricomi, Frankl's
proof of the existence and the uniqueness of the solution of Chaplygin's
equation in the transonic regime is interesting. Frankl and Falkovich
obtained the solution for the channel flow and showed that the stream
function is triple-valued in the hodograph plane of the axially sym-
metrical plane at sonic velocity. These results confirm what has been
achieved by Lighthill (reference 4). Recently, Tomotika and Tamada
(reference 33) have formulated some approximate nonlinear hodograph
equations. A number of interesting particular solutions for the
channel flow have been obtained. Of course, the solutions are not
superimposable. Ehlers (reference 10) and Carrier, along the line of
Christianovitch, have obtained the fundamental solutions of the Tricomi
equation and the corresponding channel flow to the second order of
approximation.

With the notion of the correspondence of the incompressible flow
to the compressible, Bergman (reference 6) has developed an integration
method for calculating the subsonic flow. For the supersonic case an
extension of the Riemann method is also made by an iteration process
(reference 41). Bers and Gelbart (reference 55) have similarly developed

a line-integral operator to construct the so-called E ~-monogenic com-

plex function which satisfies the hodograph equations or the general
Cauchy-Riemann equations in equivalence. All are important contribu-
tions to the solution of the differential equation but offer rather
difficult ways to obtain useful solutions for the flow of compressible
fluids.

In the last few years, Guderley (reference 30) and Yoshihara
(reference 36) have given a number of papers on transonic flows,
particularly with the application of the transonic similarity law which
was developed independently by Von Kdrmén (reference 29) and Guderley
(reference 30). They have achieved very important approximate results
in transonic flow.

In the subsonic case, if & linear approximation is used to replace
the isentropic pressure-density relation, Kédrmén (reference 7) and
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Tsien (reference 14), following another approach of Chaplygin, have
obtained many useful results, particularly the well-known Kfrmén-Tsien
formula (reference 7) for pressure corrections. Lin (reference 15) has
discussed the conditions for obtaining closed contours in the physical
plane, if circulation exists. Clauser (reference 24) recently applied
this method to find the body shape with preassigned pressure distribu-
tion and this is definitely very useful in high-subsonic laminar-flow
problems. Garrick and Kaplan (reference 20) have another interesting
approach to pressure-correction formulas using Ringleb's solution
(reference 8) of a simple source and vortex.

The present investigation, as the initial step of the research
program of this challenging problem, is mainly interested in the
following three aspects of the problem:

(a) Besides Chaplygin's differential equations (reference 1),
can other useful forms of the differential equations be found system-
atically, particularly the canonical forms in the different flow regimes?®
Of particular interest are the fundemental or singular solutions which
represent the types of singularities encountered in the hodogrsph plane.
Is there any method of constructing such solutions as shown by Picard,
Hadamard (reference 52), Hilbert, Riemann, and Tricomi (reference 53)7%

(b) If such fundamental solutions are too difficult to construct
or too complicated to apply t9 tE? flow problem, what other reasonable
approximations, besides the Karman-Tsien (reference T) approach, can
be made so that some useful results can be derived in the different
flow regimes?

(c) It is well-known that the boundary conditions of the stream
function ¥ (not the potential @) are well-defined in the hodograph
for polygonal profiles with or without free streamlines up to transonic
flow. As a reasonable preliminary approach, can the compressible flow
around such a given body be found?

In brief, this paper contains a systematic list of useful forms of
the differential equations. The canonical forms of the exact differential
equations are given for subsonic, supersonic, and transonic regimes.
Unfortunately, one of the coefficients of the equation is an implicit
function of one independent variable. This makes it impossible to con=-
struct fundamental solutions which would be of value for practical
application.

Approximations to the implicit function are chosen in such a way
that the solutions can be found from classical mathematical analysis.
In applying the approximations, three objectives are kept in mind:
First, the differential equation must reduce to the Laplace equation
as M—> 0 or M —M_, so that Chaplygin's procedure of utilizing
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the incompressible flow can be followed. Second, in the transonic
range, the transonic similarity law of Kdrmén (reference 29) can be
applied and the simplified boundary conditions can be used. Third,

the singular solutions and the fundasmental solutions in the subsonic
and transonic regime can be found so that the flow can be determined
directly if the boundary conditions in the hodograph plane are assigned.
Or, alternately, the Riemann function in the supersonic regime can be
found, so that an integral solution can be obtained when the initial
value or the Cauchy data along a noncharacteristic line are specified.
Last, the characteristics method can be used.

In the present paper, a number of approximstions for the canonical
forms in the subsonic flow are given. The zero-order approximation is
actually the same as Von Kérmén's approximation given in reference 7,
equation (63), or reference 13, pages 186 to 188. Both differential
equations of the first-order approximation can be reduced to the
Laplace equation in polar coordinates. The singular and fundamental
solutions have been given.

The second-order approximastions to the differential equations can
be reduced to Stratton's equation (reference 70) by means of the
separation of variables. The particular solutions are indicated.

There are some better approximastions which should hold for any
subsonic Mach number. They are shown in section 3, "Solutions to
Canonical Forms of Approximate Differential Equations in Subsonic,
Supersonic, and Transonic Regimes." Similar approximations are obtained
in the supersonic region. Of course, for each approximation, the
corresponding pressure-density relation must be determined.

If the general class of singular solutions in the hodograph plane
can be obtained, then it should be possible to solve a large number of
problems by a suitable placement of the singularities in the hodograph
plane to satisfy the desired boundary condition in much the same way
that sources, vortices, doublets, and so forth are used in incompres-
sible flow.

Some investigations on possible approximations to Chaplygin's
second equation are made in section h, "Different Approximations to
Chaplygin's Differential Equation and Their Solutions." This second
equation is more convenient to use i1n flow than the first equation.
The first-order approximation to this differential equation has been
shown by Frankl (reference 11) to be Tricomi's equation. Both the
second- and third-order approximations are shown to be associated with
Whittaker's equation (reference 61). The third approximation is suf-
ficiently good that it should give fairly accurate results in all
transonic-flow problems. The corresponding hypothetical gas law is
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shown in section 5, "Hypothetical Gas Law Corresponding to Approximations
of Chaplygin's Second Equation," and deviates so little from the exact gas
law in transonic range that the exact gas law may justifiably replace

it. The transformation relation between the physical and hodograph

planes is also shown for the third approximation.

The polygonal body, either closed or open, is known to give simple
boundary conditions in the hodograph for the stream function V¥ but
not for the potential ¢. The particular solutions obtained by the
principle of separation of variebles and the series solutions obtained
by superposition cannot be applied directly without solving systems of
an infinite number of simultaneous equations to determine the infinite
number of coefficients in the series. In this class of bodies with
one or more convex corners, the solution of the incompressible flow
cannot be used because the velocity at such a corner is infinite
according to the theory of incompressible flow. Physically, the flow
passing such a body is always transonic in character, no matter how
low the free-stream velocity is. As shown by Guderley (reference 31)
and Busemann (reference 38) some shock always occurs at such corners.
But with the simplified assumption of the transonic similarity law,
the flow about this group of bodies should be obtainable. In
section 3, "Solutions to Canonical Forms of Approximate Differential
Equations in Subsonic, Supersonic, and Transonic Regimes," a more gen-
eral simplified equation satisfying the transonic similarity law is
given and the solutions are shown.

For an open body built with straight-line elements but with no
convex corners the problem can be attacked with the Chaplygin technique
or solved directly as & boundary-value problem. In this case, no free
constants can be chosen, and the solution is uniquely determined.

Owing to the complicated nature of the asymptotic behavior of the
Whittaker function with a very large parameter, and simultaneously with
a very large value of the independent variable, the future work will
devote a considerable amount of time to finding the asymptotic solu-
tions corresponding physically to different flow regimes. This is an
important step in solving flow problems with the Whittaker function.
The Whittaker function converges very slowly for a large parameter, and
is quite similar to the Chaplygin function in this respect.

In order to demonstrate the method, the flow through an aperture
is reexamined in order to check with the results of Chaplygin and
Iighthill., Tt is found that the third-order approximation agrees very
well with their work. This is given in the last section of the paper.

This investigation, conducted at The Johns Hopkins University, was
sponsored by and conducted with the financial assistance of the National
Advisory Committee for Aeronautics.
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The author wishes to express his deep appreciation to his former
teacher Professor Th. von Kdrmén for a long discussion during his busy
visit in Washington in 1949. He also wishes to express his apprecia-
tion to Professor F. H. Clauser for his frequent discussions and
criticisms, without which the author might never have reached the
bresent results. Last but not least, he should mention the valusble
assistance from Miss V. O'Brien, Mr. B. T. Chu, and Mr. Y. K. Pien.

2 - CANONICAL AND OTHER FORMS OF DIFFERENTIAL EQUATIONS IN
SUBSONIC, TRANSONIC, AND SUPERSONIC REGIMES

2.1 - General Transformation of Differential Equations in

Hodograph Plane

The pair of Chaplygin's firsf-order simultaneous partial differ-
ential equations for the stream function V¥ and the potential @ in
the hodograph plane (equations (11.10) and (11.11) in reference 13) is

o Po 1 - M2 OV

e i
op < Poi o
% oS o

where po/p and 1 - M2 are given functions of the independent
variable q.

The above system can be transformed to many other forms which are
more adaptable for analysis if a new independent variable Q is
introduced to replace q, thus:

Q = Q(q) (2)

2A list of symbols is given in appendix A.
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In terms of Q, equation (2) yields

PR, oL s 0h0n (38)

B0 P ;08 oF (3b)
8 p dg 9Q

Eliminating ¢ and then V¥ from the above, a pair of second-order
partial differential equations is obtained as follows:

5 g
e Sy (ﬁqd—Q) -0 (k)

Rl Mg(g)‘Z B e % Lf(d_Q)'l <05 (G
s R T R T R I R

Of course, if Q 1is chosen equal to g, the following pair of equations
is obtained:

3y l-M282U/+l+M28_W=

+ 0 L
dg2 q2 362 q dq (3
2 2END 2
5¢+1'M5_Q__<1_<59__1'M)§ﬁ=o (1)
qu q2 362 dg\p q dq

which have been used by Ringleb (reference 8). Now make some proper
choice of the function Q(q), so that either one or both of the above
equations can be transformed to some simpler form.
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2.2 - Chaplygin's Differential Equations - First Form
In Chaplygin's differential equations of the first form, he

introduced the algebraic relation between Q and gq as

3 o Nl q2
Qlg) =7 = = (80*)2 ¢5)

where a,* 1is the stagnation sound velocity. It is obvious that the

range of T (T has an important physical meaning. It is the ratio
of the kinetic energy of the gas to the total energy or enthalpy) is

EromE@s o]y | Figure 1 shews the relation' of T, —3;, and Mach num-
a
0

ber M. Equation (l4a) transforms to his well-known equation

1 - ipw 2
T
(L - 7) er( - ryu o8
where B = L et g e l, and the relations -~ = (1 - T)B and
Ve For =iyl Po
A e : "
1l - M = ———=— are introduced. By means of the principle of the
&=t

separation of variables, the particular solutions of this equation are
combinations of hypergeometric and trigonometric functions. The dif-

ferential equation in terms of the potential @ transforms to a much

more complicated form

(0 e O il IV B D (6b)
oT 1 - MqT oT 2T 362

and its solution is difficult: to obtain directly, but it can be obtained
by integrating the differentials of V. Actually, there are four sin-
gularities of this equation - three regular ones at T = O,

= QL-=-——l———, and T = 1 and one irregular singularity at T = c.
My 2B 1l

Therefore its solution is not so simple as the other equation.
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2.3 - Chaplygin's Differential Equations - Second Form

To eliminate the last term in equation (L4a), choose

Q(q) = o (7)

where o is defined by (c; 1is a constant)

Ro - .da '
_D—ng-_-—ca (8)
or
o d
o=t |22 (9)
Po 2

Substituting into equation (L4a), the last term drops out and

52w+ K %V . bid
= a
Bg %?5&
where
Po)? 2) 1- T
K=\—=] (1-M) = (11)
(p) ( (l T T)p.l

InSfigures 2, UK ds given asia function of 7. '0Of course, K should
be expressed in terms of o¢. Unfortunately, it is an implicit func-
tion of ¢ and the differential equation is impossible to solve
exactly. TFigure 3 shows the'behavior of K as a function of o for

the case c, =-1 and 7 = 1.4 where the upper limit of the integra-

tion is g = a*, the sound velocity. It is of interest to observe the
two asymptotes of the K - ¢ curve: (a) K—»1 as M — 0 or
Oi——y coands (1b) SUK ey bl Las, ¥ O ='0,2513. ' The ‘function "o . .can
be integrated as follows:
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g = .E_E
e G
q

2
S0 s YRR Y I T)l/QE ool ; fio _57) ]

(12)

where. T ~is giyven in eguation (5) and y = 1.4 is explicitly intro-
duced, 1In figure 4, o is given as a function of 1. If equation (9)
is substituted into equation (4b),

P, P8 _Ba :
30° b o2 90 do (1oge K) 9 (10b)

which is rather more complicated.

