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SUMMARY

The principle of complementary energy in the nonlinear elasticity
theory is shown to be derivable from the principle of potential energy
by a Legendre type of transformation. In particular, the expression of
the complementary energy is derived for homogeneous and sandwich plates
and shells with large deflections. By the method of complementary
energy, the stress-strain relations are derived for homogeneous shells,
sandwich plates, and sandwich shells. Without the use of this method
much lengthier calculations would be necessary.

INTRODUCTION

In the theory of elasticity, the most important variational
principle is perhaps the principle of potential energy, which states
that of all displacements satisfying given boundary conditions those
that satisfy the equilibrium conditions make the potential energy a
stationary value. For stable equilibrium, the stationary value may be
shown to be a minimm (reference 1). The potential energy is defined
as the difference between the strain energy and the potential or virtual
work which the surface stresses do over that portion of the surface on
which the surface stresses are prescribed. This principle is capable of
general application as it holds true no matter what the law connecting
load and deformation may be (reference 2). With the relationships
between stresses, strains, and displacements known, the differentlal
equations defining the equilibrium conditions may be derived from the
variational principle by the methods of the calculus of variations.

The principle of potential energy was obtained by comparing the
gtrain energy U of the equilibrium state, characterized by displace-
ments u, v, and w, with the strain energy U + AU of a neighboring
displacement state u + Au, Vv + Av, and W + Aw. A corresponding
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variational principle may be derived by varylng the stresses rather
than the displacements. This results in the so-called principle of
complementary energy which states that of all stress states satisfying
the conditions of equilibrium in the interior and on that portion of
the surface on which the surface forces are prescribed the actual state
of stress is such that the complementary energy is a stationary value.
Again, for stable equilibrium, this stationary value is a minimum.

For a material that obeys Hooke's law and has linear strain-displacement
relationships, the complementary energy is the difference between the
strain energy and the work which the surface stresses do over that
rortion of the surface where the displacements are prescribed. However,
for nonlinear problems, it seems that the expression of the complementary
energy has not been given previously.

When the equilibrium equations are known in terms of stresses, the
stress-displacement or stress-straln relations msy be derived from the
principle of complementary energy by methods of the calculus of variation.
In some elasticity problems this approach has been found to be convenient.
For exsmple, in the linear case Trefftz (reference 3) has used the
method for the derivation of the stress-displacement relationships in
the case of thin homogeneous shells and Reissner has recently derived
the stress-displacement relationships of sandwich plates (reference 4)
and shells (reference 5) by the same method. Without resource to this
method these derivations may require much lengthier calculations.

In this report the principle of complementary energy is derived
for thin plates and shells with large deflections. The plates and shells
may be elther homogeneous or of sandwich-type construction. The appli-
cation of the principle to the derivation of the stress-displacement
relations for homogeneous and sandwich shells as well as sandwich plates

is given.

This work was conducted at the Daniel Guggenheim School of Aeronautics,
College of Engineering, New York University, under the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics. The author is indebted to Professor K. 0. Friedrichs for
his discussion of the problem and to Dr. G. V. R. Rao for his helpful
assistance.

SYMBOLS

A total area of domain

c boundery of domain
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My, My , Myy

Mny,Mny

Nx,Ny,ny

@5 Qy

Qn

W

X,¥,2

flexural rigidity of plates and shells (Eh3/12(1 - v2))

effective transverse normal strain for sandwich plates and
shells :

Young's modulus of elasticity
modulus of rigidity in shear

thickness of homogeneous plates and shells; also thickness
of core layer in the case of sandwich-type construction

potential energy

~ complementary energy

resultant bending and twisting moments in plates and shells;
unit in moment per unit length

