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SUMMARY

wave past a doubly symmetrical, double-wedge profile at zero angle of
» attack. The results of these calculations have been described pre-
| viougsly in NACA TN 2339. The mixed flow over the front of the profile
( is determined by the solution of a boundary-value problem for the
|
|
\

f
|
| Details are given of calculations of the flow with detached bow
|
|

transonic small-disturbance equation in the hodograph plane. The solu-
tion is obtained by the use of finite-difference equations and relax-
ation techniques. The methods follow established lines except for the

| somewhat novel treatment of the boundary conditions along the shock

| polar and sonic line. The purely supersonic flow over the rear of the
profile is determined by means of the method of characteristics special-
ized to the transonic small-disturbance theory.

INTRODUCTION

|

|

|

|

|

|

|

| The present report is the second of two NACA publications on a
| theoretical study of the transonic flow past a wedge profile with

| detached bow wave. The specific problem under consideration is that
| of a thin, finite wedge at zero angle of attack, with particular appli-
\ cation to the case of the doubly symmetrical, double-wedge profile.

| The first report (reference 1) contains a nonmathematical outline of
| the general analytical method and a discussion of the final calculated
|

|

|

|

|

|

|

|

|
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results. The present report supplements the previous work by supplying
the details of the analysis.l

The plan of the report is briefly as follows: In the first section,

the basic problem of the finite wedge with detached bow wave is stated
as a boundary-value problem for the transonic small-disturbance equation
in the hodograph plane. &Except for the introduction of a boundary con-
dition along the sonic line to replace conditions previously prescribed
in the supersonic portion of the hodograph, this material follows the
lines established by Frankl (reference 4) and Guderley (reference 5).

It is recounted here primarily for the sake of completeness. In the
second section of the report, the boundary-value problem in the hodo-
grapli is reduced to a system of finite-difference equations the solution
of which is then obtained by relaxation techniques. This portion of the
work, which constitutes the main contribution of the present report, is
discussed in some detail, since it is anticipated that the methods and
equations which are presented will be useful in the solution of other
protlems involving detached shock waves. The third section of the
report describes the transformation of the hodograph solution for the
finite wedge back into the physical plane. The fourth section is con-
cerned with tae characteristics construction used to obtain the purely
supersonic flow over the rear of the double-wedge profile, and the final
section contains a few remarks on the accuracy of the solution. It

will be presumed that the reader is familiar with the general discussion
of the investigation given in reference 1 or with the description of the
finite-wedge problem available in reference 5, 6, or 7.2

1As explained in the introduction to reference 1l, it was originally
intended that a third report be included under the present general
title. This report, written by Arthur E. Bryson, Jr., was to describe
an experimental study of wedge profiles conducted at the California
Institute of Technology. Because of a broadening of the experimental
work to include biconvex profiles and subsonic as well as supersonic
flight speeds, it now seems advisable to depart from the original
plan. Bryson's report is therefore being issued by the NACA under a
less restrictive title (reference 2). Certain of the results of both
the theoretical and experimental studies have been given in prelimini-
nary form by Liepmann and Bryson in reference 3.

2The authors are indebted to William A. Mersman of the Ames ILaboratory

for suggestions leading to certain of the mathematical procedures used
in the analysis.
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NOTATION
Primary Symbols

critical speed (i.e., speed at which the speed of flow and
the speed of sound are equal)

airfoil chord

length of irregular lattice intervals relative to that of
the basic interval

functions defined along sonic line in hodograph
(See equation (6).)

integral defined by equation (39)

(i = 1, 2, 3) component integrals
(See equation (33) et seq.)

functions of e, f, and ﬁo
(See equation (27).)

constants
(See equations (7) and (15).)

Mach number

function defined by equation (2L)
airfoil thickness

local speed of flow

Cartesian coordinates

ordinate function
(See page 31.)

absolute value of ﬁ at left-hand 1imit of lattice
ratio of specific heats (1.4 for air)

basic lattice interval

hodograph variable defined by equation (1)

local inclination of flow



el

~N o~

©us843

Xl

o

o
0,1, 2,etc.

*

variable of integration
(See equation (8).)

semiangle of wedge
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ordinates of upgoing and downgoing characteristics at T = 0

(See page 37.)

hodograph variable
(See equation (6).)

variable of integration
(See equation (6).)

speed parameter
(See equation (149).)

transonic similarity parameter
(See equation (17).)

fluid density

stream function

value of ¥ at the point E
(See equation (16).)

Subscripts

conditions in free stream
value at a prescribed lattice point

conditions at critical speed

Superscript

quantity in normalized form
(see equation (9).)
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STATEMENT OF BOUNDARY-VALUE PROBLEM IN
HODOGRAPH PLANE

Complete Hodograph

A qualitative representation of the flow over a double-wedge

profile with detached bow wave is given in the first of the accompanying

sketches, which differs only in detail from a similar sketch presented
in reference 1. A description of this flow field is to be found in the

Shock waves
—-— Sonic line (Va,=1)
Streamline

------- Expansion Mach
Compression lines

earlier paper. The second sketch shows the corresponding picture for
the flow about the front half of the profile in the hodograph plane -

Vo,

that is, in the plane V/ay, 6 where V 1is the local speed of flow,
ax 1s the critical speed, and 6 is the local inclination of flow
relative to the x axis.

The picture in the upper half of the hodograph plane can be
described briefly as follows: The part of the shock wave which borders
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upon the subsonic region in the physical plane appears in the hodograph
as the subsonic portion AE of a shock polar. The shape and position
of the shock polar are determined by the dimensionless free-stream
velocity Vo/a* (or, what is equivalent, by the free-stream Mach number
My) and by the ratio of specific heats 7.8 The portion of the central
streamline from the normal part of the shock wave to the stagnation
point at the nose of the wedge maps into the portion AO of the hori-
zontal axis in the hodograph. The image of the wedge itself is given
by a radial line inclined at the wedge angle 6y and extending from
the origin O to the point B on the critical circle (V/ax = 1).

The shoulder of the wedge, which produces an expansion fan of a locally
Prandtl-Meyer type in the physical plane, appears in the hodograph as a
portion of the downgoing characteristic (epicycloid) starting at B.
The last Mach line from the shoulder to the sonic line (termed the
separating Mach line in reference 1) appears as part of the upgoing
characteristic which begins at the intersection E of the shock polar
and-eriticaddcirele. ‘BPoint , @, the point of intersection of thel epi-
cycloids from B and E, fixes the extent of the downgoing character-
istic which must be considered in determining the solution in the
hodograph. A typical streamline in the hodograph plane is shown by the
iimes f D

To obtain a solution for the detached-wave problem in the hodograph,

a boundary-value problem for the differential equations of gas dynamics
must be solved within the region AOBGEA. If the stream function V¥

is taken as the unknown, the pertinent boundary conditions are as
follows:

1. The value of ¥ 1is constant along the basic streamline AOBG.

2. The streamlines (i.e., the lines of constant V) leave the
shock polar with a direction which is a known function of location on
the polar.

