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SUMMARY 

The minimum wave-drag problem with auxiliary conditions is solved 
for axial flow about bodies of revolution consisting of two symmetrical 
ogival sections joined by a circular cylinder. The auxiliary conditions 
are that t he total length, the length of the cylinder, the frontal area, 
and the volume are held constant . The results are related to similar 
results known for bodies of revolution without a cylindrical midsection, 
and it is found that the addition of small amounts of center section has 
little effect on the drag. The maximum thickness ratio leading to the 
least total of wave and friction drag is investigated briefl y. 

INTRODUCTION 

The formula for the determination of tbe wave drag of a slender 
body of revolution in a supersonic free stream parallel to the axis of 
the body was first given by von Karman and Moore (reference 1). In a 
later work (reference 2), von Karman reformulated the problem and gave 
the form of the body of prescribed length and maximum cross section 
having a minimum wave drag. The bodies treated in both the above papers 
consisted of ogives at the upstream end of cylinders extending to 
infinity downstream. Somewhat later, Lighthill (reference 3) gave the 
solution to the problem of minimum drag with the auxiliary condit ions of 
prescribed length and maximum thickness for a body conSis ting of two 
symmetrical ogives placed back to back. A paper by Haack (reference 4) 
gives a complete summary of all previous solutions, as well as some new 
solutions, for both symmetrical bodies and bodies of the type discussed 
in references 1 and 2. In reference 5, Busemann has attacked the problem 
of minimum drag of bodies of revolution by exploiting its analogy to the 
problem of wing-trailing-vortex systems of minimum energy. Sears (refer­
ence 6) discusses the body consisting of two ogives placed back to back 
but, in the case where length and maximum cross section are prescribed, 
he does not limit the analysis to the case of fore-and-aft symmetry, 
However, the results show that the least drag does occur for symmetrical 
bodies. 
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The present report offers an extension of the results outlined 
above by taking into consideratipn bodies consisting of two symmetrical 
ogives joined by a cylindrical center section.1 (See fig. 1.) Since the 
stern section is pointed, the question of base drag does not arise. If 
it were desired to consider bodies with finite area at the stern, such 
as boattailed bodies, again without taking into account the base 
pressure, the method used in this report would be applicable, provided 
the meridian section of the body has zero slope at the end where the 
boattail occurs. The analysiS then becomes considerably more compli­
cated than that of the case treated here. 

The introduction of the center section brings a 'new geometrical 
parameter into the problem, namely, the length of that center section. 
The minimum drag problem can be formulated as an isoperimetric problem, 
since the auxiliary conditions are expressible in integral form. It is 
solved under the conditions that frontal area (or maximum thickness), 
volume, length of cylinder, and total length are held constant. This 
rather restrictive set of conditions is then rela~ed to include cases in 
which two of the geometric parameters are fixed while the other one i s 
free to vary. In this way, three distinct minimum problems connected 
with the type pf body considered here can be investigated systematically. 

Finally, in the appendix, the frictional drag of a body of revolu­
tion is taken into account in an approximate manner to determine the 
thickness ratio of a body having the least value of c.ombined wave and 
frictional drag . 

B 

B(cr,k) 

LIST OF IMPORTANT SYMBOLS 

wave drag coeffiCient, based on the area l2(~ ~a~l~ 
2 00 J 

wave drag coefficient , based on frontal area of body 

~Ns~ 
IThe present work generalizes particular cases of bodies with cylindrical 

midsections considered by Max. A. Heaslet and Harvard Lomax in the 
forthcoming series on High-Speed Aerodynamics and Jet Propulsion, 
Pri nceton University Press. 
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CDv 

D 

D(cr, k) 

E 

E(cr,k) 

F(cr , k) 

k 

h ' 

K 

based on 2/3 power of volume of body 

...l.. (K-E) 
k 2 

k~ [F ( cr,k) - E(cr,k) J 

complete elliptic integral of second kind, modulus k 

incomplete elliptic integral of second kind with argument 
cr and modulus k 

incomplete elliptic integral of first kind with argument 
cr and modulus k 

modulus of elliptic integrals G = j 1 - (f J J 
complementary modulus (k' = Jl-k2 = T ) 

complete elliptic integral of first kind, modulus k 

27. total length of body of revolution 

2L length of cylindrical midsection of body of revolution 

ro maximum radius of body of revolution 

rex ) local radius of body of revolution 

R 

So 

S * o 

Sex) 

wave drag divided by free-stream dynamic pressure 

frontal area of body of revolution (~02) 

