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SUMMARY

Concepts involved in the harmonic-response-function method, such
as the direct or conjugate characteristic modes, are illustrated by
application of the method to the calculation of the change in flutter
characteristics of a wing due to adding concentrated masses. The main
purpose of the numerical procedures which are given is to illustrate
the scope of the method and to make some of its abstract formulations
more specific, rather than to stress the immediate and current practical
usefulness. The rigid body is first idealized as & point mass, then as
a distributed mass. An appendix is given which contains some of the
esgential theoretical background.

INTRODUCTION

In recent years, a number of papers dealing with certain special
phases of aercelagticity, such as flutter, divergence, and control
reversal problems, have been published. Each such problem has usually
been treated as a special case so that there exist today a number of
procedures vhich have little relation one to another.

There has been in existence, however, a general approach (refer-
ence 1) to aeroelastic phenomens. Although the underlying theory is
couched in gbstract terms, the method has the advantages of conceptual
gimplicity and physical interpretation; the abstract formulation, in
fact, permits application to & number of apparently different problems.

Engineers who have worked with vibration mountings are femiliar
with the significance of the natural frequencies and modes of an elastic
system in reference to forced oscillations. The response of the system
to an external force cannot be properly appreciasted without relating
characteristics of that force to the stability characteristics (reso-
‘nances) of the system. The method described below is simply the logica;
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extension of this framework of ideas to the case of nonconservative
forces as encountered in aerodynamic phenomena.

The method of the harmonic response function is here applied to a
gpecial problem, namely, the effect on flutter of the attachment -of a
rigid mass to the airplaene. Specifically, it is supposed that a flutter
analysis has been carried out on the original airplane in n degrees
of freedom. A mass is then attached. The problem is: What are the
flutter characteristics of the modified airplane?

The problem is important in airplane design because (a) mass bal-
ances are frequently attached to a control surface for flutter preven-
tion and (b) power-plant changes result in the addition of concentrated

welghts.

The results of reference 2 showed that in some instances a Rayleigh
type analysis may show no flutter when a mass is attached, whereas a more
rigorous analysis (based on the continuous system) would show flutter.
The problem raised, as to how many degrees of freedom are required for
a Rayleigh type of analysis, is one of the difficult, unsolved problems
that do not fall within the scope of this report.

A solution of the problem by means of the response function depends
on the accuracy with which the system is described by the n degrees;
in fact, the method of the present paper is exact to the same extent as
the n degrees of freedom describe the deflections of the system
with and without mass.

In the case where there are an infinite number of degrees of free-
dom (as is the case for a continuous structure), the method of Rayleigh
approximates the motion of the system by restricting the motion to a
finite mmber of degrees. If these finite degrees are chosen to favor
the representation of the gystem without mass, then the representation
of the system with mass will be less favorable because the mass will
introduce discontinuities in shear which normally would not appear in
any of the approximating modes.

Therefore, for continuous systems one may expect that a represen-
tation of the original system by a finite number of degrees will not
serve so well for the system with a concentrated mass. However, the
present analysis shows that the results of this approximation yleld as
favoreble results as have been obtained by the more conventional methods

of analysis.

This work was done at Purdue University under the sponsorship and
with the financial assistance of the National Advisory Committee for

Aeronautics.
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SYMBOLS
abscissa of wing elastic axis measured from wing midchord
point, positive rearward, in units of D

real part of A
coefficients of inertia-plus-aerodynaemic virtual work

intensity factor (see text)

E:: Yr8rgXs
T;8

semichord of wing
imaginary part of Aj

coefficlents of elastic virtual work

intensity factor (see text)

constant

distance between center of gravity of attached mass and
elastic axis, positive rearward

direct characteristic mode (normalized)
conjugate characteristic mode (normaiized)

bending deflection of wing

torsional deflection of wing

’

amplitude of oscillating force
direct free mode

conjugate free mode



k =

ab/v

moment of inertia of attached mass, relative to elastlc axis

moment of inertias of attached mass, relative to 1ts center of

gravity

constant

nunmber of elastlc degrees of freedom; semispan
attached mass

ﬁumber of degrees of freedom

amplitude of generalized force

'generalized force corresponding to x

amplitude of oscillating torque
free-stream velocity; flutter speed

flutter speed with zero attached mass

~a, /we

virtual work

direct mode (xl, coe ey xn)

conjugate mode (yl, . e ey yn)

direct characteristic mode (nonnormalized)

conjugate characteristic mode (nonnormalized)

displacement of a point of the system

displacement of reference point on mass, positive in a

dlrection opposite to x
bending stiffness of wing

torsional stiffness of wing

NACA TN 2540



NACA TN 2540 >

E?:: <?1, Bosy « « +, Bn) geometric parameters defining x

6 torsional deflection of wing, positive nose up

e! angular deflection of body, positive opposite to 6

» = (op/w)?

My characteristic number

v dummy index

3 spanwise coordinate of wing

3% scalar coefficient of direct characteristic vector .
N scalar coefficient of conjugate‘characteristic vector
w frequency at flutter

frequency of spring-mounted mass
bending frequency

reference frequency

F F F F

torsional frequency

HARMONIC RESPONSE FUNCTION

In accordance with practice, the deflection of a system from some
initial position.of equilibrium i1s described by n coordinates X,

Xpy - - -y ZXy. Some of these symbols may represent rigid-body displace-

ments of the system of nonelastic displacements, such as free control-
surface motions. These are called free-body displacements. The others,
involving elastic deformation, are called elastic displacements.