2.4 - Another Form of Chaplygin's Second Differential Equation

To eliminate the last term in equation (4b), introduce

Qq) =v (13)

where v 1s defined by (cV is a constant)

P q av
— —]=c (14)
L M2<dQ> ¢
or
a
P L
p q
q

Substituting in equation (4b), the last term drops out and

2 )
K§_§+a—-@=o (16)
v o6

N
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where K is the same as defined in equation (11) and cy = -1 is
closen, O tcourset Tk shonld "be lexpressed in terms of @ v, 1if\if were
not an implicit function of v. ©No detailed investigation will be
giviens in sthis report,

Similarly it can be shown that

2 2
KM.{.B_\II.;..B_Yi(loge K>=O (168)
S el ov dy :

Tt should he noted that equations (10) or (16) are simpler for only one
of the pair, at the sacrifice of the other.

2.5 - Canonical Forms in Subsonic Flow

It is well-known that the fundamental solution may be found when
whe diffemential equation is reduced to thecanonical form. -Therefore,
the canonical form is worth:while to obtain. If ‘the velocity is sub-
sonic everywhere in the domain, the canonical forms of the differential
equations can be found in equation (4) in the subsonic or elliptic
range. Take

Ag) = o (17)

suchibhat,” fon M < i

or

oo e Ees 6 Ol o SO T (18a)

172
/ %%. Here the minus sign is chosen so that

(Actually aw = +(1 2 M2)

a*¥ can be imposed as an upper limit.) After integration,
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} g% (l 4 M2)1/2
X w = oo Bt i LI (18b)
| q
( q
Figure 5 shows o as a function of 7, M, and 0. In terms of M
@I T
2\1/2
J W = ull/2 tanh'l<} = - > = tanh—l(l M2)1/2
‘ i
1/2 /
= 108 =T _1 (Ll - pqT
‘ =y 1/2 tanh™t = - tanh l( E ) (18¢)
10
(1 -7) - T

‘ Equations (4a) and (4b) become

‘ : %j_; 4 gg% 4 % :_w(loge Kl/2> =0 (19a)
‘ 5_29+ﬁ_a_¢i(1 eKl/E)—o (19p)

&DE 592 Adw dw

‘ T = K‘l/”w* and @ = Kl/u¢* are introduced, the above equations
can be written as

‘ = * 2 =
‘ s’ § 362 % [1—6(?> 'Z‘K”]“’*‘O (19¢)
‘ ‘ . 2g* 2 ..
i o O I N A S ]
‘ See bR [16(1{) e L (194)

which are the canonical forms of the differential equations in subsonic
( flow and were first pointed out by Bergman (reference 6).
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(b1 - Yugr®
(1 - plT)3/2(l - 7)1/2

N
R B M (20)

B 2 (l . M2)37é

a(10g, ¥1/2)
Figure 6 shows & as a function of w.

Unfortunately the coefficient of the first derivative is an
implicit function of w and also is singular at M = 1. This prevents
the use of Hilbert's and Hadamard's approach (reference 52) to formulate
the fundamental solution. Bergman (reference 6), Bers (reference 17),
and Gelbart (reference 27) in this country and Eichler (reference 58)
in Germany have given the integral solution of equation (19) but the
process is very complicated. The present paper will give some solu-
tions of the above differential equations (19) under certain
approximations,

2.6 - Canonical Forms in Supersonic Range

If the velocity q in the flow is entirely supersonic, take

Qlg) = (21)

where () N hisidef ined by

ME.:.E(@Q)Q = (22a)

q2 dq

or, if the positive sign is chosen,

2 1/2
dQ = KEL_LE%Z___ dg
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After integration,

q (M2 Y l)1/2 i

3 q (22p)

ax

where () can-be expressed in terms of M or T, 6 each in two ways,

= “11/2 tan'l<ME;i~l)l/2 - tan'l(M2 = 1)1/2

Q_.
S aa/e | N
= /2 panL -E%I-———-y Bl b N poc
“l [J.ll-’r A ( )
or
1/2
Q= pl/z cos~1 al - cos~1 %

Me + (g - 1)

iy 1/2
ull/E cos-l[%lé%—:—ié] - cos-l[gui : 1 {] (224)

Figure 5 also shows § as a function of 7. Actually & is a dis-
torted velocity magnitude such that Q = 6 Dbecome two families of
simple straight characteristics inclined at t45°. (Refer to p. 215 of
reference 13.) Equation (4) becomes

Py, 4 L/l

0? E*aaa[i(’ge S e
¢ 3¢ ¥ a 1/2

22 2 W Eﬁﬁoge i ] i e
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In the hodograph plane, the characteristics are the same as those of
the simple wave equation and are invariant to the behavior of X(Q).

I ¥ = (—K)“l/uw* and @ = (—K)l/u¢* are introduced, the following

equations are obtained:

2% D%

:W 7 [16(K %ZKT]“’* i (23¢)
=R 2
20”7 16(K) *ZY]Q’ T (234)
d[:loge ('K)l/g.l A (b1 - 1)'H1T2

(uy7 - 1)3/2 ale
N
- = - (24)

R o l)3/2
a[o8, (-x)2/2]

Figure 7 gives P as a funccion of . The Riemann

function (reference 52) always exists uniquely and the solution of both
equations can be constructed theoretically for a region bounded by
characteristics if the Cauchy data are given along a line that is not

a characteristic. Owing to the implicit nature of the coefficient

. loge (-K) l/:] as a function of Q, the Riemann function and the

solution will be too complicated to construct. Besides for the super-
sonic flow the Cauchy data in the transformed hodograph plane are not
completely known in general. Therefore the Riemann function is not

of much use in the hodograph method.

The present paper will also show some solutions to the differential
equations under certain approximations. It should be noted that
and w  are related by = iw if it is desired to extend the defini-
tion of ®w +to the supersonic side. Such an extension seems very

obscure as yet in its meaning. Fortunately (dQ)2 always occurs in
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differentiation, and the derivative of the logarithmic term does not
depend on such an extension. Therefore equations (23a) and (23b) are
single-valued.

There is another interesting feature of the canonical form. In
the hyperbolic region, the characteristics are the same as those of the
simple wave equation while in the elliptic region the imaginary char-
acteristics are the same as those of the Laplace equation. They are
invariant to physical conditions. The physical law influences only
the first-derivative term.

2.7 -~ Canonical Forms in Transonic Domain

Now choose Q(q) = ¢ where ¢ is defined by

e I
1M ng (%%) = +1(e) (25)

and where f(€) is an arbitrary function. (The upper sign is to be
used for subsonic flow and the lower sign for supersonic flow.) Then,

ol b e 1/2
[f(eﬂl/e de=fE(l 1:1' da (26)

For \M'< 1 ' ‘choose

f(e'>(d“")2 SLEE (258)

dq

Equations (L4a) and (4b) can be written as

2 2 i 142
ooy +Ele") o7V + of " d loge R / =0 (27a)
Jer @ 62 de' de' £le¥)

5_295_+ filea) a2¢ B, P d {1oge [___Igf(e'):]l/g} =10 (27p)

Jei2 362 d¢'adet
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where €' 1is used for ¢ in the subsonic region. For M >1 choose

f(e")(ﬁ'—'>2 . (25b)

dq q2

[}

2 1/2
D R o R AR EK)] o: I ieBs)
(86")2 862 de" de f(s")

B s B S e {loge E-K)f(e")]l/g} -0 (28b)

(Be™)= 367 0" de”

where ¢" 1is used for ¢ in the supersonic region.

It is interesting to note that the above two sets of equations can
be combined into a single set if f(e¢) is an odd function, that is,

| gehe wF =

f(e)(a) st (25¢)
32y 2y v a T REe
R ) 392 Qe de e [;(e) e £29n)

0 (29b)

s PN i{loge E-K)f(e)]l/E}

862 592 a€ de

which are valid for both M <1 and M > 1. It should be noted that
G >0 Hor VS Sl and Ve <@ i for M < A,

The canonical form of the mixed differential equation is explained
as follows. If, following Tricomi (reference 52) f(e) is set equal

tol (67 and: =K = (29> (M2 - l) is introduced, equation (29) reduces to

o]
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d2¥ 0% 13V d ,: —K:| i
e i
3¢ ¢ 13 d i
s L e L &

which are valid for the mixed region. They can be obtained directly

i : R N : : S G
¥ ‘getting ¢ = - Q) in equation'(23) 4f M>'1 and' € = (2 0
in equation (19) if M < 1. These may be called the canonical forms

of the differential equations in the transonic region. The solution of

the exact differential equation is obviously difficult. Some singular
solutions of the above equation under approximations can be obtained

as will be shown later.

It is well-known that the characteristics are fixed for all linear
hyperbolic differential equations. But there is an interesting feature
in the canonical form such as equations (30a) and (30b), because the
characteristics are fixed and invariant to the function Kte ), ~or %o
the physical problem from which the differential equation is derived.
The characteristic equations are

(0.~ 85)° -

Ol &
m
w
I
(€]

which represent two families of characteristics of cubic parabolas with
cusps at their points of intersection with the € = O axis.

Figure 8 shows € as a function of ® and Q. Figure 9 shows

2
€ ﬁl-log (ZK) /:] g8 a. funetion' of | fc.
de €\e¢

3 - SOLUTIONS TO CANONICAL FORMS OF APPROXIMATE DIFFERENTTAL

EQUATIONS IN SUBSONIC, SUPERSONIC, AND TRANSONIC REGIMES

In the last section, the general derivatives were shown of the
canonical forms of the differential equations in the different regimes.
At the same time, it is found that the coefficient of the first-
derivative term in any one of the canonical forms is always an implicit
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function of one independent variable. The exact solutions are very
difficult to obtain., It seems justifiable to seek some differential
equations with an approximate coefficient for the first-derivative
term so that solutions are relatively easy to formulate. Of course,
the validity of the solutions thus obtained must be examined and the
limits of the range of application must be defined. In this section,
the solutions of the approximate differential equations will be given
and their applications will be discussed.

3.1 - Subsonic Canonical Forms - Equations (19a)

and (19b)

In the subsonic case three approximations to the canonical form of
the differential equation will be given. Figure 10 shows the exact

1/2
curvetof Kl/2 = %?(l - M2) / against w.

Zero-order approximation of Von Kdrmén.- In reference T, Von Kérmén
suggests taking

x1/2 _ Epg(l : M2)1/2 = -s—o-(l - M,,‘,E)l/2 (31)

where p_ and M are the density and Mach number at the free stream.

