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SUMMARY 

An impulse-momentum method for determining impact conditions for 
landing gears in eccentric landings is presented. The analysis is pri-
marily concerned with the determination of contact velocities for 
impacts subsequent to initial touchdown in eccentric landings and with 
the determination of the effective mass acting on each landing gear. 
These parameters determine the energy-absorption requirements for the 
landing gear and, in conjunction with the particular characteristics of 
the landing gear, govern the magnitude of the ground loads. 

Changes in airplane angular and linear velocities and the magnitude 
of landing-gear vertical, drag, and side impulses resulting from a 
landing impact are determined by means of impulse-momentum relation-
ships without the necessity for considering detailed force-time varia-
tions. The effective mass acting on each gear is also determined from 
the calculated landing-gear impulses. General equations applicable to 
any type of eccentric landing are written and solutions are obtained 
for the particular cases of an impact on one gear, a simultaneous impact 
on any two gears, and a symmetrical impact. In addition a solution is 
presented for a simplified two-degree-of-freedom system which allows 
rapid qualitative evaluation of the effects of certain principal 
parameters. 

The general analysis permits evaluation of the importance of such 
initial conditions at ground contact as vertical, horizontal, and side 
drift velocities, wing lift, roll and pitch angles, and rolling and 
pitching velocities, as well as the effects of such factors as landing-
gear location, airplane inertia, landing-gear length, energy-absorption 
efficiency, and wheel angular inertia on the severity of landing 
impacts. -A brief supplementary study which permits a limited evalua-
tion of variable aerodynamic effects neglected in the analysis is pre- 
sented in the appendix. 

Application of the analysis indicates that landing-gear impacts in 
eccentric landings can be appreciably more severe than impacts in 
symmetrical landings with the same sinking speed. The results also
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indicate the effects of landing-gear location, airplane inertia, initial 
wing lift, side drift velocity, attitude, and initial rolling velocity 
on the severity of both initial and subsequent landing-gear impacts. 
A comparison of the severity of impacts on auxiliary gears for tricycle 
and quadricycle configurations is also presented. 

INTRODUCTION 

Available literature on the design of aircraft for the landing 
condition gives relatively little emphasis to the problem of eccentric 
landings. For example, current design requirements assume the same 
landing-gear reactions in unsymmetrical impacts as in symmetrical 
landings. Experience has shown, however, that landing-gear loads in 
either the initial or some subsequent impact in an eccentric landing 
can be appreciably greater than the loads in a symmetrical landing with 
the same sinking speed, particularly when the locations of the landing 
gears have been chosen without proper regard for the angular inertias of 
the airplane. The problem of eccentric landings may be especially 
important in the case of unconventional landing-gear configurations for 
which little practical design or operating experience is available. 

The purpose of the present paper is to investigate the rigid-body 
dynamics of airplanes during eccentric landings and to evolve a simple 
analytical method for determining landing-gear contact conditions for 
successive impacts in such landings. These contact conditions, which 
include, landing-gear contact velocity, effective mass, and airplane 
attitude at the time of impact, govern the energy-absorption require-
ments of the landing gear and, in conjunction with the particular charac-
teristics of the landing gear, determine the loads applied to the air-
plane by the landing gear. 

The major portion of the analysis is concerned with the determina-
tion of landing-gear contact velocities for impacts subsequent to the 
initial touchdown. In this part of the analysis, landing-gear impulses 
and resulting changes in airplane linear and angular velocities are 
determined by means of impulse-momentum relationships, and the free-body 
motions of the airplane during the interval between the termination of 
one impact and the beginning of the next impact are considered. Also 
presented is an impulse method for determining the effective mass acting 
on each landing gear during an impact. The application of impulse-
momentum relationships in the present analysis eliminates the necessity 
for considering detailed landing-gear force-time variations but 
restricts the method to those cases where the impulses on the landing 
gear or gears in contact with the ground are largely completed prior to 
the beginning of the next impact.
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The analysis is presented in a general form and is applicable to 
any landing-gear configuration. The treatment permits the investiga-
tion of the relative importance of such factors as rate-of descent and 
angular velocities at initial touchdown, side drift, wing lift, wheel 
spin-up, and landing-gear energy-dissipation efficiency, as well as the 
longitudinal and lateral locations of the landing-gear units with 
respect to the rolling and pitching radii of gyration of the airplane. 
The analysis treats eccentric impacts on one landing gear, simultaneous 
impacts on any two gears, and symmetrical impacts. Since the terminal 
conditions for any stage of the motion during a landing represent the 
initial conditions for the next stage of the motion, the analysis per-
mits the determination of the behavior of the airplane during successive 
impacts following the initial contact with the ground and also permits 
a limited evaluation of the stability of the airplane as the landing 
progresses.

NOMENCLATURE AND SYMBOLS


Coordinate System 

The two principle sets of axes employed in the analysis are 
defined as follows: 

Body axes, a,b,c - This coordinate system moves with the,airplane, 
has its origin at the center of gravity of the airplane, and Is described 
as follows: 

a-axis	 parallel to arbitrary fuselage reference line, positive 
forward 

b-axis	 normal to fuselage plane of symmetry, positive to right 

c-axis	 normal to fuselage reference line in plane of symmetry, 
positive downward 

Space axes, x,y,z - This coordinate system is a fixed system 
having its origin at a point in the ground plane directly beneath the 
center of gravity of the airplane at the instant of initial landing 
impact and is described as follows: 

x-axis	 formed by intersection of ground plane and plane containing 
a-axis and being perpendicular to ground plane, positive 
forward
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y-axis	 in ground plane and perpendicular to x-axis, positive to right 

z-axis	 perpendicular to ground plane, positive upward 

Symbols 

Fv	 vertical landing-gear force, positive upward 

Fd	 drag force, positive rearward 

F s	 side force, positive to right

(Itt 
vertical landing-gear impulse	 Fv dt) positive upward 

Id	 drag impulse (ftt Fa	 positive rearward 

Ts	 side impulse (ftott F s dt) positive to right 

g	 gravitational constant 

z	 vertical velocity of any point on airplane, positive upward 

y	 lateral or side drift velocity of airplane center of gravity, 
positive to right 

x	 forward velocity of airplane center of gravity, positive 
forward 

vertical acceleration of any point on airplane, positive 
upward 

0	 angle of pitch measured between ground plane and a-axis in 
plane of symmetry, positive nose up 

p	 angle of roll measured between ground plane and b-axis in 
plane, perpendicular to a-axis, positive left wing up 

auxiliary angles employed in impulse equations (Defined in 
terms of attitude angles where they are introduced. See 
equations (13).)
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0	 pitching velocity of airplane, positive nose up 

rolling, velocity of airplane, positive left wing up 

E	 kinetic energy 

W	 total weight of airplane at landing 

We	 effective weight acting on given landing gear 

M	 total mass of airplane at landing (W/g) 

Me	 effective mass acting on giveti landing gear (We/9) 

r	 radius of tire 

V	 vertical velocity of landing gear at impact 

'aa	 rolling moment of inertia of airplane about longitudinal 
(a) axis 

Ibb	 pitching moment of inertia of airplane about lateral (b) axis 

aa	 rolling radius of gyration of airplane 

pitching radius of gyration of airplane 

Iw	 moment of inertia of one wheel and tire assembly about axle 

N	 number of wheels attached to given landing gear 

ratio of vertical impulse acting on gear i to sum of vertical 
impulses on all gears making simultaneous contact with 
ground 

KL	 wing lift factor, ratio of aerodynamic lift force to total 
airplane weight 

K	 prerotation factor, ratio of prerotation peripheral velocity 
of wheel to forward velocity of airplane 

K5	 ratio of side impulse to vertical impulse 

t	 time 

Tir	 energy-dissipation efficiency of landing gear; ratio of 
impact energy dissipated to initial kinetic energy 
of impact
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A,B,C,D combined constants used. in impulse analysis 

E	 combined constants used in equations for effective mass 

Subscripts 

o	 initial conditions at beginning of particular landing impulse 

t	 terminal conditions at end of particular impulse, represents 
initial conditions for free-body portion of analysis 

f	 final conditions for free-body motion, corresponds to initial 
conditions for next subsequent impact 

c	 dimension measured with shock strut and tire partially 
compressed 

g	 center of gravity of airplane 

T	 total 

m,n	 identifying integers assigned to each landing-gear unit of 
aircraft 

i	 landing gear or gears, contact of which initiates given stage 
of motion 

j	 landing gear or gears, contact of which terminates given 
stage of motion; j becomes i in next stage of motion 

Definitions 

Stage of the motion - the interval between the initial contact of a 
given landing gear and the next impact. 

FUNDAMENTAL CONSIDERATIONS 

General Considerations for Eccelitric Impact 

Some of the more important aspects of the problem of eccentric 
landings can be easily visualized by considering an idealized repre-
sentation of an airplane contacting the ground on one landing gear. 
For the purposes of this simplified consideration, the airplane is 
assumed to have freedom in roil and vertical translation only. It is
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also assumed that the impacting landing gear does not rebound after 
contact, that the weight is exactly balanced by the wing lift, that no 
aerodynamic moments act on the airplane, and that the only forces 
acting on the landing gear are in the vertical direction. With these 
assumptions the impact velocity, effective mass, and impact energy for 
the first and second impacts (denoted by •i and j, respectively, in 
the sketch in fig. i) can be readily determined from the initial condi-
tions and simple impulse-momentum relationships. Although this ideal-- 
ized system does not fully represent an actual landing of an airplane, 
the results obtained can be used to illustrate some of the fundamental 
differences between eccentric and symmetrical landings. 

Calculated results for the idealized system are presented in the 
form of dimensionless ratios in figure 1 which permits comparison of 
impact conditions for eccentric and symmetrical landings. Figure 1 
also illustrates the effects of landing-gear location on impact sever-
ity in eccentric landings. The significant parameter for this simplified 
system is the ratio of the semitread b to the radius of gyration of 
the airplane in roll p. 