3. The increment in V¥ over the portion AE of the shock polar
has a prescribed value different from zero.

The reason for the first condition is obvious. The second condition is

a consequence of the requirement that, at every point on the shock polar,

the direction of the shock wave as computed from the solution for ¥
must be compatible with the direction given by the equations. for an
oblique shock wave in a uniform stream. The third condition prevents ¥
from being simply a constant throughout the hodograph and, in effect,
fixes the scale of the flow field in the physical plane. It will be
noted that no condition is prescribed along the boundary EG 1in the
hodograph. Frankl has proved (reference 4) that the solution determined
by the foregoing boundary conditions is unique.

S3The equations which are pertinent here can be found in the work of
Frankl (reference L4).




NACA TN 2588 ¥

Specialization to Small Disturbances

Original boundary-value problem.- As has been shown by Guderley
(reference 5), the equations of the boundary-value problem in the hodo-
graph are considerably simplified when restriction is made to the
neighborhood of the critical speed. To this end, the quantity 7 is
introduced according to the relation

V-a
n = (r)/° = (1)
a %

and 7 and the stream angle 6 are assumed sufficiently small that
only their lowest powers need be retained in the analysis. This means,
in effect, that the right-hand portion of the previous hodograph
(including the shock polar itself) is made to shrink down to the vicin-
ity of the point H, which defines the intersection of the critical
cirecle and the horizontal axis.

When the foregoing procedure is carried out and the limiting
Process is counteracted by a suitable enlargement of scale, the situ-
ation in the small-disturbance hodograph (i.e., in the 10,6 plane)
appears as in the adjacent sketch. Here the critical speed corresponds

&=8,

OA_

_?0 ?o . &

to the vertical axis 1 = O. The equation for the upper half of the
shock polar in the simplified hodograph has the form

Mot
2
> (2)

6 = (Tlo"Tl)
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where 10, is the value of 1 corresponding to the free-stream
velocity Vo.4 By virtue of the limiting process, the stagnation point
at 'O has moved, in the present system of axes, infinitgly far to the
left. As a result, the part AO of the horizontal axis (6 = 0) extends
now from n = -1 to N = -w. The image OB  of the wedge is similarly
represented by the horizontal line 6 = 6y, 1 S 0. The characteristics,
which complete the boundaries of the field, have the simple form

® = const. + = 78/2 ‘ (3)

(USHRLY)

On the basis of the usual assumptions regarding flow near the
critical speed, the differential equation for .¥ reduces, in the pres-
ent simplified hodograph, to the form

Vo - MWgg = O (L)

This is the mixed elliptic-hyperbolic equation studied by Tricomi in
reference 8. The boundary conditions along the central streamline
require that V¥ 1is constant - say O - on AO and OBG and that

¥=>0 as n>(-x) for 0< 6 < 6y. On the upper half of the shock polar,

the boundary conditions require that the lines of constant ¥ must have
the slope

dé _  notTn  /motn
dn 3n,+oN 2

(52)

On a line of constant V, d6/dn can be replaced by -Wn/we, so that
the foregoing condition can also be written

No+TN No+N h
i =0 5b)
306+5M 2 Vo (

Vn

The final boundary condition requires that ¥ must have some given ;s
value WE(¥O) at the point E. Since the coordinates of the flow field
will ultimately be expressed in terms of a characteristic dimension of
the wedge, the actual value assigned to Vg is purely a matter of con-
venience. As before, no boundary condition is specified along the
characteristic EG.

4The derivation of this and the other equations for the simplified
hodograph is given by Guderley in reference 5.
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Elimination of the supersonic region.- The foregoing is the
boundary-value problem for the finite wedge as formulated by Guderley.
It was the original intention in the present work to obtain a numerical
solution of this problem on the basis of the boundaries and boundary

conditions which have been described. Efforts in this direction failed,

however, because of difficulties in obtaining convergence of the relax-
ation process in the supersonic portion BGE of the hodograph.®
Similar difficulties have been reported in references 9 and 10 with
regard to relaxation calculations of the transonic flow through a
converging-diverging nozzle. The reasons for the difficulty in the
present case are not apparent. Fundamental questions would appear to
be involved concerning the stability and convergence of the finite-
difference scheme for the Tricomi equation in the hyperbolic domain. A
gtudy of these matters, similar perhaps to that reported for the wave
equation in reference 11, may be a prerequisite to numerical solutions
of mixed-flow problems in the general case. In the present example,
however, the difficulty can be circumvented by modifying the boundary-
value problem so as to eliminate the supersonic region from explicit
consideration.

The elimination of the supersonic region depends on a formula
given by Tricomi (reference 8, equation (2.19)) which relates the
behavior of ¥ on the vertical axis to its behavior on a character-
istic. In the present case, in which V¥ 1is identically zero on the
characteristic BG, this formula reduces to an integral relation
between ¥ and Wn at points on the sonic line. This relation has
the form

" A oa(h) ; &
i kf md’“ T
B

(6) |
where A _&_
M =6y -0 _J____L 26
F(A) = ¥(0,6) ~_-§\‘\“\~\\\\\\: ’,,/’//
S

G(2) = ¥,(0,6)

and A!' [ ds g variasble of
integration. (See sketch.)

Sseveral procedures were tried in the supersonic region, using both a
square lattice and a lattice following the characteristics. All were
unsuccessful.
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The numerical constant k; is given by

Tk G ot g
.
Ln2

(7a)

where TI'(1/3) is the gamma function of the argument 1/3. For the
accuracy required in the later numerical work, the value of this con-
stant may be taken as '

k, = 1.013 (70)

Satisfying equation (6) everywhere on the sonic line from B to E is
completely equivalent to satisfying the condition ¥ = O on the down-
going characteristic from B to G.

For the present application, it is convenient to invert equa-
tion (6), which can be done by means of Abel's formula. This gives
(see reference 12, p. 229)

cliamals & % B00) g,

ok, Ah (A-n1)2/8

The differentiation indicated on the right is readily accomplished by
first transforming the integral to one with fixed limits by means of
the substitution ' A' = tA. The'result is, after reverting to the orig-
inal notation,

6(v) Lﬁz[z k0 N +fx 2B o]
gl o | 3 . (A-r1)2/3 (r-r1)2/3

Transforming the first integral through integration by parts and noting
that F(0) = 0, one obtains finally

G(x)=-“/-3- fx M)__dw

2nk, (n=pv)2/8
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This can be written in the 1,0 notation as 9

Wn(o,e) 3 aet =0 (8)

*/—3- fe ‘4’9(0,9')

2nky Our (9'-9)2/3

where 6'= By-A' denotes the variable of integration. -As with
equation (6), satisfaction of equation (8) everywhere on the sonic
line between B and E insures that V¥ 1is zero everywhere on the
characteristic from B to G. By regarding equation (8) as a
boundary condition along BE, the region of solution of the partial
differential equation (4) can be confined to the purely subsonic
portion of the hodograph (n<0). Relaxation methods can be used to
solve the resulting elliptic problem without essential difficulty.