So 
12 
local cross-sectional area of body of revolution [~2(X)] 

3 

maximum thickness ratio of body (reciprocal of fineness ratio) 

(~o) 
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local thickness ratio of body 

t otal volume of body 

velocity of the free stream 

coordinate along axis of body 

Jacobian Zeta function of argument cr and modulus k 

[Z(cr,k) = E(cr,k) - ~F(cr,k)] 
Lagrange -multipliers (equation (4b)) 

~ 
7, 

argument of elliptic integrals (. =! ::=~: = ~ Jl -,~ 
free-strerom density 

ANALYSIS 

Nomenclature and B(nmdary Conditions 

An example of 
shown in figure 1. 
be used. If Sex) 
point, then 

the type of body to be considered in this report is 
Also in that :figure is shown some of the notation to 
denotes the cross-sectional area of the body at any 

Sex) = llr2(x) (1) 

where rex) is the local radius of the body. It will be stipulated 
that the body is symmetrical about x=O, that it closes at each end, and 
that the ogival sections fair into the cylindrical section with vanish­
ing slope. Analytically, these conditions become (see fig. 1) 

r ( ±7,) = 0 

r ( ±L) = ro 

r' ( ±L) ° 
where a prime denotes differentiation with respect to x. In terms of 
the area function Sex), these conditions become (since S'=21lrr') 

~- -- - --" 
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S(il) =0 

S( iL) = So 

S'(±L) = 0 

(2a) 

Where So = ~02 1s the cross-sectional area of the cylinder. On the 
cylinder the conditions on Sex) are 

sex) = So 

S'(x) = 0 

S"(x) =0 

- L<x<L 

The cross-sectional area ~t always be positive or zero; 

Sex) ~ 0 

(2b) 

(2c) 

Finally, the restriction is made that the maximua cross section occurs 
at the cylindrical portion. Thus, 

S' (x) $ 0; L'S. X ::; l } (2d) 
S' (x) .c 0; - l ~ x ~ - L 

The Variational Problem 

On the basis of the work of reference 1 or 3, the wave drag of a 
boGy such as is illustrated 1n figure 1 is given by 

In order to arrive at this approximation, it is assumed that the 
body is slender (to «1), and that both Sex) and S' (x) are continu­
ous and equal to zero at the ends of the body. 

BecaUSe of the fore-and-aft symmetry of the body, the above expres­
sion for wave drag can be modified into one involving integration over 
either the nose or stern section alone. Thus, for integration over the 
stern (x>O) 

I I 
2 1 1 xS" (Xl.) R = -; L S' (x) <Ix L - -- dxl 
" X~Xl.2 
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The variational problem to be solved is of the isoperimetric type, 
since the drag is to be minimized under the auxiliary condit ions of 
constant length, frontal area, and volume . The body shapes determined 
as solutions to this problem Will be referred to as optimum bodies . With 
the auxiliary conditions just mentioned, the quantity to be minimized can 
be written 

(4a) 

where V is the total volume of the body, and A. 1. and iJ.l. are undeter­
mined constants, the sp"-called lagrange multipliers. The volume V can 
be expres sed as 

t t 
V = 2 1 S (x) dx + 2L So = - 2 1 x S ' (x) _dx 

L L 

and the frontal area as 

1. 
So :: - f S' (x) dx 

L 

Equation (4a) can now be written 

T =,g it S' (x) [ r7, ~st I (Xl.) dx1. + Ax. + IJ.] dx 
~ L JL X~~2 

where 
1( 

A. and IJ. have replaced ~Al and - 2 1J.1, respectively. 

In performing a variation of the quantity T, just defined, only 
so-called weak variations nIl be allowed. This lIleans that the cross­
section distribution S(x) is deformed slightly, in such a way that the 
derivatives of the deformation function are of the same order of small­
ness as the deformation function its~lf. (See reference 7, p. 7.) The 
variation can be performed in any 0>1" a variety of ways, and the resulting 
necessary condition for a minimum (vanishing of the first variation) 
leads to the equation 

(5) 

The function S(x) obtained by solution of this integral equation, and 
two subsequent integrationa, is the distribution of oross-sectional area 
which characterizes the required optimum body. 

______ ______ _ __ ~_ --------.-I 
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In order to 'show that equation (5) is the condition for a minimum 
instead of a maximum, the second variation can be examined. It is found 
that the second variation is proportional to the drag of the variation 
of the profile acting alone and, hence, is positive, by analogy to the 
result found by Munk in his york on minimum drag of yings (reference 8). 