From figure 1 it can be seen that (a) the contact velocity for the 
second impact V , in an eccentric landing can be appreciably greater 
than the initial descent velocity of the airplane V 1 if the landing 
gears are located outboard of the roiling radius of gyration; 
(b) although the effective mass Me, which can be considered to act on 
a given landing gear, is less than half the total mass M for values 

of	 > 1, the kinetic energy for the second impact E can be 
aa 

appreciably greater than half the total energy of the airplane ET, 
because of the increased contact velocity; (c) one of the impacts in 
an eccentric landing must be at least as severe and, in general,. 

(where ---- i) will be more severe than each landing-gear impact in 
Paa 

a symmetrical landing. 

Since these results indicate that impact severity can be appreciably 
increased in eccentric landings, the foregoing simplified treatment has 
been broadened to permit consideration of additional factors that can 
significantly influence the severity of impacts in such landings. The 
more detailed treatment includes the effects of such factors as freedom 
to pitch, drag loads, side drift, reduced wing lift, angular velocities 
and attitude angles at initial contact, and landing-gear energy-
dissipation efficiency.
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Considerations Leading to Present Type of Analysis 

In the general case of an eccentric landing, the motions of the 
airplane produced by an impact are determined by the time histories of 
the vertical, drag, and side loads on the landing gear, in conjunction 
with the geometric, inertia, and aerodynamic characteristics of the air-
plane. The choice of treatment employed in the present study has been 
influenced by the fact that the magnitude and variation of the ground 
reactions cannot, in general, be accurately specified at the present 
time. Drop-test data do not appear suitable for this purpose since 
major differences often exist between the results of laboratory and 
flight tests. 

The vertical—force - time relationship during an impact depends 
largely on the characteristics of the landing gear and on the numerous 
initial conditions which can vary widely from impact to impact. The 
prediction of vertical loads is greatly complicated by the simultaneous 
action of drag and side loads which can greatly increase strut friction. 

The drag loads produced by the wheel spin-up process during landing 
depend on the vertical-load time history, the coefficient of friction, 
which appears to vary considerably during the spin-up process, the 
moment of inertia of the wheel, and the radius of the compressed tire. 
As in the case of the vertical load, the time history of the drag load 
can be appreciably different for different airplanes. At the present 
time, because of the lack of information regarding the variation of the 
friction coefficient, the time history of thedrag load cannot be accu-
rately predicted, even if the vertical-load variation were adequately 
defined. 

The prediction of side loads due to yaw during landing is compli-
cated by the large variation in the type of contact between the tire 
and ground during impact. In the early part of the impact a state of 
complete skidding exists; following spin-up the wheel is in a state of 
yawed rolling. The problem is further complicated by the transitory 
nature of the phenomenon and the absence of either experimental or 
theoretical information regarding the yawed rolling characteristics of 
tires at high vertical loads. 

In view of the fact that the time histories of ground loads applied 
to the airplane cannot, in general, be accurately defined, it appeared 
desirable to develop an analysis which would not require detailed speci-
fication of the force-time variations. The present analysis therefore 
makes use of an impulse-momentum approach since the impulses acting on 
the landing gear can be more readily described from such simple con-
siderations as the energy-dissipation efficiency or rebound character-
istics of the landing gear, the momentum required to spin up the wheels, 
and the lateral momentum due to side drift of the airplane.
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METHOD OF ANALYSIS 

In the present treatment the descent velocity and the attitude of 
the airplane at the instant of initial touchdown are assumed to be known 
from statistical studies or design requirements or to have been deter-
mined by some other means. The analysis Is largely concerned with the 
determination of the landing-gear contact velocities and airplane atti-
tudes for impacts subsequent to the Initial contact in eccentric landings. 
Also treated is the determination of the effective mass which acts on 
each landing gear during an impact. 

The behavior of the airplane between successive impacts is inves-
tigated analytically as a problem in rigid-body dynamics since airplane 
elasticity is considered to have little effect on the over-all motions. 
In order to avoid the necessity of having to use particular force-time 
variations to represent the landing-gear reactions, an impulse-momentum 
approach is used to determine changes in the linear and angular veloci-
ties of the airplane during an impact. This part of the problem is 
treated in a section entitled "Impulse Analysis," in which the changes 
in the airplane velocities are assumed to occur rapidly without appre-
ciable change in airplane attitude during the impact. The contacting 
gear is assumed to rebound from the ground with a vertical velocity 
determined by the contact velocity and the energy-dissipation efficiency 
of the landing gear. The airplane is thereafter considered a free body 
under the influence of constant gravitational and wing lift forces. In 
the section entitled "Free-Body Motion Analysis" the equations defining 
the translational and rotational motions of the airplane following 
rebound are set up and integrated, and the vertical and angular veloci-
ties and the attitude of the airplane for the next impact are determined. 
If the contact conditions for impacts subsequent to the second impact 
are desired, the computation procedure can be repeated with the final 
conditions for any given stage of the motion as the initial conditions 
for the next stage. 

A section dealing with the calculation of the effective mass which 
acts on a landing gear during an impact is also presented. In order to 
eliminate the necessity of assuming that the resultant ground force 
acting on a landing gear maintains a constant direction throughout an 
impact, equations for the effective mass in the present treatment are 
derived on an equal-impulse rather than the usual equal-acceleration 
basis. 

In the organization of each major subdivision of the analysis, the 
most general case is treated first, following which particular adapta-
tions of the general equations to more specific cases are presented. 
Assumptions are briefly mentioned wherever they are introduced in the 
analysis; a more detailed discussion of the manner in which the assump-
tions influence the calculated results is presented in a separate section.
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The following brief outline of the analysis is presented for the 
convenience of the reader: 

I. Impulse Analysis 

A. General Impulse Equations for Eccentric Landings 

B. Impulse Solution for Impact on Any One Landing Gear 

C. Impulse Solution for Simultaneous Impact on Any Two 
Landing Gears 

D. Impulse Solution for Symmetrical Impact 

II. Free-Body Motion Analysis 

A. General Solution for Motion Following Rebound 

B. Free-Body Motion Solution for Symmetrical Landing 

III. Simplified Analysis of Airplane Motions for , a System with Two 
Degrees of Freedom 

IV. Effective Mass 

A. Derivation of Effective Mass for the General Case 

B. Effective Mass for Simplified Cases 

IMPULSE ANALYSIS 

In this section equations are derived for the linear and angular 
velocities of the airplane at the instant of rebound which terminates 
the impulse. These terminal conditions serve as the initial conditions 
for the analysis of the free-body motion following rebound, from which 
the contact conditions for the next impact are determined. 

General Impulse Equations for Eccentric Landings 

In the general case, any landing gear or combination of landing 
gears may contaãt the ground simultaneously during a landing impact. 
Thus, to make the impulse equations applicable to the .g&ieral landing 
problem, they are set up in terms of subscripts I where this notation 
indicates that the term or equation applies to any of the landing gears 
making simultaneous contact during the impact under consideration.
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The drag impulse on a particular gear making contact with the 
ground during a given impact is taken equal to the change in angular 
momentum of the wheel or wheels attached to the gear as their peripheral 
velocity is increased from an initial value (zero unless prerotation is 
considered) to a value equal to the forward ground speed of the airplane 
at the conclusion of the impulse. Thus, the drag impulse Id acting 
at each landing-gear unit i is defined by 

(	 (1)
tt 

Id = I	 Fdidt = 
t	 r

	

1 -	

i 
Li 0 

Furthermore, the sum of the drag impulses on all the gears in 
contact with the ground must equal the change in forward momentum of 
the airplane and thus may be defined in-terms of the forward velocities 
of the airplane at the beginning and end of the impact by. 

Yid i = -M(ct - 	
.,	 (2) 

Combining equations (1) and (2) permits the drag impulse to be 
written in terms of the forward velocity of the airplane at contact x0 
as follows:

ru 
I-(1 -)I	 o 
Lfc 

d1 1 

+IE - ( i - KP 

In computing Idi the denominator of equation (3) may be taken equal 

to unity in most practical cases. - 

The vertical impulse acting on each landing gear contacting the 
ground during a landing impact may be defined in terms of the change in 
vertical momentum of the airplane during the impaöt and the impulse of 
any unbalanced gravitational forces by

11 
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1
= r F 1 dt = K1[ (t -. go) + (1 - KL)Wtt] J 

tt 

0 

where K1 is the ratio of the vertical impulse acting on gear i to 
the sum of the vertical impulses on all the gears making simultaneous 
contact with the ground; that is,

rtt
dt

to 

Fv, 

K•= 

	

'.\	 .ptt 

L_J F.dt 

	

1	 to 

For any particular landing impact

K1 = 1
	

(6) 

and

	

III v . =
	 f, otFvj dt	 (gt -. g0) + (i - KL)Wtt	 (7) 

If the airplane has a side component of velocity during landing, 
the gears in contact with the ground will be subjected to lateral 
forces acting in a direction opposite to that of the motion. The sum 
of these side impulses 1s1 must of course equal the change in momen-
tum of the airplane in the lateral direction. Thus, 

=

 tt 

Isi	
fto 

F dt =	 - ( 8) 

The maximum side impulse which can be developed during an impact 
may be expressed in terms of the vertical impulse as 

0	 rw .	 . 

	

I 
'Si	 KsL (zgt - zg0) + (1 - KL) wtt]	 (9) 

where the factor K 8 is governed by the cornering characteristics of 
the tire or the skidding friction coefficient, depending on the angle 

(7)
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of yaw, and the factor	 is employed to indicate the direction of 
Pol 

the side impulse. Similarly for any particular gear 

	

' i KiKs[ (igt -	 + (1 - KL)Wtt]	 (io) 

Since the lateral velocity component in landings with any appre-
ciable side drift is generally as large or larger than the lateral 
velocity corresponding to the maximum side impulse which can be 
developed, equations (9) and (10) are employed in the present analysis. 
Particular cases in which the initial side drift velocity is smaller 
than that corresponding to the maximum side impulse may be treated by 
assuming that the initial side drift velocity is reduced to zero during 
the impact and computing the side impulse on the basis of equation (8). 