X~ and y-components 6f the resultant moment on boundary

stress resultant in middle plane of plate or in middle surface
of shell; unit in force per unit length

external lateral pressure

difference in p acting on upper face and lower face of
sandwlch plates and shells <%(pu - plD

shearing stress resultant in plate or shell, normal to middle
surface, unit 1n force per unit length

resultant Q on boundary

radius of curvature at any point in shell

thickness of face layer of sandwich shell

work done by stress resultants due to large deflection
strain energy

virtual work done by external férces and moments

coordinates; ¥y 1is curvilinear coordinate in direction of
circumference in the case of a shell
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u,v,w

Bx,By

7

o}

€xs &y

v

M, 22,23, A, 25,26

Oz

T Ty

H1,Hp, U3, WYy, H5

X

Subscripts

Cc

d
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x- and y-components of stress resultant acting

on boundary

displacements in x-, y-, and z-directions,
respectively

components of change of shape of normal to middle
surface of plate or shell

shear strain

tirst variation

strain in x- and y-directions, respectively
Poisson's ratio

Lagrangian multipliers

component of transverse normal stress in core
layer

transverse shearing stress in core layer
arbitrary parameters

change of curvature at any point in shell

core layer of sandwich plate or shell

portion of boundary over which displacements are
prescribed

face layer of sandwich plate or shell
lower face of sandwich plate or shell

portion of boundary over which stresses are
prescribed

given values on boundary
upper face of sandwich plate or shell

values of stress components at middle surface
z =0
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EXPRESSION OF COMPLEMENTARY ENERGY FOR

THIN HOMOGENEOUS PLATES WITH LARGE DEFLECTIONS

The principle of complementary energy can be derived from the
principle of potential energy by means of a Legendre type of transfor-
mation. Since the principle of potential energy is also valid for
nonlinear strain-displacement relationships, the potential energy

I=V-W

is stationary or %I = 0 when I 18 varied with respect to the
displacement components u, v, and w. In the above expression V
is the straln energy and W 1s the virtual work. In the case of a
thin elastic plate with large deflection the strain energy consists of
two parts, one due to the stretching of the plate and the other due to
bending. - Consequently, the potential energy may be written as follows

1 2 2
I =§‘EEL/];EIX +Ny2 - 2VIqxNy+2(l+1})ny:ldxdy+

N R A |-

ﬂpw&dy-LSE(nu+an+(Xn%+Yng—y"-+Qn)w+

where A 1s the area of the plate and Cg 1is that portion of the

boundary where the surface forces are prescribed; I has a stationary
value when it is varied with respect to u, v, and w, subject to the
following stress-displacement relations:
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_— '
Eh |3u AL dv o\ °
NX“'l-vzax'*'%('a—x-) +V-a—;+';—(g)—‘
Ny = Eh,2.éz + £<§E)2 + Vv éE + 3(§E>é7
1 - 2Py 2y, dx  2\ox
___Eh  (ov, du, dwow
“ﬂ“m(a”—“ag)
My = (Baw 82w>
dx2 dy>
o . > (2)
d d
My = D(s;5 + VvV S;g>
Myy = D(1 - V)aizgy
_p D[P, Pw
s (axz‘”ayz)
_p (P, P
Qy =D ay(éxz + ay%) |

Expressions (2) are the usual stress-displacement relations when the
deflection of the plate is large compared with its thickness but is
still smsall enough to allow the use of simplified formulas for curvature.
The boundary conditions are: On that portion of the surface where the
surface forces are not prescribed, boundary displacements u, v, and

w are equal to the given values ugy, Vg, and Wo.

The principle of complementary energy may be obtained directly by
applying a Legendre type. transformation to the principle of potential
energy. This procedure is known as "Friedrich's Method" (reference 6)
in the calculus of variation. ILet A3, Ao, A3, Ay, A5, and Ag

be the Lagrangien multipliers and pj, uo, M3y My and 15 be similar
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parameters. Then the variation problem, equation (1) y is equivelent
to varying the integral H with respect to Wy, Ny, Nyy, My, Myys

u, v, and w independently, where

H-—ﬂﬁ +Ny -2vNXNy+2(l+v)ny]dxdy+

?u_fv_?)_nffAEd"2+My2‘2“‘xMy+2(l+V>Mn2_dxdy+

ﬂ11{n;%%§(g_)eg (%)ﬂlmy,,
{ [Eheay ay) 3= ’(ax:\}d““

- <82w —>

f“iEy :ig)ddxdy+

\[[A%[{"xy-D(l-V)ai—zgy dxdy_mpwaxdy_

l ow ow ow aw‘
X Y Ep — + Y, — My — + My, — | ds
L[cs nu + nv"'(n + Y, +Qn>w+ + My +