The set of displacements x7, xp, . - &, arranged in any

specific way may be conveniently regarded-. xctor. The theory of
reference 1 1s essentially a geometrical theox, based on the vector
concept of displacements and forces.
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In accordance with classical mechanics, the selection of coordinates

defines a system of generalized forces @Q;, @Qp, - . ., @Q, 8o that the
work performed in moving these forces through a virtual displacement
X =¥y, X =Yooy - - -y X, =Y¥p 18 given by

The symbol on the right is conveniently regarded as an "inner product"
of the two vectors ¥ = (yl, Jos « « yn) and 6: (Ql, Qoy « + oy

Qn) and written (—3}), a)

Now suppose the system, here an airplane, is subjected to a system
of harmonic forces and let the symbols 43, 9py - - +5 Qy D1OW represent

the amplitudes of the corresponding generalized forces and let Xy,
Xp, « + .5 X, Trepresent the corresponding amplitudes of oscillation.
Then the equations of motion take the form

2
wz%sxs-%zzbrsxs+qr=o r=1,2, .. ., 0 (2)
8 8 :

where the matrix ase(ars) is the matrix of aerodynamic-plus-inertia
forces, wy 18 a reference frequency, and —a)re(brs) is the matrix of
elastic forces. The coefficients a,.g depend on the reduced frequency

k = %, where b 1is a reference length (usually the semichord) and v
the flight speed; the coefficients apg are obtained from aerodynamic

analysis of oscillating flow.

Dividing equation (2) by @2 and replacing (cnr/a))2 by A and
-gp/a® by wp, one has the set of equations '

Y epg¥g - MY Poxg=w.,  r=1,2...10 (3)
8
p.3 s
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When the external forces are zero, then wy =0 for r=1,2, . . ., n
and the nonhomogenous set (3) is replaced by

Z 8ygXg = M Zbrsxs =0 (&)
8 8

The characteristic values A, associated with equation (k4) are the
zeros of the characteristic determinant |8‘rs - M’rsl‘ To each such zero
value of A, ‘there are associated two characteristic vectors or modes,

one, 3 = (xlv 3 e e ey xnv) called the direct characteristic mode, and

the other, 3¥ = (ylv, e ey ynv) called the conjugate characteristic
mode. The direct mode is a solution of equation (%) with A =2,

Zarsxsv - )“varsxsv =0 r=1,2 ..., n (5)
8 8

vwhereas the conjugate mode satisfles a simllar set of equations
> ¥o¥apg - M) ytbrg =0 8=1,2 ...,n (5b)
T T

The vectors %’ and ‘§rV are not defined uniquely because any
scalar multiple of these vectors would also satisfy equations (5a) and
(5b), respectively. In the response function introduced below, a
"normalization factor" appears which makes it immaterial which solutions
of equations (5a) and (5b) are used. This facter is

B(?fv’ —iv) = ; yrvbrsxsv (6)
J

and represents the work done by the elastic forces set up in the defor-
mation XV when these forces are subjected to the displacement ?V

When g = 8 and Dbng =D the system 1s conservative and

BT 8T’
the vectors %' and J¥ may be taken as identical. Aerodynsmic systems
are nonconservative in general; the difference between tle vectors XV
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and -§y, when the two vectors are made comparable by choosing the same
component to be unity, is therefore associated with the energy-absorbing
or energy-producing characteristic of the system.

In case Ay 18 positive, %V represents the deflection of the

system when vibrating at the frequency o = wnA/xv. When A, 18 not
positive, the mode %’ 1s sometimes regarded as & similar dellection

of the system, modified by a suitable damping coefficient.

One may, on the basis of equation (5b), regard the conjugate char-
acteristic mode as the direct characteristic mode of a hypothetical
system with coefficient matrices a.g' and b,.g' which are the adjoints

of the original matrices a.;, and b,g, respectively. Another inter-
pretation of the conjugate modes will be made below.

The harmonic response function 1s the deflection of the system
under the action of harmonic external forces represented by w;, Wo,
« « «y Wy. The response function may then be regarded as the deflec-
tion of the airplane in flight under the action of vibrators. The use
of the response-function concept has become increasingly important in

recent years both in flight-testing, as is done for classical dymamic
stability, and in theory (reference 3).

The harmonic response function may be expressed as the sum of
(a) the response of the system as a free body under the action of the
external forces and (b) the sum of the elastic responses in each degree
of freedom. The result derived in reference 1 statesl that the harmonic

9
respongse X 1s .

X = }i—- (?V,?) 2V 4+ 3L (7)
v (w - 2)B(3,3Y)

Here the integer 1 represents the number of distinct elastic modes;
that is, mn - 1 1s the number of independent free-body degrees of

freedom. The vector %:*l is the free-body response referred to in

lFor the benefit of the reader who does not have access to refer-
ence 1, a derivation of equation (7) has been included in appendix A.



NACA TN 2540 ‘ _ 9

item (a) above; the terms in the summation are the direct characteristic
vectors, each appearing with a scalar coefficient

3 D I
(3”: ) _ T (8)

o - EE) By - 2) 3

The denominator of this coefficient contains a term depending on
the frequency of the forcing oscillation, that is,

= (2]

and is of the form of a magnification factor normally appearing in the
theory of vibration in one degree of freedom.

The numerator in equation (8) represents the work fed by the
external forces into the conjugate mode. Here lies the importance of

the conjugate mode; the intensity with which the direct mode _kﬁ appears
in the response is proportional to the work absorbed by the conjugate
mode, not by the “direct mode. This shows thabt the true nature of the
couplings due to additional degrees of freedom is to be found from the

relation of these degrees to the conjugaete modes of the original system.

ADDITION OF ‘A POINT MASS

Consider an airplsne flying at speéd v. Suppose that a complete
flutter analysis has been made so that the following data are available:

The characteristic numbers X\;, the direct modes ?{v, and the conjugate
modes ?V. -

Now suppose that at a point P of the alrplane a coﬁcentrated,

hermonically oscillating force Fej"""b is applied. Let x represent
the displacement of the point P in the direction of ‘the force F.
Then, within the range of linearity,.