Since the line of action of the resultant impulse force acting on 
each impacting gear during a landing does not in general pass through 
the center of gravity of the airplane, changes in airplane angular 
momentum will occur during the landing impact. These changes are 
readily expressed in terms of the landing-gear impulses previously 
defined by equating impulsive moments to angular-momentum changes. In 
these moment equations average values for the length of the strut and 
the compressed-tire radius are used. It is assumed that the angles e 
and	 dono1 change during the impulse of the ground forces and that 

the respective moments are closely determined by the values of these 
angles at the time of contact. Changes in these angles during the 
impulse are normally small; however, even in cases where the angular 
changes might be comparatively large, this assumption will introduce 
only minor errors into the calculation of the angular-velocity changes 
due to the impulsive moments. 

Summing pitching moments about the lateral axis b yields 

Ibb(O t -	 = [ fIv,(cic sin 70 + aic cos a0) - 

Id(ci cos O - aic sin e) + isi[ai + 

+r. cos0 r	 sin Oo )cos a0 - (c	
1c
	 0 0) sin yoJtan 3o}(11)
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Similarly, summing rolling moments about thelongitudinal axis a gives 

Iaa(4t 40) =	 {Iv [(C± ± ri cos eo)sin 00 - b 1 cos a0] - 

• I dib i	 o - is[(ci + r 1 cos eo)cos 00 + 

b tan 
c	 O	

a0] I i  
In the preceding equations 3, 7, and a. are auxiliary angles as 

shown in figure 2 and are defined in terms of , the airplane attitude 

angles as follows:	 S 

= tan
-1 (tan	 cosO) 

	

tan (tan 0 cos )	 (13) 

-1/	 2	 .2 
a = cos V 1 - sin - sin y 

Substituting equations ( Ii-) and (10) into (ii) and (12) gives 

Ibb(et - e0) =
	 - 

g01 + (1 - KL)Wtt]IKi(ci sin 7 + 

a	 cos a0 ) -	 I -±(ci cos 0 - a1 sin e) - 
1 

oJW 
K5 10\L ( t -. g0) •+ (

1 - KL)Wtt] tan o	 Ki[(ai + 

ri 
C 

sin eo)cos a.0 - (c1 c + r.
1c
 cos o 0) sin 7o]	 (i)

(12)
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'aa(t - o) = N^ Nt - g0) - + (i - KL) WttI > K . [(c . + 
1	 'L 

r cos e0)sin	 - b 1 cos aö] - I Id1bi sin	 + 

Yorw. 
K	 [(Zg - g0) + (i - KL)Wtt] c K [( C1 + 

ri cos ' eo)cos 00 +b	 tan 00 cos ao (is) 

The preceding equations can be related by establishing the fol -
lowing kinematic conditions which are governed by the rebound charac-
teristics of the landing gear and the geometry of the airplane relative 
to the ground. A knowledge of the rebound characteristics of the 
landing gear permits determination of the rebound velocity zi of an 

impacting gear in terms of the contact velocity. This relationship may 
be expressed by 

/

it =	 1\J - r1	 (16) 

where 11r• is the energy-dissipation efficiency of the landing gear. 

This parameter can be determined from drop-test data or can be estimated 
from similar designs. 

The contact velocity i i for any particular landing gear is 
related to the linear and angular velocities of the airplane at the 
instant of contact by the equation: 

lo
	

90 
=	 + 6 0 (ai cos a0 + c 1 sin o) - o( bi cos a - c 1 sin 3) 

(l7a) 

Similarly the rebound velocity is related to the linear and 
angular velocities at the end of the impulse by the equation: 

iit
= 	 t + t(aj cos a+ c i sin Yt	 Pt(bi cos, at - c 1 sin t) 

(lm)
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The elevation of the airplane center of gravity z	 at the end 

of the impulse is given by the equation: 

Zg = (c cos O t - ai sin O t + r)cos f3 + b sin 0	 (18) 

This quantity z 9 is not actually used in the impulse analysis but is 
required in establishing initial conditions for the subsequent free-body 
motion analysis. 

Equations (6), (14), ( 15), and (17b) form a set of simultaneous 
equations equal in number to the number of gears concurrently in contact 
with the ground plus three. For any particular case involving a given 
number of gears in contact with the ground, these equations can be 
solved simultaneously to determine the values of 6t' t' and	 in 

terms of the geometry at the beginning of the impulse, .the geometry at 
the end' of the impulse, the landing-gear energy-absorption efficiency, 
and the duration of the impulse. 

The impulse equations, as written, involve the angles O- and 
which can be treated as variables by the introduction of additional 
equations. The added complexity involved in the simultaneous solution 
of these equations is not considered to be warranted, however, since 
changes in the attitude angles during the impulse are generally small 
and only minor trigonometric errors are introduced into the impulse 
solution by assuming 0 t =0 and t = 

The impulse analysis takes into consideration the effects of 
unbalanced wing lift and gravitational forces and thus 'the duration of 
the impulse tt in the unbalanced-weight terms. The equations, however, 
do not permit treating tt as a variable in the general case unless 
additional simultaneous equations are introduced. On the other hand, 
when the wing lift is equal to the weight of the airplane, the terms 
containing tt vanish from the equations. • Since in many landings the 
difference between the wing lift and the weight is relatively small and 
the impulse is of short duration, neglect of the term (1 - KL) Wtt in 
the calculation of the changes in linear and angular velocity during 
the impact appears to be justified. 

In certain particular cases, such as those involved in carrier 
landings or landings of unconventional airplanes, the difference between 
the wing lift and the weight may be large enough to necessitate con-
sideration of the term (i - KL) Wtt in the impulse solution. In such 
cases tt could be determined from an equivalent drop test or esti-
mated from previous experience with similar gears.
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Impulse Solution for Impact on One Landing Gear 

For the particular case of a landing impact on any one gear m, the 
equations required to determine changes in airplane motion resulting 
from the impact can be readily obtained from the general impulse equa-
tions previously derived. Since Km = 1 in this case (see equa-
tion (6)), equations (17b), (i ii-), and (15) may be written as follows: 

gt +	 cos at + cm sin 7t) - t(1 m cos at - cm sin

(19) 

Ibb( Ot - 60) 
= [W (^gt - g0) + (i - KL)Wtt(cm sin. Yo 

+	
c cos	 - 

T 

Ks Yo

ot [(
a
mc 

+ rm	 e) cos	 - (c	 + 

rm cos 00) sin yo ]tan- I (cm cos 0 -
	

sin

(20) 

Iaa(t -	 = [( gt - g0) + (i - Ki)WttJ[(cm + rm cos Oo)sin o - 

bm cos ao + Ks 
0 [(

cm + rm cos O o )cos 00 + 
Y701  

bm tan 00 cos Mo1}_1bmc sin e0 	 (21) 

or more simply as,

A11g 
+12 e t + A13 +	 0	 (22) 

A21g + A220t + A24 = 0	 (23) 

A31g + A33 t + A34 = 0	 (24)
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where the newly introduced constants are defined by 

A11 = 1 

Al2 = am cos at + C Slfl 

A 
13	 m	 t	 m 

= c sin 3 - b cos 

A =- 14	 mt 

A21 = _Cmc 5111 Yo + amc cos a0 - 
K5 :i[

mc + rmc sin Oo)cos a0 - 

(cm + rmc	 00) sin 7 0 ]tan 

A22 'bb 

A24 = I ( cm cos 00 -
	

sin o) - 'bb0o - A211z
g - (i - KL)tt 

A31 = _{(cm + rm cos Oo)sin 00 - bm cos a0 + 

K5 YO [(cm + rmc cos e0)cos Po + b tan 00 cos

aa A33 =I	 - 

A34 = Idmbmc sin O - Iaao - A3l [ g - (1 - KL)tt] 

Equations (22), (23), and (24) form a set of simultaneous equa-
tions which can be solved fbr 0 ' (pt,and	 in terms of known 

quantities by either matrix or algebraic methods. The following 
results were obtained by algebraic manipulation: 

A24Al2A33 - A22(A14A33 - A34A13)	
(25) zg = A22 (A11A33 - A31A13 ) - Al2A21A33
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A21•	 A2j 
Ut =	 Zg -	 (26) 

A31	 A3 
t =- iA:	 9t	

A 33
 -	 -	 (27) 

In most practical cases 
Ut, Pt and z 9 can be taken equal to 

9, cp0 , and 
z 
9 , respectively, and tt in the unbalanced-weight terms 

can be assumed equal to zero withoutTntroducing appreciable errors 
into the impulse solution. 