N <

/;d ‘E’l(u - Up) + 112(7 - Vo) + 1-13(w - wo) + p,)_l_(_g_;_ - %)

ow Jwp
%(W - E}_):l ds (3)




The condition &H = O leads to:

8H =0

Nx ~ VN Ny - VN
=“[\‘/A‘(—-—Eh7—l+ll>anx+(-‘y'—E—_h—-—x+12>6Ny+

erxélmvxy - My+M|_8Mx
| ®n (1-v2)D

My - Vix Mo+ |y
(1-v2)D+—J y+(l-V)D ]%+

Eh)
9 3 + 2 _Eb (A + VA1) |0V +
Ox 2(1 + V) dy 1L - V¥

D + En(d + vip) 3% Ebdy a2y .
1-v x (1+v)xoy

Eh(rp + VA1) 3% L |3 3 Bh(Ap + VAp) 2

Ehk3
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1 - v aye ax 1 - ve ay(1+v):\+

oylox 2(1 + v)  Jy 1 -2

P > Ebrgdu
j] {E“ T (>~1 + Vip)du + P Y v)]

5 Emgv
—_— 4
EX 2(1 + v) 3}' 1 - Ve

QF Em3 . 3 Eb(p + wm)

(kg + v}\.]_)ale+

B
ox 1P 3 2(1 +v) x

B0y + vio) 2 o+ _a_@ﬂl_z.maﬂ+
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> mis w ) m % 5
—ax2(1+v)ay8w+ay1-v2(kl+VX2)ayWj+

L%D(M+VX5)5§+§;P—Q;2Q xsagﬂ+

e L F B %? + é% D(X5 + VAL)® §§]+

B 3% . 2 LD 2w . P
. 5w D §§(é;§ + S;é) + 5; 5w D ay(éxz awn}[} dy -

‘ ow oW
X Y
j; _ nou + Ynav + (Xn ‘ + In + Qn)BW +

M ow ow

» 15u+u28v+u6w+uu8 + 6—-) (4)
fcd( 3 e
A where
32 d2
= d—  —
ax2 ay2

In carrying out the above calculation, integration by parts has
been used, an example of which is

B 35 EbA3  dsu -
-v[[L — 500+ VRIS 5 ay]dXdy—

1- V

d _Eh _Ehd3
ij?PL§; I—j—;—(xl + VAo)Bu + ay R 8%] dx dy +

d Eh D Eh)\.3
ﬂl}— V(7~1+v>~2)+gy—2(1 ] ax dy (5)
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According to the well-known rules of the calculus of variations,
the Euler equations of the variational problem are

w.;.xl:o (6)
Eh .
- VN
Ny—Eh—x-+x2=o (7)
2(1+v)1vxy+l3=o (8)
Eh
M - Wy =0 (9)
(1 - +2)D
My - Wi
L+ )5 =0 (10)
(1 - +v2)D E
I ag=0 . (11)
(1 - wv)D
3 _En Ebdy
axl_v(l1+%2)+ay2(l_v) 0 ) (12)

o Ehd3 3 _Eh _
S 2(1 7 V) eWlJrv(ke*-vkl) 0 (13)

En(M + vdp) Py, B3 oy
1 - v° 32 (L + V) 3x oy

DWAr +

Eh(Ao + VA1) 32w+§w__3_Eh(xl+vx2)+_§_ Eh\3 N
1-v2 32 xfx 1 -v2 y 2(1 + v)

wf[a Emz 3 Eb(M + VAp)]

wreaen w1 £ 1 °°° o
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With the Lagrangian multipliers X1, . . . Mg determined by equations (6)

to (11), equations (12) to (14) become identical with the eduilibrium
equations; namely

g_x o =0 (12a)
aN.
§+ =0 (13a)
2
va.w+1q,,{§-1'2’-+2*1\1Xy v,y ng =0 (1ke)
ox ox oy dy

In writing down equation (1la) the relations (12a) and (13a) have been
included.