In figure 10, the horizontal dotted line shows the approximation
Kl/2 . It is apparent that the approximation becomes better as
@ L:oo
w-—>0 or M-—>0, With this approximation, the coefficient of the
first derivative becomes zero in equation (19) and soO

2 2
o g SRR (32a)
d”  d6°

2 2
é__g 4 M =) (32b)
P 36°

which are Laplace equations. These equations are invariant under
translation and rotation. Therefore, ® can be set equal to O at
sonic velocity a* and so defined as
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8 112
w = Ll——in)— dq' (33)
q

Of course, Chaplygin's procedure of utilizing the incompressible-flow
pattern to find the corresponding compressible flow can be followed.
There is another possible approach. If the types of singularities and
their locations in the flow of the hodograph plane are known and if,

in addition, the boundary conditions of the stream function are known
under reasonable assumption or under assignment, the solution of the
flow should be obtained uniquely by superposition of the fundamental
solutions corresponding to the types and location of the singularities.
After the solution in the hodograph plane is obtained, the corresponding
flow in the physical plane should be checked to determine if it is pos-
sible or not. To serve such a purpose, the fundamental solutions of V¥

and @ due to a source at Wy and 6, are given as an example.

¢(w,9; wo,eo) = -log, [Kw - wb)e + (9 - 90)%11/2 (3ka)
w - w
Ww,05 05,680) = -tan™t 9—_—% (34D)

Of course, with the simple source, there can be built up the potential
and the stream function of higher-order singularities such as doublets
and quadrupoles. Actually, it is more convenient to treat the problems
with functions of complex variables, because V¥ and @ are harmonic
functions,

First-order approximation of the canonical form.- It has been known
for some time that the above approximation is not very good at high-
subsonic velocity. A higher order of approximation can be made as
follows. Instead of taking the approximation as given in equation (31),

the approximation can be made accurate to the slope of the curve Kl/2
against w at the free-stream 'condition, that is,

K]‘/2 ~ a + bw (35a)
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where
i (Kl/z 5 dKl/E) (350)
i g A ditin
1/2
P (dew )M (35¢)

if w = w, 1s chosen as the free-stream condition. This approximation
is shown in figure 10. Then equation (19) yields:

: F o (362)

3¢ = 33 b
2 + g o o il 0 (36b)

Introducing ® = w + into the above equations,

+SS-===0 (37a)

%=0 (37b)

These are identical to the equations of Stokes and Beltrami for axially
symmetrical flow., The particular solutions of interest are the well-
known Bessel and trigonometric functions, and are not given here.

These differential equations are invariant under translation in 6.
From Lamb's "Hydrodynamics," the singular solution corresponding to a

Lelee: SeNEE :
source at wgy = p °F 9 0,6, -is
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-%,GO> = L (38)
[{w + %?)2 + (9 - 60)%]1/2

Recently Weinstein (reference 56) has shown that, for the axially
symmetrical potential, the fundamental solution for a source at

6”0 + %,90) is

i/

toa(0 - a)2 + (o - )]
(oo + %)1/2(0) ¢ g)l/g

b

(39)

where the function R(w + %,6) is regular at the point (wo + %,90).

The corresponding singular solution to the stream function is

WQ» T TR ) = gt (40)

Ka) + %)2 + (o - 90)2]1/2

The fundamental solution of the stream function is not given here,
because it is long and involved. The singular solution for more com-~
plicated sources can be built up easily. Therefore, if the boundary
conditions and the locations and types of sources are given in the
hodograph plane, the flow in the hodograph plane can be found with the
classical technique of boundary-value problems. If the boundary con-
ditions are not known, the series solution of the incompressible flow
may be considered and Chaplygin's procedure followed.

Second-order approximations.- Choose the following approximation:

Kl/2 ~ a+ bw + caf (k1a)
where
1/2 0. /8
Kl/e_wg_>+iwed_l_<_ et
dw 24 @mE
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1/2 2,1/2 |
b=(dK I > (b1c) W
el P W=, |

|

LR \

c =i<“< ) (414) |

e dmz Q= \

o

This approximation is also shown in figure 10. Then equation (19) yields

2 2
V¥ 5 o=V : b + 2cw éi gy (L42a)
d® 6%  a + bw+ caf W
52¢ 32525 b + 2cw éﬁ |
1 4 = O )+2b - |
Qs d6° a + bw + ca” OO ( ) \
These equations can be written in another form by introducing
o) = 2c (. ll-) (if b > hac).
(b2 - hac)l/é 2c \
v Py 1 1 \dv “
4 + T ( Wiz ) = 0 (43a)
' d0 o -1 o + 1/ ' \
2 2 \
a¢+a¢+<w1 g >5¢ o (43b)

‘ NV L DeR SN )

| The particular solution can be obtained by the principle of separation
\ of variables, if it is assumed that



NACA TN 2582 25

¥ ,0) = Ve, Moy - 510 :g} ¥ e (4he)
Sa A B ) in v6 ,
glar,0) = 6,V (w)gVie) = 21m Vol g (Vi) oy

where V¥; and ¢l satisfy the ordinary equations

a2y AL
5 - — LoV =0 (45a)
()2 (o) -1
4@ {res
¢1 ' 2w ¢l 4 V2¢ £t (45D)
(0E e e TR

which are special cases of Stratton's equation as shown in reference 70.
The particular series solution can be obtained but it is too long to
give here.

Comments on above three approximations.- If the above three approxi-

mations are plotted in comparison with ;f—(loge Kl/z) against w in
@

figure 6, they are not satisfactory. The zero-order approximation

maintains a zero value, although the true value of §L<ioge Kl/2> at
@

w, may not be zero. The first-order approximation becomes roughly the

zero-order approximation to éi(loge Kl/g) at w,, while the second-

order approximation becomes roughly the first-order one, It is apparent
that the above procedure can be repeated to find all the approximations
to the curve in figure 11, but this kind of approximation is not shown
here. Some other approximations are given to take care of the asymptotic

behavior of %(loge Kl/g) as ® —>» 0 and w —> o,
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Approximations to singular behavior of }%B(lOge Kl/g).- Figure 11

shows the curve of é;(loge Kl/g) against . Some simple calcu-
(D ]

lations will show that 1lim %(loge Kl/2> = - —]3-'- and
w-—>0
é%;loge %?(l - M2)l/%]———>0 as ® — ». Therefore, a simple, but

ood, approximation is to assume
g )

Q-(lo Kl/2> Seee 46a
= (108 T (k4éa)
The constant a can be chosen in two ways:

(1) Choose a = --%- if the exact behavior at sonic velocity is

desired. This is shown in figure 11.
" 1
(2) Choose a such that 2 = (K. if the flow velocity in
i
~ (D°° 2K A=W

the neighborhood of free-stream velocity is desired. If w, is

7
infinitely large, it automatically reduces to Kérman's approximation.
This case is also shown in figure 11.

This approximation is important because the fundamental and sin-
gular solutions can be obtained similarly to equations (38) and (39)

except the one-half power is replaced by the % power.

The next approximation along this line is to assume

i( 1/2) s i
dw i o1l + bw) e

where a and bA are two free constants to be chosen.
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A few choices can be made:

(1) Take a = -+ and b to be such that £- = p S e
2 2K ww(l + bwm)

the interest is in the sonic and free-stream velocities.

(2) Peke  a and b such that —=2e . = (KL> and
o(l + bw) B e
2K

graph (fig. 11) checks well with the exact curve. The differential
equations are simplified to

1
(5;) are satisfied, for example. This case, shown in the
w=0., 5wy,

2 2
o=¥ + ol = oy, 0 \ (47a)
8&? 362 (1l + bw) dw
2 2
o SRV T v T (47b)
a(bg 592 (L)(l = b(l)) ow
Similarly, it can further be assumed that
K El st (46c)

2K 7 w(l + co)

where a, b, and c are free constants. One case is shown in the

graph (fig. 11) with a, b, and c¢ determined from the values of %é

abs Oiede ., and 2n ., It/ checks very well with the exact curve.

3.2 - Supersonic Canonical Forms - Equations (23a) and (23b)

Zero-order approximation.- Following the approach of Von Kérmén in
the subsonic case, there can be chosen in the supersonic case the
approximation

()12 - B2 - )MB 5 Boy 2 . 1)}/2 (15)

o
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and

Lile L 1)1/2
q' .

q = g’ (L43b)

a*

where q 1s always supersonic in the domain of the flow pattern. Then,
the coefficient of the first derivative in equation (23) is zero, and

2 2
S A BN (49a)
2 62

2 2
e SR (49b)

M2 36°

which has the solutions

V(9,86)

Fﬂ,(Q +6) + G\J/(Q - 6)

y B(,0) = F¢(Q HE0, G¢(Q - 96)

which are well-known classical wave functions. The approximation is a
straight line parallel to the Q-axis as shown in figure 12 with Q = (Y

First-order approximation.- Along the same approach as the subsonic
cagse, it is easy to show

N P v W

2 e BT PNIE . a0
B a8 ,
i R RO R R (50D)

592 592 a' + b'Q AN
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where

Introducing € = O + %%

= (-K)l/2 - Q Qﬁ:ﬁﬁifsﬂ
82 - dgag

[e)

b! = E("K)l/e]
d@  _la=q

ee]

into the above equations,

—_—_ i e—le e — =00
T s R LT
P4 13 _
32 32 aon

AP=NE
no= -0 B
and then,
OOl e 2L XK= NN D
3°¢ . i /éﬁ & ég) E o
SRR PUVRNT ROV

29

(51a)

(51b)

(52a)

(52b)

(53a)

(53b)
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which are Euler-Poisson's equations with B = B' = - %? in ¥ and %

in ¢. The Riemann function corresponding to ¢ can be shown to be

Q(X)HS A'o.v}lo) =

iaaA e o NafD |
(ko )7 (e - M) 2Fl(_.l_ _%. 1; o) (54) |

(b= 2)

where A, (or ﬁg + 90) and p, correspond to O + and 90, the

point of interest, 2Fl is the hypergeometrical function, and

(X 3 Xo)(“ i uo)
() (i~ o)

g =

It becomes too cumbersome to write the Riemann function in terms
of the original coordinates (Q and 6. This approximation is shown at
Q2 = Oy in figure 12. = Since the Cauchy data are difficult to assign to =

the potential the corresponding Riemann function becomes useless. There-
fore, with the above Riemann function ¥ the stream function V¥ at a
point (Qo,e) can be found by the Riemann method, if the Cauchy data

are sufficiently given. In general, even if the Cauchy data are suf-

ficiently known in the hodograph, the Riemann method is rather difficult
to apply.

Second-order approximation.- Following the same procedure as before,
it is not difficult to show that

3y
0

|

=0 (55a) !
S o

2 Py (
loaral

Dl
1

[

Py P, ( Ghizs 1)@2 e .

3% . 39 o

S
4
e
Qf
1
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where

= h )2 ]
[(61)2 - ;'cjl/:e(Q ’ 2c') ()2 > barer)  (56)

d2(—K)l/2

¢! = | (57)

da =0,

The Riemann function of V¥ is under investigation, and is not so
easy to obtain unless a long series solution is adopted. However, the
particular solutions are of Stratton's type, but are not given here.

Some better approximation of the coefficient é%-loge (—K)l/%] can

be made, but the solution to the resulting equation will be more diffi-
cult to obtain.

Comments on above approximations.- The above approximations become
worse as Q, —> O or M —> 1. Even at very large Mach numbers, they
are not very optimistic approximations.