X=B.lxl+B2x.2+. . .+ann
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where By, Bo, . . ., B, are sultable geometric constants. The rela-
tion may be conveniently written as an inner product of the vector

-

B = (Bl, Bpsy + « ¢, PBn) and the vector ?:(xl, Xy o o oy xn>

X = (B,?{) " (9)

let ¢ = Qs o - e qn> represent the vector with eomponents

corresponding to the generalized forces developed by the exciting

force F. In order to obtaln the components of q, conslder the work
developed by the force F under each of the virtual displacements &x,,

®xpy, . . ., OBxy. Each such virtual displacement 8x, results in a
displacement B.8x,. of the point P, according to equation (9); there-
fore the force F does work FB.0x.. Hence,

q = FBy
q =¥ ’
- F -
w=-—758

@

The harmonic response, equation (7), ylelds for the deflection x

- X L (‘&V’B’)(E’?{V) F [ 2141
S D o Il (o

The force F may, for instance, be the interaction force produced
by a mass mounted on the airplane at P. In order to meke the results
more general, suppose that the mass m be connected to the airplane at
P by a spring (fig. 1(a)). Let w, represent the frequency of the
mass on the spring, P held fixed. Then the deflection x' of the
end of the spring under the reaction F is

. 1 1
X —£<-—+ -—2> (ll)
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Since x = -x', comparison of equations (10) and (11) gives

B,x

(-ffv;_ﬁ))(g,&v) (—» —>Z+1)

vy AL s

X)B(§V,xy) i

In the case where there are no free modes, ! = n, aend equation (12a)
is replaced by

e M e o

In case the mass 1s rigidly attached to the point P, w, 1s
infinite and the term aﬁyth is zero.

Consider the case in which the mass 1s attached with a spring to
the wing. Suppose, in addition, that the deflection of the wing 1s
described by two degrees of freedom, one bending and represented by
f(€), and one torsion represented by fg(£). Then if e, represents

the chordwise coordinste of the point P relative to the elastic axls,
positive rearward

B = (fu(8), efy(s)) (13)

The right sides of equations (12) are functions only of v/ab and
aydr. Hence equation (12) may be solved, in principle, for m and

w?/w.2 for each velue of v/wb. In practice, it appears desirable to
(o] )

carry out the solution by a graphical comstruction. In this procedure,
one regerds the right side of equation (12), for each value of v/ub,
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as a function of the real parameter A = wT%/&z. The function is plotted
in the complex plane and the absclssa of intersection of the resulting
plot on the axis of reals is equal to

2
i(“%)-l(.“%%) (14)

for which flubtter will occur. The parameter A at the intersection
defines the frequency of flutter and the value of m corresponding to
equation (14) the mass required to meintain flutter. As in conventional
practice (reference 4), the mass is to be interpreted as the nondimen-
sional mass m/ﬂpb

The graphical construction is facilitated by noting that each of
the summends in equation (12) has the form c/(A] - A) vhere c 1s a
constant and A 1s a characteristic value. Both c¢ and A3 = aj + ibj
are complex numbers in genmeral. A plot of the fraction c/(A7 - A), with
A a real parameter varyling from minus infinity to plus infinity, yields
a circle passing through the origin of the complex plane. To construct
the circle in the compléx plane:

(a) Form the diametral vector c¢/ib and draw the corresponding
circle through the origin (fig. 2). The diametral vector represents
the complex number of largest modulus given by c/(ay + ib] - A),

attained when A = a7.

(b) Give a sense to the direction of motion around the circle as
A varies from minusg infinity to plus infinity according to the rule:

If by >0, the circle is traversed clockwise

If by <0, the circle is traversed counterclockwise

(c) Calibrate the circle. Referring to figure 2, use any convenient
scale, lay out distance |by| along the diametral vector, and draw
line PP perpendicular to the dlametral vector. Give the same gense to
points on PP as has been established on the circle. To point Q, attach
the value A = &y. To any other point Q' on line FP, attach the

value A = a; + |QQ'|, where |aQ'| is the distance from Q to Q'
measured to the scale chosen sbove for |by|, and the plus or minus

sign is selected to correspond with the sense of increasing or decreasing
values of A. Draw the radial vector from the origin through Q'. The
value of A at Q' is then attached to the intersection R of the radial

vector on the circle.
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The procedure is carried out for each constituent of the response
function. The resulting vectors OR, corresponding to the same values
of A, are added vectorially The locus of the sum in the complex
plane is a plot of the harmonic response which appears on the right side
of equation (12b).

The analysis described above 1s illustrated in appendix B.
ADDITION OF A DISTRIBUTED MASS

In the preceding section, the mass was regarded as concentrated in
a point; that is, the moment of inertia I of the mass relative to its
center of gravity is zero. In this section, the equation corresponding
to equation (12) but for a distributed mass (I # 0), rigidly attached to

the original system, will be derived.

There are now two conditions required\that the deflection of the
mass and the system be compatible Two equetions of compatibility are
therefore derived.

If the original system is described only by two degrees of freedom,
then the analysis of the mass effect as described below is not a con-
venient device because the conditions of compatibility are equal in
mmber to the original equations of flutter. On the other hand, if a
large number of degrees of freedom were required to describe the original
gystem, then the numerical work required to treat the two equations of
compatibility may be significantly less than a reworking of the entire
flutter analysis to include the mass effect.

In order to make.the analysis definite, suppose the mass is attached
to an alrplane wing which can vibrate only transverse to the plane of
the wing. - Let P be a point common to the body and mass (see fig. 1(b))
and

b4 vertical displacement of wing at P
x! vertical displécement of body at P .
] torsional displacement of wing at P
e’ torsional displacement of body at P

The sign convention is such that x' and 6' are positive in directions
opposite to x and 6.

2In order to perform the vectorical addition graphically, it is
desirable that the individual circles, and therefore the dilametral vectors,
be drawn to the same scale.
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There are now geometric parameters _51 and -%2 such that3

x = (81,3)
o = (32,52)
At point P, apply a harmonic force F and torque T. ILet
X, X vertical displacements of wing at polnt P due to F and T,
respectively
6p, O torsional displacements of wing due to F and T, respectively

X'p,x'm vertical displacements of body at point P due to reversed F
and T, respectively

0'p,0'p torsional displacements of body due to reversed F and T,
respectively

-

- F 3zl
Under the action of F, the forcing vector w is W' = =3 B,
w

Under the action of T, the forcing vector 2 is -1_52. Therefore,

o2

(->v;§l)(" "’V) 2
R DN e B G

' 2)(gL
Xp = - a% IZ (3v, ﬁ (gviv) ) wI2 L) b (15)

—)‘V ‘gl) 'éz %V)

2 —})CZ+1)

J

o

3In the particular case considered here, of wing bending and wing
torsion,_g = (f (g, ewﬁ:(g)) and .52 (0 £ (E.))
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1 I be
X! === = F f6np' = — F > 16
F o® mT PR (16)
be 1
l_______T e!_—_-_..___
T T Tw?