Impulse Solution for Simultaneous Impact on Any Two Landing Gears 

This section treats an impact in which any two gears contact the 
ground simultaneously and then rebound with vertical velocities which 
depend on the contact velocity and the energy—dissipation efficiency of 
each impacting gear. The equations which follow do not require that the 
gears contact with identical velocities nor have the same rebound charac-
teristics. If the two gears making initial contact are m and n, 

*	 impulse equations (6), (lTb), (i), and (i) may be written as follows: 

K+K=l	 (28) 

+ Ô t('am cos at + cm sin Yt) - t( bm cos at - cm sin	 = Zm

(29) 

zgt +	 cos at + c sin Yt) - t(bn cos at - cn sin t) = nt

(30) 

Ibb(Ot -	 = [H (igt -
	 +	

- KL)Wtt]{Km(Cm sin 7o +	 + Kn(cn sin 7o + a0 COB	 - 

Ks j 2çKm[(amc + rmc sin 04 Cos Oo - (cmc + rmc cos Oo)sin 7o]tan 00 - 

K5 Y2 K0 [(an + r0 sin e0) cos cx0 - (c0 + r cos e ) sin 70] tan 

Idm(CmC cos O o 5m sin 00 ) - I(cn cos e0 - a0 sin o0)	 ( 31)
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1aa(t -	 = [t• 

bmc cos 

Kr 

S	 •;r Jo

g0) + (i - KL)Wttl {Km[(cm c + 1'm c COS 0O) sin 

ao ] + Kn[(cn + rnc os °) sin P o - bnc
Cos Mo] + 

Km[(Cn + rm cos 00)cos I3 + b tan 00 cos 
CIO  

+

YO 
K5Kn[(cn + rnc cos 0 0) 

cos 00 + bn tan 00 cos 

I bm sin 0	 'Ibn Slfl 6	 (32) 

Combining equation (28) with equations (31) and (32) and intro-
ducing new constants into equations (29) to (32) results in 

Biig + B 126 + Bi3cit + B 15 = 0	 () 

B
21 gt	 22 t 

+ B 0 + B23t + B25 = 0 

B3lg + B 326 + B3[zg . -	 g + (1 - KL)tt Kfl + B35 = 0 (35) 

B ig + B 3 + B - + (1 -	 )tt]Kn + B 5	 0 (36)

where 

B11 = B21 = 1 

B12 - am cos a t + cm sin 7t 

B13 =cm sin t_bm Cos cLt 

B	 := - 
15	 m  

B22 = an cos at + c sin 

B23 = _(b cos at - c sin P) 

B25 =
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B31 = _{cmc sin Yo + am  cos ar-j - K 5 10—[(amc + rmc sin Oo)cos cx - 

(cm + rm cos 90)sin 7o]tan 

B32=Ibb 

B 3 = -B31 - {cn sin 70 + an cos a,0 - K5 I :I 
[(an + rnc sin 9 0) cos a0 - 

9	 Yo 

(c 	 +r	 00) 
cos n	 n sin Yo]tan 

0 } 

B35 = Iã(cm Cos 9 - a
mC 

sin e) + Id(cfl cos eo - an sin e ) - 

B3i[ g - (i - KL)tt] - 

B41 	 L{(cm + r cos 00) 
sin - b	 cos a.0 +

mc

K5 YO [(c15 + rm cos Oo)cos 	 +	 tan	 cos a0] j I °I 
B =1aa 

Bj = -B 1 - {(c	 + r	 cos Oo)sin I3 j - b	 cos a.0 + 

K5 [(cn + r cos o) cos 00 + b tan 00 cos ao] } 
I Yol 

B5 =.I 
dm mc 
b	 sin e0 + I d.n nc b	 sin 9 0 - B 1 [ g0 - (i - KL)tt] - Iaa0 

If the term	 -	 + (i - KL)tt]Kn in equations (35) and (36)9t	 90 
is treated as a new variable, equations (33) to (36) form a set of	 - 
simultaneous linear equations, from which the following terminal condi-
tions are obtained:
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c2c6 - c3c5 
= 'c 105 - c2c4 

• - Cla	 C3 
Pt__ C2	 C2 

•
(39) Zg_ B 11	 11	 B11 

B4	 B43 

Li 9t-

	

	 + (i - KL)ttKfl - B44 -	 Zg	 (40)
g0 

where

Cl = B 2B 2 - B22B11 

C 2 = B13B 1 - B23B11 

C 3 = B 5B 2 - B2B11 

C 4 = B22 (B 31B44 - B 41B 34) - B32B44B21 

C 5 = B23 (B 31B44 - B41B 3 4) + B21B43B34 

C 6 = B25 (B 31B 44 - B 41B 34) - B21 (B 35B 44 - B45B34) 

Solving equation (40) for Kn yields 

B45 B41	 B43. 
----s --q 

K - 
B44 B44 g	 B44	

(41) 

	

n_g_g+(1_KL)gtt	 1 

and from equation (28) Km is given by

(37) 

(38) 

Km = 1Kn
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Impulse Solution for Symmetrical Impact 

This section treats symmetrical landings on two identical gears 
located symmetrically with respect to the airplane center plane as well 
as symmetrical landings on one gear located' in the airplane plane of 
symmetry. In such landings there is no initial roll angle, rolling 
velocity, or side velocity - that is, cp0 = 0,	 = 0, and K = 0. In

the two-wheel case bm = -ba , am = an = a, cm = Cn = C, 

=	 = r' 2 Mt= tnt=	
and Km = K. The foregoing 

conditions, in conjunction with equation (6), permits equation (17b), 
(14), and (15) to be written as follows: 

mnt = Ôt (amn cos O t + c m sin o) + gt	 (42) 

	

= [Nt - o) + (i - KL)Wttl(cmnc sin 	 +	 c
	 00)-
Ibb(et -  

(Id + Idn)(cmnc cos 00 - 	
sin eec)	

,	 3) 

'aa(t -
	 = 0	 (J.i.) 

If the subscript rim is considered to represent a single landing gear 
in the airplane plane of symmetry and Idmnis substituted for 

Idm + Id) the foregoing equations become directly applicable to 

symmetrical impacts on such gears. 

For the case of a symmetrical landing, changes in linear and 
angular velocity of the airplane during the impulse are completely 
defined by equations (42) and (43) which can be written in terms of 
new constants as

Dili 9 + D126 f D 3 0	 (4) 

D21g + D22et + D2 3 = 0	 (46)
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where 

D11 = 

D12 = a, cos O t + c	 sin 

D =-z 
13	 hint 

D21 = - (c	 sin 0 +a	 cos emn9	 c	 0) 

D22 = 'bb 

D23 = _D21[zg0 - (1 - KL)tt] - 'bbo + (idm + I)(c	 cos 00 - 

amn sin e) 

Solution of equations (5) and (46) gives 

D23D12 - D13D22 

Zg = D11D22 - D21D12	
(17) 

D11	 D13 

= -r- Zg -	
(18) 

12 

and, of course,

(149) 

FREE-BODY MOTION ANALYSIS 

This section is concerned with the motion of the airplane during 
the interval between rebound and the next impact. The terminal condi-
tions of the impulse analysis serve as the initial conditions for the 
free-body analysis, from which the contact conditions for the next 
impact are determined.
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General Solution for Motion Following Rebound 

Following a landing impact, the landing gear or gears i rebound 
from the ground, and the airplane may be considered a free body under 
the influence of lift and gravitational, forces during the interval 
between the rebound and the subsequent impact on gear J. Throughout 
this interval a constant average wing lift force is assumed to act 
vertically through the center of gravity of the airplane and aerodynamic 
moments are neglected. Thus, since no eccentric forces are involved, 
the pitching and rolling angular velocities remain constant at the 
values determined from the impulse calculation. 

The vertical acceleration of the airplane with constant lift and 
gravity forces acting at the center of gravity is defined by 

•g = -W (1 - KL)
	

(50) 

Integrating equation (so) between the limits t= tt and t equal to 
any time after the rebound and prior to the next impact results in 

-	 = -w (1 - KL) (t - t )	 '	 ( 51)
(g  

Integrating equation (51) in turn and solving for Zg gives 

Zg = Zg + g(t - tt) -	 - KL)(t - tt) 2	 (52) 

At the instant of contact of gear j (the next gear to contact) 
the height of the center of gravity above the ground Zg f is defined 

j 
in terms of airplane geometry and attitude by 

	

c j cos 0f - aj sin Ofj + r j + b tan	 cos	

()
Zgf = jl + tanp cos 2e 
j	

fj 

Since the pitching , and rolling angular velocities remain 'constant during 
the interval between rebound and the time of the next impact t f the 
airplane attitude at the instant of contact of the next gear j is 
given by

=	 + ê (t	 - t )	 ( 5k)
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of the attitude angles thus calculated will reveal whether the assumed 
landing gear j is actually the next gear to contact or whether some 
other gear would contact the ground prior to this time. If the calcu-
lated attitude angles indicate that the elevation of some other landing 
gear is lower than that of the gear for which the calculation was made, 
a new calculation must be made for the gear having.the lowest elevatlion. 
In general, however, the results of the impulse calculations make it 
fairly obvious which gear will contact the ground following a given 
impact. 

From the calculated time interval of the free-body motion, the 

velocity of the center of gravity igf J at the time of the next impact 

can be determined by means of the relationship 

=t - g(l - KL)(tf. - tt)	 (62) 

The vertical contact velocity for gear j is given by 

Jf = gf + Ô t(a
j cos af + c j sin 7f) - t(b 

i
cos a . - c 1 sin 13f.) 

(63) 

where 3, y, and a (previously defined by equations 13)) are deter-
mined from the . results of equations (51) and (55) and et and	 are 
the angular velocities at the instant of rebound as obtained from the 
impulse analysis. 

The foregoing analysis permits the determination of landing-gear 
contact conditions for an impact subsequent to the rebound which termi-
nates a preceding impact. As can be seen, some of the equations in the 
free-body motion analysis involve the attitude angles e t and Pt and 
the elevation zg at the end of the impulse. When the wing lift is 
nearly equal to the weight, which is the case in most landings, very 
little error is introduced in the calculated contact conditions for the 
next impact if in the free-body equations et, q, and Zg are 

assumed equal to O, q, and z , respectively. These assumptions 

are also satisfactory when the wing lift is appreciably different from 
the weight, if the duration of the impulse is short. A subsequent 
section of the paper discusses the application of the analysis to cases 
where the wing lift is considerably different from the weight and the 
impulse is of long duration.
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Free-Body Motion Solution for a Symmetrical Landing 

Although the previously developed general solution for the motion 
following rebound may be used in conjunction with any one of the partic-
ular impulse solutions developed, a somewhat simpler free-body solution 
can be obtained for the case of a symmetrical landing. In a symmetrical 
landing the roll angle and rolling velocity following rebound are zero, 
and equation (60) may be written as follows: 

(tf - t ) = 

+ ajOt ± (gt + ajÔt) + 2g (1 - KL)(zg - Cj + aet - rj) 

1-

(61i.) 