3.3 - Approximations to Transonic Canonical Forms -
Equations (30a) and (30b)

Take the transonic canonical forms of equations (30a) and (30b)

¥ v 1 4 [ K] {

—8—6—2 - € g— -+ § —2 Ee- loge (_G—) =10 (308-)
2 2

a_.g i é_g. =2 .].'. ﬁ __d_ loge (_Keﬂ =50) (30b)
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Following Guderley (reference 30) introduce the variable

2 2
L. .= (%)3 §§ = SE (supersonic) (58a)
_3)392_92 Tam
¢ = (E ;g = ;é (subsonic) (58b)

Ttie interesting to'note that € > 0. in.the supersonic side and A
in the subsonic side of the hodograph plane. The equation { = 1 corre-
sponds to the pair of characteristics starting at 6 = O on the sonic
line. The independent variable 6 can be eliminated in equation (30a)
and equation (30b). Since the two equations are equivalent in behavior,
only equation (30a) is treated here. Thus there is obtained

E e s o e o e | e O RN | [ -K:I
C(g'l)_'§'€§a§ae+?ge_2+a_§{“§+§§' £efrose (F) 1+

ro)s @ d -K i
8o )8 'a—G'EOEe <?)jl =0 (59)

Now examine what conditions must be imposed on ¢ éL log, (%Ej]
€

so that the variables { and ¢ are separable in the above equation.
First, assume

¥est) = ¥y(eva(t) (60)

Equation (59) yields

d°y ay ay
2 2 i el a2 g I e o -K R4
St at2 i 12 {3 3¥; d¢ 6 Qe [loge (e )jl s at

O |+
éWm
RS
[e]] u
o
| =
}—J
O |+~
<| m
|,—J
2l
}_J
SIS
2l
I l_l
&)
0}

1
”‘Ix
|
<

, =0 (61)
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Po\e

_where K = (——) (l - M?) is a known function of ¢. In general, the

P
above equation cannot be solved unless the following conditions are

imposed:
2t (2]
Ui e e s g (62a)
and
2 4%y ay
-y e ¥ b il G i g L
9 V1 ae? +§ﬂ€e_§d_€E°ge <?>] = agPg (62b)

where ag and By are individual constants to be chosen later. Equa-
tion (61) can then be written as

2

a=v av
g(l e C) _QEE % E’- (l = G'S e Bs)g'dTg & GSBSWE =0 (63)
d

which is a hypergeometric equation. Its singularities are € =0, 1,
and = e, W NThe ‘eeneral (solution about' £ .= 0 ds

2Fl(as,Bs; %; §)
¥olt) = - (lel < 1) (6ha)
i §)§1/2

1
gFlQ&S t 5B + 55 53

~J

The solution :about @ €= 1. is

1
= -ag-B
Elg=nty2 57PS 2Fl(% - as,% - Bgs % = Qg = Bg +!15 1 ~ §)

Vo(t) = (h-ti<1) (om)

1
2 5 -ag-B :
gL/ sy ek 2F1(1 ~ag,1 - Bgs 5 - 05 - Bg + 1; 1 - g)




3k NACA TN 2582

Following Kummer (reference 61), all the 24 solutions about the
3 singular points € =0, 1, and ® can be obtained. The triple-
valued behavior of VYo(f{) for ¢ = O can be shown easily. This

agrees with the results of Lighthill, Guderley, and Carrier. Under
the imposed condition, it is not difficult to show that

Constant 3 (65)
3&5[ 3(85—0'8)]
€ = e

where oag # Bs and cg 1is a free constant to be chosen later. Also,

Vi(e) =

if by definition zg = % é;-loge (ZKE], its approximate value %é can
€ €
be calculated from equations (62a) and (62b):
- 1+ cse3(ﬁs_GS)
B = 1 o 3(Bs = “s) (66)
3(Bs-as)
L= e 6

The exact value of zg5 can be determined from equation (25a) with

f(e) =¢ and K = (%?)2(1 - ME).

It is necessary now to choose the approximate variable Es SO as

to have the same ordinate and slope as zg at € =0 (or M=1) if

the flow at sonic speed is of particular interest. It can be shown
that, at € = 0,

z. =0 (67a)
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These conditions determine

2 2
Z2g = - ._.C_Se__ (688)
L =icse
l.
Bs = ag + 3 (68b)

where cg x -0.525. With the approximation to equation (30a), the
approximate differential equation becomes

ég_w. - € 521'; 2CS a\y =

362 392 3 1 - cg€ S: - (69)

The singular solutions of this equation are

W( E,@) o

“3as () _ o ¢)-1 39 L RS e
€ (l CSE) 2€3/2 2Fl<a,s * 2,as + 6, 2: )

| (70)

where ag should be chosen to avoid the limiting line in the physical
flow pattern. It should be noted that equation (69) and its equivalent
equation of ¢ (not shown here) are one order higher in approximation
than the Tricomi equation. In other words, the Tricomi equation is

equivalent to taking zg = O for all values of €. For negative

values of ag, the singularity of V¥ is at ¢ = g;. If ag 1is posi-
; S

tive, there are two singularities of V¥, one at € = O and other at
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4 - DIFFERENT APPROXIMATIONS TO CHAPLYGIN'S SECOND

DIFFERENTTAL EQUATION AND THEIR SOLUTIONS

From equations (10a) and (10b),

—_— + K— =0 (713)
— =0 (71b)

2
where K = (99) (1 ~ ME) is an implicit function of o. The exact
p

solutions are difficult to obtain. Chaplygin (reference 1) in his
researches on subsonic gas jets chose K = 1 so that his equations
become Laplace equations. As shown in figure 3 this is a reasonable
approximation if the maximum Mach number in the jet is much less than
unity, because K = 1 is actually the asymptote for the true K - o
curve at M = O, Kérmin (reference 7) and Tsien (reference 52) extend
the idea to the linear approximation of the pressure-volume relation
corresponding to the free-stream condition, also obtaining a Laplace
equation and achieving many fruitful results of technical importance.

In the transonic flow, of course, such approximations cannot be applied.
Von Karmén (reference 29) in 1947 gave the approximate differential equa-
tions which are valid when the flow velocity is in the neighborhood of
sonic velocity and when the body in the flow is thin. He also found the
transonic similarity law which gives a satisfactory prediction of the
wave drag for thin bodies. In the hodograph plane, the approximate
differential equations are of the Tricomi type. The concept of the
similarity law has been further discussed by Kaplan (reference 39) and
Guderley (reference 31) and extended by Tsien to hypersonic flow. The
main contribution of the transonic similarity law to the hodograph
method is: Instédad of investigating the flow about a given thin body,
the flow of a body with the same thickness distribution as the given

one but of vanishing thickness ratio can be investigated. Because of
the vanishing thickness ratio, the boundary conditions can be simplified
in the hodograph plane and are shown to be consistent with the approxi-
mation applied to the differential equations. Under these conditions,
the problem becomes a boundary-value problem of the type studied by
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Tricomi. It is unnecessary to use associated boundary conditions from
the incompressible flow as done by Chaplygin. After the transonic flow
of the body with vanishing thickness ratio is obtained the transonic
similarity law may be applied to find the aerodynamic behavior of the
given thin body.

The success of the above approximation encourages the author to
seek some higher-order approximations. First take a look at the
K - 0 curve shown in figure 3. It has two asymptotes: One is K = 1
and the other is o = -0.2513. It is a monotonic increasing function
of oswitthin:thes range . ~0,2513 <Vgi< ool sat 0= -0L 4K =)0 VTt is
unmgensiteoodsthat 09>.0 ' corresponds: to | Mi<t 1’ and e <:0i fto M >0L!
The main interest of the investigation lies in transonic flow. There-
fore, if possible, the approximation should be so chosen as to maintain
the behavior of the exact K - o curve at and near the sonic velocity
(o= 0) and et the same time preserve the asymptotic behavior of the
exact curve as M — 0 (0 — ®) and M — (ott==y =0./251.3)%

Just as important, the approximation equation should possess solu-
tions within the reach of classical mathematical analysis. With these
few criterions in mind, it can be seen that the Taylor series expansion
of K about o =0 1is not a favorable choice, although the first
approximation to be shown below is of this nature.

4,1 - First-Order Approximation in Neighborhood of Sonic Speed

Frankl (reference 11) in 1945 obtained the Tricomi equation from
equations (71) by letting K = kl = aoc and consequently

2
a7 + ag éﬁ! 2.0 (72a)
302 36°
z 2
SSl s ngn B (72b)
552 3g2 @ da
dK B
where a = (——) ~ 9.42 and o = — = dq as given in the
do /g=0 g - R g

earlier definition. The comparison of the approximation il with the

exact value of K is shown in figure 3. From the figure the range of
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validity of this approximation is very narrow, only in the immediate
neighborhood of the sonic velocity a*. The solutions of these equa-
tions have been fully investigated by Tricomi in his famous thesis
(reference 53). Carrier and Ehlers (reference 57) and also Weinstein
(reference 40) have further investigated the singular solutions of

these equations; Tomotika and Tamada (reference 33) also made interesting
contributions to the singular and fundamental solutions. Recently
Guderley (reference 31) made an extensive study of the singular solutions
and showed a very important singular solution corresponding to a family
of airfoils at sonic speed. Guderley and Yoshihara (reference 36) gave
the flow over a wedge airfoil at Mach number 1. They employ an elegant
method of attack in solving the problem.

In the early days, Euler and Darboux obtained the fundamental solu-
tions of the same equation in the pure elliptic and in the pure hyper-
bolic domains as pointed out by Tricomi (reference 53). The importance
of Tricomi's work is the recognition of the differential equation in the
mixed domain, that is, partly elliptic and partly hyperbolic, and the
proof of the existence and uniqueness of the solutions in such a mixed
domain. :Following the footsteps of Tricomi, Frankl (reference 11) has
shown the existence and uniqueness of the solution of Chaplygin's second
differential equation in the mixed domain, particularly on two problems,
one being the detached shock wave of a wedge and the other being the
supersonic jet from an inclined-walled vessel.

4.2 - Second-Order Approximation

From the comparison of the first-order approximation and the exact
curve in figure 3 it is immediately apparent that some improved approxi-
mation should have a wider range of validity than that given by the
linear approximation. The usual technique of taking higher-order terms
in the Taylor series would not be particularly helpful because they
would not improve the asymptotic behavior for large negative values
of K and for large values of o. Therefore, choose

ao

1l + co

@ +and ‘ct .can be chosen in

dK
where a = (__2) = 95) =g ko gt g
do do

any one of three ways:
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2~

a K2 d2K

) = at o = 0, favorable for transonic range
do° do?

(2) c =a so that EQ =K —> 1 exactly as ¢ —> o, favorable

for transonic and subsonic range

(B} o= -1/0.2513 80 thet ﬁé = K — - exactly as o —» -0.2513,

favorable for transonic and supersonic range

It is interesting to note that, in equation (73), ié — %, a

finite value, as 00— », and EE —> ® &as a ——9-—i. Thus, fox any
c

one of the three choices, ?é always has two desirable asymptotes.

Therefore, the approximation should be fairiy good in the subsonic range
and supersonic range. Of course, if Chaplygin's procedure of using
boundary conditions similar to those for an incompressible flow is
followed, the second choice is a favorable one. Cases (1) and (2) are
shown in the figure. Both seem good in the transonic range. Case (3)
is not shown. The only known second-order approximation is given by
Loewner (reference 73). It is also shown in figure 3 for comparison.

With the above approximation equations (7la) and (71lb) become

+ =0 (Tha)

2 2
a ¢ ¢ ao a ¢ i 1 a¢ (7)+b)
gL 1 K. cuing2 ol 1l %i'cc) o

Equation (T4a) can be solved as follows:

Assume the variables in V(o0,0) separable and let

¥(0,0) =¥, ™ (o, ™e)
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where the positive integer n is introduced to characterize the nature
of the solution

; c39 + ¢, (n =0)
n)
Yo (8). =
cos
ig (0A6) (n # 0)
where the positive constant A 1is so chosen that :é: (n)8) is
periodic for any fixed interval of 6. For n # O, wl(n)(c) satisfies

the equation

del(n) 2\ 2ag (n)

dcz (3 T4 o Wl =0 (75)

1/2
Introduce a new independent variable z = 2nx(§) QU-+ %). Obviously,

in the range —% S 0 S », the corresponfding range for - z ' dg: 0 € 2 S,
Equation (75) yields

a2y, (n) (z)
—_— =
do? (

which is a particular case of the Whittaker equation with m2 =

nA a)l/2

a reason to be shown later). Here k = 5—(_ 50,
c\c

Before the choice of the solution is made from the known results
of classical mathematics, a clear understanding of the nature of the
desired solution when o0 — » or when the flow becomes incompressible

(n)(z)

is necessary., As 0 —>»®, 2z —> o and V1 must behave
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+Z
like e © from the limiting case of equation (76). Furthermore

sin nA@

n
Wl( )(z) o will be just a single term of the convergent infinite
cosS n

series which represents V(0,8), to be shown later. The term wl(n)(z)

-2
should remain finite when 0 —> «. Therefore, wl(n)(z) ~ e 2 as

g —> ® 1is necessary.