The condition of coﬁpatibility results in a palr of simultaneous

equations

I
o

Xp + gF' + Xp + xT'
(17)

i
- O

9F+9F'+9T,+6T"

These equations can be expressed in terms of the characteristics

of the wing and mass by substituting from equations (15) and (16).
Restricting the discussion, for simplicity, to the case where there are
= n), one has

no free modes present (1

PR R R |
(18)

3v52)(32%) ;]

0= sz (%VJE(KZ’?:) * Efg] * T[_Z ((;: : ME(Y, ) T

(M - 2)B(3v,%)

where the factor 1/w2 has been canceled out.
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Iet A represent the determinant of the system (18):

Ay S N Mo . Bz | be
M -MA A=A mI M -A MA-A I
A:
for . Bar | be Aop  Bee 2
M -A A -r I M -A Ap-r I
where
s, - FLE)EE)
) B(?rl,?l)
(32.8°)(3+ %)

)

Then the condition for the existence of a nontrivial solution of equa-
tion (18) reads
A=0 , (19)
It will now be assumed that the matrix b.g 1s the unit matrix
and that the direct and conjugate modes have been normalized so that

B(3V,%) =1 Sy =1, (20)

These assumptions represent no additional limitation.
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In view of equation (18), the expansion of the determinant A
becomes

A7 Ao Bi1 Bio &3 Bip
A= (A - M2+ (A2 - 2)2 + +
Apy App Bo1 Bop Ay Bop
-I be
B4 A = & A, 2B
11 Ao . = A2 11 3
(M - M) (Ao - A) + + (A - ) +
be 1
Bor Age 5 Ao Aoy "5
-I be -I be
ml 12 11 7 oI I q
+ Ao - A) + (21)
R I T A Y
T 2 2l 7 T I

The first three terms may be simplified as follows:
A]_]_ Al2 ‘(;l; )(-El:;)cl) '(?:?)(gl:;{)l)
R G I G

&) o (78 (489
= P% =0 (22)

o @R BEReR

in view of the vanishing of the second determinant in the product.
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|Brg| = 0. Also,

G2 (LR PELY

 m] o s GRS ERED
by e | |GSPIED GRGeB)|  |S2RERR GG
@ )] |en o
Tl B | o (B
@2 @] |ed o
(52:-522) (‘52.31) Y (?l:-ﬁz)
(El’-’:l) (El:") (?l’E]) ° ) (_;'2}1) 0
Tleen @R o @R o ()
RS NCETI o
e @) (3R 25
i Bll Bs 5 "11 ! y 5.'11 7,2 y Bt 8ot (53)
B2 82| |2 =B [t v (B2 B2

From the orthogonality property (appendix A) and the normalization
(equation (20)) and in view of the fact that matrix B has been assumed

to be the unit matrix,

o(7E) - (L) -1
5(32,%) - (238) - 1
() = (739 - o
(757) - (°7) - o
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Combining equations (21) to
equation of flutter (19) becomes

19
Therefore,
: . i > >
xll x,1 yim n® ( ’ ) (;1:3’)2)
o) X : = >0 > ‘ > P
X2 x, yo© ¥o° (x ’ ) (XQ:YQ)
1 0
= . = l
0 1
Hence,
. L2
M1 Bl B A B1™ Bg
+ = (ek)
2 .2
Ay B Boy Aop B1= BoT
- Finally,
L be
mT I
_ I _(pe)?
i 2
be _1| ™
I T .
=L (e)?| = L
I° 1 Tm

(2k) and multiplying through by T, the

o _|mt et 1 el v\
IA:IﬁlE .2 (- (p -2+ ve 1, + N (g 2) +
= Bio| B ve]\ /.
+ (e -2 +5=0 (25)
be Bpo By -1 ‘

T e
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The first term on the right may be separated into partial fractions
and combined with the second and third. Equation (25), so modified, has
the same form as equation (12b) for the case in which w, is infinite
(rigid attachment). Therefore the graphical solution of equation (12b)
is directly applicsble to equation (25).

Such a graphical solution is illustrated, for the numerical example
discussed above, in figure 2(b).

NUMERTCATL ITILUSTRATION

The method outlined has been applied to obtain the flutter speeds
under figure 4 of reference 2. Here the welght is attached at
e, = 0.500 for various span positions. A detailled calculation is

presented in appendix B. The results of an analysis are presented in
figures 3 to T.

The specific mass addition with which this report is concerned,

that is, n_ = 357, 1is represented by a horizontal line in figure 3.
Tpb

The intersection at each span position gives the corresponding value

of é%— at which flutter will occur. For these values of ;% the

W
values of A are determined from figure 4. Table 1 contains the values
of é%- and A read from these curves.

Figure 5 was plotted in a form comparzble with figure 4 of refer-
ence 2. However, the definition of v, differs from that of refer-
ence 1. Here v, 1is the flutter speed of the wing without attached
mass according to theory or test as the case may be. The curves which
and (2;

are being compared are (JL ) .
Yo/test

v'0)‘1'-heory

Figure 6 presents a comparison of the reduced flutter speeds
obtained by the method of this report and reference 2. Figure T shows
a comparison of frequency ratios. In particular it is shown that the
effect of I, 1n this case, is small.

The effect of flexibllity of the suspension is considered in
appendix C.