Determination of the Cross Section S(x) 

Equation (5) can be written 

It is only necessary to solve this equation for x >0 because of the 
symmetry of the body. Make the transformations 

in equation (6); it becomes 

T • , x 2 = t 

(6) 

(6a) 

Equation (6a) can be written in the f orm 

! g(T)dT 
yet) :0: 

t- T 
a 

yhich is the familiar airfoil equation. The general solution to the 
airfoil equation is known, being 

( ) 1 [ fll () III yeT) J(b-T) (T-e.) J g t = n g T dT - dT 
n2j (b-t) (t-e.) a a t-T 

The quantity appearing in the solution as 

is of the nature of an arbitrary constant, and is to be evaluated from 
conditions of the problem. In the present case, the constant is 
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1
22 d2 dT 
~ [S(Xl)] ~ = 2[S'(2) - S'(L)] = 0 

2 dx1 ",T 
L 

by condition (2a) and the condition 8'(2) = 0 imposed on equation (3). 
The solution to equation (6) can be written (in terms of x) 

The integrations of equation (7) can be performed, yielding 

where 

K, E 

Z(cr,k) 

+ KZ(O',k ) ] 

(8 ) 

complete elliptic integrals of first and second kind, 
respectively, modulus k 

Jacobian Zeta function of argument 0' and modulus k 

[ Z(a,k) = E(O',k) - ~ F(O',k) ] 

F(O',k) E(cr,k) incomplete elliptic integrals of first and second kinds, 
respectively, of argument 0' and modulus k 

k modulus of elliptic integrals [ k = j 1 - (t )2 ] 
0' argument of elliptic integrals 

( 0' = ~) j~ 

Next, the first derivative, 8'(x), can be determined by 

It is found that 

- I 

J 
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Finally, S(x) is given by 

S(x) JCl S'(Xl) dx 1 = - ~! [2L2F(~,k) - (l2+L2)E(~,k) + 
x 

This function, S(x), gives the cros9-sectional area distribution of an 
optimum body of revolution of the type shown in figure 1, when the 
lengths, frontal area, and volume are prescribed. Since the solution 
appears in terms of the undetermined constants A and ~, it is neces­
sary to find these constants in terms of the prescribed quantities. 
This can be done by determining the frontal area and volume: 

So = S(L) u =-
61t 

(11) 

l 
V = 2L So + 2 l S (x) dx 

(12) 

Thus, equations (11) and (12) serve to determine the constants A and 
~ in terms of t he prescribed quantities L, l, V, and So. 

The remaining quantity to be evaluated is the drag. A combination 
of equations (3) and (6) yields 

R = ~ (~ V + ~ So) (13) 

The solution obtained as equation (10) must now be examined t o 
insure that it satisfies the boundary conditions. The conditions of 
equations (2a) have already been imposed in the analysis, as have the 
conditions of equations (2b). The other boundary conditions, (2c) and 
(2d~ are more complex, however, and require some care in applicat i on . 
First, notice that if the conditions S(L) = So, S(Z) = 0 are met , and 
S' (x) is negative in the interval L::: x ::: l, then certainly Sex) 
cannot become negative in that interval. Thus if the condition (2d) on 
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the derivative of Sex) is satisfied, then condition (2c) is implicitly 
met. The remaining boundary condition can now be stated as 

S'(x) == - i:n: (~" + ~~) ;(i2-X2 )(X2-L2) + ~ KxZ (a,k) $ 0 , L:::, x <Z 

Analysis of this inequality at the end points shows that it implies t he 
following two conditions on A and ~: 

u + ~ ~~O 
U + 4B ,,> ° :n: t""_ 

(14a) 

where 

D == K-E 
k 2 

B == E_k,2K 
k 2 

It is interesting to note the meaning of the two equalities con­
tained in expressions (14a) and (14b) in terms of the body geometry. 
Equation (8) can be written in the form 

S' I (x) == ~ [(AZ + ~~) ",2_L2 - iiI + !IDf2_X2] + ~ KZ(a k) 
2:n: Z '\ :n: Z2_X2 \ :n: /. x2:iJ 2 :n:2 ' 

(15) 
which shows that S"(X) is infinite at L unless the equality of 
expression (14a) holds, and is infinite at Z unless the equality of 
(14b) holds. Since 

S' I (x) == 2:n: ( r I 2 + rr I I ) 

the singularity at L indicates that r" is infinite there, while a 
singularity at 1 indicates that r' is infinite at Z. On the other 
hand, if S' ,(x) is zero at L, then r" is zero, shOwing that the 
ogival section fairs into the cylinder with vanishing second derivat i ve 
as well as vanishing first derivative. Similarly, the vanishing of 
S"(X) at 1 gives a zero value of r' at the tip, so that the body is 
cusped. Since this only occurs when the equality 

holds, it is seen that, in general, the optimum bodies have vertical 
tangents at the tips. 

