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SUMMARY

The solution of heat-transfer problems has become vital for many
aeronautical applications. The shapes of objects to be cooled can
often be approximated by cylinders of various cross sections with flow
normal to the axis as, for instance, heat transfer on gas-turbine blades
and on airfoils heated for deicing purposes. A laminar region always
exists near the stagnation point of such objects.

A method previously presented by E. R. G. Eckert permits the calcu-
lation of local heat transfer around the periphery of cylinders of arbi-
trary cross section in the laminar region for flow of a fluid with con-
stant property values with an accuracy sufficient for engineering
purposes. The method is based on exact solutions of the boundary-layer
equations for incompressible wedge-type flow and on the postulate that
on any location of the cylinder the boundary-layer growth is the same as
that on a wedge with comparable flow conditions. This method is extended
herein to take into account the influence of large temperature differ-
ences between the cylinder wall and the flow as well as the influence of
transpiration cooling when the same medium as in the outside flow is used
as coolant. Prepared charts make the calculation procedure very rapid.
For cylinders with solid walls and elliptic cross section, a comparison
is made between the results of calculations based on the presented method
and the results of calculations by other known methods as well as of
experimental investigations.

INTRODUCTION

A calculation of heat transfer to cylinders with arbitrary cross
section in an air flow normal to the axis by a solution of the boundary-
layer equations is a difficult problem, even for the laminar region. The
problem is especially complicated by the large number of parameters
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influencing heat transfer. Such parameters are the shape of the cross
section of the cylinder, the Mach number which determines the flow out-
side the boundary layer, the temperatures on the surface of the cylinder
as well as in the stream, the stream velocity determining the internal
heat generation, and the temperature distribution around the circumfer-
ence of the cylinder. If the cylinder is cooled by the transpiration-
cooling method in which a coolant is ejected through the porous surface
into the outside stream, the amount of coolant and its distribution
around the circumference of the cross section of the cylinder are addi-
tional parameters. Even if a solution is obtained for such a problem,
for instance by use of an electronic computer, this solution is very
restricted because of the many parameters. Up to the present time,
therefore, the problem has been attacked only under simplifying
restrictions.

The restrictions most commonly used are: (1) low velocities, (2)
constant property values, (3) constant wall temperatures, and (4) imper-
meable surfaces (no transpiration cooling). Under restriction (2), the
development of the boundary layer along the cylindrical surface is inde-
pendent of the heat transfer; available knowledge on the flow boundary
layer can therefore be used as a basis for a heat -transfer calculation.
Under the simplifying assumptions, which are necessary in order to
transform the general viscous-flow equations into the boundary-layer
equations, the development of the flow boundary layer does not depend
immediately on the shape of the cross section of the cylinder, but only
on the velocity distribution in the stream outside the boundary layer
and along its surface. ;

One method which was applied successfully to obtain a solution of
the flow boundary-layer equation developed the stream velocity along the
surface of the cylinder in a power series of the distance from the stag-
nation point measured along the circumference of the cylinder. In ref-
erence 1 this method is used to solve the heat-transfer problem. It is
also shown that the temperature field within the boundary layer can also
be presented in a power series of the distance from the stagnation point
in which the single terms contain only universal functions of a dimen-
sionless wall distance and of the Prandtl number of the fluid. The heat
transfer to the surface is given by an analogous series with terms
depending on the Prandtl number. The calculation of the universal func-
tions, however, is a tedious process, and accordingly these functions
are known only for a limited number of terms. For air with a Prandtl
number of 0.7, they are presented in reference 1. For a gas with a
Prandtl number of 1, they are contained in reference 2, which is based
on reference 3, in which the boundary-layer flow of a yawed cylinder is
calculated. The fact that the boundary-layer equation for the velocity
component parallel to the axis of a yawed cylinder is identical in form
to the boundary-layer equation describing the temperature field for a
£luid with a Prandtl number of 1, flowing normal to the axis of the
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cylinder, was used in reference 2 to determine heat transfer to such
cylinders. The presentation of more terms of the series is announced in
reference 4. It is found, however, that the velocity distribution for
only a limited range of cross sections of cylinders can be represented
by a power series converging rapidly enough that the number of the known
universal functions is sufficient to calculate the heat transfer.

The difficulties connected with a solution of the boundary-layer
equations point out the need for an approximate approach which, with a
small expenditure of time, would determine heat-transfer coefficients
with an accuracy sufficient for engineering purposes. A considerable
number of such approaches were tried in the past with results which
differ greatly as shown in figure 1, taken from reference 2.

The simplest procedure is probably the use of the heat-transfer
coefficients as calculated in reference 5 for flow along a flat plate
with a constant velocity. The fact that in reality the stream velocity
varies along the cross section of the cylinder is taken into account by
calculating the local heat-transfer coefficients with the velocity found
in the stream at the considered distance from the stagnation point.

This method is contained in a summary presented in reference 6. Unfor-
tunately, such an approach gives heat-transfer coefficients which are
considerably low in many cases (see fig. 1).

Better agreement was obtained by another approach (reference 7)
which uses, instead of the flat-plate solution, a family of solutions of
the boundary-layer equations which can be obtained in a general form,
namely, for the case where the stream velocity varies along the surface
as a certain power of the distance from the stagnation point. Such a
velocity variation is obtained in incompressible flow around wedges.

The solutions for such a type of flow were used to obtain approximate
heat-transfer coefficients for a cylinder with arbitrary cross section
by stipulating that the local heat-transfer coefficient on any location
along the cylinder is identical to the local heat-transfer coefficient
on a wedge for which, at the same distance from the stagnation point,
the stream velocity and its gradient are the same as those on the inves-
tigated cylinder. This approach was subsequently used by different
authors, and is described, for instance, in references 8 and 9. It
takes into account the stream conditions which influence the boundary-
layer growth at the location at which the heat transfer is going to be
determined; however, it does not properly account for the development of
the boundary layer in the range upstream of the point considered. This
development may be different on the cylinder and on the equivalent wedge.

Another group uses an integrated momentum equation for the boundary-
layer flow as proposed by von Kdrmdn and K. Pohlhausen (references 10
and 11) to calculate the velocity boundary layer. Different procedures
were proposed to determine local heat-transfer coefficients from the
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known velocity boundary layer. Some investigators use Reynolds analogy

directly (reference 12) or with a correction for Prandtl numbers different

from 1 (reference 13). Such approaches give heat-transfer coefficients

which are considerably high in many cases, as shown, for instance, in fig-

ure 1. More accurate results were obtained when the heat transfer was
determined by solving an integrated heat-flow equation for the boundary
layer. The velocity field within the boundary layer has to be known in
this approach, since the flow velocities within the boundary layer occur
in the mentioned heat-flow equation. This method was originated by
Kroujiline (reference 14). Extensions and simplifications are contained
in references 15 to 18 and an extension to compressible flow of a fluid
with a Prandtl number equal to 1 is found in references 19 and 20. Use-
ful information is also contained in a summarizing report (reference 21).

Another approach starts from a consideration of the fact that the
use of the heat-transfer coefficients for wedge-type profiles as
described previously was found to give heat-transfer coefficients with
a fairly good accuracy. It should be expected that these heat-transfer
coefficients can be improved to a degree which is sufficient for all
engineering purposes by a method which takes into account in some approx-
imate way the previous history of the boundary layer. Such a method,
called the equivalent wedge-type flow method, was proposed in refer-
ence 22, extended to heat transfer at high flow velocities and variable
wall temperature in reference 23, and extended to transpiration cooling
with small temperature differences in reference 24. The advantages of
this method are that no knowledge of the velocity boundary layer is
required and that it can be readily extended to take into account the
effects of large temperature differences, of transpiration cooling, and
of variasble wall temperature as soon as the corresponding solutions for
the wedge-type flow are available.