Purdue University
Lafayette, Ind., July 20, 1950
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APPENDIX A
DERTVATION OF HARMONIC RESPONSE FUNCTION

In the following paresgraphs, a derivation of equation (7) is
presented. This derivation is based upon a number of assumptions which
are discussed in reference 1. They are:

(a) Let © and f represent direct and conjugate charﬁcteristic
vectors assoclated with a given characteristic value. Then,

8(3,2) £ 0

(b) Let g and B be free-body direct and conjugate vectors’ such

that
Z brg8g =
8

|
o

Z hybrg =0
T
%
Then, for each vector E’, there 1s at least one vector h such that

Z hrarg8g # O

(c) The characteristic determinant |ars - Ab.gl does not venish
identically. .

Consider the characteristie-value problem

Zarsxs -berst,:o r=1,2, ..., n (A1)
8 8

Ymnis condition takes the place of "positive-definiteness" of the
energy, required in the analysis of conservative systems. The normal- -
ization condition associated with the vectors © and £ 1is introduced
below.

5Vectors defining motions with zero elastic potential energy.
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Equations (Al) represent the balancing between the inertias-plus-
aerodynamic forces represented by the matrix a,.g and the elastic

forces, represented by -A(brs) developed in the mode
5
X =X, Xp, « « +5 Xp.

Another interpretation of equations (Al) is obtained by multi-
plying the rth equation by ¥y, and summing on r. The vector
FY =¥1 Yo» - - .5 Yn represents a virtual displacement. Introducing

the notation,

) . 7
A(7,%) =Zyrarsxs
T8
- (42)
B(%,:;i) = Z YrbrgXg
T8
J
one may write the result in the form
A(F,%) - (5% =0 (43)

for all values of y. In this form, the equation of dynamic equilib-
rium states that the sum of the works performed by the inertia-plus-
aerodynamic forces and elastic forces, when displaced.over an aribitrary
virtual displacement, is zero (d'Alembert's principle).

In the special case where byg is the unit matrix,

B(?’;;) = Z ¥
r=1

’

Then B(y,x) will be written simply as (F,%). In this case,

B(y,x (y,_’) has the interpretation as an "inner produc‘b" between
two vectors ¥ and X. In two and three dimensions, (y,x) 1s then
equal to the product of the lengths of X and y by the cosine of

the Included angle. In the case of arbitrary values of brg, a similar

interpretation will be made; that is, B(F,X) will be regarded as_an
lnner produc‘b be‘tween the conjugate mode ¥ and the direct mode <.
Further, ¥ and X will be orthogona.l wi“bh regard to brg if

B($,%) =0 . (k)
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It is to be emphasized that, in using this concept of an immer product
the direct vector must appear in the second argument and the conjugate
vector in the first argument.

Similarly d,A(?,?c) defines an in.nér produé't. It is conceivable
that a vector §¥ may be orthogonal to ¥ with respect to b,.g but

not orthogonal wi'bh respect to a,.g and vice versa. But equation (A3)

states that, if X =28l 1is & direct characteristic mode corresponding
to a cha.racteristic root A = Aq, - then

A y;-:él) = )13(?:31) (a5)

for all values of 3? Therefore, if ? is orthogonal to 3l ith
respect to brpg, then the righ't side of equation (A5) is zero and

Bo also is the left; then y is or‘thogonal to &l also with respect
to a.
s°

One may, along with equations (A1) » consider the set

Zyrars—xi yrbr$=0 8=1,2, . . ., n (A6)
T T

Multiplying the sth equation by Xy . and summipng on s, one has again

equation (A3) which must be sa‘tisfled for arbitrary values of. X.
Since A =), 1is a characteristic root of equation (46), it follows

that there is a nontrivial solution y = ¥1 of equation (A6) for
A = M. Therefore, analogous to equation (45),

aF3) =33 | (A7)
for all values of Z.

Whereas 1in the clax_asicai theory of conservative systems the

vectors &L and -f]‘ mey be taken as identical, the nonconservative
_’

character of aerodynamic forces requires that el and 'r”l be treated
separately. )

Let '}T be an arbitra.ry vector representing a direct mode. Then
resolve X into components "parallel" _and orthogonal with reference
to b, to FL. That is, decompose X in the form

7= 632+ %2 (48)

T T T
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where £ is a scalar and x\2) is such that

s(3,32) - o (49)
Such a decomposition is possible because equation (A9) is equivalent to

-

B(F,% - £,34) =0
B(_r%l,—;) _en(E2) -0 r (a10)

&, = 3(3E) /B (7,2

)

At the seme time, one may resolve ¥ into components, parallel
and orthogonal, with reference to bpg, to &L.

7= 0+ 32 (a1)
B(§(2),‘é’1) =0 (A12)
n - 5(7,8) /a(,2) (a13)

Since B(?l,_gl) # 0 (Assumption (a)), one may assume, for con-
venience, that ‘

B(F,2) =1 (A1k)

a condition ("normalization condition") which may be met by multiplica-
tion of -gl or ?1 by a suitably chosen scalar.

The orthogonality relations (A9) and (A12) with respect to brg
imply orthogonality with respect to arg, as stated above,

A(-:Fl,—}z(e)) = 0 (415)
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A(§( 2) ,El) =0 (A16)

so that there is zero coupling between the first characteristic modes
and the orthogonal modes.