It is convenient to have the formulas pertinent to the solution for 
optimum bodies in dimensionless terms. Introducing the following nota­
tion 

t _ x. 
!:> - l' So-l(-== So V*= V k' == 1-

l2' is' 1 

I 

I 

I 
I 
I 

I 
I 
I 

I 

I 
I 
I 

I 

I 
I 

I 
I 
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and 

sex) = rct2 
7,2 

11 

where t is the local thickness ratio (diameter' the equations can be 
put into the following form \:' 27, / 

t2 (~) =t;2~ 2 [B(a , k) - k,2 D (a,k)] _~Al_~2)(~2_k' 2)} + 

~~2KZ(a,k) + E E(a,k) - k,2 KF (a,k) - K~/h-~2)(~2-k'2)J16) 

where ~ varies from k' to 1, as x varies from L to 7,. 

so*= rct02 = 1..7, k2(B_k,2D) + ~ (E2_k,2~) 
6rc rc 2 

where to is the maximum thickness ratio of the body, 

(18) 

(19) 

Equations (17 ) and (18) can be solved for A and ~,resulting in 

)"'l = 48 [3(E2_k,2~) v* - rck2 (B-k,2 D) So*] 
k4L\ (20a) 

~ = ~ (3rck4S * - 8 k2 (B - k,2D) V*] 
k46 0 

(20b) 

where 

By use of the results of equations (20), the inequalities (14) can be 
expressed in terms of So*, V*, and k'; they become 

where 

~l < So* < ~2 
WI - v* - \jr2 

~l = 2k2n (B-k,2 D) -3 (E2 - k,2K2) 

W
1
= rck2 [}k2D - 4 (B _ k,2D] 

4 
~2= 3 (E2 - kf2K2) -2k2 B(B - k,2D) 

\jr2= rct2 [4 (B - k,2D) -3~B] 

(21) 
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Figure 2 shows the region defined by the inequalities (21) with 
plotted versus k'. The upper curve represents 

and the lower, 

8a* _ ~2 
V* - t 

2 

8 0 * 
v* 

The shaded region between these curves, which will be called the admis­
sible region, defines the limits within which the parameters k' and 
80*/V* must lie in order that the solution for the optimum body satisfy 
the requirement given in expression (2d). That is, for a prescribed 
value of k', say, the prescribed values of 80* and V* must be such 
that the ratio So~/V* falls in the shaded region of figure 2. 

Finally, by using equations (20), the formula for the drag 
cient CD* (equation (19)) can be put in terms of the geometric 
meters k',So*,V*; 

coeffi­
para-

CD * = 3(SO*)2 [24(E2_k,2K2 (V* )2_16:n:k2(B_k,2D) V* + 
:n:k4 6 \So * So* 

(22) 

DISCUSSION OF SOLUTION 

From the results obtained i n the previous section, one can find the 
characteristics of the body of revolution, of the type shown in figure 1, 
having minimum wave drag when the quantities total length (22), length 
of cylinder (2L), frontal area (So) and volume (V) are fixed. Although 
the semi total length 2 no longer appears in the formulas (equa-
tions (16), (17), (18), and (22)), having been absorbed into the dimen­
sionless quantities CD*, k', So*, V*, it must be remembered that total 
length of the bodies is fixed. It was also found that when all four 
geometric quantities, l, L, 80 , V, were prescribed, certain limitations 
upon their magnitude must be observed in order to meet boundary condi­
tions set forth in expressions (2c) and (2d). These limitations are 
most simply expressed in terms of the parameters k' and So /V*, where 
k' is the ratio of the length of the cylindrical section to total length, 
and So*/V* is the ratio of the volume of the cylinder of radius ro 
and length l to the volume of the body. The permissible range of 
values for k' and 80*/V* is given in expressions (21), and is shown 
graphically in figure 2. 