With the desirable asymptotic behavior of wl(n)(z) at large
values of o din mind, the only choice is

where the path of integration is a contour in the complex t-plane
starting from o just above the real axis, encircling the origin in

the pésitive direction (counterclockwise), and returning to the starting
point just below the real axis. In general, for k > O there are two

branch points, one at t = O and the other at t = -z, a point on the
negative real axis (since z > 0). Thus the path of integration must
be chosen so that it will not encircle the branch point t = -z.

The asymptotic expansion for large values of o (not simultaneously
of large values of n) is

o AR e | R L
s=1

S

832
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For the case of large values of n, the asymptotic expansion of

W(n)l (z) 4is much more complicated owing to the fact that both k
EN 1
2

and 2z, being proportional to o, become large simultaneously. Very
little information on such expansions is available.

For numerical calculation, the corresponding series solution is
desirable., Jeffreys (reference 71) condenses early developments of
Whittaker, Goldstein, and Stoneley and puts into compact form the
relation between the Whittaker function and the confluent hypergeometric
function. The following discussion closely parallels his work except
for some changes in notation. For 2m = tp (u is a positive integer),
the Whittaker function can be represented by a combination of Kummer's
series when the limiting wvalue is taken. Thus,

I'(-2m I'(2m
Wy, (2) = lim 1( ) Mo (2) + 1( ) M i(2)
43 2m—s» tu P(— =1l k) ¢ F(— + m - k) ;
z 2
where
]! 0 2 1
(2) _e-% Jm+s  r(som 4+ 1) P(-m‘k*2+ S) 28
Mk,tm 3 ol 5 r(z2m + 1 + s) s!
'(tm - + 35) 50
22 im+l
La ey 21Fl(i~m—k+%,t2m+1; z) o

1F1(a;7; 2z) Dbeing the confluent hypergeometric function.

(a =m - k + %, Yy = -2m + 1 according to Jeffreys' notation.)

1
ol &N
1
B
e
|
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where
Ul-m - k + Ey-2m + 13 z> = [(-2m) Bk e £72m +1; z) +
2 B 2
P(—m - k + —)
2
T 2m
(2m)z Fol-m - k + i,-Em - s z)
1) 171 2
F(m -k + 5

He gives the solution of the limiting case 2m —> tp. For the present
case s mt s chosen equal; to —% (y = 2 1in his notation), there can

be written

iy () - e 2 2[uy(2) + Uy(2)] (792)
where
Uy(z) = —=— 271 (790)
5 0 B
Ug(z) = F(}k) 1F1(2 - k,2,;5 Z)Eoge z+ (1) - Flo) » F(—kﬂ + Ug (79¢)

The function F(Q) is called the digamma function and is generally
represented by V({ + 1) (reference Tk).

F(t) =dic-1oger(g+1ﬂ
: 1 1 1 1
=nf.1§w(l°gen'C+1'c+2'§+3""c+n> o

(F(0), = Euler comstant (-7) = -0.57722.)
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For the present case,

Us3(z) =

‘fl’l\/]8
|
’—J
=)
N N
1 | o
A
> i |
'_J
1
-
o
no
0
S5
&
n | K
+
H
—~
)
1
b
Mo
]
il
-
!

B G hhia e ) = -
o Ve SN
o i e e e T r B

r=1 =

(k # integer) (81)

Then, the series solution of equation (76) is

V(0,6) = (cq0 + cp)(c38 + cy) + Eft Anwiffi (z) sin (nxé +ay) (82)

J
n=1 =

where Cys Coy c3, C)s An’ and o, are constants to be determined

from the given boundary conditions or from the boundary conditions
associated with an incompressible flow as in Chaplygin's method, if
necessary. Of course, the convergence of the series must be established
for the particular problem in order to be sure the above representation
is correct.

4.3 - Third-Order Approximation

The K - o relation can be approximated more closely by assuming
an analytic function of o in the range -% <o <x of the form

K =4k3 4 ac(l + bo)

(1 + cc)'2
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such that

(1) K3 =K=0 at 0=0

(2) R S ST e

(4) ﬁ3(c) also possesses two asymptotes, one of which can be
made to coincide with an exact asymptote of K(o).

The conditions (3) and (4) determine the constants b and c. The

above approximation with E3 ——+~§g =1 as 0 —» o 1is shown in fig-

c i
ure 13. It checks very well with the exact value of K for the range
from subsonic through transonic up to supersonic regimes. The other
asymptote, ¢ = -0.2583 as K3 = ~co, does not differ greatly from

g = -0.2513 for the exact value of K. There is another important
advantage of this choice, because the boundary conditions of incompres-
sible flows can be borrowed as in the Chaplygin procedure.

- Introducing equation (83) into equations (7la) and (71b),

o) 2
oV | acll # boj 0Tk o (8La)
8o 1 (1 +ica)s . 00T

and

3°¢ , 29(1 + bo) 3¢ - {EhiaR)e s T 5 (84p)
S0t 1+ co)2 62, o(l'% b0 (14 ca) oo

To solve equation (8L4a), assume that the variables are separable and

(n)

RIS i

(n)

(o)¥, " (8)
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where the superscript (n) is used to show each solution is related
to n, a positive integer,

S el (a0
™ (e) = (85)
c38 +c), (n = 0)

and Wl(n)(o) satisfies

n)
3%, _ 122%a0(1 + bo)
d02 G ccr)2

(™ - o (86)

b

With the introduction of a new independent variable =z = 2n)\ lgi(l + co)

c
equation (86) can be transformed to the well-known Whittaker equation

4, 2
da\l/ (n) — - m :
= L R Wl(n) £ ) (87)
do? b & 2@
where
ke S me iR E (c > 2b) (88a)
2c2 i
2
. (imaginary = 2 a(i - b) > %)
oo S ER T 5
e R a(c (88b)
b ot

242
real if =2 \a(c - b) l)

b el

c
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The fundamental system of solutions of equation (86) is

(n)

n)

(
L Co¥i {(2) & Dﬁw_k}m (=2} (n # 0)
" P(g) = (89)
ClO' #+ 02 (n = o)
where C, and D, are constants to be determined.

The Whittaker functions can be expressed in terms of the confluent

hypergeometric functions and Kummer's functions if m # t—é— as follows:

B e I L M e
4 I‘(-m—k+-§-> g I‘(m+k+%> g
and
WEE)m (-z) = =2 Mfﬁzm (-2z) + r{2m) Elréz—m (-2)
’ f‘(—m+k+%) I‘(m—k+%)
(Iarg(-z)l < % n) (90b)
where the Kummer's series are
i) —% tm+% I(+2m + 1) e I‘(‘tm = k% ]é:+ s)zs
Yk, 4m e P(tm - k + l) EE: I'(+2m + 1 + s)s!
(- % 5/ s=0 = 4
-3 tmeg 1
=t o lFl(tm -k + §,i2zn 00 z)

0 ik
M(n) L e% Zim+% r(£2m + 1) j :I‘(*_'m bl s) (-2)®
l"(:tm Tl %) =t I'(+2m + 1 + s) 5L

I
D
N

lFl(i'm + k + %,tQm + 1; -z)



Besides, the integral solutions are much more general, and the Whittaker functions can be defined &
uniquely whether or not m = t%.

LA (0+) -k-= +k- L
Wﬁ?; (z) = - 5%; F(—m + k + %)e o (—t)m 5 (l + %)m T e at (91a)
£ (0+) m+k - = ek 0
wfizm (-2) = - E% l"(—m SN %>e2 (-z)7k (-t) 2 (1 " ’g) & g (91b)

In the present case 2z 1is real and positive and the contours are so chosen that the second
branch point t = -z is excluded. For more details consult reference 61.

Now the question arises whether both or only one of the two Whittaker functions exists in
the present solution. This can be determined from considering the incompressible flow as the

sin nAl

limiting case as ¢ —» ©® (M —> 0). Furthermore, Wl(n)(z).{: is just the nth term of

cos nAb

the convergent series solutlon. In other words Wl(n)(z) must be finite as o0 — ». Now,
from equations (91a) and (91b), the asymptotic expansions for large values of. & ~are

Y R S P S

wf{“i (%) s (92a)
and | E
2 Q
wfﬁzm (R0 o)k 1+§m En k+%)ﬂl}12_ %()])s .l}g (k+s-§)] (92b) ;
s=1 (-2 >
A}
(@9
\®)
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Equation (92a) gives an exponentially damping function of 2z and equa-
tion (92b) is an exponentially increasing function of =z which is
divergent as 0 —> . Therefore, the only choice is D, = 0. Thus,
there can be written

V¥(0,8) = (clcr + C2)(C39 + Ch) + i I:anl(:l,lm (z) cos nA\@ +

n=1

5™ (2) sin nw] (93)

n k,m

where 15 Cpy €35 Cyy An, ﬁi, and A are determined from the

given boundary conditions or from the boundary conditions of incompres-
sible flow, if necessary. If A, cos a, and B, sin o, are introduced,

there can be written

v(0,8) = (clo o ce)(c36 + Ch) * Zf: AnW£?i (z) sin (nke + an) (94)

n=1

It is interesting to note that, when m = t%, equation (87) reduces to
equation (76). Thus the second-order approximation is just one par-
ticular case of the third-order approximation with b = c. Of course,
when the choice is made that b = ¢ = O, both cases reduce to the first-

order approximation, equation (72a).

Along this line of thought, if there is imposed k = 0O or 2b = c,
equation (82) becomes

e b (95)

(1 + co)2

ac@_+ = c)

The differential equation becomes the normal form of the Bessel equation

J 2
K =
+ - —i— + —-2 \I!l(n) =00 (96)

Z

dg‘l’l(n)
d22
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where
2 = 21/ nxﬁ(% ’ o) (97a)
252
m= - 22 (97b)
2c3

Its solution can be written as

wl(n)(z) g Wé?; (z) = J%-sec mﬂKm(n)Q§>

where Km(n) 5) is the modified Bessel function of the second kind with

2
complex order m. The function Kﬁ(n)(%) and no others satisfy the

requirement of boundedness in value as o —» «». This can be shown
by the asymptotic expansion

r 3 1+Z@2'<%>ﬂ[m2-<%32] [ -]

<) fE ¢

(98)
There is another interesting feature of this approximation if the
following conditions are chosen: a = %% at 0 —> 0 and c such that
clle % or K %1 88" ¢ -id'e, Then,
b ac(l + % U)
i g oo (99)
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and
z = nx(s + o) (100a)
1 k@2
== 100b
m ™ s ( )

The advantage of this is that the boundary conditions can still be
brought from the incompressible flow.

The accuracy and usefulness of this third-order approximation is
discussed in the last section of the paper.

5 - HYPOTHETICAL GAS LAW CORRESPONDING TO APPROXIMATIONS

OF CHAPLYGIN'S SECOND EQUATION

In equation (71la),.if ¥ = wl(c)we(e) is introduced, the principle

of separation of variables yields:

2
asy
L n22(0)y; = 0 (101)
d02
where
2
p 1 - puq7
K= —g—(l % M2> = —_lT (102)
¥ (1-7)"1

5
Qi=cdmimEin | (] - T)l/ZE A ;T e ; T)] it iy e

(103)

o rch (104)
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Since K(o) is an implicit function of o, some approximations of
different orders have been made in the preceding section to obtain
useful solutions of ¥1. It is natural to ask what kind of hypo-

thetical gas laws will correspond to the different approximations.