In view of equations (A9), (A12), (A15), and (A16), &% ana P+
are particularly well-suited for this construction of a set of coordinate
vectors, one for the direct modes and one for the conjugate modes, with
reference to which A(¥,%X) and B(¥,%) take simple forms. For,

A(F,3)

Al + 32,621 + 3(2)

nlglA(-%l,—é’l) + nlA(F'-,?c(e)) + glA(’?(a),?l) + A(?(E) ,3){(2))

nlglA(F,‘él) + A(§(2),§(2)) (A17)
Similarly, using equation (A1L)

B(¥,%)

Tllng(-fl:—gl) + B(?'( 2);;(2))

Ny + B@(E);;(e)) (418)

Substituting ¥ = FL in equation (A5) and using equation (A1L),
A(?l,é’l) =% (A19)
and equation (A17) takes the form |
AFR) = Mnpeq + A(§(2),?c(2)) (A20)

In virtue of the orthogonality conditions (A9) and-(A12), the

vectors 3):(2) and ?(2) each have n - 1 degrees of freedom. Every

2)

value of i( may then be represented as a linear combinastion of




n -1 vectors ;?1, '§22, o0 ey xea0-1, 8imilarly, every value of §(2) is a linear com-
bination of vectors 'ﬁa, ?2, « ey -5’2-':"1. Then an erbitrary direct mode ¥ may be

written

and en arbitrary mode ¥

i = _ 2 . >, L e ot
5 Yy = |1J. T 121‘)' T ¢« & o + 1]2,]1_1,‘[—
[

With the ald of equations (A18) end (A20), equation (A3) may now be written

. - . .
ﬁ.—J_ - . -
Mgy + E “e,rﬂ(#’rfxe’s)ﬁe,a - ’“[:1151 + r:, — ﬂe,rB(?e’r:'iz’s)&g,i’ =0 (421)

Putting the coefficients of N, and o,r equal to zero, a set of linear equations

in £, and £, .. 1s obtained. The characteristic equation is now
L4
M- > O 0 s e 0

Y IR
o affEmLE) xa(Fern-1,32,)

0 A(F:l,‘ieﬂ) - ;\.3652:1,‘12:1) A( :1,‘12:1)1 - xa(?r’i:l,?:?) c e A(‘iﬁ:l,ﬁﬂ:nﬂ) - m(?‘?:l,?:n-l)
S

‘e A.(';z:’l'l,?:n‘j) - m(‘ﬁ;&,n—l,gé,n-j)l

o
(oA

ohGe NIL VOVN
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It can novw be seen that the characteristic roots of the original
problem in n degrees are ldentical with Aq together with the set
of the (n - 1)-degree problem corresponding to

A(g,(e),;(E)) - —;(2),;(2)),

Since the assumptions (a) to (c), assumed velid for the n-degree
problem, hold for the (n - 1)-degree problem, one may comtinue the
reduction. Namely, to a characteristic root of the characteristic

determinant associated with A<?r(2),?c(2)) - )\.BG:(Q),’}’C(Q)) there is.

a direct characteristic mode &% and a conjugste characteristic mode 22,
Assuming that they are normalized, .

B(?e,‘é?) =1

then it is possible to resolve 3’:(2) and ?(2) in the forms

% = §2'32 + %(3)
B(;E,;(3)) =0
& = B(’%?,K( 2))

At the same time,

A3 J%(2))
3(3(2) x(2))

;(2) = 1]2_‘?_(2) +'§-(3)
B(‘i(3),32) =0

Mo = B(?’( 2) :32)

.xanz - A(‘y’( 3) ,3(3))

natp + B(33),203)

The characteristic equation then takes the form

M -2 0 }
0 - A
0=_ _)-2._...._l
0 0 I
0 0 |

e ey e e — R —

——— — — ——— — — — . o— ——
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One may contimue the reduction process until all the roots of the
characteristic equation have been used. If the reduction has been

made n ‘tlmes, then,

A(F)%) = il ANty

B(¥,%

and the characteristic equation is

)v]-"'x O . o
0 M -2 ... O
0 =
0 0 R

On the other hand, if after

1 reductions the characteristic

determinant is a constant (# 0, by assumption (c)), then it can be
shown (reference 1) that the reduced brg 1is the zero matrix. Hence,

->
X

l
Z gr-gr 4+ U+l
1

kj

Z ns-%s + :—Y"Z+l
8

A
AFD = 3 g, + A[FLE)
1

B(T,%) =D  ne. |

r=1

-

r (a22)
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The orthogonality conﬂitions6 prevail:

a(¥r,2e) = (3,39 =0 - r#s )
A(F, 24 - B(?,E“l) =0 r=1,2 ...,1 L (a23)
A(‘§,Z+l,’gs) = B(?Z-Fl:%s) =0 8 =1, 2 s 1
J
The characteristic equation is
M -A O ... 0 |
0 P N 0 '
| 0]
. . c e e |
0 0 e oo Ay =l
0=} — - — - —_ L - | S
I' * * *
0 : ¥ % *|on -1
| = = =
L__V._J
n-1

where the terms indicated with asterisks are independent of A.

From the last set of equations (A23), it follows that Zo*r
and '§Z+1 are free-body modes.

With the reduction shown in equation (A22), it becomes a simple
matter to solve equations (3) which are more conveniently treated in
the form of an equation of virtual work

AG”);) = m(&’:z) = (3’:_‘5) (A21l-)

for all values of §Z

6The orthogonality described here is sometimes referred to as "bi-
orthogonality." For instance, see reference 5 where there is presented
a method of analysis, similar to that in reference 1, for calculating
the effects on flutter of small changes in the parameters.
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Substituting from equation (A22),
1+1 >7+1 ¢ > >
= - -
> A, + AFTLE) o0 S apeg = (> ngt® + y“l,w)
1 1
A
' =8
=2 _n(F%) + F%)
1

Tor all values of 17, and all values of ‘§Z+l. Hence,

O - Ve = (%) (A25)
and, for all values of §1+l,
CAFWLEA) < (F0L7) (426)
From equation (A25),
& = (T’rﬁ)/ (o - (427)

Equation (A26) defines the free-body motion (elastic degrees regarded
as frozen) under the action of the external forces and may be reduced
to a set of linear equations. Substituting from equation (A27) to

equation (A22),
z- g (FH) 3, qn (428)
Ap = M

In case the normelization condition (A1) does not hold, then 1t
can be shown that equation (A28) is modified as shown in equation (7).
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APPENDIX B
SAMPLE CAICUIATION

In this appendix, a sample calculation is carried out for the
example discussed 1n reference 2. The case considered corresponds to
e, = 0.500 and o, = » (rigid attachment).