Equation (56) of the general solution may also be simplified 
considerably as follows: 

c Cos [&t + O t(tf - tt)] - a sin [t + êt(tf - tt)] + r	 (65) 

Values for zgfj
 and ef. in the symmetrical case may be obtained by 

J 
substitution of (tf . - tt) from equation (61i-) into equations (62) and 

(54). With these results the contact velocity for the next impact may 
be computed by means of equation (63) simplified to the following form: 

if	 gf + Ô
t (aj cos 19 f. + c sin O f )	 (66) 

SIMPLIFIED ANALYSIS FOR A SYSTEM WITH TWO DEGREES OF FREEDOM 

The solutions presented in the impulse and free-body analyses 
permit the determination of landing-gear impact conditions for several 
different types of eccentric landings and include the effects of a 
number of variables which influence the course of such landings. By 
greatly simplifying the analysis, qualitative results which show the 
effects of some of the major parameters can be readily obtained in 
nondimensional form. Such results can be obtained by simplifying the 
geometry of the airplane, by considering angular motion in the rolling
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direction only, and by assuming that the initial rolling velocity is 
zero and that the weight of the airplane is balanced by wing lift 
throughout the interval between the initial and second impacts. 

With the preceding assumptions, impulse and geometric equations 
describing the initial impact on gear i may be written as follows: 

	

'Vj = M(zg - g)	 (see equation (1))	 (67) 

	

Iaat = -I V.1 b.	 (see equation (12)) 	 (68) 
1 

= z	 - bjPt	 '	 (see equation (i7b))	 (69)
gt 

where the rebound. velocity Zit is defined in terms of the initial 

descent velocity of the airplane and the energy-dissipation efficiency 
of the impacting gear is defined by equation (16) as 

= _z
go
	 - 

Simultaneous solution of the four preceding equations for the conditions 
at the end of the impulse yields 

	

=	

:	

r )	
-	 (70) Vf	 ri

Iaa 

and

=Mbig(l +
	 -

- ri	 (7i) 
I	 +Mb. aa	 1 

Since the weight' of the' airplane is assumed to be balanced by wing 
lift, the angular and linear velocities of the airplane at the time.of 
the next impact are determined by the results of the impulse solution 
(equations' (70) and (71)). Thus the contact velocity of , the opposite 
gear (which is the next gear to contact) may' be obtained from these 
impulse results by

'jf =	
- bt	 (72)



NACA TN 2396
	

31 

Since the two gears involved are symmetrically located, b = -bk, 
and substitution of equations (70) and ('Ti) into equation (72) yields 

	

2Mbj?zg(l 
+V1	

ii.i) 
=	 -  Jf	 Zg%I1 - 1lr 

	

'aa +Mb1.	 OV 

Simplifying equation (73) and solving for the dimensionless 
velocity ratio z j /zg gives 

Zjf 2(1 +1 

-	 2	 r. 
P	 v 

0	 aa 
r +1 

1 

Equation (4) was used to compute the velocity ratios presented in 
figure 1. The energy-dissipation efficiency was assumed to be 100 percent 
(TI r = 1) in these computations. 

EFFECTIVE MASS 

Fundamental Concepts 

The basic concept of an effective mass involves the representation 
of a complex inertia system by a single equivalent mass. As applied to 
landing impacts, the concept is of considerable value since it permits 
the simulation of eccentric landing impacts by vertical-drop tests of 
the landing gear and furthermore provides a means for comparing the 
severity of such impacts analytically. 

Formulas for effective mass are conventionally derived-on an equal-
acceleration basis (reference 1) and involve the assumptions that the 
attitude of the airplane does not change appreciably during the impact 
and that the orientation of the resultant ground reaction remains fixed 
throughout the impact. If these assumptions are substantially correct, 
a simple vertical impact with such an effective mass will result in the 
same instantaneous vertical acceleration, vertical impulse, and impact 
energy as in the corresponding eccentric impact. The first assumption 
mentioned is in general quite satisfactory, as previously noted in the 
impulse-analysis section; the second assumption, however, is questionable 

(73)  

(74)
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for actual airplane landings with drag and side forces, since it 
implies a constant coefficient of friction between the tire and runway, 
which generally is not correct (references 2 and 3). Since the orienta-
tion of the resultant force actually varies with time during a landing, 
a variable effective mass would be required to produce identical 
instantaneous accelerations in an equivalent drop test; the use of a 
constant mass calculated by assuming some arbitrary direction of the 
resultant force could result in an impact having different values of 
vertical acceleration, vertical impulse, and impact energy than the 
eccentric landing being simulated. 

In the present paper, which attempts to develop a method for deter-
mining contact conditions without making arbitrary assumptions regarding 
the time histories of the various components of the landing-gear reactions 
or the direction of the resultant ground force, equations for effective 
mass are derived on the basis of equal impulse rather than equal accelera-
tion. That is, an average effective mass is determined in such a man -
ner that the total vertical impulse and the change in energy associated 
with the vertical travel of the landing gear are the same in a vertical 
impact with the effective mass as in the actual eccentric landing of the 
airplane, regardless of the direction of the resultant ground force. 
The average landing-gear vertical accelerations are also identical in 
both cases, although the instantaneous accelerations are not necessarily 
exactly the same at all times during the impact. If the resultant 
ground reaction remains fixed in direction throughout the eccentric 
impact, the instantaneous accelerations will also be identical and the 
effective mass determined by the present treatment will be exactly the 
same as the effective mass obtained on the conventional equal-acceleration 
basis.

Derivation of Effective Mass for the General Case 

In the following derivation of the effective mass for the general 
case, a simultaneous impact on any landing gear or combination of 
landing gears is considered and it is assumed that vertical, drag, and 
side forces act on each gear in contact with the ground. 

Effective mass expressed in terms of changes in airplane velocity 
resulting from a landing impact. - The effective mass acting on each 
landing gear i in simultaneous contact with the ground can be expressed 
quite simply in terms of the changes in airplane velocity resulting from 
the landing impact. Expressions for the vertical impulse on any landing 
gear in contact with the ground and for the total vertical impulse in an 
eccentric impact have been given by equations (4) and (7, respectively. 
It is desired to determine an effective mass which, when acting on a 
landing gear in a vertical impact, will produce the same vertical 
impulse and the same rebound velocity of the gear as in the eccentric
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impact when the initial contact velocities and lift-weight ratios are 
the same in both cases. The impulse produced by the effective mass is 
given by

lvi = M(Zj -	
+ (i - KL)We. tt	 (15) 

Equating equations ()4) and (15) gives an equation for the effective 
mass acting on gear i

Ki[(gt - go) ±	 - KL)tt] 

Me. = M	 -	 (76a) 
z 1	 z	 + (1 - K)gt

io) 

If the wing lift is nearly equal to the weight or the time duration of 
the impulse is small, as is often the case, equation (76a) becomes 
simply

Ki(zg - go) 
Me =M	 -	 (76b) 

i	
(' t	 ) 

Effective mass expressed in terms of landing-gear impulses.-
Although equation (76a) provides the simplest means of computing values 
of effective mass if results of an impulse solution are available, it 
is of interest to obtain an expression for the effective mass in terms 
of values of landing-gear vertical, drag, and side impulses which can 
be determined from time histories of the landing-gear forces. Such an 
expression can be obtained by considering the changes in angular momentum 
during the impact, equations (ii) and (12), which can be written as 

	

I V Ei - 	 Id E2 + 	 1 51E31 = Ibb(Ot -	 (71) 

	

I 1v•• -	 I Id-ES -	 15.E6.	 I aa(	 - c)	 (8) 

and by making use of the kinematic relationships, equations (17a) 
and (i7b), which define the initial and final velocities of the landing 
gear i in terms of the angular velocities of the airplane at the' 
beginning and end of the impact
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zio = Zg + E71 00 - E8p0	 (79a) 

+E	 -	 (79b) 

If small changes in attitude during the impact are neglected, the 
constants may be defined as follows: 

Eii =a.	 ct cos	 +c 
'C

sin y 
ic	 0 

E21 = c	 cos 0 0 - a1	 sin e 0 - 

E
3

= r(a	 + r 
[	 c	 1 c

sin e	 cos o)	 ° - (cic
 + r	 cos e	 sin y 	 ]tan 
 1c	 0/ .	 0 

E11 (c i = 	 c + r •	 cos eo )sin 00 - bic cos a0 

E5 =b1	 sin e0 
I c

E6. = (C± + r1 cos êo)cos 00 + b1 tan 00 cos 

a1 cos a0 + c1 sin 7 
1

= b 1 cos Mo - c1 sin 

Combining equations ( Ii-) and (76a) and substituting equations (79) 
yields

I 

Me	
vi	

(80) =

g - Zgo
 + (i - KL)gtt + E7(Ot - O) - E8(t - o) 

= 

Substituting equations (7), (77), and (78) into equation (80) results in 
the following expression for the effective mass in terms of the landing-
gear impulses: 
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Furthermore, if rotational freedom is allowed in the rolling direc-
tion only, I	 and therefqre Pbt are infinite, and if the small shock-

strut deflections and small angularity effects considered in the fore-
going derivation are neglected, the simple effective-mass formula for a 
system having two degrees of freedom (vertical translation and rolling) 
is obtained.	 - 

=Mr 1 Mei	

Gaa

1 )2 I	
(84) 

] 

The effective-mass ratios presented in figure 1 were computed by 
means of equation (8i-): 

APPLICABILITY AND LIMITATIONS 

The impulse-momentum method of determining over-all changes in 
airplane linear and angular velocities resulting from an eccentric 
landing impact is employed in the present analysis in order to eliminate 
the necessity of making arbitrary assumptions regarding the time 
histories of the landing-gear reactions. The method is considered 
applicable to the landing—impact problem since landing-gear impulses 
are generally of short duration and changes in attitude during the 
impulse of the ground forces are usually small. The present treatment 
is directly applicable to impacts where one or more landing gears con-
tact the ground simultaneously but requires that the impulses on these 
gears be largely completed prior to the next impact. 