This report presents such an extension, made at the NACA Lewis lab-
oratory, which includes the effects of large temperature differences and
of transpiration cooling. It is based on exact boundary-layer solutions
for wedge-type flow with large temperature differences and with trans-
spiration cooling (reference 25). Charts were prepared which make the
calculation of heat transfer around cylinders of any arbitrary cross
section more rapid.

SOLUTION OF BOUNDARY-LAYER EQUATIONS FOR WEDGE-TYPE FLOW
Boundary-Layer Equations
The following boundary-layer equations describe the velocity and
temperature fields in a laminar steady two-dimensional gas flows the

momentum equation, the continuity equation, and the energy equation.
The momentum equation is
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when body forces are neglected. (All symbols are defined in appendix A;
consistent units are used throughout the report.) Since the pressure
variation normal to the surface throughout the boundary layer may be
neglected, it follows that the pressure is prescribed by the conditions
in the stream outside the boundary layer and can be connected with the
velocity ug in the stream and just outside the boundary layer by the
Bernoulli equation

op Qug
- 3% ™ Pals 3%

The introduction of this expression changes the momentum equation to the
form

du A, @ Bu) dug (2)
s T Y 3y T oy \M &y Psls 3%

The continuity equation is

Sai (pu) + % (pV) = 0 (3)

and the energy equation is

2
pCp (P g% + v 6T> 5 (\ 8?) (g%) + u g% (4)

The heat generated by internal friction, described by the second term on
the right side of equation (4), and the temperature variation connected
with expansion, described by the third term, can be neglected as long as
the difference between the total and the static temperature in the gas
stream is small compared with the difference between the wall temperature
and the temperature in the gas stream. For this condition, then, only
the first term on the right side of equation (4) is retained, and the
energy equation assumes the form

pCp <F+V§£>=§§<kg§) (&)

Equations (2), (3), and (5) include the case of transpiration cool-
ing when the same medium as that in the outside flow is used as coolant
and the boundary conditions are properly defined.
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u=0, ve vi,, and T=T, when y=20

W

(6)
U and T 2T, when 'y —ye

The property values u, k, Cps and p appearing in the equations depend
on temperature and pressure. The variation with pressure can be neg-
lected at the small velocities to which the energy equation was already
restricted by disregarding the internal friction and the expansion terms.
The influence of the temperature dependency, however, may be appreciable
in applications with large temperature differences within the boundary
layer. Solutions of the boundary-layer equations which take into account
the temperature variation of the property values were obtained in ref-
erences 9 and 25, in which the partial differential equations were
transformed into total differential equations.

Change of Variables

The transformation of the partial differential equations into total
differential equations is possible under the following specialized con-
ditions: The stream velocity is assumed to vary as a power function of
the distance from the stagnation point measured along the surface of the
cylinder.

g me .Gx" (7)

It has recently become customary to refer to the exponent m in this
equation as "Euler number." The Euler number can be expressed by the
Bernoulli equation in the following way:

m='57<2 (8)
pSuS

X

In addition, the temperature of the wall is assumed to be constant and
the property values are assumed to vary proportionally to a power of
the absolute temperature T. The numerical calculations were made for
air. The exponents used were 0.7 for the viscosity, 0.85 for the heat
conductivity, 0.19 for the specific heat, and -1.0 for the density.
The variables
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are used to transform equations (2), (3), and (5) into total differen-
tial equations presenting f and 6 as functions of 7 only. The
stream function  appearing in equations (9) is defined in such a way
as to eliminate the continuity equation (3).

(o ¥)
pU = ————
oy
(e ¥) §i
oY= T

Introducing the new variables into the second of equations (10) leads
to the following expression for the velocity component normal to the
surface:

1+m 5 I N Ug
=pw s p]| ==="f o FE (m-1) e EEy
The velocity at the surface itself follows:
(L
BRI (12)
W ARAT T

The transformation therefore prescribes a certain variation of the cool-
ant velocity vy along the surface, since the function £, has to be
constant (independent of x). Since the stream velocity is described
by equation (7), the coolant velocity vy; 1is also proportional to some
power of Xx. It is shown in reference 26 that such a variation of the
coolant velocity leads to a constant wall temperature and is therefore
consistent with the assumed constant wall temperature when heat transfer
by radiation may be neglected. The transformed equations are presented
in references 9 and 25, together with the solutions for a Prandtl num-
ber Pr of 0.7, and for a range of Euler number m, temperature ratio
T./T,, and the parameter f_ describing the cooling-air flow through




the porous surface. The results contain expressions for the thickness
of the flow boundary layer which are defined in two ways: the dis-

placement thickness
‘oo
u
Ry
0 58,

u
8= | Lo Q : i) ay (14)
SLE SR iE

and the momentum thickness

The thermal boundary layer is characterized in this report by the con-
vection thickness

5 AR (15)
= d 15
- 0 Pl Ty - Ty 4

v

In addition, a thermal boundary-layer thickness will be used herein and
is defined in the following way:

=]
T-T
0 Wigex 5

Values for this boundary-layer thickness can be easily calculated from
results presented in reference 25.

Application to High Velocities

The solutions described apply exactly only to flow with small
velocities. Practically, the limiting velocity up to which it is pos-
sible to neglect the frictional and the expansion terms can be set quite
high for a gas; this fact can be understood from the following trans-
formation of the energy equation, in which only the specific heat is
regarded constant. If the momentum equation (1) is multiplied by the
velocity u and added to the energy equation (4) and if, in addition,
the total temperature Tp =T + u2/2cp is introduced, the following

expression is obtained:

oT oT, BT
R T T R
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The last term on the right side of the equation vanishes for a Prandtl
number equal to 1. In this case, the energy equation has the same form
as the one for low velocities in which the friction and the expansion
terms were neglected. The only difference lies in the fact that the
total temperature appears in the energy equation. For cases which have
a Prandtl number not too far from 1, the last term in equation (17) will
be comparatively small up to considerable velocities, and the energy
equation (5) used in the following considerations applies to this condi-
tion when the temperature T is interpreted as total temperature. It
will be shown later that as far as heat transfer is concerned, the range
in which the results of a calculation with equation (5) may be used can
be extended even further by using a properly defined adiabatic wall tem-
perature instead of the total gas temperature.

The property values W, k, Cps and p ‘depend for gases on the tem-

perature. This dependency was taken into account in the described cal-
culations. The density depends, in addition, on the pressure, and the

pressure variation may become considerable at high Mach numbers. There
are indications, however, that calculations which neglect this pressure
variation can be used with sufficient accuracy over the whole subsonic

range, as is pointed out in reference 27 by an investigation of results
obtained by L. Howarth (reference 28).