Equations in normalized form.- To carry out the numerical
calculations, it is convenient to normalize the equations of the
boundary-value problem by means of the transformation

?{:.l, 5’:‘\/—2 9 (9)

This is equivalent to introducing the rules for transonic similarity.
(See, for example, references 5, 13, and 14.) The particular form
of transformation chosen here has the advantage for the present work
of providing a unique shock polar with conveniently located hori-
zontal and vertical intercepts.

With the foregoing substitution, the differential equation (4)
takes on the following form in the m,8 plane:

Wosnur (= 2N ¥ é"= 0 (10)
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Consistent with the elimination of the supersonic region, the boundary-
value problem can now be summarized as follows (see sketch):

= 0=(1-5)/T+%
|

|
3 Y=0 A T
=7 l
l. On the basic streamline AOB:
V=0frd=015-1 (11)
¥ =0 for 6 = 8y, 10 (12)
¥—> 0 for § =>-w, 05655, (13)

2. On the shock polar AE:

TR 143 ¥ =0

?1' 3+‘3n 2}

fop

= 1A, = TENSO (14)
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3. On the sonic line BE:

~ 5 0’31 5
0 LR

._5)2/3
Oy
for
15686y,
where
1/2
k2=__3/_ (]_5)
22/3xk,
k., At the point E:
¥ = Vg (arbitrary constant #0) for %=0, =1 (16)

It is apparent from the preceding equations that a solution of the
problem will depend on only the single Jparameter 5@, which defines the
position of the upper boundary in the n,G plane. This parameter is
directly related to the more familiar transonic similarity parameter

i MoZ-1

(17)
[ (7+1)(t/c)13/®

which was used as a basis for the presentation of the results in
reference 1. (In this equation, t/c is the thickness ratio of the
double-wedge profile. It is equal, to the present order of accuracy,
to the wedge angle 0y,.) The relation between €, and Gw, easily
derived from equations (1) and (9) of the present paper and equa-
tion (21) of reference 1, is given by

B o (18)

SOLUTION OF BOUNDARY-VALUE PROBLEM
IN HODOGRAPH PLANE

The solution of the boundary-value problem in the 5;5 plane is
obtained in two steps, according to established procedures for the
numerical treatment of partial differential equations. (For intro-
ductory articles, see references 15, 16, and 17. For an extended
discussion, see reference 18.) In the first step, the domain under
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consideration is covered by a square lattice, and a finite-difference
approximation to the differential equation or boundary condition is
written for each lattice point. The boundary-value problem for the par-
tial differential equation is thus reduced to a problem in solving a
large number of simultaneous algebraic equations. Solution of the
latter problem by relaxation methods is the second step.

Reduction to Finite-Difference Equations

The arrangement of a typical finite-difference lattice in the },5
plane is shown in figure 1. The basic lattice interval, which is the
same in both directions, is denoted by A. Adjacent to the shock polar,
the interval is adjusted so that the terminal lattice points lie on the
polar itself. For purposes of formulating the finite-difference equa-
tions, the lattice points are conveniently grouped into five categories

as follows (typical points in each category are indicated in the figure):

8. Regular internal points

b. Points far to the left

c. Points adjacent to the shock polar
d. Points on the shock polar

e. Points on the sonic line

The form of the finite-difference equation pertinent to each
category will be developed in the subsequent paragraphs. The methods
employed are standard, except for the somewhat novel treatment of the
boundary conditions along the shock polar and sonic line.

Regular internal points.- The category of regular internal points
comprises all points interior to the boundaries but not immediately
adjacent to the shock polar. The situation in the vicinity of such a

point is as shown in the sketch. The differ-
{ ence equation which applies here is obtained
by suitable approximation to the differential
equation (10).

A
If it is asgumed that the unknown
A
4'—'L£‘LO“'2 function V¥ = W(n,e) may be expanded locally
in the form of a Taylor's series, the values
A of ¥ at 2 and 4 may be written (see sketch)
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2 3
‘If2 = ‘lfo /N val +é— Vo~ + é— Vns e ir O(A4)
nio 2 mnmjo 3t nmnjo

= 3

Vg = Vg =~ AVL| + éT V. LBl A Y

njo 2! mﬂo 3t nnno
Addition of these equations and solution for gives
nnio
8
Von| = = (¥ -20,+V,) + O(A%) (19a)
ﬂﬂ'o e 4 Ol

which is a well-known difference expression for the second derivative.
The corresponding derivative in the vertical direction is similarly
represented by

boalt o 5 (hg-2hge¥) + 0(2?) (190)

Substituting these expressions into the differential equation (10) and
neglecting the terms of 0(A®) then gives for the finite-difference
equation at a regular internal point

Wz -t ‘1’4 i e'ﬁo(\lfl'”lfg) F 2(1-2?]‘0)“1[0 =0 (20)

where ﬁo denotes the horizontal coordinate of the point in question.
The difference equation for internal points is thus the same for points
on a given column but differs from one column to the next. For a point
adjacent to the upper boundary OB — as, for example, the point a' in
i orelilie=ithe walue ‘of Wl must be set equal to zero in accord with
the boundary condition (12). Similar considerations hold for points
adjacent to the lower boundary OA.

Equation (20) represents the simplest possible finite-difference
approximation to the differential equation (10). As is apparent from
the derivation, the error involved is of 0(A®). Consideration has
been given to improving the approximation by including additional lat-
tice points in the finite-difference equation or by incorporating
higher-order difference corrections in the later relaxation work (ef.,
references 19, 20, and 21). Because of the complicated nature of the
boundary conditions along the shock polar and sonic line, however,
consistent application of these procedures did not appear feasible.
The requisite accuracy in the present work has therefore been achieved
by suitable decrease in the mesh interval A in those regions in which
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the function V¥ varies most rapidly. This procedure has the secondary
advantage of providing closely spaced values of the derivatives which
are required for the later transformation to the physical plane.

Points far to the left.- In order to carry through the numerical
analysis, it is necessary that the finite-difference lattice be termi-
nated at some distance to the left in the hodograph. This can be done

with the aid of an asymptotic solution valid for large negative values
(o e 8

By separation of variables, it can be shown that the general
solution of the differential equation (10) in the region N5
05956y, subject to the boundary conditions (11), (12), and (13), is

elr i s A <r,{,1°i> K F,-,’f (-2’7“1)3/2}
Z % G+ LA SR
n=1

where K;,q 1is the modified Bessel function of the second kind of order
1/3 (notation of reference 22) and Ap 1is an appropriate constant. At
sufficiently large negative values of ﬁ the first term of the series
will predominate, and the above solution can be approximated by

¥V = A -7 sin <§§ K13 [12. (_25)3/2]

w

Ihs? Kl/3 is then replaced by the first term of its asymptotic expansion

(reference 22, p. 202)
-
K Zol 4/t: e~2
1/3 ( ) 57

there results finally for V¥ the expression
Vi et <.“:9->><(-71)'1/4 exp [- - (-27\)3/2] (21)
Oy 36y

where B 1s an unknown constant.