Using equation (22), the variation of the drag coefficient CD* 
with the variables k' and So*/V* can be found. The calculations 
were made for a value of 80* of :n:/100, corresponding to a maximum 

L __ . ___ _ 

I 

I 

I 

I 
- I 

J 

I 

I 
I 

I 
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thickness ratio of 1/10. In the accompanying sketch, a three-dimensional 
view of the variation is shown. The two curves in the base plane are 
just those of figure 2, defining 
the admissible region for k' and c: 
80 */V*. For a given value of the 
length ratio k', the drag coeffi­
cient CD* varies parabolically 
with 8 */V*; the minimum occur­
ring be~ween the extreme admis­
sible values of 80 */V*. With 
increasing k', CD* increases 
steadily and the rate of increase 
approaches infinity as k' 
approaches unity. A quantitative 
idea of the variation is afforded 
by figure 3, where the drag coef-
ficient CD* is plotted against 
80 */V* for several values of the length ratio k'. The curve shown 
for k'=O agrees with results of reference 4. The increase in drag 
coefficient with k' is seen to be slow for small values of k', indica­
ting that the greater available volume resulting from the cylindrical 
center section may warrant acceptance of the slight increase in drag. 

In order to obtain a more detailed view of the variation of drag 
with the geometric parameters, the variational problem that has been 
solved can be reinterpreted . The existence of the limits on the quanti­
ties 80 */V* and k' (expressions (21)) suggests that two of the trio 
k', 80 *, V* might be fixed, while the third is left free to vary 
within the ascertainable limits determined by the two prescribed values. 
The total length, 22, of the bodies is also fixed, although it appears 
only implicitly. There are three such combinations possible: 

1. Z, k' , 80* fixed; V* free 

2. 2, V* , k' fixed; 8 * 0 
free 

3. 2, 80 *, V* fixed; k' free 

These three problems can be stated in physical terms as follows: 

1. Total length, cylinder length, and frontal area fixed; volume free 

2. Total length, volume, and cylinder length fixed; frontal area free 

3. Total length, frontal area, and volume fixed; cylinder length free 

These three problems will be considered in order. 

I 

I 

\ 

J 
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The Three Subcases 

Case 1: Total length, cylinder length, and frontal area fixed; 
volume free.- In terms of the dimensionless parameters, this case applies 
to bodies having k' and So* fixed. The admissible range of the volume 
parameter V* can be determined either from expressions (21) or from 
figure 2. For each value of V* in the range so found, an optimum 
body exists, so that a family of optimum bodies is now determined. The 
variation of drag for members of this family is readily found by use of 
equation (22), or an estimate may be obtained from figure 3. Now some 
one of this family of bodies must give rise to the leas t drag, and it 
is clear that this member is determined by the condition A equals 
zero.2 The formulas for thickness distribution and drag for the best 
optimum body in this family become (from equations (16) and (19)) 

t2(~) = E2~~~2K2 {~2KZ(cr,k) +[E E(cr ,k) -k ,2KF(cr,k) ] _K~Al_~2)(~2_kI2 ~ 

The volume parameter for the optimum body is given by 

v* = :n:k2 B-k '2D S * 
3 E2_k 12 K2 0 

(23) 

(24) 

(25) 

It is convenient to have drag coefficients based upon the frontal 
area and upon the volume (to the 2/3 power) of the body, rather than 
upon the area 22. These are, respectively, 

:n:2 t 2 
CD drag - 0 

s - 1 p V 2S *22 - E2_k 12K2 
200 0 

C - ~ag 2. E2_k 12K2 (v*)<l/3 
Dv - ~p V 2(V*)2/S22= :n: k4(B-kI2p)2 

2 0 0 

If the length L of the center section is allowed to vanish, k' 
approaches zero, and the last formulas become 

2rbe condition that A be zero corresponds to solving the original 
isoperimetric problem of minimum drag with fixed length and frontal 
area , the volume being unspecified. This problem will lead to the 
best body sought for the case 1 under consideration. This result 
could also be obtained from equation (22) by the ordinary method of 
differentiation. Similar remarks apply to the case when ~ is taken 
to be zero. 