EXTENSION OF THEORY TO ARBITRARY BODIES
Determination of Equivalent Wedge

The solutions discussed in the previous paragraph are in an exact
sense restricted to a certain type of velocity variation along the
cylindrical surface, namely, a stream velocity which just outside the
boundary layer is proportional to some power of the distance from the
stagnation point. Such a velocity distribution is realized, for
instance, in incompressible flow around wedges. The wedge-type solu-
tions may be used, however, to obtain approximate heat-transfer coeffi-
cients on cylinders of arbitrary cross section. One approach in this
direction assumes that the heat-transfer coefficient on any point along
the circumference of a profile with arbitrary cross section is the same
as that on a wedge at the same distance from the leading edge, provided
the stream velocity and its gradient on the wedge and on the arbitrary
profile have the same value at the location considered and that the tem-
perature ratio Ts/Tw is the same. It will be shown that such an

approach takes into account the right stream conditions at the local
spot for which the heat-transfer coefficient is to be determined. How-
ever, it does not properly consider the previous history within the
boundary layer. Numerical calculations presented later show that heat-
transfer coefficients obtained in such a way are in most cases within
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about 15-percent agreement with experimental data. It is to be expected
that a modification which accounts in some approximate manner for the
conditions in the boundary layer upstream of the point under considera-
tion should improve this approximation to the desired degree. This mod-
ification is made in reference 22 by the stipulation that the rate of
increase of the boundary-layer thickness is the same oOn the considered
point of an arbitrary profile and on the point of a wedge which has

the same boundary-layer thickness, the same stream velocity, and the
same stream velocity gradient. This same stipulation will be used in
the present report. For a given temperature ratio TS/TW, the heat-
transfer coefficients on a wedge depend on the Euler number m and the
value fy characterizing the coolant flow through the porous surface.
These parameters which define the equivalent wedge profile will now be
expressed by the boundary-layer thickness and the local stream velocity
gradient.

For the wedge-type profile, the stream velocity is expressed by
the power law

e = B (18)

in which the value £ expresses the distance from the leading edge
measured along the wedge surface in order to distinguish it from the
distance of the point under consideration from the stagnation point on
the arbitrary profile, which will be denoted by x. The variables used
for the transformation of the original boundary-layer equations in the
previous section may now be written

(19)

and

2 DW'g
fw= - =% vwr\f——uwus (20)

To a certain value 7y indicating the boundary-layer thickness o)
belongs a value Ty of the coordinate 7 defined by the equation

}pwus
= 9 “‘WE (21)
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In order to eliminate the distance £ from this equation, equation (18)
is differentiated to obtain

Ju

S

et EE
SE_ = mCE 7 (22)

Since the velocity gradient on the wedge profile is assumed the same as
that on the profile under consideration, it follows that Jug/df = oug/ox.

Thiistequality gives for the coordinate E the expression

LY¥2

mus
E % d'lls dx (23)

When this expression is introduced into equation (21), there is obtained

el
T = o fa \&;

In this expression, Ty, (denoted as (8/x) NRe in reference 25) is a
function of the Euler number m and of the coolant-flow parameter fy.

If this equation is therefore written in the form

7
2 PO dug
m=—— — 24
the left side is a function of m and fy and equation (24) relates

both values to the boundary-layer thickness O and the velocity gradi-
ent dus/dx. In order to obtain a second relation for m and fy, the

coordinate ¢ is replaced in equation (20). The result is

mtl . _ Pyvy0
Gty g

(25)

which is written again in such a way that the left side is a function of
the Euler number m and the flow parameter fy, which can be calculated
from the results in reference 25. Both equations (24) and (25) are
therefore sufficient to determine the equivalent wedge profile.
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Equations for Boundary-Layer Thickness and Heat Transfer

The next step is to develop a differential equation for the
boundary-layer thickness from the postulate that the boundary-layer
gradient d&/dx is the same for the real profile as for the equivalent
wedge profile. For the wedge profile, the boundary-layer thickness is
given by the expression

1-m

by T
8 = Ty EB; £

which is obtained from equation (21) by replacing the stream velocity
with equation (18) and solving for the boundary-layer thickness. A dif-
ferentiation of this equation and the use of equations (23) and (24)
result: dn

du /d_X

ad ] -m S -m 2 Uj,f

i S 18 ! ( 26 )
dx 2m U.S 2 b pwﬁus

This is a differential equation for the boundary-layer thickness which
contains only values which are known for the profile under consideration
or which are determined from equations (24) and (25) for the equivalent
wedge-type flow. An integration of the differential equation gives the

boundary layer along the circumference of the profile under consideration.

The local heat-transfer coefficient is defined by the following
equation:

B{ L) e @TBT[ >W

Introducing the dimensionless temperature ratio given in equation (9)
and the coordinate £ results in

4
h = k6. a; = k00 _g (27)

The heat-transfer coefficient may be calculated from this expression as
soon as the boundary-layer thickness & is known, since 6 and T

are functions of m and f contained in reference 25.
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Up to the present time, no recommendation has been made as to
which boundary-layer thickness should be used in the prescribed proce-
dure. When the momentum thickness is used in the foregoing equations,
it is easily understandable that the integrated momentum equation is
satisfied and the method of calculation becomes the same as the one pro-
posed by von Kérmén in reference 10. This fact can be proved mathemati-
cally by a procedure completely analogous to the one used in appendix B.
On the other hand, the use of the convection thickness as defined in
equation (15) satisfies the integrated heat-flow equation within the
boundary layer, as shown in appendix B. The use of both boundary-layer
thicknesses leads to somewhat different results for the local heat-
transfer coefficient, and the question arises as to which is preferable.
It is pointed out by Schuh in reference 23 that for the purpose of deter-
mining heat-transfer coefficients it is more important to satisfy the
heat-flow balance, and the use of the convection thickness was therefore
recommended. In reference 22, the use of the thermal boundary-layer
thickness as defined in equation (16) is investigated, and the results
of the calculation with this boundary-layer thickness are found to
agree even better with measured values and with other calculations. The
convection thickness &, and the thermal thickness &g for the boun-

dary layer will therefore be used in parallel in the following numerical
evaluations.

CALCULATION PROCEDURE
Use of Dimensionless Variables

The procedure which may be followed in determining local heat-
transfer coefficients with the relations developed in the preceding sec-
tion is now explained. Figure 2 shows a sketch of a cylinder with arbi-
trary cross section and the notation used in the analysis. Before
numerical calculations are made, however, it is advisable to change to
dimensionless quantities. In order to make this change, the distance x
is divided by the major axis I of the cylinder and the mass velocity
in the direction of x is divided by an upstream mass velocity. All
lengths and mass velocities parallel to y are, in addition, multiplied
by the square root of the Reynolds number Rep Dbased on the major axis
and the upstream mass velocity. The dimensionless variables which are
subsequently needed are

M
Il

(28)

Bx

(29)

>
*
|
Hlo
-
53,
D
o
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0.1
ul = — (30)
Po%s,0
oV
* wwW
e Reg (31)
0 s,0
where
u, oo
Reg = s;z 2 (32)

By use of these dimensionless quantities, equation (26) is transformed
into

a5 M
Gl (8)
where
*
du
l-m 2 S %2
M=Tnb ==M<d_xﬁ 6* s V{;S*> (34:)

according to equations (24) and (25), which, in dimensionless values,
are

*
P )
U s 5
d)(*
and
m+1

ko *
5 2 fwﬂb = VW6

Introduction of the dimensionless quantities into equation (27)
leads to

L (35)
A/Reo 6*
where
hL
Nu: = — (36)
K
and

; v;6*> (37)
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Charts and Calculation Procedure for Prescribed Coolant Flow

Charts have been prepared which present the functions M and N as
expressed by equations (34) and (37) in dependence on (dug/dx*)‘(‘)*2 and
vad*. When the values presented in reference 25 were considered for the
construction of these charts, it was found that in certain cases one of
the free-stream boundary conditions was not fulfilled. This same condi-
tion had been overlooked by other previous investigators. As a conse-
quence, spot recalculations were made; it was found that the maximum
error in Nu/ Reg resulting from these recalculations was of the order
of 6 percent. Consequently, no attempt was made to recalculate the entire
field because of the large amount of labor involved. The charts presented
herein were constructed from a combination of these recalculations and
results presented in reference 25. Even though all recalculations were
not made, it is believed that the charts as presented will give results
with an accuracy of the order of 2 on 3 percent. In figures 3 and 4, the
dimensionless convection thickness of the boundary layer is used; in fig-
ures 5 and 6, the dimensionless thermal boundary-layer thickness is used.