Next, substitute the relations (6) to (11) into the second group of
surface integrals in equation (4). By Gauss' theorem these surface
integrals may be transformed into line integrals as follows:

o) Eh
-\,U‘;‘]EB_}-[]_ -vg(ll + Vio)Bu +
5 FEbAgdu ﬂ S 3 )
22 |axay-= 2N + — N dx
dy 2(1 + v) A(ax x0u oy xyou v
=L/n Xpbu ds

c

i EhArg _a_ Eh
'L/LEx_—_e(1+v) v + 1 (x2+vx1)5;dedy fYnﬁuds
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Eh\ ]
(A1 + VXZ)-BESW+—§--——3—-QW—SW
ox oy 2(1 + v) ox |

=
¥l

2
)

dxdy=an—6wds
c

Y

ow
dxdy=fY ¥ 5w ds
¢ "oy

ow ow

__] ax dy:L/; Mpx® — ds

_ o D(1 - v) ow . o ow _ ow
I/;L————e 2P — + — D(As + VAL)® —ay]dx dy L Mpyd — ds

f BwDi—a&+§2-£ +18wD—a—§2—w+-a—2—W> dxdy=an6wds
A dy2/ oy oy \3x2 3y C

—

Combining these integrals with the line integrals in equation (k4),
the condition that the line integrals vanish requires that

on Cg.

Hp = -Xn
Mo = -Yp
ow ow
U = ~(Xp — + Yy — +
3 (an nay Qn)
uI}:-b{nx
H5 = Mpy (15)
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Substituting relations (6) to (15) into equation (3), carrying out
integration by parts, and applying Geuss' theorem to transform surface
integrals into line integrals wherever possible, one obtains finally

H="2%_E{)|Nx2+my‘2-2VNxNy+2(l+‘V)NW§| iax dy -

1
mffﬁx““iye-mﬁwﬂ“vmxwﬂmy-
L N(éw-)2+21‘1 §W_§"_+Ny§l‘-2 ax dy +
Al 3 3y (ay

k

d

I%nu+‘.rnv+(xn§l;-+lfng§+%)w+

Mnxial”-+M M| g (16)

ox oy

H

The complementary energy J 1s defined as negative H or

J=-H=V +U-W (17)

where V 1s the straln energy, U represents the work done by the
forces in the middle plane of the plate due to large deflection, and W
is the work done by the surface stresses over that portion of the
boundary Cg where the dlsplacements are prescribed.
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APPLICATION OF PRINCIPLE OF COMPLEMENTARY ENERGY

Thin Homogeneous Cylindrical Shells

Assume that the complementary energy for the circular cylindrical
shell may be written in the same form as inm the case of a flat plate.
With the equilibrium equations derived, the stress-displacement relations
may be obtained from the principle of.complementary energy as follows:

Consider the case where W 1is large in comparison with u and v.
Retaining the terms consisting of products of derivatives of w times.
the stress resultants and couples, the equilibrium equations for an
element of a cylindrical shell with arbitrary cross section (fig. 1)
can be put in the following form:

a—NE+any+IEX§w-=O (18)
ox oy R ox

oN oN Nyy OW

v, PNy Ty v Y (19)

e, 2, ol X 2L 2 2y 2.