_ I 
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Cny I = ~ (V*)4/3 

L=O 

These results agree with those of references 4 and 6. The drag coeffi­
cients for the body with a center section can be expressed in terms of 
the above quantities, so that the effect of adding a center section is 
readily seen: 

CD 
S 1 = 

n2 t 0
2 E2_k,2K2 (26) 

and 

CDy E _k,2 K2 

~ (V*)4/3 
= k4 (B_k,2D)2 (27) 

Figure 4 shows a plot of the quantity C / rr 2 t 2 against DS 0 k' • 

This figure shows that the drag coefficient based on frontal area rises 
slowly when the r atio of length of cylindrical portion to total length 
is small (the drag coefficient having risen 10 percent when the 
cylinder makes up about 10 percent of the body), but goes up very 
rapidly for bodies on which the cylindrical section makes up more than 
about 50 percent of the body. 

There is another limiting case of some interest for the body with 
k' and So* prescribed, besides the one in which k' vanishes. That is 
the case in which the cylindrical section becomes infinitely long while 
the nose and stern sections have a prescribed length. Thus, both l 
and L become infinite while (l-L) remains fixed. The drag resulting 
from such a configuration is given by 

R 
_ a,rag = 8 S02 

- 1 n(l-L)2 
2" PoVo2. 

which agrees with a result of reference 2 for an ogive of given caliber 
at the end of a semi-infinite cylinder. 

The shape of the best body of a family can be computed by means of 
equation (23). Since the thickness t is given by the ratio of diame­
ter to total length, the ratio of the local radius r to the maximum 
radius ro is 

where (28) 

- .. ---- ----------- J 
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Plots of this thickness distri­
bution for several values of k' 
are shown in figure 5. The 
accompanying sketch shows a plot 
of equation (25) in relation to 
the extreme admissible values of 
80 * jv* versus k'. The upper 
curve corresponds to the equality 
in expression (14b), and repre­
sents the relation for a body 
wi th cusped tips, while the low­
est curve corresponds to the 
equality in (14a), and gives 
zero curvature where the end 
sections join to the cylinder. 
Therefore, the best bodies of 
the present families never have 
cusped tips, nor zero curvature 
where the ogival sections and 
center section join • 

Case 2: Total length, 
volume, and cylinder le~th 
fixed; frontal area free.- In 
this case, which can be analyzed 
in the same way as the one just 
preceding, the volume and leng~~-
ratio parameters V* and k' 
serve to determine a range of 

permissible values of the frontal area parameter 80*. This range is 
again obtainable either from expressions (21), or from figure 2. Fig­
ure (3), showing variation of drag with kt and 80 *jv*, can once more 
be consulted for a general view of the behavior of the drag as the 
parameters change. 

The optimum body in a given family is now determined by the vanish­
ing of ~ (see footnote 2), and the equations for thickness distribution 
and drag become 

t2(;) = t 0 2 {k2 [B(a,k) _k t2 D(a,k)] -; Al_;2)(~~kt2)} (29) 
k2 (B_k12D) 

3n: t02V* 
CD* = ----~~-­

k2 (B_k t 2D) 

The relation between 80* and V* for the best member of a family is 

(30) 
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Again the drag coefficient can be based 
upon frontal area, the former being the more 
volume is fixed. The drag coefficient based 

Cn._ = §. (V*)4/3[--l. l 
~v n k4 ! 

.J 

and that based on the frontal area is 

17 

either upon (volume)2/3 or 
useful in this case since 
on (volume)2/3 is 

(32) 

In both cases, the function of k' in square brackets reduces to unity 
as k' vanishes, and the resulting expressions for bodies without 
center sections agree with results of references 4 and 6. Figure 6 
shows a plot of the quantity 

CDv 1 

~(V*)4/3 

as a function of the length ratio k'. The behavior is qualitatively 
"Lhe same as found in case 1 for the drag coefficient based on frontal 
area, but the increase of drag coefficient with k' is somewhat slower 
in the present case . 

In the present instance, where V* and k' are given, the thickness 
distribution function is, from equation (29), 

(34) 
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Plots of this thickness distribu­
tion are shown in figure 7, where 
shapes for several values of k' 
are given. The sketch shows in 
this case that again the best body 
of a family is one having neither 
cusped nose and stern sections nor 
zero curvature at the junctions of 
end and center sections; the best 
body at k' = 0 has zero curvature 
at the juncture of the ogival sec­
tions. 