At the stagnation point of any blunt-nosed cylindrical body, con-
ditions are the same as those at the stagnation point of a plate normal
to the flow. Therefore m = 1, but the value of &* is unknown.
However, there exists at the stagnation point a unique relation
Vip* F[(dugydx*)s*zj which may, for instance, be read along the

abscissa in figure 3 or in figure 5. Squaring this equation and dividing
both sides by (du;/dx*)t‘)*2 result in

2 *
v % du
dug  du§ S#2 gt

*
axt . dx”

These relations are presented in figure 7 for the dimensionless convec-
tion boundary-layer thickness and in figure 8 for the dimensionless
thermal boundary-layer thickness.

By use of these charts, the calculations for any profile can be made
in a very simple manner for either the dimensionless convection or the
dimensionless thermal boundary-layer thickness. The method of solution
for the convection thicknesses is described subsequently. For the
thermal thickness, the procedure is the same.

The values of ug and dus/dx must be found for the cylinder pro-
file under consideration either by measurement or by a solution of the
inviscid-flow equations. The coolant velocity v, 1s prescribed by the
porosity of the wall and by the pressure distribution around the profile.
From these terms, the values of u;, dug/dx*, and v; can be calcu-

culated. The value of 62 at the stagnation point can be determined
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g A
: du;/dx*
and the corresponding value of (dugydx*) 8: is read from figure 7. A

simple algebraic operation then yields the desired value of Sg at the
stagnation point. '

from figure 7 in the following way: The value of is computed,

The dimensionless convection boundary-layer thickness 8; along
the cylindrical surface is determined from equation (33); for the
numerical evaluation presented herein, this equation was solved by the
method of isoclines with the aid of figure 3, depending upon which ratio
of stream to wall temperature applied. Equation (33) determines the
direction of the tangents to the different & -curves which sat}sfy the
equation. The task is to find that curve which contains the B,-value
previously calculated for the sta nation point. For chosen values of X

and B,, values of (du;/dx*) 5 2 and vide are computed and the

value of M is read from the appropriate part of figure 3. Equation (33)
then gives the slope of the tangent at this selected value of x* for
the assumed 62- Several values of 52 are used for this x*. The

same calculations are repeated for other values of x*. If the distance
between these x'-values is chosen small enough, an accurate curve of

82 against x* can be drawn which starts at the desired previously
calculated value of 62 at the stagnation point and which will have the
correct slope at each value of x* considered. Figure 9 illustrates
this method of solution. Values of N can then be obtained for each of
the correct Bé—values and the considered v%-value for each x* from

figure 4 after (dug/dx¥) Sc*z and V;B; are computed (the ratio of

stream to wall temperature under consideration determines which part of
figure 4 should be used). The value of Nu/ Reg can finally be
obtained from equation (35).

The same calculation procedure can be used when the dimensionless
thermal boundary-layer thickness is considered. Figure 8 is used for
the determination of the value of 6% at the stagnation point; figure 5
is used to determine M; and figure 6 is used to determine N. The par-
ticular ratio of stream to wall temperature under consideration deter-
mines which parts of these figures apply for the calculation of the
values of M and N. Finally, equation (35) gives the desired value of

Nu/ A/Req-

Charts and Calculation Procedure for Prescribed Wall Temperature

The heat-transfer coefficients determined by the values of Nu/ Reg
can now be used to calculate the surface temperature of the cylinder
when the outside ‘stream temperature and the temperature with which the
coolant is supplied to the interior of the cylinder are known. For this
purpose a heat balance for an element of the wall as shown in figure 10
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N

is set up. The cylindrical volume element considered may have two plane
surfaces, one surface (1) coinciding with the outside surface of the
cylinder wall and the other (2) apart from the inside surface of the wall
by such a distance that it is situated outside the boundary layer present
on this side. (The inside surface has to be considered as a surface of

a wall to which suction is applied and on which a boundary layer builds
up as shown in reference 29.) The mantle surface (3) of the cylinder may
be normal to the wall surfaces. Heat is carried by convection with the
cooling air through surfaces 1 and 2. The amount per unit time is indi-
cated in figure 10. It is assumed that the coolant is heated up to the
wall surface temperature Ty, when it leaves the wall. This assumption
is usually well fulfilled. Heat will be also transferred by conduction
through the fluid layers immediately adjacent to the outside wall sur-

faces, the amount being _kw(gg)w dA. In addition, heat may be trans-

ferred to the outside wall by radiation; it may be qr dA. Heat may
also flow into the volume element by conduction in the solid material or
by transverse flow of the cooling air. The sum of all these individual
flows may be d dA. Then the heat balance is

oT
dr * Ao + CpPyVyte = CpPyVyly - 3 o

The heat -k (BT/ay)W transferred per unit area from the gas to the
wall was in this report expressed by a heat-transfer coefficient

W
Combining these two equations results in

Ar + Qe + h(Tg-Ty) = cppwvw(Tw'Tc) (38)

This equation permits a calculation of the wall temperature for any
place on the cylindrical surface when the coolant velocity v, 1is pre-
scribed, when the local radiative heat transfer gq,. and the conductive
heat flow g, are known, and when the heat-transfer coefficient h has
been obtained. The conductive heat flow q, is usually small and can
be neglected. Such a calculation results in a wall surface temperature
which generally will vary along the circumference of the cylinder. When
the variations are large, the temperature distribution obtained can be
regarded only as an approximation, since the wedge solutions (refer-
ences 22 and 25) on which the method in this paper is based were obtained
for the case of a constant wall temperature.

Usually, however, the problem which faces the designer in an appli-
cation is somewhat different from the one treated. The purpose of
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transpiration cooling is mostly to keep the wall temperature of some
structural element below the limits which the material can withstand.

On the other hand, the amount of coolant almost always must be kept
small, which means that local overcooling should be avoided. For the
wall surface under these conditions, a temperature is prescribed which
should be uniform azbout the circumference of the cylinder and the prob-
lem is to find that distribution of the coolant velocity v, which
results in the desired wall temperature. Generally, such an investiga-
tion requires a trial-and-error procedure which is very involved. The
procedure becomes simple and straightforward, however, when the radiative
heat flow q, and the conductive heat flow g, can be neglected. Such
a solution then is useful also as a starting point for the trial-and-
error procedure for the case when radiation is present.