A brief discussion of the applicability and limitations of various 
aspects of the analysis is presented in the following sections. 

Landing-Gear Reactions 

In the impulse analysis, changes in airplane linear and angular 
velocities resulting from vertical, drag, and side impulses on the 
laflding gear were determined. The analysis assumes that, for any given 
contact velocity, the rebound velocity of an impacting gear is known



NACA TN 2596
	

31 

or can be determined from drop tests or from knowledge of the energy-
dissipation efficiency of similar gears. For most conventional landing 
gears this efficiency lies between approximately 80 and 95 percent. In 
the case of any particular gear the energy-dissipation efficiency can 
vary with differences in contact velocity, effective mass, or wing lift. 
Preliminary calculations indicate that moderate variations in energy-
dissipation efficiency have only a secondary effect on critical impact 
conditions. 

It was assumed in the analysis that the drag impulse acting on an 
impacting gear is independent of the vertical or side impulses and does 
not depend on some arbitrary tire-ground friction coefficient. Instead 
the drag impulse is taken equal to the change in angular momentum of the 
wheels as the peripheral velocity is increased to a value equal to the 
forward speed of the airplane. This approach is considered valid since 
in a landing the wheels are generally accelerated up to ground speed 
prior to rebound and, in mRst cases, even prior to the attainment of 
the maximum vertical load. 

In the present analysis the side inipulsé is expressed as a fraction 
of the vertical impulse. In a landing, of course, the ratio of the side 
force to the vertical force is not a constant but varies throughout both 
the wheel spin-up and yawed rolling phases of the impact. Variations of 
this ratio during wheel spin-up are due to the change indirection of 
the resultant skidding velocity as the wheel comes up to speed and to 
variations in the skidding friction coefficient. Variations of this 
ratio during the yawed rolling phase result from the gradual decrease in 
yaw angle and the variation in the cornering coefficientofthe tire 
with vertical load (see reference Ii-). The coefficient Ks used in the 
present analysis therefore represents an average value for the ratio of 
the side force to the vertical force which depends on the impact condi-
tions and the tire characteristics. Expressing the side impulse as a 
fraction of the vertical impulse is appropriate when the lateral momen-
tum of the airplane is sufficiently large that the side drift velocity 
is not reduced to zero during the impact. For cases where the initial 
side drift velocity is small, the side impulse may be taken equal to 
the initial lateral momentum of the airplane in accordance with 
equation (8).

Time Interval between Impacts 

The present treatment, as previously noted, is restricted to 
landings in which the impulses on the landing gear or gears in contact 
with the ground are largely completed prior to the next impact. In 
many cases, of course, when the airplane attitude angles at contact are 
small, the impulses on the first gear or gears to contact may not be 
completed before the next impact occurs and the impulses may overlap 
appreciably. In such cases, however, the contact conditions for sub-
sequent impacts are ordinarily expected to be less severe than in impacts 
with a greater degree of eccentricity. Since the foregoing analysis is
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primarily intended for the determination of critical impact conditions, 
application of the method to impacts with appreciable overlap is not 
considered in the present paper. 

Aerodynamic Effects 

Effect of unbalanced weight during impulse.- The impulse analysis 
with the inclusion of the term (1 - KL)Wtt takes into account the 

effects of unbalanced weight acting during an impulse, which may not be 
negligible in some cases where the wing lift is appreciably different from 
the weight and where the time duration of the impulse is fairly large. 
For such conditions, numerical values of tt required for the accurate 
determination of the angular and linear velocities at the end of the 
impulse, which are initial conditions for the free-body motion analysis, 
can be obtained from drop-test data or estimated from experience with simi-
lar landing gears. In such cases, it may also be desirable to use the 
values of t in conjunction with the computed angular and litiear 
velocities at the end of the impulse to calculate improved Values for 
the geometric parameters 0t Pt and z 9 which also serve as initial 
conditions for the free-body motion analysis. 

Variable aerodynamic effects. - The present analysis assumes that 
the aerodynamic forces and moments which act on an airplane during each 
stage of a landing can be represented by a constant average lift force 
passing through the center of gravity of the airplane. Although varia-
tions-in wing lift do, of course, occur during a landing because of 
changes in vertical velocity and attitude, experimental data indicate 
that such variations are generally small enough during the relatively 
short time interval for any given stage of the motion to permit the 
assumption of a constant average value for the lift factor. Variations 
in the aerodynamic moments neglected in the analysis may, of course, 
have some effect on the angular velocities of the airplane during the 
free-body phase of the motion. For an inherently stable airplane such 
moments will generally tend to oppose changes in motion resulting from 
landing-gear impulses. As a result, any differences arising from neg-
lect of the aerodynamic moments should be expected to make the calcu-
lated results somewhat conservative since, in such cases, the angular 
velocities of the airplane will ordinarily be slightly less than the 
calculations indicate. 

In order to permit an order-of-magnitude evaluation of the-afore-
mentioned variable aerodynamic effects, a brief supplementary study, 
which includes the effects of wing damping in roll, unbalanced weight 
at initial contact, and variations in wing lift during impact, hasbeen 
made. This analysis, presented in the appendix, is essentially con-
cerned with the changes in airplane motion which result from a landing
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impact on one gear, where the time duration of the ground impulse is 
finite and known. In this simplified study the airplane is considered 
to have freedom in roll and vertical translation only, and angularity 
effects are neglected. An evaluation of the importance of variable 
aerodynamic effects by comparison of the results obtained from the sup-
plementary study with those obtained from the foregoing analysis is 
presented in the following section entitled "Calculated Results and 
Discussion." 

In considering the importance of these variable aerodynamic effects, 
it should, of course, be borne in mind that the aerodynamic forces and 
moments during the landing impact are to a certain extent subject to 
pilot control. This is particularly true of the pitching moment over 
which the pilot ordinarily has appreciable control and, to a lesser 
extent, the rolling moment over which the pilot has relatively little 
control during the landing impact. Thus, piloting technique may serve 
to modify the motions of the airplane and produce impacts of somewhat 
greater or less severity than indicated by purely analytical studies. 

Small-Angle Approximations 

The equations presented in the impulse analysis contain trigono-
metric functions in the constants which may be simplified by means of 
the usual first-order approximations when the angles involved are small 
(say 120 or less), as is normally the case., In the free-body motion 
analysis, in order to obtain explicit solutions, it was necessary to 
assume that the angles defining the attitude of the airplane at the end 
of the free-body phase of the motion are small so that the trigonometric 
functions of these angles could be represented by the first terms of 
their respective expansions. These approximations are satisfactory for 
angles of, say, 12 0 or less and thus are applicable to landings of most 
conventional airplanes. If the attitude angles in some particular case 
are large enough to invalidate these assumptions, trial-and-error solu-
tions may be necessary to calculate the contact conditions accurately. 
In such cases, however, keeping the angles within the limits of the 
small-angle approximations may be possible by judicious choice of the 
reference axes.

CALCULATED RESULTS AND DISCUSSION 

In order to investigate the effects of important factors not con-
sidered in the simplified treatment previously discussed in connection 
with figure 1, the more detailed study presented in the analysis sec-
tions has been applied to the calculation of landing-gear impact condi-
tions for eccentric landings of a cargo-type airplane having the inertia
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and geometric characteristics given in table I. The main gears of this 
airplane are located slightly outboard of the rolling radius of gyra-

tion	 1.11. Most of the results which follow are for eccentric 
/ 

landings in which the first impact occurs on one main gear and the sec-
ond impact takes place on the opposite main gear. These calculations 
show the effects of several of the more important approach conditions 
on impact severity. The importance of variable aerodynamic lift and 
damping in roll is briefly examined by means of calculations based on 
the supplementary analysis given in the appendix. 

In addition, calculated results are presented which permit compari-
son of the severity of second impacts on auxiliary gears of a tricycle 
and quadricycle configuration. These results, which were calculated by 
means of the more detailed analysis presented in the main portion of 
the text, are for eccentric landings in which the first impact takes 
place on a main gear and the second impact occurs on an auxiliary gear. 

Impact Severity for Main Gears 

Comparison of impacts in eccentric and symmetrical landings.- Con-
tact conditions calculated for eccentric landings in which initial con-
tact takes place on one main gear and the second impact takes place on 
the opposite main gear are presented in figure 3. In these landings 
the airplane was assumed to be pitched 30 upward and rolled 70 to the 
left at the instant of initial contact. The pitching, rolling, and side 
drift velocities of the airplane were assumed zero at initial contact. 
To permit comparison, results are also presented for symmetrical landings 
on both main gears. 

A comparison of the vertical velocity for first and second impacts 
in eccentric landings is given by the curves of figure 3(a). These 
curves show that the vertical velocity for the second impact in an 
eccentric landing can be appreciably greater than the contact velocity 
for the first impact and thus also greater than the contact velocity for 
each gear in a symmetrical landing with the same initial descent veloc-
ity of the center of gravity. It is evident that the greatest increase 
in vertical velocity for the second impact occurs in landings where the 
wing lift is less than the weight of the airplane, as might reasonably 
be expected. 

Comparisons of the impact energy for the first and second impacts 
in an eccentric landing and for each gear in a symmetrical landing are 
shown in figure 3(b). The values of energy presented in this figure 
include the kinetic energy, determined by the impact velocity and the 
effective mass, as well as the potential energy based on the unbalanced
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effective weight and an assumed mass travel of 1 foot. The curves 
presented indicate that the energy which must be absorbed by the second 
gear to contact in an eccentric landing can be considerably greater 
than the energy per gear in a symmetrical landing with the same initial 
center-of-gravity descent velocity. 

For the particular airplane considered, the energy associated with 
the initial impact in the eccentric landings is slightly less than the 
energy per gear in the symmetrical case since the gears are located out-
board of the rolling radius of gyration, in which case the effective 
mass per gear is less than half the airplane mass. If the gears had 
been located inboard of the rolling radius of gyration, the first impact 
would have been more severe than each landing-gear impact in the 
symmetrical case. 