The asymptotic solution (21) makes it possible to terminate the
finite-difference' lattice at a position on the left. Consider a typi-
cal lattice point in a column located at ﬁ:-B (as, for example, the
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point b in fig. 1). The neighboring points
are then as shown in the adjacent sketch, where
the point 4 now represents a ficticious lattice
point located at 7 = - (B+A). If B is
taken sufficiently large that A/B< <1, then
it follows from equation (21) that, to a first X

order of approximation, 4.--A- 28 o

2 (-8)=(£%) i

Substitution of this value of ¥, into the
previous equation (20) gives for the finite-difference <juation at a
point on the left-hand boundary

Vo + 28(¥yrig) + [(1 4 —) exp ( ) l+2ﬁ)] Vo =0

(22)

—

The value of B to be used in any particular case is determined on the
basig of computational experience. In general, the larger the value

of GW, the larger must be the value of B to assure that the use of
the asymptotic solution (21) is justified. Since the over-all result
is insensitive to changes in the left-hand portion of the field, how-
ever, the choice of B is not a critical matter.

Points adjacent to the shock polar.- Points adjacent to the shock
polar require special treatment because of the irregularity of ‘the
intervals encountered near the curved boundary. Consider the typical
case shown in the sketch (corresponding to point c¢ in fig. 1).
Here h and k define the length of the
irregular intervals relative to that of the 2
regular interval A.

To obtain the desired accuracy, it was
found advisable in the present case to ;
include three rather than two neighboring
points in each of the coordinate directions.
The value of ¥ at the points 2, 4, and 6
is therefore written N A

~

Qx> b
>
—

\\\‘,
W
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Vais Vot WO 4 (12%) ¥ + (k%) ‘J’~~~| + o(a*)
M lo ; nﬂo g 110 jo
3
Ve = VorAVn| +E vy -2 o]+ 08
n lo “« -fAle . 3% wanio
2 3
‘Vs o II[O- 2A \V.\,, T (QA) \lr'v'\'l 5 (%) W"VNN I it O(A4)
njo 2t Mo 3% mmn fo

These may be looked upon as constituting three simultaneous equations
for the first three derivatives of V¥ in the horizontal direction at

the point O. Solution of these equations for Van gives
nn|o
L = £
R R A A A e A RR
nmlo A2 L 24k 14k K k(1+k) ( 24k)

The corresponding expression for V@@l ig identical except that k dg
o}

replaced by h and V¥, V4, and Vg by Vs, V1, and Vs, respectively.
Substituting these expressions for the two second derivatives into the
differential equation (10) and neglecting terms of 0(A2) then gives
for the finite-difference equation at O

6 2(2-k) 1<k 2 6
e Tl S NS I e T —_—V +
k(1+k)(2+k) = SR O[:h(l+h)(2+h) h
e-n) _1h ] [ 3k _3_-_11}4, > (23)
ke T R k S 2

Tiis reduces to the previous equation (20) when k =h = 1. (The
functions of h and k which appear here have been tabulated in
reference 23. The intervals of tabulation are not always sufficiently

srall, however, to provide the accuracy needed in the present work.)

Points on the shock polar.- In past applications of numerical
methods to problems involving curved boundaries, it has not ordinarily
been the practice to use a lattice with points located on the boundary
itself. The prescribed boundary conditions have then been incorporated
in the following manner (cf. references 24 and 25): First, the finite-
difference lattice is extended, on the basis of the regular lattice
spacing, to include ficticious points external to the boundary. This
makes the lattice geometry at internal points adjacent to the boundary
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the same as at all regular internal points. Next, with the aid of the
boundary conditions and suitable interpolation and extrapolation formu-
las, an expression is obtained for the independent variable at each
external point in terms of the values at neighboring internal points.
Finally, by substituting these expressions into the finite-difference
equation for a regular point, the difference equations are written for
the internal points adjacent to the boundary. In this way the boundary
conditions are incorporated implicitly into the difference equations at
internal points. The procedure is Parallel in many respects to that
used in terminating the present lattice at the left-hand side of the
field.

Although a procedure of the foregoing type can be devised to take
care of the boundary conditions on the shock polar, a different approach
was found advantageous for the present work. In this approach, the
lattice points are placed directly on the boundary as previously
described, and a difference equation is obtained at each such point by
suitable finite-difference approximation to the boundary condition.

This leads to a somewhat larger system of simultaneous equations than
would the more usual procedure but has been found in the long run to
give more accurate results with less total effort.

The boundary condition (14), which is thus the basis for the
finite-difference equations on the shock polar, can be written

Yo - S(T) V. =0 (2k)

where

T At e

3+50 3
; : 5 A
The problem now is to determine differ-
ence expressions for the derivatives
V. and V¥, at points on the polar. 2
n 6
Consider, for example, the typical A
situation shown in the sketch (corre-
sponding to point d of fig. 1). To /
determine %;, the value of ¥ at each 5

ot Ehewinterior peints 1, 2; and .3 is d_/m/ —f—eA
written, as before, in terms of a

Taylor's series about the boundary fA__ 4/0

point O. Solving the regulting iphirece k__'A A‘__ﬂ
equations for the derivative vy, at O

then gives o
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oL Al n(2+h)+2(1+h)2 (1+h) (2+h) s
W’é’io [ n(1+h)(2+h) Yo ? oh h
h(2+h) h(1+h) 3
et o(2+h) %} o (25)

This expression, which includes terms of 0(a2), is inconsistent in
order of accuracy with the expressions previously employed in setting
up the finite-difference equations at internal points. Since end
differentiation is, even for a given order of mathematical accuracy,
inherently less precise than differentiation at a midpoint (see error
terms in reference 23), the retention of the second-order terms was here
thought advisable.

The determination of the corresponding expression for Wﬁ ig: a

bit more involved. Expanding V at the boundary points U4 and 5 by
means of a Taylor's series in two dimensions gives

2 2
V= Voo Mlal -3 byl ¢ 5 Vam| ¢ 1F | 4 L) gy + 0(e®)
nie flo 2t qnlo né |o 2t 86 lo
AE 2
Vs = Yo+ AVl +en \1&\,‘ + = Y| + ah [ (e%) Weio Ji S 0K A7)
nlo 6lo 2% nqlo n6lo 2t 66 lo
An expression for V¥, is already known from equation (25) in terms
0 lo
of | Wp, Wiy Yo, and ¥gq; and an expression for WV.a. can similarly be

66lo
determined. The two foregoing expansions may thus be regarded as con-

stituting two equations for the three unknowns ¢~t v Wl iy end T Wo N
Ul

< nnio Nelo
To solve for V.| , one more equation is necessary. This is provided
nlo

by the differental equation (10), which also applies ‘on the boundary
and which may be written at the point O as

‘yo\nv‘ e 2’ﬁo‘y~~ = O
6 6 |o
The solution for Va is then found as

nio
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LA A R R et S SRR & ek A
n{o A -{ e+f g e+ Vs e+f WS e+t wg o % 2 e+f (Zﬁo oL}
6 3+2h 1+2h 2
[ h(2+h) e R S e } }'+ gl )

where '%;' is given by the previous equation (25).6
)

The required finite-difference equation for the point on the
shock polar can now be obtained by substituting expressions (25) and
(26) into the boundary condition (24) and neglecting the higher-order
terms in each case. The result can finally be written

(1+h) (2+h) +2L( 3+2h)
2h

_ h(2+h) +41(1+h) h(1+h)+2L(1+2h)
T+h 2 B a ) 3

¥,

h(2+h)+2(1+h)2 5 6L
h(1+h)(2+h) h(2+h)

eK ¥, - £K ¥, - { + (e-f)KJ‘l/o =0 (27)

where K = K (e,f,M,) and L =L (e,f,%o) are given by

1
(e+f)8(TMo) +2ef

Lo feln) ('ﬁo egi K

Equation (27) is convenient for points on the shock polar for
which -0.6 € 1<0. For -1<%,<-0.6, the general procedure is the

Tt will be noted that the coefficients in equation (26) become

undesirably large as f —>-e and are undefined when f = -e. This
results from the fact that the determinant of the coefficients in the
simultaneous equations used to obtain wﬁ’o vanishes when f = -e.