The heat balance (equation (38)) can be transformed to

p..V Pe=T
h W W @ (59>

CpPsls,0 ~ PgUg,0 TsTy

when g, = g = 0. The ratio of temperature differences in this equa-
tion is now a prescribed value. A similar ratio (TS-TW)/(TS—TC) often
appears in turbine-cooling work and is denoted by . Introduction of
this value and conversion to dimensionless values results in

Nu_ _ v* pr 1-9 (40)

NReg b ®

Another expression for Nu/h/ReO is given by equation (35). Combining
both equations gives

* ok 1-
N =5 P o (41)
This equation expresses a relation between the parameters N and V;B*
in figures 4 and 6 which may be used to insert lines of constant @
into these figures. With the use of these lines the calculation pro-
cedure for any specific problem becomes quite simple. The procedure
will be described for Ts/Tw = 1 (or near 1) and with the use of the

convection boundary-layer thickness ©&,. The prescribed temperatures
fix the value of .

At the stagnation point, m= 1 and du;/dx* is known. In fig-
ure 4(a) the intersection between the line m = 1 and the line for the
prescribed @ determines v;6g and (du;/dx ) 622 and from both

values, Sg and v% may be calculated.
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The method of isoclines may again be used to determine the develop-
ment of the boundary layer along the cylindrical surface. The use of
this method implies that the gradient dsé/dx* has to be determined for

any pair of values x* and 3. For an assumed 57, the value vyd¢
can be found in figure 4(a) as the value on the prescribed ¢-curve above
the known abscissa value (dugd/dx ¥ 632. Figure 3(a) then gives M

and equation (33), the gradient a8%4/dx*. A plot similar to figure 9
determines the boundary-layer thickness, and the values %; belonging
to these boundary-layer thicknesses represent the coolant-flow distri-
bution for the particular temperature-difference ratio ©®.

NUMERICAIL EVALUATIONS AND COMPARISONS WITH KNOWN RESULTS
Solid Surfaces

The results of the outlined procedure to calculate local heat-
transfer coefficients have to be compared with experimental results or
calculations by some other method in order to check the accuracy. The
only cylindrical shape for which experimental data or solutions of the
boundary-layer equations suitable for such a comparison are available
seems to be the cylinder with a circular cross section. Accordingly,
local heat-transfer coefficients were calculated by the method proposed
in this report with the use of the dimenionless thermal boundary-layer
thickness as well as of the dimensionless convection boundary-layer
thickness. The results of these calculations are plotted in figure 11
over the dimensionless distance from the stagnation point. Also
inserted in the figure is a curve representing the average curve through
the experimentally determined local heat-transfer coefficients mentioned
in reference 30. It was shown in reference 22 that the measurements
correlated well into a single curve when the experiments with very high
Reynolds numbers near the critical value for transition to turbulence
within the boundary layer were excluded. The tests with high Reynolds
numbers gave values of Nu/Afﬁga which over the whole upstream side
of the cylinder were about 10 percent higher than the ones for the lower
Reynolds numbers. The same behavior was found in references 31 and BA
in which it is shown that an increase up to 50 percent in the heat-
transfer coefficients over the expected laminar values was caused by the
turbulence level in the wind tunnels used. The result of a solution of
the boundary-layer equation as presented in reference 1 is also included
in figure 11. This method solves the boundary-layer equations and
obtains results as a series in the distance along the surface. Also
inserted are values obtained by use of the Pohlhausen flat-plate solu-
tion when the free-stream velocity is based on the local values and
results obtained by the methods of references 12 and 13. Heat-transfer
coefficients on wedges with the same local stream velocity and velocity
gradient at the same distance from the stagnation point are also included
(reference 8). Appendix C explains how these wedge solutions were
obtained.
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On a cylinder with a circular cross section, separation occurs in
the subcritical range near the value x* = 0.7. The stream velocity
distribution around the surface of the cylinder which was needed for the
calculations was obtained from pressure distributions given in refer-
ence 30 and is contained in reference 22.

It may be seen from figure 11 that the use of flat-plate values
results in heat-transfer coefficients which are considerably lower than
experimental values, whereas the methods in references 12 and 13 result
in values which are too high. Much better agreement is found between
the wedge heat-transfer coefficients and the experimental results,
especially near the stagnation point. Farther downstream, the accuracy
is improved by the method of this report. For the largest distance from
the stagnation point, the use of the dimensionless thermal boundary-
layer thickness results in values which are higher and the use of the
dimensionless convection thickness, in values which are lower than the
experimental ones. The values calculated by Frossllng s solution of the
boundary layer equations are also higher than the experimental ones.
Frossllng s method has to be considered as an exact solution of the
boundary-layer equations. In reference 22 it is recommended, on the
basis of the good agreement between Frossling's curve and the values
obtained by the use of the thermal boundary-layer thickness, that the
method of the equivalent wedge flow be based on the thermal boundary-
layer thickness. The values of the heat-transfer coefficients depend
primarily on the velocity distribution in the stream around the cross
section of the cylinder. The velocity distribution used for the calcu-
lation on the circular cylinder is also shown on figure 1l. The calcu-
lations are made for a Prandtl number of 0.7, for a solid surface
(vw = 0) and a temperature ratio Ts/Tw of 1, equivalent to the assump-

tion of constant property values. These calculations agree within

5 percent with the exact calculation and within 8 percent with experi-
ment when the immediate neighborhood of the separation point is excluded.
Similar comparisons have already been made in reference 2 for a gas with
a Prandtl number of 1 and a different velocity distribution (see fig. 1).
This comparison shows that the method proposed by Squire (reference 16)
gives heat-transfer coefficients which agree with the exact boundary-
layer solution to about the same degree as those of the method of the
equivalent wedge flow. The same fact holds for the method indicated in
references 15 and 17 especially with the improvement given in refer-
ence 4. It can be stated in summary, therefore, that a number of methods
exist today which at least for the circular cylinder permit the deter-
mination of heat-transfer coefficients on solid surfaces in the laminar

region of a gas having constant property values with a very good accuracy-

The advantage of the equivalent wedge flow method over those methods
just discussed is that it gives solutions in a very short time and that
it can be readily extended to include variable property values and
transpiration cooling, as was done in this report. The wedge solution,
according to reference 7, is still more rapid; however, the results
differ from the experimental values up to 15 percent.
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Figure 12 gives the analogous results for an elliptic cylinder with
the axis ratio 1:2. It may be observed that heat-transfer coefficients
on wedges differ only slightly from those obtained for equivalent wedge-
type flow, whereas the flat-plate values and the ones calculated with
references 12 and 13 are considerably different. No experimental
results nor solutions of the boundary-layer equations for a cylinder
with such a cross section which could be compared with the approximate
solutions are known to the authors. A calculation with Kroujiline's
method presented in reference 22 agrees well with the solutions obtained
with the equivalent wedge-type flow method. Separation of the flow
occurs on such a profile near x* = 0.8. The stream velocities used are
calculated values contained in reference zZ.

The agreement between the wedge solutions and the results obtained
by the method herein is still closer for the elliptic cylinder with axis
ratio l:4 as can be seen from figure 13. The reason for this fact is
the type of stream velocity variation occurring on elliptic cylinders.
Flow separation occurs on this cylinder near x* = 0.85. The curves in
figures 12 and 13 show that the stream velocity is comparatively con-
stant over a considerable part of its circumference after a steep
increase near the stagnation point. This behavior is the more pro-
nounced for an axis ratio of 1l:4 than for one of 1l:2. An inspection of
figure 13 shows that, apart from the region near the stagnation point,
even the flat-plate values give a reasonably good approximation. Cal-
culations obtained by use of the dimensionless thermal boundary-layer
thickness extended to the flow separation point, whereas those for the
dimensionless convection boundary-layer thickness did not. It therefore
appears advisable to use the dimensionless thermal boundary-layer

thickness.