Case 3: Total length, frontal 
area, and volume fixed; cylinder 
length free.- In this case the 
dimensionless parameters 80 * and 
V* are fixed, while the length 
ratio k' is free to vary. It 
is the most difficult case to 
analyze because the parameter k' 
appears implicitly in the func­
tions involved. By differentia­
ting equation (22) with respect 
to k', holding 80* and V* fixed, 
it is found that the derivative 
dCD*/dk' is never negative, and 
vanishes for a value of k' such 

where ~l and ~l are defined after expressions (21). In terms of the 
admissible range of the length ratio k' for fixed values of the frontal­
area and volume parameters 8

0
* and V*, this equation means that the 

member of the family for which k' has the least admissible value 
(fig. 2) is the one with least wave drag in that family. It can be seen 
from figure 2, however, that if the ratio of the given parameters 80*/V* 
is greater than 8/3rt = 0.849, the least admissible value of the length 
ratio is always k' equal to zero. 

In the cases where the ratio 80 */V* is less than 8/3rt, the drag 
coefficient of the best body of a family is given by 

CD* = 3(80 *)2 [24(E2-k'2K2) (.r:.. \2 _16rtk2(B_k,2D) ~ + 3rt~4J 
rtk4 80 *) 8

0
* 

- - -- ---- - ~----~ 
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where the value of k' to be used is the one which makes 

s * = -.SL. 
V* 

19 

( 36) 

This value of k' is best found from figure 2. It is not so useful in 
this case t o refer the drag coefficients to those for a body without 
center section, for the value of the length ratio k' is no longer arbi­
trary and hence cannot be made to vanish at will. 

For the cases in which the ratio of frontal-area parameter to 
volume parameter is greater than 8/3n, the best body of a family is the 
one for which the length of the cylindrical section is zero, as has been 
noted. The drag coefficient CD* is then given by the formula 

Since the length of the cylindrical center section is zero and no longer 
enters as a parameter, it is convenient to reintroduce the semi total 
length 1 into the formulas. The wave drag, divided by free-stream 
dynamic pressure, is 

R = n;4 (24 V2 
- l6n 1 .VSo + 3n 2 12 S0

2
) (38) 

and this agrees with the result of reference 4. The length 1 must be 
between the limits 

Since for a given cross-sectional area, the body of least wave drag will 
be the one with the longest admissible length, it is clear that for the 
present case , where So and V are prescribed, and no center section 
exists , the best body is the one for which 

2 = 4 V 
;r So 

(40) 

as stated in reference 4. Bodies, the length of which is greater than 
the value of equation (40), do not fall within the admissible region and 
hence violate condition (2c). 

Shapes of the bodies for the present case are shown in figure 8. 
The body for which So*/V* equals 4/n and k' = 0 is shown at the top of 
the figure. This body is the best one of all those without a midsection, 
having the relation between 2, So, and V given in equation (40). The 
other body shapes shown are each the best body for the prescribed value 
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of t he parameter ratio So*/V*, the value of k' being chosen from t he 
lower curve of figure 2. The equations for the sha~es are 

So* < 8 
v* - 3n: for 0.5 

where (r/rO)l and (r/rO)2 are defined in equations (28) and (34), 
respectively, 

for 
8 ::; So* < 4 

3n: V* 1( 

1/2 

(4la) 

(4lb) 

In order to obtain the best body of the family described by equa­
tion (4la), the value of k' to be used can be found from equation (36), 
or from the lower curve of figure 2. For the family described by equa­
tion (4lb), the best member is the one for which 

4 = n: 

SUMMARY OF RESULTS 

For convenience, the important drag formulas of the preceding 
analysis have been gathered together in the present section. The equa­
t ions are numbered just as they appear in the text. The formulas are 
given in terms of the dimensionless parameters k', So*, and V*, which 
are related to the total length 22, the cylinder length 2L, the frontal 
area So, and the volume V by means of the equations 

kt = ...1.. 
2 

S * ::: So 
0 12 
V* = L 

2 3 
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Case 1: Total Length, Cylinder Length, and 
Frontal Area Fixed; Volume Free 

The cylinder length and frontal area determine the dimensionless 
parameters k' and 80*, "While the volume is represented by the para­
meter V*. The prescribed values of k' and 80* determine an admissible 
range of values of V* (see fig. 2), and the optimum body of this family 
has the following characteristics: 

Drag coefficient based on frontal area, 

(26) 

Drag coefficient based on (volume)2/3 

(27) 

Case 2: Total Length, Volume, and Cylinder 
Length Fixed; Frontal Area Free 

The given volume and cylinder length determine the dimen~ionless 
parameters V* and k', and these values lead to a range of admissible 
values for So*. (See fig. 2.) The best body of the family so deter­
mined has the following characteristics: 

S * = ..§.. B-k,2D V* 
o 3n k 2 ( 31) 