Difficulties from this source can be avoided by judicious choice of
the lattice points.




(se) NACA TN 2588

same except that the points

eA 0, 1, 2, and 3 are now more
conveniently located on a hori-
55— zontal line and the quantities

e, f; and h are redefined

& accordingly (see sketch). The
resulting finite-difference

A A ha equation is identical with

&) 2 / (0] equation (27) except that the
terms which previously arose
A from the expression for Wa
4 are now multiplied by -1.

Points on the sonic line.-
The difference equation for
points on the sonic line is obtained by finite-difference approximation
to the boundary condition (15), wbkich can be written, to the accuracy
required in the numerical work, as

i ~ Y~(0,8') .
QP e 9 Sl gl i (28)
6y

The procedure varies depending on whether the difference equation is

being written for the first point below the upper boundary or for one
of the lower points.

First point below boundary:

At the first point below the upper boundary the situation is as
indicated. To approximate the integral in equation (28), use is made
of Guderley's singular solution for tran-

sonic flow over a convex corner (refer-

8 ence 26). On the basis of this solution,
it can be shown that the variation of V
along the vertical axis in the immediate

A vicinity of the point B is of the form
A A
ff / o s (H /B
’ ¥~ (6,-6) (29)

If the lattice spacing is made sufficiently small, this asymptotic
relation may be taken as approximately correct over the entire interval
ifrom " SB tte ‘0, ‘s that within this interval
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0,-0\4/3
e

~

Ll- (ew"é‘)l/s
2 A4/3

and

For the first point below the boundary, the integral in equation (28)
can thus be written

\/PE _Eéigigll aBr: jEtQ_ /\5';"'A (5%_5')1/3 L
. FEgE/s AR Ul o A B
e

o w

w

L g & L /8

o}

where T = (EW:E')/A. The integral on the right can be reduced to
standard form by means of the substitution T(1-7) = 1/% 28, which
gives

/\1 ,.I.l/S

g B s 6 dz
Jg (l°7)2/3 p=/8 Jp o o

o

This is an elliptic integral of the first kind. Its value, as deter-
mined from the equations and tables of reference 2l

fl /3 ) xl'8“6_2.65o
| (l_T)E/S 22/3 31/4

The integral in equation (28) thus becomes, in the present case,

6 ¥x(0,8) . v v
fahd o e o O A O
4 B s L3

w

=3

(30)
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To approximate the derivative V., in equation (28), VB e

expanded at points i and ii by means of a Taylor's series about
point O. Terms involving V~~l may be omitted here, since the
nnio

differential equation (10) shows this derivative to be identically zero
at points on the sonic line. The values of ¥ at i and ii can
thus be written

wi e WO-A WN —As ‘y~~~| 2 O(A4)
n o S inaeie
(2n)° 4
S [ BRSSP - Werorg | LEO(CA™)
iy T nlo 3t nnnio (

Solution of these equations for V,
n

gives, to the second order in A,

(e}

el L Y \
V. =—<—w - ¥+ = Vg (31)
T‘l‘o A 6 i 3 5 6 11/

Substitution of expressions (30) and (31) into the boundary condi-
tion (28) gives the following finite-difference equation for the first
point below the upper boundary:

ﬁ\ki ey <l+ 1.208 At/2) ¥ =0 (32)
3 6 6

Unlike the previous equations (20), (22), (23), and (27) this equation
involves the value of A.
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Lower points:

For a general point below the first lattice point, the situation
is as represented in the sketch. The integral in the boundary condi-
tion (28) is here evaluated in three sections. The
integral over: thei fattice interval from B ‘to . n=l B
is evaluated on the basis of the asymptotic relation — 17
Ugedibeforesififiie’dntegral  from  n=~1- to.- 1> "is
evaluated by assuming a linear variation in V¥ over n-/
each of the included intervals and then integrating
analytically. The linear assumption is sufficiently T’”’Z
accurate here, since this entire middle section con-
tributes only a relatively small portion of the o
completedintegral .- | The integral frem 1. to 10,
which contains a singularity in the integrand at m+/
the point O, is evaluated by expressing V¥ as a
cubic in terms of its wvalue at the points 2,1, O, m
and -1 and then integrating analytically as before.
The added accuracy of the cubic is required here, oL
since this last section contributes by far the
majority of the over-all value. The boundary condi- Z
tion (28) may thus be written A

Yoo (0,8) + 0.342 (Jy+Jp+Jg) = O (33) i
n A .8 1o

where the J's represent the three component J
integrals just described.

-/

Proceeding to the details of the above procedure, the integral
from B 'te’ . n-1 1ig firgt written

Jig=

févw-A ¥3(0,9") as’ 3 e fl g3
» [nA_(gw_g,)]z/s IAS/8 o5 (n-7)2/3
W

where, as before, T = (5&-5')/&. This integral can be expressed, if

desired, as the difference of two elliptic integrals of the first kind.

For present purposes, however, it is more convenient (and sufficiently
accurate) to expand (n-T1)~2/3 agccording to the binomial theorem and
integrate termwise. This gives finally

Ji =

/5 e <?_+ 8 o 2 T 160 + 22 + ..i> Wn_l (34)
(na) 2/3 oln:  -9n®, 1053n8 L. yhBen®

This expression dis used, of course, only for n 2>2.
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On the basis of the assumption of a linear variation of ¥ between
adjacent lattice points, the integral from n-1 to 1 becomes

i = f'e“w-<n-1m 0B
E ~ -' 2/3
N [na-(6yw-6")]
n-2 s
z Vo=V [\ew -(n-m)A ) .
A Sy Biapfa
n=t PG,

Carrying out the integration gives

n=-2

Ja = A23/3 z [(m+l)l/a—ml/3 } (\Vm-wm,rl) (35a)

m=1

This expression is valid for n.i3. (For n =2, Jp obviously does
not exist.) For n >3 it is convenient to rewrite the summation so
that the value of V¥ at a given point is not repeated in successive
terms of the series. This is done by separating expression (35a) into
two series (one with ¥y and one with WVp41), expanding these series,
and then regrouping terms. The result is finally

n-2

e Aj/a { [ 21/3_1} ¥+ z [ (m+1) 1/3-2m1/8 4 (m_l)l/s:] V-

m=2

|:(n-l)l'/3—(n-2)l/:3 } Yoo } (35b)