It is understood that o is just another way of expressing the
velocity magnitude; consequently it is defined once and for all time
by the exact gas behavior as shown in equation {103). The variable o
is independent of the hypothetical gas law for each approximation
shown in the preceding section. The problem now is to find the func-
tional relations of p and p/pO in terms of o as the independent

variable. First of all, by definition,

apr it s
i (ax) (105)

and the differential form of Bernoulli's equation gives

d
= -Pq
dq
If equation (104) is rewritten
e e (106)
Po do €
it can easily be shown that
M2 = fl.iL (107)
do Po

Consequently, if Me is expressed in terms of q‘l and its derivatives
with respect to o, equations (106) and (107) yield

q-1 Sl )
2
ME 0 e ik LT et (108a)

=

do
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On the other hand, equations (102) and (106) give an alternate expres-
sion for M2 in terms of q‘l and its derivatives

e T (iL)EK(c) =15 [é;(loge q'lilx(c) (108b)

Po do

Equating the above two equations, a differential equation is
obtained of q'l Wik re spect Nbos =)

a2 (q-1)

ol K(o)g™L = 0 (109)

which is the same equation as equation (101), if q’l is placed for
and nA 1is set equal to 1. If the solutions of equation (101) are
known, the solutions of q can similarly be obtained explicitly in
terms ‘of" ‘0.

If now the solution of equation (109) is substituted into equa-
tion (106), the density ratio is obtained as a function of ¢. Dif-
ferentiating this expression with respect to o as given in
equation (107), the Mach number is obtained in terms of o. The
derivatives above involve only differentiation but p(o) has to be
obtained by the integration

p = b/wpoqg do (110)

Of course, if equation (109) can be solved exactly, the relations
of p/po and p with respect to o will coincide with those already

obtained from the exact gas law.

Now, introduce different orders of approximation to K(o) in order
to solve equation (109). Then, obtain the corresponding approximate
solution of g1 in terms of ¢ called G 1(0). With the term T 1(0),
p(c)/pO can be obtained from equation (104) and p(o) from equa-

tion (110). Then, the approximations can be compared with the exact
values, both in terms 'of ' o,
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In the preceding section, the best approximation to K(o) is the
third approximation

~ b
e ac(l + bo) (111)

(1+ co)?

where 4, b, and ¢ are constants already chosen according to certain
considerations. Substituting into equation (109), there results the

differential equation of E'l corresponding to the approximation

of q-l)

da('(\i—l) i ac(1l + bU)(a_l o (112)
do@ Ee co)?
The proper choice of the solution is
~_l N
of vz e, Cel  BM o (2) (113)

where

N
I

k=_c_'_2£\E<o L (11%4)

The terms Mk m(z) and Mk _m(z) are Kummer's confluent hypergeometric
) J

series (reference 61) as shown in equations (90a) and (90b) and E
and F are arbitrary constants to be determined from the following
boundary conditions:
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(R} 0t 0 = 0, = q'=ak

-1 -1 p B
(b) At o =0, a(@l) _ ag =<_0> __1:(7;1)
do do pq ae a
In addition, q 1 must go to. © as o —> o (M ~q = O).

The above are the correct boundary conditions because it is
intended to choose the hypothetical gas law to agree with the exact
one at sonic velocity (o = 0) to the highest possible order of approxi-
mation and to preserve the asymptotic behavior as o0 — .

qug- at

> c =0,

If there is introduced z = z4 =

= ____l____ W " S i 4 0 B 3, i
g (2o) [OMk"m( °) < 2 ) ch,—m( )] (115)

W 1(20) Ky > 1)5 Lol zoMl'{,m(zo{] (116)

*
a ZOW

where W(zo) My m(zo)Mi _m(zo) - Mk,—m(ZO)Mk,m(zo) is the Wronskian.
) J

From equation (104), the approximate density ratio is

1 EMk,m(z) + FMk,-m(z)

: (117)
S EM}'{,m(Z) i FMk,-m(Z)

-1
pO

which is plotted in figure 14. It differs very little from the exact
curve. From equations (108a) and (108b), the approximate Mach number is

= [EMk,m(z) % FMk,—m(Z):lEEM;;,m(Z) 3 FM;;,—m(ZZ]

P ' : (118)
EMk,m(z) + FMk’_m(z)
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which is shown to compare reasonably well with the exact curve in
figure 15.

2

i (E*)E and p against o can be calculated
p

The values of

from

; a2, SO« 2] (m)
! E:Mk,m(z) i FM'k,-m(zzl {[EM'.::,m(z) 4 FM'.:;,-m(za £ [:EMk,m(z) * FMk,-m(z)jIT

and

ol
]

f poﬁz do

P Z
CZOfE‘:Mk,m(Z) fFMk,_m(zzle (120)

Since the hypothetical gas law differs so little from the exact
value, it seems justifiable to use the exact gas law to replace the
hypothetical gas law if necessary, particularly in the neighborhood
of the sonic velocity.

To the author's knowledge, the only available high-order approxi-
mation is Loewners' approximation (reference 73). It is the basis of
Carrier and Ehlers' investigation on channel flow (reference 32). For
comparison, his approximation in gas behavior is given in figures 14
and 15. His approximation is correct at the sonic velocity to the
second derivative of the K - o curve.

For the present second approximation b =c or m = -—%— is

chosen. When 2m 1is an integer only one of the series solutions is
valid, namely, Mk’_m(z). If the solution Mk’_m(z) is retained then

the second independent solution can be obtained by using the limiting
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value of Mk,_m(z) as m —»- %.

59

It is quite similar to the develop-

ment of the preceding section. ' No further details are. necessary.

For the case 2b =c, k = 0. Similar solutions can be obtained

with slightly different boundary conditions.

6 - TRANSFORMATION BETWEEN HODOGRAPH PLANE AND PHYSICAL PLANE

pO dq

With the introduction of do = --— — the differential equations

P Qg
for ¥ and @ from equations (10) and (16) become

op = K(o) el
do )
o _
0 6

(121a)

(121b)

P2
where K(o) = (43> (l - ME). As shown before, the differential equation
o)

Al bR

with the exact value of K(o) approximated by

Rty a ao(l + bo)
319 (e cc)2

Introducing V¥(0,8) = ¥;(0)¥,(6),

2
asvy 2 o~
g = K(o)y; = O

do

(i2a)

(123)
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where Fn. isten dnteger and. A. 18 positive and real; . A 1is dntroduced

here in order to make Vo(nA6) = yo(n\@ + 2x) periodic. For simplicity

A =1 1is chosen in the later treatment. With the introduction of

z gg yab(1l + co) (not to be confused with Z to be introduced
c

presently), the general solution of equation (122) has been found to
be

Y(0,8) = A (o + co)(e + By) + }E:.Anwﬁ?& (z) cos nb +
n=1

[e2]
n :
> By (2) sin no (124)
n=1
wvhere AO, An’ Bn’ Oy> and 90 are to be evaluated from the given

boundary conditions for a particular prcblem at hand, or from the
solution of the corresponding incompressible flow. The superscript (n)
is applied to the Whittaker's function in order to show its relation
to n. Suppose that all these constants are known and the right-hand
side of equation (124) is assumed convergent and represents V(0,6);

it remains to transform the results obtained in the hodograph plane to
the physical plane so that the problem is solved in the physical plane.
The procedure of carrying out such a transformation is given here.

First introduce q and 6, the inclination of the velocity
veector, as

u = g cos 68

v = q sin 6

0 _ Po ¥ 5 :
where u = — = — — 1s the local velocity component along the X-axis
o, "R oF
and Vv = %% = - EQ %% is the local velocity component along the Y-axis.
o)

Then the total differentials of @, V are




NACA TN 2582 59

d¢=§ng+%dY
X

oY
= g(cos 6 dX + sin 6 4dY) (125a)
av = -:-;% ax + -2% ay
. ‘?—o q(-sin 6 aX + cos 6 dY) (125b)
Or, in short,
az = %(dgé + i-%o d\l!) (125¢)

where Z = X + iY is a complex variable in the physical plane. With
0, 6 as independent variables in the physical plane,

_ of
ag e do + £& ae (126a)
av = a—“’ do + ov ae (126Db)
do o6

The derivatives of @ can be eliminated entirely if the relations
given in equations (12la) and (121b) are introduced in equation (126a)

. B sy g
ag = k(o) = do = a (127)
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Substituting equations (126b) and (127) into equation (125c¢)

J
equation (125c) can be rewritten as the exact differential

= éz do + éé de

do 6

dz

i6
£ [%(c) ol % i~%§ éﬁ} do + <;-§Y-+ e éi) a6 (128a)

o l2] o do p 06
or
i6
APl e R A ] éﬁ} (128D)
do q 36 p Jdo
6
5_Z=Ei_<_ﬁ+ ip_OQ‘L) (128¢)
06 q do P 06

The above relations are conformal and uniquely exist as long as the
Jacobian determinate

; L) 16 or (129)
| 3(a,8)

DY)

d(c,0)

In the case of = 0 ab(X,;Y) some singularity may occur in

3
the physical plane. If —£§1Zl = ® some singularity may occur in the

d(o,86)

hodograph plane as shown in reference 48,

Before carrying out the calculation, a few symbols are introduced
to make the presentation a little clearer. Let

o
w(O) = (o - co)(e + 90)

Wc(n) = wﬁ?& (z) cos n@ = w(n) cos né > (130)
Ws(n) = wﬁ?m (z) sin n6 = W(n) sin né J



NACA TN 2582 61

Also represent Z = z(0) corresponding to v{0) and g k0l s

w(n)(z). For future use, rewrite equation (106) as

2l -q — (131a)

at 2
B M 131D
) (131p)

and

9—(59> = g (131c)

To carry out the evaluation of Z in terms of o and 6 is
rather too long for the space available in this report. The basic
method of calculation is rather simple. Since in equation (123a)
dz = éé do + éé dé is an exact differential, é& (or ég) can be

oo 06 06 do.

integrated to obtain Z except for an unknown function F(o) (or
F(6)) to be determined. The unknown function F(¢) (or F(6)) can

be ~evaluated from the remaining relation oz <or QZ). Of course, in

o 6
tge operation, repeated use has been made of the differential equation
d“¥o (o) ) : ;
TR n KWE(U) = 0O or Whittaker's equation. For further details
do

the following section may be consulted.

ny="0.~- In this case,

TR E B

I

Eig E%?(U + ) - %] -i(6 + 65) F + ZO(O) (132)

wheve | 2.40) - XO(O) + iYO(O) is the constant of integration.
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n=1,-For n=1, the function F(l)(c) is an integral as

l (1)
(l) ol Po dW K (]_)
F ()= > f—pcoi 7 iy EW ] dq (133)

] (1)
i l|:p_.__° i 5 Kw(lﬂ do (13ka)

and

% Kw(l)_} do (134b)

where Zco(l) and Zso(l) are the integration constants.

n #1 or 0.- For the cases' n # 1 or 0, the function F(n)(c) is
found to be a constant

Fides s 1el(n+1)6 |4y (n) 3 DPo  (n) )
fo %co 2(n'+ 19l de o i

ie_i(n_l)GE_w<n) { balele} W(n)il (135a)
2(n - 1)q | do 3
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and

(n) i(n+l)e ‘aw(n) DPy (n)
2(n + 1)q|_ do 4 o .

e—i(n-l)Q[;w(n) np, ()
2(n - 1)ql_ do P £

(135b)

Hrom the egrlier derfinition,

LTS G S T e Z E A N, SR

TsE

n=

and the constant term is

Zo = A%(%) + ayz, (1) 4 Bz, (1) o z Enzco(n) + anso(na (136b)
n=2

Substituting equations (132), (134a), (134b), (135a), and
(135b) into the above equation,

& alf iA 2i@f .. (1)
AR o F3(0+ G i(e+eo)i| + ( 11:;1)6 Ewdc +

P 2q | do P

2 qlpe do
Z” 4h 4 Bn)ei(n+1)9Ew(n) o0, W(n)jl ;
= 2(n + 1)q do p

(-iAn y Bn)e—i(n-l)e dw(n) _ 1 w(n) (137a)
2(n - 1)q do P
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In more detail, the expression is

> - 216 4,(1)
Z - ZO s Aozl l:ép?_(o‘ 2 o’o) e l(@ q 90)j| < (lAl + Bl)e dwk’m (z) X “

( {] (A1 + 1By)6 dwl(&?n (2) Py
o)

i (iAn o Bn)ei(n+l)9 dWl({I;lm (Z) np, (n

2(n + 1)q do P

=2

i ~1(n-1)6|4.,(n) (
( iA, Bn)e dwk)m (z) np s

200 =" Tha do o

Wecn
where =z = ZE qab(l + co). .