Drag coefficient based on (vOlume)2/3, 

k~ (See fig. 6) 

Drag coefficient based on frontal area, 

1 (33) 
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Case 3: Total Length, Frontal Area, and Volume 
Fixed; Cylinder Length Free 

The frontal area and volume determine So* and V*, and these in 
turn determine a range of admissible values of k'.(See fig. 2.) If 
the quotient So*/V* is less than 8/3n =0.849, the best body is one 
with a value of k' such that 

~l So* 
'h == V* 

where ~l and Wl are defined in expressions (21). This value of k' 
is most easily found from figure 2. The drag coefficient for the opti­
mem body is then 

In case the value of the ratio So*/V* is such that 

8 < So* < 4 
--"'U'*--3n V n 

the best body is one with no center section (k' = 0), and the drag 
coefficient is 

or, in terms of the remaining three parameters l, So, V, 

R drag - 3 (24 V2 16..,. ~ V S + 3..,.2 ~ 2S02) 1 2-nl4 - H (, 0 H (, 

'2 PoVo 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif. August 24, 1951 

(38) 
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APPENDIX 

A MINIMUM DRAG PROBLEM WHICH INCLUDES AN APPROXIMATION 

'ill THE EFFECT OF SKIN FRICTION 

It is possible to include the effects of skin friction in the 
analysis of minimum drag of bodies of revolution, provided the surface 
area of the bodies is known. If it be assumed that this surface area 
is expressible in the form 

23 

(Al) 

where the second term represents the area of the ogival end sections, and 
I' is an unspecified constant, then the drag due to skin friction is 

~ Dr :::: 41' [1 + (A -1) k'J CDr to (A2) 
p V 27,2 I' o 0 

where CDr is the friction-drag coefficient, to is the maximum thick­
ness ratio, and k' is again the ratio of length of cylindrical section 
to total length. 

Consider now a body of revolution with prescribed length ratio k' 
and frontal-area parameter So*. The wave-drag coefficient based on 
frontal area for the best such body is, from equation (26) of t he text, 

1(2 t 0
2 

CDS:::: E2_ k,2K2 

The total-drag coefficient C~, based on frontal area, is then 

CD :::: ~2 tg2:2 + 4Y
t [1 +, (~ -l)k']CD T E -k' Ie 1( 0 I f 

Now the total drag can be minimized with respect to maximum thickness 
ratio to; there results for the optimum, to', 

to' ~ :f;r f6 r GDf (E2_k,2K") [1 + (i -1) k'] riO 
It remains to assign values to the constants 

(A3) 

(A4) 

Inspection of figure 5 shows that the bodies under consideration do 
not differ greatly in shape from prolate ellipsoids of revolution. Thus, 
for the present purposes, it will be sufficient to use the approximation 

I' :::: .2 
2 



24 NACA TN 2535 

corresponding to the surface area of a prolate ellipsoid the minor axis 
of which i s small compared to its major axis . Equation (A4) for the 
optimum thickness r atio now becomes 

1/3 

to' :::: in {40 CDf (E2_kI2~) [1 + (~n-l) k' J} (45) 

If the cyl indrical section is allowed to vanish , k' vanishes, and the 
last equation becomes 

to I I ::::.l AD CD 
L=O 2n: f (46) 

The optimum thickness ratio for bodies with a center section can there­
fore be expressed as 

where 

:::: C (k ') t I I 
o L~O 

A graph of c(k ' ) versus k' is shown in the sketch . 
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The remaining constant is the 
skin-friction drag coefficient 
CDp ' For the purpose of illustra-
tion, an average value of 0.0025, 
corresponding to a turbulent 
boundary layer at a Mach number of 
about 1 .7 and a Reynolds number of 
13 million, was taken from the 
data of reference 9. The optimum 
thickness ratio for a body of 
revolution with no center section, 
and with prescribed length, con­
sidering both wave and friction 
drag, is then found to be (from 
equation (A6)) 

By means of the sketch of the var iation of c(k '), the results can be 
extended to bodie s of revolution with a center section. Consider a body 
the center section of which makes up 10 per cent of its total length. 
From the sketch and the above value of to ' I , it is seen that the 

L::::O 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 
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optimum val ue of thickness ratio remains about 1/14, again showing that 
the effect of the added cylindrical portion upon the drag is small for 
small values of the length ratio k'. The optimum thickness ratio 
decrea ses t o 1/19 for a body the center part of which is 50 percent of 
the t otal length. 
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