This expression is valid for n 2l

To evaluate the integral from 1 to O, ¥ is represented within
thie interval by a cubic of the form

o I AW ew-e <5w-'é'>8
A A
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where a, b, ¢, and d are determined such that ¥  has the proper
values at the points 2, 1, 0, and -1. This expression is to be substi-
tuted into the integral

5%'HA ¥x(0o 5') ~
J. = (4 an"
f~ [na-(8,-61) 1278

6y -(n-1)A

he result ‘is Tinally, after evaluation of the coefficients a, Db, c,
and d,

-1 2 87 33 17
aF = = ca s 1k = —
o DI <7 ¥ o8 1t i) Yo 28 W'l> (36)

The finite-difference equation for a general point on the sonic
line can now be obtained by replacing the J's 1in equation (33) by the
expressions (34), (35), and (36) and using the previous expression (31)
for the derivative Wﬁ‘o' The result is a lengthy linear equation

Involvingdfheswvailue of W at the points i, i, -1; 0, 1,525 sl
n=lnd i Rertunately for the later relaxation work,. the ‘coeffiecients
of the terms turn out to be relatively small for all points above the
point 2.

Distribution of mesh points.- When an attempt is made to solve the
present problem with a coarse mesh, it is soon found that most of the
variation in V¥ takes place in a relatively small region near the
intersection of the shock polar and sonic line. To obtain a suffi-
ciently accurate solution in a practicable length of time, it is
therefore necessary to employ a graded lattice, that is, a lattice
which has different spacing in different parts of the field. Figure 2
shows the distribution of lattice spacing found satisfactory in a
typical case (GW = 1.6). The particular arrangement shown herg
involves a total of 228 lattice points. For other values of 6y, the
grading of the lattice follows the same general scheme. Obviously,
however, the total number of lattice points must be increased as the
upper boundary is moved farther from the shock polar.7

Formulas (34), (35), and (36), which are used to approximate the
integral along the sonic line, presume the existence of lattice points
at a uniform interval over the full distance from the upper boundary
to the point in question. This condition is not fulfilled in a graded

TOccasionally, when two points on or adjacent to the shock polar fall
very close together, one of the points is arbitrarily omitted. An
expression for the omitted value of ¥, which is then necessary to
complete the difference equation at neighboring points, is found by
parabolic interpolation between the values at the available locations.
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lattice such as that indicated in figure 2. Some modification of the
meéthod must therefore be made to obtain the finite-difference equation
for a point on the sonic line in one of the regions of finer mesh.

This requirement was satisfied by means of a simple averaging process
in which the contribution of nonexistent fine-mesh points is replaced
by an average contribution expressed in terms of ¥ at bracketing
points on the available coarser net. Since the contribution of indi-
vidual points is small even for points only moderately removed from
that at which the equation applies, a rather crude averaging process

is sufficient in most cases. (The details need not be given here as
they would soon become apparent to anyone working with the method.)
When the averaging procedure would not be sufficiently accurate (as
when the point at which the equation applies is near the line of demar-
cation between two different sized meshes), fictitious intermediate
points are introduced into the coarser net and the value of ¥ at
these points is obtained from plots of the distribution of V¥ along the
gonic line.

Solution of Finite-Difference Equations

By the methods of the foregoing section, a finite-difference
equation can be obtained for each lattice point in the hodograph plane.
The result is a large number of simultaneous algebraic equations
involving an equal number of unknown values of V. Since the number
of unknowns in each equation is small, the equations lend themselves
well to solution by relaxation techniques.®

The mechanics of the relaxation process have been well described
by various authors (references 15, 16, 17, and 18) and need not be gone
into here. For present purposes it was found satisfactory to take WE
in the boundary condition (16) equal to 10,000 and work with integer
values of ¥ throughout most of the field. The residuals in the relax-
ation process were eliminated to within limits of *2 (with due care,
of course, that all residuals in any given area were not predominately
of the same sign). To obtain satisfactory smoothness of the solution
near the left-hand boundary in some examples, it was necessary in this
region to work with values of ¥ to 0.1 and eliminate residuals to
within £#0.5. Whenever the coefficients in the finite-difference

8Tt is interesting to note that, of the complete set of simultaneous
equations, only two — those for the points on the shock polar and
sonic line immediately adjacent to the point E — are not homo-
geneous. Only this fact prevents the solution of the complete set
from being identically zero.
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equations were relatively small, the corresponding terms were neglected
in the point-by-point adjustment of V¥. The error so introduced was
eliminated periodically by recomputing the residuals using all terms in
the finite-difference equations. This procedure was particularly help-
ful in the case of the lengthy equations which apply at points on the
sonic line. The transition between the various regions of the graded
lattice, which is not often discussed in the literature, was accom-
plished by the use of overlapping fields in essentially the manner
described in referenee 28.

By means of the foregoing procedures, the boundary-value problem
in the hodograph plane has been solved for values of ¥; of 1.3, 1.6,
2.4, and 4.2. These values correspond, respectively (see equation (18)),
to values of the transonic similarity parameter E50 o 1,058, 10921,
0.703, and 0.484 as given previously in reference 1. As shown in the
earlier paper, calculations for these values were sufficient to bridge
the gap between the previous results of Guderley and Yoshihara
at.- 'ty =0 (reference 29) and the analytic results which can be obtained
when the bow wave is attached and the flow is completely supersonic
(reference 30). As an example of the solution in the hodograph plane,
the variation of ¥ for By = 1.6 is shown as a function of 7 and
® in figure 3. (These results correspond to the results shown in the
physical plane in fig. 2 of reference 1.) This figure shows clearly
the rapid variation of V¥ near the intersection of the shock polar
and sonic line. The calculated values of V¥ corresponding to figure 3
are listed in table I at the end of the report.

TRANSFORMATION TO PHYSICAL PLANE
Flow Field
The transformation from the hodograph plane to the physical plane

is governed, in the small-disturbance theory, by the following equa-
tions (cf. reference 5):

1/3
dx = Qil_)__(nwedq+¢rnde)
p*a*
3] i
ay = Vo dn + Vg d0) = awv
£ Px 8y (ﬂ ﬂ . 2) Px8x

The second of these equations implies that, in a flow field determined
according to the transonic small-disturbance theory, all streamlines
appear as straight lines parallel to the horizontal axis. When
expressed in terms of 7 and 6 the foregoing equations become
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AL /ie! R ~

Px Sy 2

e R TR

Py By n 8 Py

av

Tne length 1 of the wedge, which is equal to one-half the chord
of the double-wedge profile, can be found by integrating the first of
these equations over the upper boundary OB of the hodograph. (See
sketch.) This gives

l 1/3 O ~ o~ ~
1 = g el /no f 1 ¥%.(1,6,) dn

Py Sy

With thie relation the previous transformation equations can be put in
the dimensionless form

() _2n\|r o + ¥ db) (37)

-J.Iw

(i /e ( ) (38)

where Iy represents the integral



NACA TN 2588 o

To obtain the flow field in the form given in reference 1, equation (38)
must be rewritten in terms of the ordinate function

[(7+1)(t/c) 1*/° <y>

The result, derived with the aid of the relation

~§ =~[§ t/c

1Pd

7

no2/3
is
%) o9y iAs
a¥ = [(y+1)(t/c)]1/® d(%) = L—‘%— ay (hoa)
W

Integrating this relation, subject to the condition that Y = 0 when
¥ = 0, gives

g 5,173
Y (/e (L) - B0y (10v)

To utilize the foregoing equations for actual computations, it is
first necessary to evaluate Iy. Since numerical values of V¥ are
available in the hodograph only for -ai?{éo, the evaluation must be
carried out in two parts as follows: :

i d ~ -B ~ ~ ~
TR &+ [T G 6 (1)
..B ) FEE
The first integral is evaluated from the results of the numerical

~ ~ s
solution by mechanical integration of a curve of 7 wg(n,ew) versus 7.