The above result is also true for the cases of the second approxi-

mation b = c (m = - %), or of the approximation b = 2¢ (k = 0).

[ - FLOW OF COMPRESSIBLE FLUID THROUGH AN APERTURE OF A TWO-

DIMENSIONAL INCLINED-WALIED, STRAIGHT-EDGED NOZZIE ’

To apply a critical test to the present investigation it seems
reasonable to compare the present approximation with a well-known flow £y
pattern which has been studied by early explorers using the exact method. {
For instance, Chaplygin gave an application of his investigation to the
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efflux of a gas from an infinite vessel. Later Lighthill, following his
approach, repeated the example. Both considered the particular case
with the walls normal to the jet and both brought the boundary condi-
tions from the incompressible flow and treated the maximum jet velocity
up to the sound velocity.

The present application gives a more general type of such flow -
flow through an aperture of an inclined-walled, straight-edged nozzle.
Besides, the problem is treated directly as a boundary-value problem,

The question of the maximum velocity in the jet depends on the
value of the ratio of the pressure P, Surrounding the jet to the stag-
%

Y 2
o
maximum velocity can never exceed the. sound velocity. The boundary
value of the stream function V¥ 1s clearly defined; therefore it is a

74
G

Peo YL -1
nation pressure p, 1in the vessel. As long as 5— 2 \—= , the

the

¢ B ¥ e AL
direct boundary-value problem. For the case Do < s
o

velocity of the jet will be supersonic and this problem is as yet
unsolved.

The approximate differential equation used is (given in equa-

tion (8ka))

2 2
o=V P ac(l + bo) OV i (138)
302 (1 + co)2 82

and its general solution has been found to be

0

V(0,0) = (Clc + C2)(C39 % Ch) + 2{:.(K£ cos nA@ + ﬁi sin nxe)wi?i (z)

n=1

(clc ¥ cg)(c36 i+ Ch) # }ft AnW£?$ (z) sin (nke - an) (139)

n=1
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where cy, €y, €3 C), A B ; and A are constants; A, sina, =&,

7k n
= 2 2n\
and | Ay CO8 0y = By are obvious; z.= T ab(l + co) 2 O,

C

2
k = :Elﬁf_:_ggl J§:< 0, and m = =i (nd)%a(c - b>; and  n -is & posi-
2c2 b L et

GivellEnteger.” It represents the required seolution if the series
converges.

The constants Cos c3, C)s NS Y and A are determined

(e
i n
from the boundary conditions which are shown as follows.

6, arbitrary.- The flow in the physical plane is shown in fig-

ure 16(a) and in the hodograph planes in figures 16(b) and 16(c). Since
it is known that the discharge @ from the aperture is finite, ‘the
stream function V¥ is bounded. Moreover, the flow is symmetrical with
respect ‘5o the: center line. - If the rate of total discharge ds introduced
as @Q, then for inside the vessel there can be written

Heah

e

1]

1

ojo

©
(—+.
D

[}

¥ =0 at 6 =0 > (140)

o
@
[

at -6

Thus it -is obvious that WV is. an odd function of 6. . Corresponding to
a constant p,, q and 0 on the outer surface of the jet are constant

from consideration of Bernoulli's equation. Thus vV = ——%- at

0 = 0, = Constant T

and L (1h1)

o
A
D@

A
@

o
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First of all, since ¥ =0 at 6 = O,

Oy 1 =H0
(1k2)
c)y =10
Thus equation (139) becomes
V(o,8) <= (clc + c2) 36 + E{:.Anwﬁ?i (z) sin n\@ (143)
n=1

which is an odd function of 6 as required. Next, the stream function
is defined in the interval -6, € 0 S 6, or the period 26,. Thus

(when n is an integer) sin nx(e + 260) = sin nA® or 2nA\, = 2nm.

A= (144)

LS
6

Substituting equation (144) into equation (143),
A
V(o0,0) = (clc + CE)C39 + Z Anwk’m (z) sin % 6 (145)

Now, since V 1is bounded everywhere, particularly when 0 — o
or M —» 0, c; must be equal to 0. Thus equation (145) yields

V(0,6) = A6 + Z ;lknwl({l’llzl (z) sin —31(- 8 (146)

(¢}
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At hB=vg o=

2
g
__g. -
: (147)
Q
Ao = - —
26, 4
Thus
Qe 7 (n) ngn
9 = e e— —_—
Wa0) = - -+ ; AR (2) otn 2 o (148)

Finally the constants A, can be determined from the boundary condi-

; i Q 5 & . l2nx
tion V= G at 0 =0, Or z =2z45 = P ab(l + cco) For. OV 0 & el
o
0
6 (n) nn6
11!=-—Q-=-3—-+§ AW Zs) sin =—= (149)
2 290 s nk,m(o) 90

O

Now the left-hand side of the equation is a known function 9/6O and the

right-hand side is the Fourier series of o) 1 - éL) if the series con-

o
verges, It is easy to determine the coefficient as

D:D
=
R~
.- B
B ~—
—
N
o
U}
1
)V -]
TN
1
Im
S
)]
e
o]
A
o]
A
|
S
Q
Z
D Im
N

o

(150)
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or

8

W(O’,Q) ='Q‘i+9‘
2 64 Tt

First, it is necessary to show that equation (151) is valid for an
incompressible flow which can be considered as the limiting case of
a¥ —» o, From the definition,

*
a
- [Ces
q O

there results, for incompressible flow,

ax

Oy =i ‘Lim} “gi= Lim o dog, = (152)
a¥—3o a¥—30 d

and W fromithe/definition of ' 'z’ for very large:values of. '@,
since EEE =1
C

zZ = EEA (1 + co)
C

2nX0[; - O(c-lﬂ

From equation (87) the asymptotic expansion of wi?% (z) for large

valuesiof 0 .18
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=
~E
85 ~—
N

I
D

N N
N

-
' ,__J

-

(@,
e
|~
il

> e'n""(enxa)kE + o(%ﬂ

Then the ratio of the two Whittaker functions in equation (151) at very
larsetvalues ol o Sis

- rcmend EL IS
wk,m (zo)

Now, for an incompressible flow with equation (152),

o o lim 1 Ty 80"
- n = og —— Og —
. °i a*=ao*‘—+w g %
*
= lim (loge S L egs
a*=a *—w ag* do

-logg éL
o

and

JMoyze g £ Laloper o]
e S 01 SR 5 )
Co4 a*=a,¥—s0 O  a*=a ¥ o loge ‘ag* - logg g
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Introducing the above results into equation (153),

(n) (n) nn
Woa (2 | 0 Wgn (2 gg\m fa\
(n) e n 3 &
wk,m (zo) : a*—ao*——9a>W£’& (zo) 95 /o)
Thus the stream function for the incompressible flow is
0 an
C]
wi=_8i+9.zii ° sin (nx = (154)
2:0p 3 £ B\L 6o

which reduces to Chaplygin's case if 6, is set equal to ﬂ/2.

Therconvergence of the series ds easily '‘proved, because

(n)

Wy ' (%)
?;? - Pon. 12 2 2,0 'and Wﬁ?& (z) > 0 1is a monotonically
n
Wi m (%0)

decreasing function of 2z in the subsonic range (see appendix B).

Compare the nth term of equation (151) with % sin nw 2 which is a

o
term of a convergent series, and each corresponding term is smaller.
Therefore, equation (151) is convergent.

nA

The main interest of this problem has been the minimum width of
the jet which occurs at X = o, Therefore the solution must be trans-
formed back to the physical plane.

With the differential relation from equations (la) and (1b), the
following equations can be derived:

op 5 b O
do 36

1 (155)

00 o

6 do




e

and, rewriting equation (128a),

AR LRl diy

i6
e—1—KK8—W+ gl >d0+ (—
q 06

Differentiating equation (151) with respect to

\ab

dz

o
do

Po 2
p Ao

NACA TN 2582

. Po oY

+ 1 —

'p— So (156)

)|

o and 6 and remem-

bering 2z4 = g-i- = gL: ab = -gﬂ (since LAy l);
o
W W
oo dz do
=3 '(n)
=_Q_ Z 2x wk’m i sin (nn -9—>
0 e
t n=1 e wl(;flle (ZO) ¥
whin)s (z)
2 'E—Q 1(“;1 di% (2_’@) (157a)
— n
L L (%) .
© (n)
W (z)
ol é\l.'. el 0 Q k,m cos e (157b)
ol g L1 il 85
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Substituting the above equations into equation (156),

16 = wln) ()
£ iy T Kii+zﬂ—cosﬂ +
9 6512 (n) C
n=1 Wy o (ZO) v
o '(n)
2poQ wk,m (2) n
i = o) n R do +
0 % n o
n=1 wk,m (ZO)
=
"(n)
i6 ol (z)
Ay o8 —Q—QZ (,m 81nﬂ+
q n 6
Qi ) |
4
[ e .(n)
ip.Q W. (z)
peo % + ?’? cos 2“9 de (158)
O =1 n O
{g 3 wk,m (ZO)

which is the conformal relation of any elementary length in the hodo-
graph plane to the corresponding element in the physical plane as long

as the Jacobilan determinate éizizl # 0. This condition is automatically

o(0,8)
fulfilled in the subsonic region up to sonic velocity as has been shown
by Tsien (reference 45) and Craggs (reference 48). Since dZ is an
exact differential, there can be introduced,

Lz fetf JaK Wiy (2} N
oo i L n=1 Wi?) (Zo) %
. % .'(n)
i2p,Q W (z)
i Z it sing—“e- (159a)
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and

el N Yy in RO,
08 q 06 = nc w(n) (Z ) 0o
k,m
®_  (n)
i z W (z)
iggg % i ?’? cos gn@ (159D)
0 n
o n=1 W o (2%0) e

Z
The value of Z can be determined by integrating é—, leaving a func-

o6

tion of o +to be determined, and, consequently,

2 ¥{n) 2L G0k £ 0 LY i o]
1 Qeif Wy m G 85 g 1
B () Eog
oneie > Wi?g (z) |1 gg sin gg 6 - cos gg 2] : oneie S
R (v e
o
(160)

where F(o) is to be determined. This can be done by differentiating
equation (160)

= i0 2 cos gﬂg 25
S22 e Z : Eagwk(g) (z) - le(snzzl (Z):] -
80' eoq o] nn 2, i w(n) (Z ) ) 5
-£90> k,m o
) sin BIZ 1
lQel 5 90 _2Zwak,m) (Z) o
eoq n=i I:(g:;() L W}({I;lr)n (ZO)
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where

2nmn

o= and equations (131a) and (131b) are used. Equating

(o)

equations (159a) and (161),

0

g 10}
Q,e16 Z Sop '2_ "(n) nrx® __(n) 1
. R SRR L L
S ne __) o %] % Wk,m (Zo)
6
nx nmx
iQeif 2 0 E ;(n) e
(90) k,m ( O)
2.2
- Kwi?g (z)| =0 (162)
o

The expressions in the brackets of the right-hand side of equation (162)
are identically equal to the differential equation, equation (78) if

2acamnt n2
eO

and consequently are zero as shown.