Experimental heat-transfer coefficients found at the University of
California for an elliptic cylinder with an axis ratio of 1l:4 (ref-
erence 33) are about 50 percent higher than the theoretical values
shown in figure 13. There are several reasons for this discrepancy.
The measured stream velocity distribution was different from the one on
which the present calculations are based, probably because of a limited
width of the wind tunnel. The cylinder in the experimental investiga-
tion was heated by an electric resistance which produced a constant heat
flow through the surface per unit area. Accordingly, the surface tem-
perature varied along the circumference of the cylinder, being lowest
at the forward stagnation point and increasing in downstream direction.
Calculations in reference 33 indicate that the higher values found in
the tests are mostly due to this fact. Another increase of the experi-
mental heat-transfer coefficients may again be connected with the tur-
bulence level in the wind tunnel used as discussed in connection with
the test results on circular cylinders.
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From figures 11 to 13, it may be concluded that, for cylinders with
a stream velocity which is fairly constant over the greater part of the
circumference, local heat-transfer coefficients may be obtained with
good accuracy from wedge solutions. In the region in which the stream
velocity variation is considerable, the method of the equivalent wedge
flow gives heat-transfer coefficients with an accuracy sufficient for
engineering purposes.

Porous Surfaces

Heat-transfer coefficients were calculated by the method of the
equivalent wedge flow for cylinders with circular and elliptic cross
sections for transpiration-cooled surfaces and different temperature
ratios TS/Tw by using either the thermal or the convection boundary-

layer thickness (figs. 14 to 18). The use of both boundary-layer thick-
nesses gives different results only for large distances from the stag-
nation point. The variation of the heat-transfer coefficients with the
ratio of stream to wall temperature is comparatively small for solid
surfaces. This result is in agreement with previous findings. For
transpiration-cooled surfaces, however, the effect of the temperature
ratio on the heat-transfer coefficients becomes more pronounced, espe-
cially on cylinders with nearly circular cross sections. In refer-

ence 24 the case of transpiration cooling with small temperature differ-
ences is calculated; this reference includes the effect of the tempera-
ture ratio by a correction factor which is based on the assumption that
this effect is the same as that determined experimentally for impermeable
surfaces. A comparison of results shows that the procedure in refer-
ence 24 underestimates the effect of temperature ratio for transpiration-
cooled surfaces. In addition, it can be observed that transpiration
cooling results in a considerable decrease of the heat-transfer coeffi-
cients. A larger amount of coolant flow is necessary to reduce the
heat-transfer coefficients by the same amounts in regions in which the
heat-transfer coefficients are large. Such a region exists at the stag-
nation point on the cylinder with the axis ratio 1:2, and especially on
the cylinder with the axis ratio 1l:4.

The variation in coolant flow required to maintain constant wall
temperature for transpiration-cooled cylinders with circecular and
elliptic cross sections is shown in figure 19. The calculations were
made for a temperature ratio TS/TW of 1, a value of @ of 0.5, and
a Prandtl number Pr of 0.7. Figure 19 shows that the highest local
coolant-flow rates are necessary near the stagnation point in order to
keep the wall temperature down at that place. The magnitude of the
coolant-flow rate at the stagnation point is proportional to the square
root of the velocity gradient dué7dx*; this in turn is determined
mainly by the value of the radius of curvature at this point.  As this
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radius of curvature decreases, the required coolant flow increases.

This is in agreement with figure 19, which shows that the maximum coolant
flow is required at the stagnation point of the elliptic cylinder with
the 1:4 axis ratio. Downstream of the stagnation point, the flow rates
decrease for each cylinder. Figure 19 also shows that the use of the
thermal rather than the convection boundary-layer thickness results in
only a very minor increase in coolant flow required to maintain the
circular cylinder wall at a constant temperature.

EXTENSION OF CALCULATION TO HIGH-VELOCITY FLOW

The heat generated by internal friction was neglected in equa-
tion (5) according to the assumption of small velocities. The equation

q = h(T,-T,) (42)

gives the heat-transfer coefficient for this case. It was already
explained that the inclusion of the internal friction for a gas with a
Prandtl number of 1 results only in the change that the temperature T
in equation (5) and the temperature T, in equation (42) are now total
temperatures, as long as the property values may be regarded constant.
The heat-transfer coefficients determined in this report may be used in
this case. It was shown in reference 34 with the use of results obtained
in reference 35 that the heat-transfer coefficients determined for low-
velocity flow apply to high-velocity flow up to a Mach number of about 4
for a gas with a Prandtl number different from 1, when the stream veloc-
ity is constant (flat plate) and the heat flow is not too large. The
heat-transfer coefficient, however, has now to be defined by the

equation

g = h{T o8] (43)

in which the temperature T_,3 denotes the value which an unheated plate
assumes in the high-velocity flow. The adiabatic wall temperature may
be determined from the recovery factor

e =l
ad s (44)

r. = —
0 TT,S‘TS

which was found to be equal to A/?r for laminar flow and for Prandtl
numbers not too far from 1. The difference between the total and the
static temperatures in the stream is connected with the stream velocity
by the equation

S
Tp s-Tg = zes (45)
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For the flat plate with a constant stream velocity, the adiabatic wall
temperature is therefore constant.

Conditions are more involved on a cylinder with a stream velocity
which varies along its circumference. Even when the recovery factor is
assumed to be constant, equations (44) and (45) give an adiabatic wall
temperature which varies along the circumference of the cylinder. The
fact that the low-velocity heat-transfer coefficients also represented
the high-velocity values on a flat plate, however, followed from the
fact that the energy equation for constant property values is linear in
T, and that a general solution of the nonhomogeneous equation describing
the heat transfer including the internal friction could therefore be
obtained by superposition of the solution of the homogeneous equation
valid for small velocities and a particular solution of the nonhomo-
geneous equation. Such a superposition results in a constant wall tem-
perature on the flat plate when the solution of the homogeneous equation
for constant wall temperature and the one describing the adiabatic wall
temperature is used, since the adiabatic wall temperature is also con-
stant. For a cylinder with an arbitrary cross section, however, the
adiabatic wall temperature which represents a particular solution of the
nonhomogeneous equation varies along the circumference. Therefore, a
superposition of this particular solution with the low-velocity solu-
tions for constant wall temperature does not give a constant wall tem-
perature, which was specified for the problems investigated in this
report. Accordingly, the heat transfer has now to be calculated with
the equation 3

2447

in which T.pr has to be determined for constant wall temperature con-
ditions, namely, as the temperature which a particular spot along the
surface for which the heat-transfer coefficient is to be determined
assumes when the heat flow through the wall at this particular spot is
zero and the wall temperature along the circumference of the cylinder is
constant.