Homogenous Solution

The flutter determinant to be solved in two degrees of freedom,
according to the notation of reference 3, pages 62 to 63, is

A B ay] - xbll 215
= =O
b E o1 8op = Abpp
For a wing wi%h the following properties: .
Chord,ft . . . « « v v v i e e e e e e e e e e e e e e e 2/3
Length, £t . . . i & ¢ i v v i e i e e e e e e e e e e e e
Aspect ratio . . . . . . L L L L e e e e e e e e e . 6

Taper ratio . . . . & ¢ ¢ 0t L i e e e e e e e e e e e e e 1
Adrfoil section . . . . . + v v v &« v v v v v v v« . . . NACA 16-010
Yy 8lugs/ft . . . . . . .. . i e e e e e e e e ... 0.02702
T, slug-f£2/ft . . . . . . . . .. . ... ... ...... 0.00080
- T o W £~
EL, 1b-£52 .« © ¢ & v v v v 4 v e e e e e e e e e e e e . 9T7.08
G, Ib=FE2 . v & v o e e e e e e e e e e e e e e e e e . ... 180.56
My BIUZB « o « & + o + o o o o o o o o o o o s o« « « o « « « . 0.0988

I, 8lugs + & & ¢ ¢t it e i et e et e e e e e e e e e e e .. 0.00452
@y, radlans/sec . . . . .. Lo o e e e e e . .1
wy, radians/sec . . . .. . oo i e h e e e e e e e e . 299.6

The shapes of the deflection curves in bending fn(g) and torsion
£,(8) along the span are

1 5 3 - )
£y (E) 2(cosh 1.87 S - cos 1.87 Z)+ 0.73Wsin ;.87 > sinh 1.87 >

£.(€) = sin =



go that

1
f fhe(ﬁ)dg = ]
0

/: ‘ff(g)dg =2

f FlE)f (E)aE = 1.412h

0
%2
Conslder as an example é% = 8.33. Define A = —5 The valves of the terms in the
@
' determinant are
a1 - Ay &g, (91.648L - L10.31554) - A(1.841762) {~h76,7902 + 34.80841) -
- = 0
1 Bgp - Moy [(9.97093 + 21.273054) (308.117315 - 68.5513924) - M52.04947))

Solving a quadratic equation for the basic characteristic value A, the values obtained for the
two modes are .

M =:5.9882 + 1.04381

Ay = 19.6991 - 2k.25151

2t

oée NL VOVN
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Enough information is now available to compute the direct and
conjugate characteristic modes from the virtual-work equations thus:

d Work = 0 = (ylye) a1 = Ay 8pp ) 1
“ &21 &22 - sz x2
Tet
¥ =xY =1
Then,
xv=_(all "-A'vbll)=_ 8oy
2 . 21p (822 - Wbyp)
. by ) 8o
yz - - g = - -
e (%22 = MPee)

Table 2 has beeﬂcompile_d of all the characteristic modes tfhus
computed. ’

Besponsé Function -~ Mass Addition

The response function developed in appendix A when expanded is

R.F. =VZ( (%) (5,2)

My - A)B(yYEY)-
R
m/:rpb3

_ [yl_]-;fh(g ) + yEiewfa.(g )] [xllfh(g()‘ + x21éwfa.(§ )] +j

(2 - W2{rhat)

Engfh(E) + Y22ewfc;,(§)] [xelfh(g) + x,Peyfalt)] |
(re - )B(v%%)

33




#E

Since y,V = :!'__LV =1,

[2008) + vole2alt)] [E(E) + ez (8)]  [Fu(8) + yoPe,2a(8)] [2a(8) + xPeyry(e]]
+

(12 - (%) | (2 - *)13(3'2 )
Ky Ko

b

3 1 Y
I\rl-ﬁ /'52 N

Consider sgain a% = 8.33 and s span posi‘l;ion of T5 percent (g ] 3’); then Kl and Ky are
computed from the following data:

£n(3) = 0.655045
eyfo(3) = 0.461940

Substituting,
np. - [0-655045 + (0.172 + 3.8684)(0.4619k0]] [0.655045 + (0.175 - 0.07571) (0.k6294]]
-+ (A - 2)(18.6357 + 34.18831)
[0.655045 + (-0.171 - 0.07401)(0.461940]] [0.655045 + (-0.000405 + 0.009301)(0.h619405
(g - 2)(1.8817 - 0.081041) .
_ 0:0362119 + 0.00211654i . 0.200690 - 0.001938561
M - A o - &

0.0362119 + 0.002116541

I—'H
]

ohGe NI VOVN

0.200690 - 0.001938561

5
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The values of the constants K

1 and Ké are shown in table 3..

=
m/ﬁpb3
determined as shown graphically in figure 2. The data calculated in
this mamner are compiled in table 1. For these computations natural
frequencies Wy and «, found in test and corrected for the effect

Having found K; and K2, the values of A and- are

of apparent mass have been used (table 4).
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APPENDIX C
FLEXIBILITY OF MASS SUSPENSION

The numerical example, figures 1 and 3 to 6, has been carried out
for the case in which the mass m 1is rigidly attached to the wing.
The results plotted in figures 3 and 4 are still valid if one replaces
m by

N

1
Wy 1 -1 o
1- py

Then, for a given value of m, the data of figures 1 and 3 may be cross-
plotted to give a relation between (mu/mo)2 and the flutter speed .