%%*%*P“’ (20)
:i‘g,,a:fJ,R&g_Qx:o (21)
mw+amy_nxya_y_- -0 (22)
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where x 1is in the direction of the generator and y 1is in the direction
of the circumference. These equations may be obtained following a

similar derivation as given by Timoshenko (reference 7) with slight
modification. Let X3, Xp, A3, A4, and A5 De Lagrangian multipliers.
By varying the stress resultants and couples independently in the
complementary energy equation subject to the equations of equilibrium,

one finds that the process is equivalent to formulating a variational
integral L and setting its first variation equal to zero; namely,

1 2

BE(T%?)-I;UAEJXE+M3.2-2\MXMY+2(1+V)%2]GXW+

oy\ ¥ x
xhs(:—b:x;+alf§+%%-'qx>+x56<a;;y+:$y-}d§r%-ay> dx dy -~
SﬁdE(nu+an+(Xngz*Yy%*Qn)W’“Mnxﬁx*Mmﬂey ds =0

(23)

where the surface integrals are to be extended over the entire cylindrical
surface, By 1is the angle through which M,y turns, and By is the

angle through which Mny turns.
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Carrying out the first variation, regrouping the terms, and
eliminating the variations of derivatives by integration by parts, one
obtains:

{
_ Ny - Vily oAy | 1fow\2 v O3
*"L‘[[{[ T 'ax,+§(§£) TR

l
[fy - i o A3 1aw)2 3w M3 M 3
y X _ A, Lfowls _ow O L M ow
LEh S +R‘+2(By 3 5y +R8x8Ny+

Ez) 3 e, d3dw
(—ML-BXSQX+(- -ay-R+Rax>6Qy+
MX-VMy-a)°1’815~f[+1'1:’r“VMX _8)‘54_&& +
Ll-VE)D ax] x (1-v2)D dy R BxaMy

[P 24 5 s
e -y RB:JSMW:}dxaer

f f (axlanx . axlsuxy) . (axganxy . axeany> .
A\ ox oy ox oy

(@ 8%n + %y‘-’- 5Y, + sqn>w + ByMpy + ByGMny] ds = 0 (2k)
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Reducing the second surface integral in equation (24) to a line integral
by Gauss' theorem, the final boundary integral of equation (24%) becomes

L/(;El&{n + MBYp +x3(% Xy + -gyﬁ BYy + SQI> + AWOMp e + )‘56M‘ny:l ds -~

J[\ udXy + voY, + w(%z 8Xp + o 8Yn + 5Qn> + Bx®Mpy + BytMpy| ds (25)
Ca X R

The first line integral vanishes on the part of the boundary where surface
stresses are prescribed. It therefore has a nonzero value only on that
portion of the boundary Cg3 where the displacements are prescribed.

Since expression (25) must be zero, one obtains on the boundary

M =u R

M =V
’ \y=w S (26)
) My = By

A5 = By J

As equation (24) also holds for any part of the cylinder, if the
boundary displacements referring to this part are identified with the
displacement occurring in the actual solution of the problem, it follows
that the Lagrangian multipliers throughout the shell are related to the
generslized displacements in the interior of the boundary. It follows
that equations (26) also hold true now in the interior.

Using equations (26), the Euler equations of 8L = O give the
following stress-displacement relations of the cylindrical shells:
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Nx - Vly _3u, 1fow)® )
Eh dx 2\x
By -V _3v _w, 1lfw\2 _udw
Eh dy R 2\ R Ox
20 + V% v du, dwdw, vw
Eh 5x Oy oxdy R ox
dw
Bx’:-g;
. N (@)
v W
TR Ty TR:
Mx-VMy_BBx
(1 -v2)D dx
My - W 3y B v
(1 - v3)D oy R 3x
Myy =BBX+BBY+EZ§W_
(1 -v)D 9y ox R ox 9

By means of Hooke's Law and the relations between moments and
changes of curvature, equations (27) can be reduced to give
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€x = (Nx - VNy)/Eh

ox 2\x
ey = (Ny - VNx)/Eh
_ﬁ_LlQ)e-E?i
dy R 2\y R ox

]
é:'z
~
—
=
I
<
w}

19

(28)

It is interesting to note that the gbove expressions contain terms

which have not been taken into account previously.