Combined effects of damping in roll and variable lift.- A limited 
evaluation of the combined effects which aerodynamic damping in roll 
and variable wing lift during impact can have on the contact velocity 
for second impacts may Ve obtained from the results presented in table II. 
The data shown in the portion of the table headed "With aerodynamic 
effects" were computed by means of the supplementary analysis given in 
the appendix. These results, which were calculated for two assumed 
impulse durations, namely 0.3 and 0.14 second, indicate that the choice 
of the impulse duration has only a minor effect on the contact veloci-
ties for the second impact calculated by means of the supplementary 
analysis. The data shown in the poriion of the table headed "Without 
aerodynamic effects" were taken from those presented in figure 3, which 
were calculated for an initial roll angle of 7 by means of the analysis 
presented in the main portion of the paper. 

The results of the supplementary analysis correspond to impacts in 
which the initial angle of roll is equal to the calculated change in 
roll angle	 -	 as is discussed in the appendix. In cases where 

the supplementary calculations yield values of (Cpt - q ) approximately 
equal to 70, the impact velocities computed by the two methods can be 
compared to assess the importance of the variable aerodynamic effects. 
The results computed by the two methods should also be roughly com-
parable when the calculated values of (.1. -	 are somewhat different

from 7 in view of the fact that the angle of roll appears to have only 
a minor effect on the contact velocities calculated by means of the 
analysis given in the main portion of the paper. 

The results of the supplementary calculations in table II show 
that the contact velocities for second impacts can be appreciably 
greater than the initial descent velocity when the wing lift is less 
than the weight, even if the effects of aerodynamic damping are con-
sidered. In landings with the wing lift equal to the weight, however, 
little or no increase in contact velocity for the second impact is
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indicated for the airplane under consideration. Other calculations 
(table III) based on the supplementary analysis, however, indicate that 
appreciable increases in contact velocity for the second impact can be 
expected even in landings with wing lift equal to the weight, if the 
semitread is appreciably greater than the rolling radius of gyration. 

Comparison of contact velocities for the second impact calculated 
with and without consideration of aerodynamic damping and variable wing 
lift (table II) indicates fairly good agreement for the reduced lift 
condition but also indicates that neglect of these effects produces 
somewhat conservative results when the wing lift is equal to the weight. 
These results are attributed to the fact that the unbalanced-weight 
impulse (1 - KL)Wtt, which tends to increase the contact velocity for 
the second impact, offsets to some extent the effect of damping in roll, 
which tends to reduce the contact velocity for the second impact. Con-
sequently the impulse-momentum analysis previously presented, which 
neglects both the unbalanced-weight impulse and the effects of damping 
in roll, would be expected to yield fairly good results for reduced 
wing-lift conditions and somewhat conservative results when the wing 
lift is equal to the weight. 

Effect of approach conditions.- Figures 4 to 7 show the effect that 
side drift, initial roll angle, and an initial rolling velocity can have 
on the severity of landing-gear impacts in eccentric landings in which 
the first impact occurs on one main gear and the second impact takes 
place on the opposite main gear. The results were computed by the 	 - 
method presented in the main portion of this paper which neglects vari-
able aerodynamic effects. Unless otherwise noted, the initial condi-
tions are identical with those for figure 3. 

(a) Side drift: The effect of side drift or yaw on the contact 
velocity for, the second impact in an eccentric landing is shown in fig- 
ure Ii. Figure 5 shows the effect of side drift on the impact energy for 
both the first and second impacts. The ratio of side impulse to verti-
cal impulse for these calculations is given by the value of K s ' where 

Ks t = K	 ; the sign indicates the direction of lateral motion at the IyI 
instant of toUchdown on the left main gear (plus to the right, minus to 
the left). The value K8 = 0.6 was suggested by the design requirements 

for drift landings. Examination of data on the cornering characteristics 
of a typical large-airplane tire indicates that this value might corre-
spond to a fairly large yaw angle, on the order of 150. 

As might reasonably be expected in a landing where the first impact 
occurs on the left main gear, figures 4 and 5 show that the contact 
velocity and impact energy for the second impact will be increased if 
the airplane is drifting to the right (K 5. t positive) at initial touch-
down but will be decreased if the airplane is drifting to the left 
(Ks' negative). Figure 5 also indicates that the severity of the initial 
impact is appreciably increased if the airplane is drifting to the left 
at touchdown but decreased if it is drifting in the opposite direction.
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This difference in impact energy results from the variation in effective 
mass produced by the change in orientation of the resultant force vector. 

(b) Initial angle of roll: The variation of second-gear contact 
velocity with initial angle of roll is shown in figure 6 for landings 
with an assumed sinking speed of 12 feet per second. The calculations 
indicate that an increase in initial angle of roll results in a slight 
increase in the contact velocity for second impacts if the wing lift is 
equal to two-thirds of the weight of the airplane but produces a slight 
reduction in contact velocity for the second impact if the wing lift is 
equal to the weight. In either case, however, the differences in 
second-gear contact velocity attributable to changes in initial angle 
of roll are comparatively small. 

(c) Initial rolling velocity.: The effect of an initial rolling 
velocity (0.1 radian per second) on the contact velocity for second 
impacts in eccentric landings is shown in figure 7. The curves show 
that an initial rolling velocity which reduces the landing-gear contact 
velocity for the first impact (	 positive) increases the contact 
velocity for the second impact. The calculated increase in second-gear 
contact velocity is noted to be slightly less than the product of the 
initial angular velocity (0.1 radian per second) and the semitre 'ad, which 
is equal to the decrease in contact velocity for the first gear to 	 - 
impact.

Impact Severity for Auxiliary Landing Gears 

Calculated results which show the effect that location of-auxiliary 
landing gears can have on the severity of second impacts on such gears 
are shown in figure 8. In this figure impact velocities and energies 
for second impacts on a forward gear of an airplane equipped with a 
quadricycle arrangement of gears are compared with similar results for 
second impacts on the nose gear of the same airplane equipped with a 
tricycle landing-gear configuration. In both arrangements the main gears 
have the same position. The initial conditions assumed in these calcu-
lations are identical with those used in obtaining, the results given in 
figure 3, except that the airplane was assumed to be rolled 90 to the 
left instead of 70, which resulted in the second impact taking place on 
a forward gear rather than on the opposite main gear. 

Comparison of the curves on the right and left sides of figure 8 
shows that in similar landings the second impact on a forward gear of 
the quadricycle arrangement can be appreciably more severe than the 
second impact on the nose gear of the tricycle. It is of interest to 
note that the impact energy is appreciably larger for the quadricycle 
case than for the tricycle even though the effective mass for each 
auxiliary gear of the quadricycle configuration is appreciably less than 
the effective mass for the nose gear of the tricycle arrangement. This 
result is due to the increment in landing-gear contact velocity produced 
by the rolling velocity of the airplane initiated by the first impact.



NACA TN 2796 

In the case of the quadricycle this increment is fairly large because 
of the outboard location of the auxiliary gears; in the case of the 
tricycle this increment is negligibly small because of the center-line 
location of the nose gear. As can also be seen from figure 8, second 
impacts on an auxiliary gear of the quad.ricycle configuration would be 
expected to be appreciably more severe in an eccentric landing than 
auxiliary gear impacts in a four-point landing; whereas second impacts 
on the nose gear of the tricycle arrangement should in many cases be 
less severe in an eccentric landing than nose-gear impacts in a three-
point landing.

APPLICATION OF ANALYSIS TO DESIGN 

In view of the fact that the foregoing analysis treats a landing 
condition which is also considered by existing ground-loads require-
ments, it is desirable to discuss the relationship between the two 
approaches to the problem. Since current ground-loads requirements have 
been evolved largely on the basis of past experience, they necessarily 
include hiddei factors which must compensate to some extent for the 
combined effects of the many conditions which are not rationally con-
sidered in detail. For example, the present requirements, as previously 
noted, specify the same design impact velocities and landing-gear reac-
tions in unsymmetrical landings as in symmetrical landings. Experience 
and calculations indicate, however, that landing-gear impacts can be 
appreciably more severe in the unsymmetrical case. On the other hand, 
the fact that the descent velocities specified by the requirements 
appear to be appreciably greater than the sinking speeds generally 
encountered in normal airplane operations may be an indication that the 
increased impact severity in eccentric landings has not been completely 
overlooked by the requirements. However, since they do not rationally 
consider such factors as landing-gear location, airplane inertia, and 
the various possible combinations of approach conditions, which can 
greatly affect impact severity, the requirements, although generally 
permitting the design of reasonably satisfactory landing gears, may 
unduly penalize some airplanes whereas they may be insufficiently severe 
for other types. 

Since the design conditiOns specified by the present requirements 
may include some of the effects of eccentric landings as previously dis-
cussed, the use of the specified approach conditions, particularly the 
descent velocities, as initial conditions in the foregoing analysis would 
be expected to produce conservative results. The design of landing gears 
on a completely rational basis, therefore, requires statistical studies 
of the approach conditions actually encountered in routine operations. A 
statistical approach to the determination of these conditions is necessary 
since many unpredictable factors such as piloting technique and atmos-
pheric disturbances largely determine the behavior of the airplane prior
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to initial contact. Even without adequate statistical data, however, 
the foregoing analysis permits a limited evaluation of the importance of 
eccentric landings for particular airplanes and provides a basis for 
assessing the effects of airplane characteristics and operating conditions 
on impact severity in such landings. 

CONCLUSIONS 

An impulse-momentum method has been presented for determining 
landing-gear contact conditions in eccentric landings. Calculations 
based on the analysis indicate that: 

1. In an eccentric landing either the first or second impact can 
be appreciably more severe than each landing-gear impact in a symmetrical 
landing, depending on the location of the landing gears relative to the 
radii of gyration of the airplane. For given approach conditions 
increasing the landing-gear tread tends to decrease the severity of the 
first impact and increase the severity of the second impact; decreasing• 
the landing-gear tread has the opposite effect. 