Thus, choose

F(o) = Constant = Zg (163)

Now equation (160) can be rewritten in a more suitable form

- '(n) (n) 2 +1)e
-p,Q FoRY 5 . %% wk,g (z) + Wk?m () el(eo‘+ )
)

+
QDeoq i wl({nm (ZO) %It— o iy
2 o
'(n) e S e

£t 0 0 ) .

a
(n) n
Wi m (zo) §£ il ;
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Specifically, Fa
\
s o (2 2w (2) 4w (2) cos (5 + 1)9
p i e cos 6 + g st 5 4 o o
2p6,q — n ni
n=1 W m (zo) o S11

o (164p)
(Zo) -é-(; -1 ‘
© |2 L y (n) (z) + W(n) (z) sin 2Xiale !

= o sin 6 + E:: ¥ < e (90 ) i

IHL = J
2 5%-WLEE) (o o Wﬁ?& (z) sin (Qi - )9 g ‘
o) s (164c) \
wk,m (ZO) e A ‘

The convergence of the above two series must be established. First, at
0 =0, Or 'zs= 2z5; equation (164b) does not converge for 6 = 0, because

the velocity vector of q=q_, at 6 =0 1is located at X =

At very large values of n, !

{E
n
(=)
b A
)

z = 2—25 @(1 + cop) = 2%)”(1 + cd,) <since
; |

A w
m=\j%‘%i__b_=mx\,a(c—-b)‘z+0()]=%X(E—1)/2E+o(%§]¥(165) |

Bl
1}
1B
]
|+

P~
ol
|

i

N,
et
s
n
|
*
}—l
Q
(e}

=l

+
o

DN
J=
===

1

=
|
[SH iy
)
&=
&le
1
|-
e,
=
+
=
o
Q 5
le)
0
-
o
P
|+
=
*
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(n)

With the above notations the asymptotic expansion of W m (z) for

large values of n can be introduced as follows:

402G 3o g6 R o]

(166)

at sonic velocity (o = 0). For the subsonic velocity (o > 0), a similar
expression should be given; the case ¢ = 0 1s more critical. Further-
more from reference 61, page 352, example 3,

WD @ o R - e

ko : (167)
wf{nm Gl R : W2 (2)

Now it is necessary to show that, for large values of n, the value of
(n) (z)

W
k.M "~ 4oes not depend on n to the first order. Substituting

2 1o

equation (166) into equation (167),
WL(H) (z)

s, b

(n 25 : z r(k +

+ (M + E)e'uﬁlg + O(%)] (168)

which is a constant independent of 1/n to the first order for large
values of n. Therefore the coefficients involving Whittaker's function
for large values of n can be written as

< -]

=1

|
I
o [+
ST ST

| -

Byl

'(n)
- =
2p "k,m (zo) e 20 == T % + (& + K)e uf} g (169a)
pow ( ) pO
,m
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'(n)
W Z i
E_.M__ol_l’\,?ﬁlig_£+(ﬁ+§)e-hﬂ_l (169b)
Po W(n) (z ) Po 2
k,m \"©
both of which are bounded. For the case 6, = Ak s S ds

i K =
an integer) the series in equation (16k4c) is convergent. This can be
shown at the surface of the jet. The equation

B e (n)
5P.Q [ . - B Wi ,m (ZO) sin (sn.+ 1)@
Y = - ST gin 6. + ) Gan il 1 =
b n sn +
e — "e,m (%)
o i

po k,m (Zo) sin (sn - 1)6
( g (170)
n sn - 1

wk,m (ZO)

Q 00 ()

5Py sin n|9| sin nl6l

is dominated by —— |1 + E —_—+ F > ————— |, where E
21rpmqoo n n

n=1 =1
P W'(n) (Zo)
and F are positive numbers such that E 2 |2 = i R I
Po W(n) Z
k,m ( O)

'(n)
A e Poo HE;EL_SfEQ.

g ) -1 Forallvlarge walues of n,
oW (%6)

Actually fewer terms occur in equation (170) than in the dominate

. sin n|6| 7t 16| >
series = - o= Therefove bqudtions (170) and conse-
n=1

quently equation (16k4c) are convergent for o = O, Similarly, the
convergence for o > 0O can be shown.
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65 -= X - This is the case which has been treated by Chaplygin and

n

Lighthill, The condition 6 = 65 occurs at the mouth of the aperture.
Let h/2 be the half width of the mouth. Then,

§z 2
2
'(n)
& W
i PoR 5 e EZj (-1)" ( W )Dw k,m zo) i
0,4, e+ L NEn 20 (n)
# n=1 P ¥, m (z5)
G e o (%5
SR 2n - 1
n= a=1k
3 '(n)
o pOQ 70 BZ ('l)nn poowk,m (ZO) o
HE) el n=1 lt-ne - 1 powl({I,llzl (ZO)
2 '~ = n=i.
(-1) iy Z (=1) (171)

Son! -1 4gien -1

If, @t " X.= 2,  the width of the Jjet is h , then, by definition,

pa
Q=-22p (172)
Po

Substituting this value into equation (171),

[ i o i
h 3 2 l 4 8 00 (_]_)nn piwk’m ZO) : (_l)n l 3 (_1)1'1 l
T E:: 2N B el Eg:-En =44 EZ: T
v b 350 Wk,m (ZO) n=2 n=1

(173)
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Making use of the result of the well-known Leibniz series
0

_1)n-1
E:: énlznl &

n=1

, equation (173) can be written

'(n)

2,160 ot e () o), 2
b oo i R :

6 P Z”
=l+_].'._;.°
T Pg

n=1

Just as a check for the
O e e toot O

First, considering
is finite,

Hm (2
W (2)

The above equation tends to

kX and m both become zero as

0 —» ©

ey W2 (2)
2
R )

(174)

case of incompressible flow, the limiting case
may be considered.

equation (167) as o becomes very large and n

2 Z
ik el
L= It n® - ( = 5) i 2 =1,
= pleilel gt T
2 z 2,
e 2 A
e o) = 1.)2
=k -=-m“+ [k - — ik
|: L (- 2 (175)

-% when 0 —3> o, owing to the fact that

0C~30 (2 —>x). Substituting the

above equation into equation (174),
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ay
8

i
'—-J
+

a I

Or, inversely,

h 7

Piias = 0.6110
h 2 + 7

which checks with the well-known result of Kirchoff.

81

(176a)

(176Db)

For the case , g, =0 (Moo = l) the width ratio hm/h has been

(e}

calculated from equation (174). It is found to be O.746 by summing

terms/ up te ‘n.= 10, . It is expected ‘that ‘the error

is of the

order -0.002. Consequently, it checks reasonably well with the Lighthill
result (hmlh = 0.T44T) which is based on the exact Chaplygin function.

The Johns Hopkins University
Baltimore, Md., April 3, 1951
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ax*

a5l d
ASB,C,D

lFl(a:BS z)

zFl(a)b’Ci z)

APPENDIX A

SYMBOLS

velocity of sound

stagnation velocity of sound

constants
constants

confluent hypergeometric function

hypergeometric function

width of jet

width of jet at X ==

<= (36 - )

ﬁl=ad
~ ao
K2 b Jug e (o]
~ ao(l + bo)
| o e e
(1 + co)
ik -nMc - 2b)
2c2
e A
Z
M

local Mach number

free-stream Mach number

NACA TN 2582
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(n)

My m (z) Kummer function
2k 2
At WK gle =b) . 1. v fo T, e e
l" Cl" l" C C2
— _m
m = —Z'
n positive integer
P pressure
Py stagnation pressure, pressure in vessel
D, free-stream pressure, pressure surrounding jet
Q arbitrary function of q (Q(q))
Q rate of total discharge
q local velocity
u X component of velocity
v Y component of velocity
(B (z) Whittaker function
k,m
(n)
W'(n) bl dwk’m (z)
k,m dz
PR coordinates in physical plane
Z complex variable (X + iY)

z=-2n—>”\lab(l+cc)=g£)1(l+cc) Lol EE o
c © c2

83
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a, B constants
b bl

B Ty

7 = Cp[Cy = L.k

m
I

]
3292
ire
2 =5
6
o
6o
A
AR
6o
Ao Mo
vl
Yy + 1
Ly =
e e
A%
¥

2 e
Q(q) (defined by e(%%) = - E__jg_>

q2
62
— (supersonic)
QQ
62
— (subsonic)
o

inclination of velocity vector
coordinate of source location, hodograph plane
slope of nozzle wall

characteristic coordinate (§ + 6)

coordinates of source location in hodograph plane

characteristic coordinate (-7 + 6)

*
5 Poil - MR

d
P q 5

positive constant dependent on boundary conditions (nA)



P local density
Po stagnation density
o) free-stream density

@ potential function

¥ stream function

q 1/2
Q =j L—-Mz -ql) dq (supersonic)
a*

T3 oh)
SO
‘bl
ax 2
A (17 v2) / ;

® = — . dg (subsonic)

q q
Wy coordinate of source location in hodograph plane
w @ 1in free stream
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APFENDIX B
PROPERTIES OF WHITTAKER FUNCTIONS

Here are, presented a few important properties of the Whittaker
function which are useful in the present investigation. Some of the
properties are given by Sharma in reference 59. He shows that:

Theorem I:

The functions Wy p (z) and W p.q (2z) cannot have
a common zero (root). All roots of Wi m (z) are simple;
Wk)m (z) and W 1,m (z) cannot have a common root.
Between any two consecutive zeros of wk,m (z) 1lies one

and only one zero of Wy_j ; (z).

The proof is rather simple. See the reference.

Next, consider the Whittaker equation:

2 ok
2 me) - 5=
d_ﬂ+ __l+5____l‘.w.—_o (B1)
22 I e
(n) : :
where W =Wy ; (z), the Whittaker function. In the present case,
1/2
gl orh Bl (-1.+a)>o (a>c>b>o),9l'i=1 (B2)
C2 c CE

where n 1is a positive integer and A is a positive constant.

s nx(g y ;) <o (B3)
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2,2 3 =]
oL i L o s aae B
i S2viNe i(a - ¢)
>
2,2 3
me = % e (2 - l) >0 for nA° <O
c2 \c : Yka ~ic)
-
In“this case m2 - % < 0; the powerful Wintner theorem (refer-
ence T4) which requires k <O and me - % >0 to make
dlw z) :
O 1 & ———ELQ—E—— 20 (0 £z £w) cannot be applied. Actually,

dzn

) e

Wk) may oscillate in the range -%-< c < 0. But the monotonic

(n) (z)

positive nature of for o 2 O can be proved as follows:

Theorem II:
for o) >0 japd 0'€ o< (1 =M >0), thén

Wﬁ?& Ez). >0.

The proof is as follows:

If equation (Bl) is multiplied by (%E) L g(a;), there can
o c
written
a°w . nzkgac(l o Tigl) Moo
dc® (L +'co)e
or, \more: properly,
a°w i n2X2ad(l + bo) -

do° (1 + co)?

87
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By the given conditions, as long as o 2 O,

ngxeao(l + bo)
)2

n
O

(B6)

(1 + co

d°w . (n
Therefore —— and W have the same sign. But W =Wy 5 (z)
do

-% X -n)»(i +c) i n)»(—g +%)
asymptotic to e € z¥ = e - EnX(E + 0 & >0 for large

is

values of o and tends to O as o —> 0. Hence W

R~

n) (z) curves
,m

2
downward as o —> » and so must continue to do so while W‘l g—g >0,
do
This proves the theorem.

There is another interesting feature of the Whittaker equation.

2

As long as m is real and the function representing the boundary con-

ditidien*is  real, Wﬁ?& (z) ds always real, no matter whether m is
imaginary or not. For the present investigation, m 1is imaginary, but
Wé?i (z) is real (0 < z < w). This question has puzzled the author

for some time.
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g =0,

OE=N2aN.

W= -0; M =1,

o = 0.2513,

(c) As functions of o.

Figure 5.- Concluded.
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(a) Physical plane.
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(b) Hodograph plane (q - 6). (c) Hodograph plane (o - 6)., 7 = 1.k,
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Figure 16.- Sketch of flow through an inclined-walled straight-edged
aperture.
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