Nor is it obvious

from a study of these expressions that these terms are necessarily small

compared with those retained.
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In the above calculation, the expression for the complementary
energy has been assumed to be of the same form as in the case of a thin
Plat plate. This fact will now be verified in the following manner.

The principle of potential energy is known to be applicable in this
case. If incorrect stress-displacement relations are used the correct
equilibrium equations will not be obtained by means of the principle of
potential energy. Suppose the incorrect expression of the complementary
energy was used; the stress-strain relations obtained naturally would
not be correct. With these incorrect relations, the first variation

of the potential energy will not lead to the correct equilibrium equations.
However, in the present case, when equations (28) are used, the first
variation of the potentisl energy leads directly to the equilibrium
equations (18) to (22), thus confirming the fact that the expression of
complementary energy used is correct.

Cylindrical Shells and Flat Plates of Sandwich Construction

As in the case of homogeneous thin shells, the stress-displacement
relations for sandwich shells may also be obtained from the principle
of complementary energy. A sandwich shell consists of a core layer
surrounded by two face layers. The face layers are treated like thin
shells of thickness t having negligible bending stiffness about their
own middle surface. The loads applied to these face shells are of two
kinds: External loads and loads caused by the stresses in the core
layer. The core layer of thickness h 1is assumed to behave like a
three-dimensional elastic continuum in which those stresses which are
parallel to the faces are negligible compared with the transverse shear
and normal stresses. (See fig. 2.)

Assuming a large deflection, the equilibrium differential equations
for the upper face layers can easily be shown to be

ON o N
Xu/1+h+t>+Nyxu+ yudm L heBrE o0 (e9)
x \ oR 3y R ox 2R

OMxyu/ h+t) Myu Nxyu Ovu h o+t
~ GL+ = +By-R ax+'r_-),u(l+ =0 (30)
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21
‘ ow
dy x 4 ,h+ 1ty
2R
pu(1+h+t)+oyu(1+h+t)+7m%(1+h;{t)+
oWy
Tyu — =0 (31)
T
Similarly, for the lower face layer, the equilibrium equations are
aNle_h+t)+aNyxl+Ny13wz_szl_h+t)=0 (32)
ox 2R oy R Ox 2R
ON AN N ow
] wiff h+t), WNyr Nyl 1_Ty2( _h+t>=o (33)
ox 2R oy R ox 2R
Nyz 9 h + t\ow ow
‘%‘*&E“xl(l‘ aR)aT““ms;"]*
) owy Yy vy
o e A e nr e\ oy |
(‘ 2R
ow ow
PZ(‘h;Rt)-Uzl(l-h;Rt>‘Txlaxz(l"h;:) w3
(3%)

where the subscripts u and 1 denote the upper and lower surfaces,
respectively.
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Under the assumption of negligible face-parallel core stresses,
the equilibrium equations for the core layer are (reference 5)

aiz[(l ] g)Tx] -0 (35)
216 §)2'Ty: o (36)
-aa;(l - :—:-)Tx + % Ty + Sa; Kl - i)dz:l = 0 (37)

Let the values of the three stress components at the middle surface
(z = 0) be designated by the subscript m. Integration of equations (35)
to (37) results in

(1 - %) Tx = Tm (38)

( - %)ETy = Tym (39)

(l-Z)Uz=°m"Za—Tz+i<l‘?‘>Tx (ko)
oy ox R

Let Qx anmd Qy be the resultant transverse shear forces. Then

h+t
2

=) ol -Ee =ty (42)
2

h+t
_ (b + %) Typ

2 2R
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From equations (28), (39), (41), and (L42) the following relations may
be obtained:

-
(l+h;Rt>Txu_(l_tht)szzo

h+t h+t Qy
1+ - f1- - .Y
S

> ()
h;t[(l+h+t)Txu+(_h;Rt)sz - o
h+t[(l+h+t),ryu+( -h;Rt)TyZ - q
- </

h+t

For thin sandwich shells <<1. In such cases a combination

of equations (40), (41), and (L42) gives

(1 + B ;Rt)"zu - ( -8 ;Rt)orzz = :%Qx'_l_ %’X (L)