This has been done for the case where the mass is attached at

50-percent span and the results are presented in figure 8. When the
stiffness of the mass suspension decreases, the flutter speed decreases.
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TABLE 1

RESULTS

E1=0; Vo = 312 fps; L = 5.85; x=3.5]

25-percent 50-percent T5-percent 100-~percent
span span span span
v
= 5.9 6.65 9.k 13.0
A 3.7 6.75 k.1 26.5
0,2 90,000 90,000 90,000 90,000
2
o = 9;— 2k, 300 13,400 6,400 3,400
® 156 116 80 58.5
v 306 256 250 254
~ 0.98 0.82 0.80 0.815
vO
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TABLE 2

A ., DIRECT AND CONJUGATE MODES

v

v/ab Ay Xy x5V ¥1¥ yo B (FV ,xY)
M 2.8155 - 0.1L4841, 1.0 {0.583 - 0.1k21 1.0 | -2. 440 + 6.0551 -27.5064 + 201.86024
700 Ay |51.3996 - 12.27451| 1.0 } 0.00203 + 0.00503L | 1.0 [-0.0573 - 0.01401 [ 1.83937 - 0.0164521
A |3.8861 + 0.0809k1 | 1.0 |0.345 - 0.099M 1.0 | -1.099 + 5.0761 | 8.3356 + 96.90191
68 My |50.5943 - 16.43811| 1.0 | 0.00L4k + 0.006661 | 1.0 | -0.0946 - 0.02731 | 1.8441 - 0.0348914
8.33 Ay |5.9882 + 1.04381 1.0(0.175 - 0.0757L 1.0 [0.172 + 3.8681 18.6357 T 34.48831
Ay |49.6991 - 24.25151 | 1.0 | -0.000405 + 0.009301i| 1.0.] -0.171 - 0.07401 | 1.8612 - 0.0810kL
A |TiThOL + 2.35621 1.0 { 0.113 - 0.06711 1.0 |0.764 + 3.196i 17.4791 + 16.13151
%000 Ap [49.5819 - 31.23091i) 1.0 | -0.00250 + 0.01051° 1.0 {-0.231 - 0.1381 1.9470 - 0.10821
A [9.7604 + 4.73691 | 1.0 |0.0618 - 0.05801 1.0 |1.296 + 2.5144 13.5918 + b.15604
1.2 As |51.07TT - k2.25721| 1.0 | -0.00573 + 0.01111 1.0 | -0.302 - 0.2621 2.0834 - 0.096711
| M |11.6265 + 8.77351 | 1.0 0.035 ~ 0.04691 1.0 [1.737 + 1.8501 9.550k - 8.78151
e Ap [56.77962 - 61‘022°%j 1.0 | -0.00954 + 0.01024 | 1.0 |-0.361 - 0.184L | 2,2775 + 0.0L49284

W

OhGe NI VOVN

6€



TABLE 3

VALUES OF CONSTANIS K; AND K,

E‘F' e

25-percent '50-perCent gpan T5-percent mspan 100-percent span

5 K X 3 LK Xy K K
0.001153529 + |0.00456109 - |0.00591099 «+ | 0.0588210 ~ [ 0,0128929 -} C.225415 - 0.0191386 ~ | 0.531505 +
e 0.0000685931 |0.0000562521 | 0.0000763931 | 0.0000801211 | 0.000504001 | 0.00109631 | 0.00226521 0.00227061
6o 0.00164188 + 0.00&1&816 ~ | 0-00850877 +} 0.0559078 - | 0.0196935 -| 0.217386 - | 0.0308311 - | 0.516939 -
0.0001412841 |{0.0001420874 | 0.000321314 | 0.000324551 | 0.000655261 ] 0.0006486921 | 0.004100581 | 0.00k093451
i | 0.00245659 N 0.00332996 ~ | 0.0144091 + o.blp99653 - | 0.0362119 +| 0.200690 - | 0.061k892 - | 0.485967 +
8'33: 0.0505265591 £.000523865L 0.092104%31 0.002060701 0.002115§£1 0.00193865¢ | 0.003181151 | 0.003532091
0.00310723 + |0.00268998 - | 0.0196925 + | 0.0k47656 - 10.0523205 +| 0.184856 - | 0.0902713 + 0.454338 -
10.00 0.001006361. |0.001084 0.0¢5h36781 0.005470381 | 0.009662761| 0.009T7027L | 0.01062464 | 0.00TTE09TL
0.0038Tho2 + {0.00194353 -~ 0.0267#1;3 + | 0.0380415 - | 0.0753990 +]| 0.163083 - 0.142h38 + | 0.408613 -
1830 0.002377541 |0.002172614 | o0.0141k991 | 0.01273461 | 0.032879%4 | 0.02905991 | 0.0482659L | 0.0LLNEBTL
¢ & 0.000986428 +|0.00115146 - | 0.0083BT17 +| 0.0306178 - | 0.0282219 +| 0.138531 - | 0.0621975 +| 0.3562k3 -

"l o.00u318551 |0.003862651 | 0.03011491 | 0.025468k1 | 0.08287861 | 0.0658%ki | 0.151681 | 0.1116231

ohGe NI VOVN
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TABLE k4
COMPARTSON OF CAICULATED AND TEST FREQUENCIES

. ' Calculated | Test | Test Eig’n‘ected)
First bending (radians/sec) 41.6 40.5 41.1
Second bending (radians/sec) 262 246 2k9.8
First torsion (radians/sec) 30k. 4 297.2 299.6
Second torsion (radians/sec) 91k | —e--- . 91k

lPest data are corrected for the effect of apparent mass.

‘E$§§§77
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p Wing
x'i

Meass

(a) Point mass, elastically attached.

.

(b) Distributed mass, rigidly attached.

Figure 1.- Symbols for relative deflection of mass and wing.
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(2) Point mess; I = O,
Figure 2, . Response function. (T)% = 8.33; T5-percent span.
Fractions represent scale of calibration line, l
0.0362119 + 0.002116541 + 0-200690 - 0.001938561 - .1
5.9882 + 1.04381 - x 49.6991 - 2k.25151 - x m/xpb3

A = 6.0, diam. = 0.00203 - 0.03471; A = k9.7,
diam. = 0.00008 + 0.008275i. 1 inch = 0.012 for circles.
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Real

Imaginary

-7

=2

I/naghar-y‘

Real

(b) Distributed mass; I = 0.00452.

0.052486 + 0.00795511 N 0.191216 -~ 0.00779511

5.9882 + 1.04381 - A k9.6991 -~ 24.25151 - A

" A= 6.0, diam. = 0.00762L - 0.05028i; A = 49.7,

1

/A

m/:rp'b3 )

diam. = 0.0003214% + 0.0078851i. 1 inch = 0.018 for circles.

Figure 2.~ Concluded.
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