2. The magnitude of the wing lift at the instant of initial contact 
has an appreciable effect on the severity of the second impact in an 
eccentric landing. Reductions in wing lift result in increased impact 
severity, as might reasonably be expected. 

3. Side drift velocities , can appreciably increase or decrease the 
severity of successive impacts in an eccentric landing, depending on the 
direction of side drift. 

1. Variations in initial roll angle appear to have only a minor 
effect on impact severity in eccentric landings. 

5. For a given initial rate of descent of the center of gravity, 
an initial rolling velocity which reduces the contact velocity for the 
first impact results in an increase in contact velocity for the second 
impact of almost the same amount. 

6. For eccentric landings in which the first impact occurs on one 
main gear and the second impact occurs on an auxiliary gear, the 
severity of the second impact can be considerably greater for a quad-
ricycle configuration than for a tricycle arrangement. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., August 28, 1951
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APPENDIX 

SUPPLEMENTARY ANALYSIS INCLUDING AERODYNAMIC EFFECTS 

The main purpose of this supplementary study is to permit an order-
of-magnitude evaluation of the effects of variable aerodynamic forces 
and moments on airplane motions during landing and, in particular, to 
obtain a rough indication of the error in second-gear contact velocity 
to be expected from neglect of the following aerodynamic effects which 
were not included in the impulse-momentum analysis presented in the body 
of this paper: (a) The effect of aerodynamic moments on the rolling 
motion of the airplane and (b) the effect of unbalanced weight acting 
during the impulse of the ground forces, based on the wing lift at 
initial contact and variations in wing lift during the impact. 

For the purposes of the present study, the airplane is assumed to 
have freedom in roll and vertical translation only and the effects of 
angularity are neglected. With these assumptions the equations of 
motion for the airplane, following initial contact on one main landing 
gear, may be written as follows: 

/ M •g + K(g - 90) = F ( t ) ± K0	 (Al) 

Iaac + Kcp = -b1F(t)	 (A2) 

where Kcp is the aerodynamic damping moment of the wing which resists 

rolling motion and K(zg_ g0) is the change in wing lift following 

initial ground contact due to variations in airplane vertical velocity. 
The quantities K and Ki are taken equal to 0.75 times the steady-

state values since unsteady-lift conditions exist during the impulse of 
the ground forces (reference 5). The quantity K0 = W (KL - 1) is the 

unbalanced weight just prior to initial touchdown. 

By eliminating F ( t ) from equations (Al) and (A2) and integrating 
from the time of initial ground contact, t = 0, to the time at which the 
gear making initial contact rebounds, t = tt, the following equation is 
obtained:

M(g - 90) + K(Zgt - zg0) - (Ko ± Kg0)tt + 

-	
+	

-	
= 0	 (A3)
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At the instant of rebound of the gear making initial contact (t = tt) jp
 the following geometric and. kinematic relations can also be written: 

Z g =	 (AIia) 

Zgt bipt -
	 = bt - g0 Ji	

1lr	 (AI-b) 

where 1r1 is the energy-dissipation efficiency of the impacting gear. 

Substituting equations (A ll-a) and (A iTh) and the geometric condition 
at initial contact z	 bcp0 into equation (A3) yields 

I	 go 

M[b 1c t - g (1 + \jl - r
i)] + Kb (Pt - cp0) - (K0 + K g) tt + 

aa	
-	 +	 - o) = 0	 (ED) 

If, for the purpose of determining the change in roll.angle during 
the impact, p is assumed to vary linearly with time (this assumption 
is discussed at the end of this section), the following simple relation-
ship may be written for the change in roll angle during the impact: 

- 0)= .	 cj	 (A6) 

Combining equation (A6) with equation (AD) and solving for pt yields 

'aa Mg0 (l + l	 ri)	 Po + (Ko + Kg0)tt	

(A7) Pt =
'aa (	 ^ttMb +	 + Kb1 

+ :.__ 

If the second impact is assumed to occur at the instant of rebound of 
the first gear to contact, the vertical velocity for the second gear to 
contact is given by the simple kinematic relationship: 

= 2b 1c - g04 1 - 1lr	 (A8) 

I
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The preceding condition exists if the initial angle of roll 
is equal to the change in roll angle ((Pt - (Po) determined by equa-
tion (A6). Where aerodynamic damping is considered, as in the present 
analysis, this condition would be expected to produce the largest con-
tact velocities for the second impact. 

In order to calculate the contact velocity for the second impa'.ct 
from equation (A8), a value must be known or assumed for the time dura-
tion of the impulse tt required for the calculation of c.t by equa-
tion (AT). Available data indicate that the duration of the vertical 
impulse is on the order of 0.4 second for airplanes of about the same 
size as the one for which calculations are presented in the body of this 
paper. Comparisons in table II of calculated results for impulse dura- 
tions of 0.4 and 0.3 second indicate that the value used for tt has 
only a minor effect on the contact velocities computed by means of 
equations (Al) and (A8). 

In order to evaluate the applicability of the assumption that 
varies linearly with t, which was used as a basis for equation (A6), 
analytical solutions were obtained for qpt and	 from equation (A2)

for a particular case of a sinusoidal vertical pulse. Setting the 
change in roll angle (pj - q ) equal to the quantity Kpttt gave values 
of the factor K equal to approximately 0.6 for sinusoidal pulses of 
0.4 and 0.3-second duration. These values compare fairly well with the 
value of 1/2 used in equation (A6). Since other computations indicate 
that variations in the value of K have only a minor effect on the cal-
culated ..contact velocities for second impacts, the assumption of a linear 
variation of	 with time appears reasonable for the purposes of this 

restricted study.
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TABLE I	 - 

CONSTANTS USED IN CALCULATED RESULTS 

Weight and inertia constants of the airplane: 

Landing weight, W 60,000 lb 

Mass moment of inertia of the airplane in roll, I - 301,900 slug-ft2 

Mass moment of inertia of the airplane in roll, 1bb s 336,700 slug-ft2 

Constants defining the location of the landing-gears relative to the 
airplane center of gravity: 

Gear 1 - left main gear 

Gear 2 - right main gear 

Gear 3 - nose gear

	

t
c3	 cl,c2- 

a1 - a
2c 

-3.033 ft	 i3	 1,2 

a3-13.544ft 

a3 " 12.995 ft 

C1 . c2 - 9.784 ft	
I

b2 

C - 
c2  - 9.189 ft	

-H a2 i..- I 

03 - 9.512 ft 

c3-9.3116ft
	 al 

b1 - b1 - -111.583 ft	
4 

- 114.583 ft b2 - b2   

3c a 

Constants associated with the wheels: 

N1 - N2 - N3 - 2 

ri • r2 • 1.875 ft 

r-r2	 1.558 ft 
c 

r3 - 1.333 ft 

- 1.067 ft 

Iwl .
	 - 11.814 slug-ft2 

1w 3 - 1.653 slug-ft2
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TABLE II 

COMPARISON OF CALCULATED RESULTS WITH


AND WITHOUT AERODYNAMIC EFFECTS 

Initial 
conditions With aerodynamic effects Without aerodynamic effects 

g0
KL t t it Pt - 90 P0 

(fps) (sec) (radians/sec) (fps) (deg) (deg) (radians/sec) (fps) 

2/3 0.4 0.520 -11.58 5.9 7 0.144 -12.78 .3 .501 -11.02 4.3 

1 . 
.3

.391 

.399
-7.81 
-8.05

4 .5 
3.4 7 -.4 -9.12 

2/3 ..i- .715 _15.19 8.2 -.666 -16.28 
.3 .700 -15.05 6.0 

-12
1 .4 .586 -11.72 6.7 7 -.666 -13.68 

.3 .598 -12.08 5.1
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TABLE III 

EFFECT OF LANDING-GEAR SEMITREA]) ON CONTACT VELOCITIES FOR 

SECOND IMPACTS CALCULATED BY MEANS OF THE SUPPLEMENTARY 

ANALYSIS WHICH INCLUDES VARIABLE AERODYNAMIC EFFECTS 

g =12.Ofps; tt=O.!sec] 

KL b1 b./ Pt t - 

2/3 12 0.89 0.7 11.4 8.0 
a1458 1.09 .72 15.5 8.3 
16 1.19 .72. 17.6 8.3 
18 1.34 .71 20.1 8.1 

1 12 .89 .57 8.3 6. 

158 1.09 .59 11.7 6.8 
16 1.19 .59 13.5 6.8 
18 1.34 .58 15.6 6.6

aSemitread for cargo airplane described in table I. 
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0	 1.0 

aa 

Figure l.- Comparison of eccentric and symmetrical impacts for an 

idealized two-degree-of-freedom system.
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0	 14	 8	 12	 o	 4	 8
	

12


Vertical impact velocity of first gear to contact, fps 

(a) KL=l. 

C)

0	 14	 8	 12	 o	 14	 8	 12


Vertical impact velocity of first gear to contact, fps 

•	 (b) 
I KL=. 

Figure 5.- The effect of side drift on the landing-gear impact energy 
for first and. second impacts in eccentric landings. (First impact 
on one main gear; second impact on opposite main gear.)
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Figure 6.- Effect of initial angle of roll on the contact velocity for 
second impacts in eccentric landings. (First impact on one main 
gear; second impact on opposite main gear.)
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Vertical impact velocity of first gear to contact, fps 

(a) Vertical velocities for second impact on auxiliary gears. 
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14	 8	 12	 0	 14	 8	 12 
Vertical impact velocity of first gear to contact, fps 

(b) Impact energy for second impact on auxiliary gears. 

' Figure 8.- Comparison of the severity of landing-gear impacts on auxiliary 
gears of a quadricycle and tricycle configuration. (First impact on 
one main gear;. second impact on right forward gear of quadricycle or 
on nose gear of tricycle.)
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