In view of the fact that all face-parallel core stresses are
neglected, the face-parallel stress resultants and couples of the
composite shell are due to the stresses in the face layers only and
may be obtained as follows:
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W

> (b5)

one may write
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Define the deformations of the composite shell to be w = (wy + wy)/2

and e = (wy - w;)/(k + t) where W represents the effective transverse

deflection of the middle surface and e represents the effective trans-
verse normal strain for the composite shell. From these definitions, wy

and w; may be written in terms of w and e as follows:

_ (h + t)e
Wy = W+ >
wp = w - (Bt e (46)

With equations (43), (M%), (45), and (46), the following equations
may be obtained by carrying out addition as well as subtraction of
equations (29) and (32) and (30) and (33).

oW _¥ee _o (47)
x 3y R X R
My , Ny Ty v, My e Y _o | (18)
ox oy R ox R ox R

C T AT AN A =0 (49)
= 3 R o R m X

2 de -
aM’W_PaMV_Mxyi‘iJ,w:_Qy:o (50)
ox oy R Ox 4R ox 7

From equations (31) and (34) the following two relations may be derived:

Ny 3 ow ow 3 ow ow A
N N : N + Ny ) -
R Bx( Bx X By> 3y( ) ox 5. By) .

3 [ 2\ 3, 3 de
o) -3t y)

dax aQy) %Y dw de EL) - |
()22 (wlral)-o o
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My ) ow ow
N Bx(MxBx M’Way>+$(Mxy$+MY5§>‘

2 2
(b + %) a(Nxa_e ny@) (h + %) B(nyii Nya)

T R T 3
2
(h+t)(czm+q)-(Qx-§£+Qy%§)+ﬂz_t)_%=o (52)

When the radius of curvature R becomes infinite, equations (LT)
to (52) reduce to the same equations obtained by Relssner (references 8
and 9). When the effective transverse normal strain e for the composite
shell is neglected, equations (47) to (51) reduce to the usual equations
of force and moment equilibrium. Equation (52) has no counterpart in
the theory of homogeneous shells, in the sense that the corresponding
equation for the homogeneous shell contains information that is not of
practical interest and is therefore never formulated. This equation
gives the local change of thickness of the shell caused directly by the
external loads by way of the nonlinear terms having stress resultants
and couples as factors.

Denote the properties of face layers and the core by the subscripts
f and c, respectively. The strain energy of the face layers and the
core may be written as (reference 5)

_1 1 2 2 2
Ve = 517L2€E—fl§x + Ny= - 2ueliyNy + 2(1 + vf)ny]x

2 M2 M2 - oy, + 2(1 + ve)Mg© | dx dy
t(h-l-‘t)zEfEix Kl wly xy]

h+t] 2 1[0 aQy)
ﬂ(h+t)Gc Ec IEZEJF (ax i ]dxay

The work done by the stress resultants due to large deflection is

=1 N Owy a"'ua"fu %%’ h+t>

U Qﬂﬁm(h> +2Nm8xby Nyu<8yu 1+ = dx dy +
[ [ow\ 2 dwy dw ;) 2

L [l on 22 20 2] - 22 e
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With the aid of eaquations (45) and (46), U becomes

-1 w2 v dw Bw
U‘eﬁE’X(ax) +2NUaxay+NY :]dxdy+
(b + %)2 N(Be) + on. O B, y 36\ 2) 4
A RO oe dy -
8 ﬂ[xax Y a3y 8y> |

de v (3 dv ,de ) ., dedw
3 ax Y\ox 3y By x dy oy
The work done by the surface forces over that portion of the surface
where the displacements are prescribed is

—

W:f Xty + Yoy + (XnuSWTquYnu%B)Wu ds +
Cdt—

E{ . owy v sz>
JC niwy + Invy + Xn1 8—— + Yni 8;— wil +

3
f Qv d“f ;lagct(aix*ayq%nd"

where the last two iIntegrals are the work done by the shear stress
resultant in the core. The first one of these two is the work done
due to the displacement of the middle surface and the second, due to
compression of the core.