For flow around wedges, this temperature, which may be referred to
as the "effective temperature," can be found from the results in refer-
ence 23. It is also determined for several cases in reference 36. The
calculation procedure which determines this effective wall temperature
from reference 23 is described in appendix D. The calculation shows
that this temperature may be again expressed by a recovery factor

Terp-Tg

D e—— 4:
B TT,S'TS e
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The index o is used to indicate that such a recovery factor could be
determined experimentally by a model made of a material with a very
large heat conductivity so that the internal heat conduction would elim-
inate all temperature differences along the surface. On the other hand,
the recovery factor describing the adiabatic wall temperature in equa-
tion (44) has to be determined experimentally by a model made of a
material with an infinitely small heat conductivity so as to eliminate
internal heat flow. Values for the recovery factor 1r, determining
the effective temperature of a wedge are presented in figure 20. The
recovery factors ry describing the adiabatic wall temperature accord-
ing to equation (44) have been calculated for wedges in reference 7.
This calculation had resulted in values which decreased slightly with
increasing Euler number m. Repetition of these calculations on an
electric computing machine, however, according to a communication from
Arthur N. Tifford of Ohio State University, showed that the recovery
factors for the adiabatic wall temperature are practically independent
of the Euler number and have the same values as the recovery factor Ire
shown in figure 20 for an Euler number m equal to zero.

The consideration up to now dealt with solid surfaces. No infor-
mation was found in the literature on recovery factors for transpiration-
cooled surfaces. Some recovery factors were therefore determined for a
transpiration-cooled flat plate and a flow with constant property values
(the same for outside and coolant flow) by an integration of the
boundary-layer equation (4). The integration was carried out in the
same way as in reference 5. The dimensionless stream function f and
its second derivative were taken from reference 29. The results of
this calculation are presented in figure 21 and the following table

where T, /T =1 and Pr = 0.7:

T Recovery factor
-1 QTS
-.75 « 750
-.50 . 786
0 .838
-50 .874
2k «900

The figure shows that the recovery factors decrease considerably with
increasing coolant flow. The calculations were extended to positive
values of fy; which apply to a surface with suction.

It might be worthwhile to mention'that the accurate determination
of the adiabatic or effective wall temperature appreciably influences
the heat flow as calculated by equation (43) only when the difference
Tad-Tw is of the same order of magnitude as or of a small order of
magnitude than the difference TT,s’Ts (see also appendix D).




26 NACA TN 2733

RESULTS AND CONCLUSIONS

An approximate method for the calculation of heat transfer in the
laminar region around cylinders of arbitrary cross section was presented.
The method, called the equivalent wedge-type flow method, is based on
exact solutions of the laminar boundary-layer equations for wedge-type
flow and takes into account the influence of large temperature differ-
ences between the flow and the cylinder wall and the influence of tran-
spiration cooling. The use of prepared charts reduces calculations to
a graphical solution of an ordinary first-order differential equation.
The method can be based either on the convection thickness or on the
thermal thickness of the boundary layer. The results of calculations
based on one thickness differ slightly from those based on the other
thickness. There are not enough experimental data available to decide
which boundary-layer thickness should be used. Near the separation
point, however, the results obtained with the thermal boundary-layer
thickness seem somewhat more plausible.

The method was applied to circular and elliptic cylinders. The
following results and conclusions are given:

1. Results of experiments and exact calculations were available
only for circular cylinders with solid surfaces. Calculations based on
the present method and on the thermal boundary-layer thickness agreed
within 5 percent with the exact calculation and within 8 percent with
experiment when the immediate neighborhood of the separation point was
excluded.

2. With the present method, heat-transfer coefficients may be
obtained without a knowledge of the flow boundary layer. Consequently,
such calculations are more rapid than those based on the momentum and
heat-flow equations.

3. Heat-transfer coefficients determined from wedge solutions
agreed on the circular cylinder within 15 percent with the results of
experiments. The calculation procedure is still more rapid.

4. For elliptic cylinders, the differences between the results of
calculations with the various methods decreased as the axis ratio
increased from 1:2 to l:4.

5. The development of the boundary layer is determined by the
velocity distribution around the cylinder. The accuracy which has to be
expected for the results of calculations with the different methods
will therefore depend on the character of the velocity distribution.

6. For cylinders with solid walls, the variation of the heat-
transfer coefficients with ratio of stream to wall temperature was
comparatively small. '
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7. For transpiration-cooled surfaces, the effect of temperature
ratio on heat-transfer coefficients became pronounced, especially on
cylinders with nearly circular cross sections.

8. A considerable decrease in heat-transfer coefficients accompanied
transpiration cooling.

9. The influence of transpiration cooling on the recovery factor
was investigated for a flat plate and constant property values. It was
found that the recovery factor decreased considerably with increasing
coolant flow.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, March 19, 1952




28 NACA TN 2733
APPENDIX A

SYMBOLS
The following symbols are used in this report:

A dimensionless wall temperature gradient taken from references 22

and 23, ﬁ%f 9%

C constant

cp specific heat at constant pressure

F function

£ dimensionless stream function, (pww)/yuwpwxus

h heat-transfer coefficient

k thermal conductivity
| L characteristic dimension (major axis of cylinder)
|

*
1-m dug _ x ko ok :

M= T]bz = M(d—x—* 82, v (see equation (34))
‘ m Euler number, 0 gx»; B Ot
| pPgugs/X

du¥ *\
N = om =N 5;1,6*2, v;6 ) (see equation (37))

Nu Nusselt number, hL/kw

Pr  Prandtl number, cpp/k

P pressure
q heat flow
q approximated heat flow

heat flow by conduction
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Lr

Reg

40

heat flow by radiation

Reynolds number, ﬁs,OLOO/Hw

recovery factor defined by (Tad'Ts)/(TT,s'Ts) (equation (44)) -
recovery factor defined by (Terf-Ts)/(TT,s-Ts) (equation (47))
temperature in boundary layer

temperature in stream

velocity component along surface

free-stream velocity

dimensionless mass velocity in free stream, pwus/pous,o

velocity component normal to surface

PV
dimensionless velocity normal to surface, ———— ,[Rej

distance from stagnation point along surface
dimensionless distance from stagnation point along surface, X/L
distance normal to surface

dimensionless boundary-layer coordinate taken from references 22

and: 25, A/Q%i )

o) u X

v

Yl
A/Z-B -
pressure gradient parameter, 2m/(m+l)

boundary-layer thickness

dimensionless boundary-layer thickness, (S/L)A/Reo

convection boundary-layer thickness (equation (15))

dimensionless convection boundary-layer thickness, (BC/L)A,Reo
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83 displacement boundary-layer thickness (equation (13))
8; momentum boundary-layer thickness (equation (14))

5.  thermal boundary-layer thickness (equation (16))

6% dimensionless thermal boundary-layer thickaess, (St/L)A/Reo
; : : Pwls
n dimensionless boundary-layer coordinate, y s
\ W
0 5 Pwus
/
o b €
dhnd i
6 dimensionless temperature-difference ratio, T
ST W
E ) ) il
3 dimensionless temperature-difference ratio, ——
TT,s'Ts
A dimensionless stream function taken from reference 26, - 9%£ 'y
v} absolute viscosity
v kinematic viscosity, p/p
¢ distance along wedge, taken frbm references 22 and 23
o) density
LIS S
p dimensionless temperature-difference ratio, TR
g e
v stream function
Subscripts:

ad adiabatic
e coolant, when used with T
eff effective

S stream:

L¥%2
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o total

W wall

0 except when used with r, refers to a fixed point in the stream
Superscripts:

m exponent of distance along surface from stagnation point for stream

velocity, ug = o™

i denotes differentiation with respect to 7
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APPENDIX B
EVALUATION OF HEAT-FLOW EQUATION
The energy equation (5) will be integrated along y throughout the

boundary layer under the conditions of small Mach number, constant wall
temperature, and constant specific heat

o (o]
oT or 9 or
Cpfo ("“8§+"V§§>dy= 5 &'(k&)dy
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The first term on the left side can be transformed by partial differen-
tiation to

pu g% = g% (puT) - T

d(pu)