O

The values of the derivative used for this purpose are obtained from
the equation

il b 1
e (R = Lo
e A< 3"”6"’2) i
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where the notation is as shown in the sketch.
0 This equation is derived in the same way as equa-
tion (31), except that V¥o is here taken equal
to zero in accord with the boundary condition.®
A It can be shown from Guderley's singular solution
for corner flow that for small negative values
/ of T the curve of 7T Wa(n,e ) must behave essen-

tially as |§|®/2. This result is useful in

A fairing the numerical results near 17 = O. The
first integral in equation (41) contributes by
&2 far the majority (about 99 percent) of the total
valie of' Iy

To evaluate the second integral in equation (41) use in again made
of the asymptotic solution (21). For this purpose, the constant B is
determined sueh that the value of V. given by the asymptotic solution

6

matches the numerically determined value at the point (—B,aw).
Substitution of equation (21) into the second integral of equation (L41)
then gives

-B 1/4 gl _g, 3
f T (W, 8) an = - O

-
exp [- = (28)%/%)
360w

-B
ANE R B G Rt (43)
= W

where *~( B, w) is determined from equation (L42) applied at % = =B.

The 1ntegral on the right is transformed through the substitution

£ (-2 - w
36w

9The fact that the second derivative W§§1o may be taken as zero in

the present derivation follows from the boundary condition and the
differential equation (10).
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which gives

T (7 e [ = (-2n>3/2} a =
b 0b 39W
1 38 \7/8 2 1/6 W
e (B [ e
= (2p)%/2
36y

The integral here is then found with sufficient accuracy by means of
the following asymptotic formula, valid for large values of the lower
limit (see pp. 95-96 of reference 31):

[}
JF V=1 o= guw M V-1 o=Z

Z

Equation (43) thus reduces finally to

-BN ~ e 3 ~ 1/2 '5 ~
f ¥ V. <n,9w> an = - <B> W o -8, F) (1)
b C) 2 n O

With the value of Iy known, equations (37) and (40) can be used
to ogfg}n the coordinates x/c and Y corresponding to any point in
the 1,9 plane. The value of Y is obtained by direct substitution
of the appropriate value of ¥ into equation (40b). The value of x/c
must be found by suitable integration of equation (37). The location
of the vertex A of the shock wave is found, for example, by integrat-
ing equation (37) along the line OA in the hodograph. (See sketch
on p. 30.) If the leading edge O is taken as the origin in the
physical plane, this gives

-l £ AL
<’5‘>A - 5= f % ¥o(f,0) (45)

The integral here is evaluated in two parts following the procedure
previously used in determining Iy.

For the abscissa of a point F on the shock wave, equation (37)

gives
X o X l F ~ ~ ~
<5> & <E> & = f (20 Vo dn + V. ao)
F A Iy A ] M
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where the integration is now taken from A to F along the shock

polar. For purposes of numerical evaluation, the integrand here can be
simplified by writing

~ By al+ vy a6

2N Yo dn + Yo dO
e n

~ ~ d
Vo dn + V. a0 .
n C]

_ i+ (A (a8/dn)

,.,/\l’) + dg/dn)

If (V. /¥.) and (dgydﬁ) are replaced by the appropriate functions of 7

from equations (14), there results finally
Vg -~
<;i> <}i> +— s/ 1+7 4V (46)
4IW
o

The integral in this equation is evaluated by plotting a curve of V¥

versus »/1+7 from the numerical results along the shock polar and
carrying out the necessary integration by mechanical means.

The abscissa of a p01nt on the sonie line is found by integrating
equation (37) along the 8 axis from B to C. Since peint I BiRs
situated in the physical plane at x/c = 1/2, this gives

<§) el f C y.(0,%) db (7)
eW

The integral here is evaluated by mechanical integration of a curve of

v (0, 8) versus G where V¥, (0,8) is found from equation (31). As can
n M
be seen from equation (28) and relation (29), Wﬁ(O,G) in the vicinity

of point B varies essentlally as (GW-G)E/s This fact is of use in
drawing the curve of V¥.(0,8) near B8=8y. It can further be seen with

the aid of equation (L4Ob) that near the shoulder of the wedge the trans-
formed sonic line has the form

<_>5> W
c c 2

This relation is useful in establishing the detailed shape of the sonic
line in the physical plane. It shows, in particular, that the sonic
line will have a vertical tangent and an infinite curvature at the
shoulder of the wedge.
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Pressure Distribution and Drag

To complete the analysis of the front wedge, it is left to deter-
mine the pressure distribution and drag. Integration of equation (37)
gives for the chordwise location on the wedge of a given value of 7

~

s bl i} Tllv ~ ™ ~
TR J/\ T ¥, 0) an

e}
- 00
or
% 1 1 ﬁ ~ e o
y e aga T f 1 Vu(n,6y) dn (48)
O

The speed parameter ¢ = (M3-1)/[(7+1)(t/c)13/® which was used to
present the results in reference 1, is related to 7 by the following
equation, derived from equations (20) and (21) of reference 1 and
equations (1), (9), and (18) of the present paper:

sy 1/8
i g gl ooue e (19)

With these equations, the distribution of & as a function of x/c

is readily determined. The integration of equation (L48) is carried
out by mechanical means using the same curve previously employed to
determine Iy. To fair the resulting £ curve in the vicinity of the
shoulder, use is again made of Guderley's analytical findings, which
show that in this vicinity

1 NS
§"<2 c>

The chordwise distribution of the generalized pressure coefficient
i i/3 2/3
o {(7+1) /2 1t )e)?! } Cp

is related to the distribution of & by the following equation taken
from pages 16 and 23 of reference 1:

Cp = - 2 (e-;) (50)
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To find the portion of the generalized drag coefficient

¥ ¥ [(741) /(t/c)5/®] ca

contributed by the front half of the double-wedge profile, equation (13a)

of reference 1 gives
G /D813 x|
cdf=2f de<(-:> (51)
o

To allow for the singularity in EP at the leading edge, the integra-
tion is best carried out directly in terms of the hodograph variables.
To this end, substitution from equations (37), (49), and (50) gives

" il Q o ~ A ~ _'
=P Leim= T ¥.(n,6y) dn | (52)
Cdf 0 !: & \-[w 5 ew J

The integration here is performed in two parts following procedures
parallel to those used in evaluating Iy.