Define the displecement of the middle surface and the resultant
load on the boundary of the composite shell to be as follows:

u = l(uu + uy) v = l(vu + vy)
2 2
By = (-uy + uz) By = ——(-vy + v7)
h+t h+t
Xn = Xnu + Xp1 " Yp = Ynu + Yn1
h+t h+ %
Mpx = 5 (Xpu + Xn1) Mpy = 5 (Ypy + Yp7)
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The work W Dbecomes

n t n”‘(nz nE

(b + t)Q(‘ de ae) L bt t(an BQy) st
br ey

thyetiz & 'y

Introducing the Lagrangian multipliers A3 to Ag and carrying
out the first variation with respect to Ny, Ny, Nxy, Mx, My, Mgy,
Qs Qy, and o0zm Iindependently, the relation

5L=8Vf+Wc+w+W+8ﬂ{\»l(§§+l§y?i+%§-%§>+

ox oy R o&x R o R
o) ow e} ow e} ow o) de ) de
SE03) b D) S0 %)) b D)

B de) _ 9 (i Oe Q 9%y de de) Sy ow
Bx(M”ay) ayédya:y)w (ax ay> (Qxax+QYay> Ray]+

XQ(BnyJraNy_NWEJ,ME_QQ_&),,ME‘{_YJ,%(NXQ)+

M=_va_w+<h+t>”wa_e-qg] ns[“_ui@xa_mmﬂa_w),,

R ox I R ox R ox ox Jy,
d dw h + )2 de _ (mn+ )22 d
ay(hi”axJ’Myay) _(_.+ ) _B_év +NX‘.Y$)' Z > ,cya%-k

dw ow 2
Ny-g—:->-(h+t)(o'm+q_) -(Qx-a—x-+ng)+.(£i_tL%j|}dxdy=o
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leads to the conditions A3 =u,

A=V,

A3 = W, M= Bx, A=

and Xg = -e and the Yollowing Euler equations

Ny"Vfoza_v__3+£(£3ﬂ)2+(h+t)2(gy__e)2 _udv (n+4)2Bx e
2{Es dy R 2|y ) R Ox I R ox

21 + Ve)yy _du ,3v ,dwdw  (h++)23ede ,vaw _(h+t)?Byde
2tEp d ox dx dy ¥  xd R 5 R dx
Mo vy | Bx gy de
t(h + t)%Ep/2 3  Ox x
My v By dwde ,ude Prow,e
t(h + t)%Eg/2 & Oy R R ox R
ML ey OBx By dwde dwde v, Bydw
t(h+t)%8g Oy Ox & JyOx RO R &
% (h+t)Ban ﬁ)
3 _ de
(h + t)Gc 1ZEc Bx+§;—_w_g§
% (mat) (% Ry, W e, W v, v,
(h + t)G, 12E. x ay Y 3y oy %y R ROy
h + £)2
L_;—Li'e:dm/%

Y (53)
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In the case of a flat sandwich plate (R—) =) the stress-strain
relations (53) reduce to exactly those obtained by Reissner (reference 8).
In the case of homogeneous shells (Ge = Ec —) », e—> 0) equations (53)
then reduce to the stress-strain relations (27) for homogeneous shells.

CONCIUDING REMARKS

In this report the principle of complementary energy is derived
for thin plates and shells with large deflections. The plates and shells
may be either homogeneous or of sandwich-type construction. The
application of the principle to the derivation of the stress-displacement
relations for homogeneous and sandwich shells as well as sandwich plates

is given.

Daniel Guggenheim School of Aeronautlcs
College of Engineering

New York University
New York, N. Y., August 15, 1949
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Figure 2.- Element of sandwich shell.
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