X
An analogous transformation of the second term and consideration that
the temperature gradient BT/By is zero outside the boundary layer
(for y =®) result in

gax.(pu‘l‘)dy-jo’l‘é%z_)dy+pv‘1‘0-£ Té(%?.dy:-&(%)w -

(o°]

0 °p
The second and fourth terms cancel because of the continuity equa-

tion (3). In the first term, the sequence of differentiation and inte-
gration can be reversed. Introduction of the convection thickness of
the boundary layer leads finally to the integrated heat-flow equation.

ps &d (usac) o pWVW = % (g_s-—)w (Bl)

Tt will now be proved that equation (26), used for the method of the
equivalent wedge-type flow, is the same as this integrated heat-flow
equation when the convection thickness for the boundary layer is used.
Equation (Bl) may be transformed by partial differentiation of the
first term into -

By

ad du

c o6

s e Psde a;i IR KEY) o
P W

0
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For wedge-type flow, the convection thickness is given by the expression

L l-m
X 2
8, = e A NeA T (B3)
Pyls PyC
Differentiation of this equation gives
1+m PRI R
dd, 1-m vy A 1-m Mw
= y x = 5 A (B4)
dx g T 2~ SR
Introducing this expression as well as equations (9) and (12) into
equation (B2) gives the equation
1+m o Py o &
o (psnc itz pwfw) =T e (B )

which interconnects the convection thickness with the dimensionless
temperature gradient at the wall. The gradient of the convection thick-
ness may now be determined from the integrated energy equation (B2) when
the expressions in this equation are transformed to the new variables

T SR TR S U D LT e e e
R T T R T o Y

(W

‘Replacing the nondimensional temperature gradient in this equation by

equation (B5) results in

= l
Prats 2 ¢ pydeug

dac _1l-nm M Cob AL My
Rty e T e

which is the same as equation (26).

It can also be proved by a completely analogous calculation that
the method of the equivalent wedge-type flow, when it is used to cal-
culate the momentum thickness of the flow boundary layer, satisfies the
integrated momentum equation which is obtained from equation (2) by an
integration over y 1in a manner similar to the derivation of equa-
tion (B1)

a 2 dug "du
ax (psus B5) + Pglg ax Bq - PyVylig = “w\\§§ e
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APPENDIX C
DETERMINATION OF WEDGE SOLUTIONS

The wedge solutions which were used as a first approximation in
figures 11 to 13 can be obtained very easily with the use of figure 22
reproduced from reference 9. The heat-transfer coefficient has to be
determined on a wedge which has the same stream velocity and its gradient
at the same distance from the stagnation point as the real profile. The
Euler number for this wedge can be found from equation (23). 1In the
dimensionless coordinates it is

dus
S
dx X* dug
L = e S o e (c1)
S Us gx

The parameter f; which determines the coolant flow through the porous

wall is found from equation (20), which reads, when converted to dimen-
sionless quantities,

*

»

2 %
f e S T et S C2
w m+1 w ( )

1ok

28 3

The value (NuA[Reo)q/xl/ué can be determined from figure 22, and
Nu/pfReg is finally obtained by multiplication by q’u;/x*.

When the temperature ratio ¢ is prescribed, figure 23 reproduced
from reference 9 can be used to obtain the parameter £y for any Euler

number m. Equation (C2) then determines the value v{ and the dis-
tribution of the required coolant flow along the profile.

LYv2
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APPENDIX D
DETERMINATION OF EFFECTIVE WALL TEMPERATURE
It is shown in reference 23 that for high-velocity flow of a fluid

with constant property values around a wedge with constant wall temper-
ature, the temperature field can be expressed by the equation

T = (TW-TT)S)(l-G) + (TT’S-TS) 3 + T (p1)

in which 6 represents the nondimensional temperature field for low-
velocity flow and 9, the nondimensional temperature field for high-
velocity flow and a wall temperature equal to the total stream temper-
ature. The heat flow from the wall, obtained by differentiating equa-
tion (D1), is

o = 5 (Z ). =3 [(rrw-TT,s,) (&) - o) (gg)wj (v2)

With the transformations used in reference 23 (see also appendix E)

T EN
e b A’—S
2-p || vx

U, = 0x (D3)

2m
P = mFT

equation (D2) can be transformed into

Qy = /\/%ﬁé [(TW_TT,S) (%g)w = (TT:S'TS) <%§)W] (D4)

This eqguation is to be brought into the form

k Ys de |
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A comparison of equations (D4) and (D5) gives

g_%%;ZK (D6)
(&),

from which the difference between the total and effective gas tempera-
tures can be found. The expression
(@)
diZ W

a -T
T!S eff= R Bo= (D7)
I a1 dae

a—Z. W

defines ©this' itemperature difference and the recovery factor for the
effective wall temperature. The nondimensional temperature gradients
appearing on the right side of this equation are presented in refer-
ences 23 and 36. In this way, the values in figure 20 have been deter-
mined.

Ty-Terr = TW'TT,S % (TT,S'TS)

To obtain an estimate of the conditions under which the difference
between the adiabatic wall temperature and the effective wall tempera-
ture may be neglected, the heat flow into the wall will be approximated
by the equation

e k(Tw-Tad)<§—f,->W (ve)

and the error of such an approximation will be determined. The ratio
of the exact heat-flow equation (D2) to the one approximated by equa-
tion (D8) is

O Ty Tp s Tp s-Tg

= (1 - )
o TyTaa Ty-Taq

Introducing the recovery factor for the adiabatic wall temperature

vTT,s'Tad = {1 = rO)(TT,s'Ts)
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gives
i -T
dw S S
e (ST P
G Tyw~Tad (% 0)

For an Euler number equal to 1, which characterizes flow near a stagna-
tion point and which, according to figure 20, shows a large difference

between the recovery factors rp and Yo, the error is smaller than

S percent when

Tad'Tw
TT,S'TS

is larger than 2.5.
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APPENDIX E
COMPARISON OF VARTIABIES
This appendix gives a comparison of the variables used in refer-

ences 9 and 25 with the ones used in references 22, 23, and 26. All of
these references deal with wedge-type flow

Symbols from | Symbols from Relation
references 9 | references 22, | among symbols
and 25 234 and 26
2m
m (Eu) B =isud
m+1l
T A - wa
2 Z_\)fil
T] = 2 Tl
6! A A =4|-2_ g
m+l W

The values used in ‘this report are related to the ones in the pre-
ceding references by the following equations:
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Figure 1. - Heat-tranéfer coefficient for cylinder (reference 2).
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(a) Tg/Ty,

Figure 4. - Chart for use in determination of N for dimensionless convection boundary-layer thickness.
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o£ local heat-transfer coefficients around circular cylinder with impermeable wall.
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Figure 14. - Local heat-transfer coefficients around transpiration-cooled circular
cylinder determined by use of dimensionless convection boundary-layer thickness for
several cooling-air-flow rates and ratios of stream to wall temperature.
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cylinder determined by use of dimensionless thermal boundary-layer thickness for
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cylinder with axis ratio of 1:2 determined by use of dimensionless convection
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