CHARACTERISTICS CONSTRUCTION OVER
REAR OF AIRFOIL

The characteristics in the ?]','5 plane (7>0) are given by the
following relation obtained from equations (3) and (9):

~ 3/2 3
6 = congt. .+ 23— 0 i (53)

The corresponding directions of the Mach lines in the generalized
physical plane, as determined from this relation and the transformation
equations (37) and (L40a),are

~ ~ \1/8
ay (26,,)

ATy e anaE

(54)
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To the present order of approximation, therefore, the slope of the Mach
lines is independent of the local inclination %. This is consistent
with the previous result that the streamlines must appear in the physi-
cal plane as horizontal straight lines. As a consequence, the construc-
tion of the Mach net over the rear of the airfoil is particularly

simple in the small-disturbance theory.

To aid in the construction, the equations for the characteristics
in the n,g plane can be conveniently written in the form

s 28/2

6 =86 + g o
g 23/2'778/2

3

The symbols 5u_ and ©3 denote, respectively, the ordinates at which
the upgoing and downgoing characteristics through a given point (7,8)
intersect the vertical axis. Elimination of 8 between these equa-
tions gives

~ 32/3 e N NE/ 8
T -2 (Ba- &) (55)
which can be substituted into equation (54) to obtain
ay 4gy/3\ 1/3
i (f‘é (6)
d(x/c) €48y

This is the basic relation for the characteristics construction in the
physical plane.

The construction of the Mach net itself follows a simple lattice-
point procedure (cf. reference 32) By identifying each Mach line with
its appropriate value of ®y or ©g, the value of dY/d(x/c) at the
intersection of any two Mach lines can easily be determined from
equation (56) (or its graphical equivalent). The basic construction
necessary to locate an unknown point c¢ from the location of two known
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points a and b 1is then as indicated in the sketch. The construction
proceeds rapidly since, as pointed out, variations in the inclination of

[ ) {[ o) * (75 ]}

2

~

YA

&, m%ﬂv ZQZMW@J] Z;m%yjif

i

x/c

flow need not be considered in establishing the direction of the Mach
lines. Where desired, the value of 6 can be found from the relation

85+ 8

? = u (57)
2

The corresponding value of ¥ 1is given by equation (55).1°

Figure 4 shows a typical Mach net constructed by stepwise appli-
cation of the foregoing procedure. This net is for the case of
Gy = 1.6 (£ = 0.921) and corresponds to the flow field shown for the
front of the airfoil in figure 2 of reference 1. The construction is

ok b practice, the construction is actually carried out most easily in
a plane of Y/ 26 )1/3 versus x/c with the slope of the Mach
lines given by

d[?/(g'éw)l/s] Ay < 2/3 >l/3
a(x/c) 838y
This allows a single graph of slope versus (84-8,) to suffice for

all values of 6y. It also provides somewhat more convenient pro-
portions for the construction of the Mach net.
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begun at the shoulder of the airfoil (x/c = 1/2, ¥ = 0) with the values
of 511 selected to provide approximately equal spacing between the Mach
lines of the expansion fan. From the shoulder, the construction is
carried outward to the sonic line and then inward to the rear surface
of the airfoil. The drawing of the Mach line segments adjoining the
sonic line might appear at first to offer some difficulty, since a
linear average is obviously unreliable to determine a mean inclination
in this vicinity. Actually, no trouble is encountered from this source,
since the point at which each Mach line meets the sonic line is already
known from the hodograph solution for the subsonic field. The construc-
tion of the last segment approaching the sonic line thus reduces to a
matter of simply connecting two known points. The slope of the first
segment leaving the sonic line is found by either (a) multiplying the
slope of the approaching segment by -1, or (b) determining a mean
inclination based on the easily demonstrated fact that a Mach line in
the vicinity of the sonic line behaves essentially as a semicubical
parabola.ll It is immaterial to the final result which procedure is
used. The identity of the Mach lines reflected from the rear surface

of the airfoil is determined from equation (57) plus the boundary condi-
tion that at this surface 8 = - w- As can be seen by comparing

figure 4 of the present report with figure 2 of reference 1, only a
relatively small portion of the sonic line need be known to determine
conditions on the rear of the airfoil.

REMARKS ON ACCURACY OF SOLUTION

Quantitative statements with regard to the accuracy of the present
results are difficult to make. Fortunately, however, a check on the
accuracy of the solution is available in the work itself. This check
derives from the fact that, in the subsonic portion of the field, the
calculated location of a given velocity in the physical plane should,
theoretically, be independent of the path of integration which is
followed in the hodograph. Thus, for example, the position of the
velocity ﬁ = () Y = 1l, which defines the point of intersection E of
the shock wave and sonic line, should be the same irrespective of
whether it is found from equations (45) and (46)

: g ¥
<_>s> e Ny (T,0) aF + = f E /IR av  (58)
(o] E QIW '5 4IW i

or from equation (L47)

1lThe latter possibility was pointed out to the authors by
Gottfried Guderley.
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X 1) il z Lo ~
<.C.>E ke f wﬁ(o,e) e (59)

Oy
Actually, as was observed in connection with figure 1 of reference 1,

the results of the two determinations show a small discrepancy. Such a
result would be expected in any finite-difference solution.

Discrepancies of the type noted can arise from two sources: (1)
numerical inaccuracies in the relaxation solution of the finite-
difference equations or in the transformation to the physical plane; (2)
inaccuracies caused by the fact that the finite-difference equations
themselves are not an exact representation of the boundary-value problem
for the original partial differential equation. Experience with various
refinements in the calculations indicates that the discrepancies here
are primarily of the latter origin. Early computations with a coarse
lattice and relatively crude finite-difference equations showed a con-
siderable gap between the shock wave and the end of the sonic line.
Increasing refinements in the grading of the lattice and in the deriva-
tion of certain of the finite-difference equations gave progressive
improvement in reducing this gap. This improvement came about primarily
as a result of progressive reduction in the value of the integral I,
the other integrals in equations (58) and (59) being relatively unaf-
fected by the refinements in the calculations. Indications are_ that,
in the results which were taken as final, the values of IWE(E,GW)]

and hence of I, are still somewhat too large. This means (see
equation (40b)) that the ordinates of the shock wave and sonic line are
probably somewhat smaller than they should be. The same is probably
true, in general, of the corresponding values of Ix/c!. Calculations
of the chordwise distribution of 7 on the surface of the airfoil are,
however, considerably more precise, since the errors in the two inte-
grals in equation (48) tend to compensate. The refinements in the
computations were, in fact, carried to the point where further better-
ment caused only negligible change in the pressure distribution and
over-all drag. Further evidence of the accuracy of the results in this
regard is provided by the ease with which the computed values fair into
the results of Guderley and Yoshihara at & = 0 and into the analyti-
cal curves which are available when the bow wave is attached and the
flow is completely supersonic. (See figs. 4 and 6 of reference 1.)

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 8, 1951
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Figure /.- Illustrative finite - difference lattice in the ;9' plane.
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