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SHELIS WITH FINITE DEFLECTIONS

By Chi-Teh Wang

SUMMARY

The principle of complementary enerig in the nonlinear elastici~
theory is shown to be derivable from the principle of potential energy
by a Legendre type of transformation. In particular, the expression of
the complementary ener~ is derived for homogeneous and sandwich plates
and shells with large deflections. By the method of complementary
ener~j the stress-strain relations are derived for homogeneous shells,
sandwich plates, and sandwich shells. Without the use of this method
much lengthier calculations would be necessary.

INTRODUCTION

In the theory of elasticity, the most important variational
principle is perhaps the principle of potential energy, which states
that of all displacements satisfying given boundary conditions those
that satisfy the equilibrium conditions make the potential energy a
stationary value. For stable equilibrium, the stationary value may be
shown to be a minimum (reference 1). The potential energy is defined
as the difference between the strain energy and the potential or virtusJ
work which the surface stresses do over that portion of the surface on

which the surface stresses are prescribed. This prticip:e is capable of
general application as it holds true no matter what the law connecting
load and deformation maybe (reference 2). With the relationships
between stresses, strains, and displacements known, the differential
equations defining the eq@librium conditions may be derived from the
variational principle by the methods of the calculus of variations:

The principle of potential energy was obtainedby comparing the
strain energy U of the equilibrium state, characterizedby displace-
ments u, v, and w, with the strain energy U + N of a neighboring
displacement state u + Au, v + Av, and w + Aw. A corresponti%
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2 NACA ~ 2620

variational principle may be derived by varying the stresses rather
than the displacements. This results in the so-called principle of
complementary energy which states that of all stress states satisfying
the conditions of equilibrium in the interior and on that portion of
the surface on which the surface forces sre prescribed the actual state
of stress is such that the complementary energy is a stationary value.
Again, for stable equilibrium, this stationary vslue is a minimum.
For a material that obeys Hooke’s law and has linear strain-displacement
relationships, the complementary energy is the difference between the
strain energy and the work which the surface stresses do over that
portion of the surface where the displacements are prescribed. However,
for nonlinesr problems, it seems that the expression of the complementary
energy has not been given previously.

When the equilibrium equations sre lmown in terms of stresses, the
stress-displacementor stress-strainrelations may be derived from the
principle of complementary ener~ by methods of the calculus of variation.
In some elastici@ problems this approach has been found to be convenient.
For example, in the linear case Trefftz (reference 3) has used the
method for the derivation of the stress-displacementrelationships in
the case of thin homogeneous shells and Reissner has recently derived
the stress-displacementrelationships of sandwich plates (reference 4)
and shells (reference 5) by the same method. Without resource to this
method these derivations may reqyire much lengthier calculations.

In this report the principle of complementary ener~ is derived
for thin plates and shells with large deflections. The plates and shells
may be either homogeneous or of sandwich-@pe construction. The appli-
cation of the principle to the derivation of the stress-displacement
relations for homogeneous and sandwich shells as well.as sandwich plates
is given.

This work was conducted at the Daniel Guggenheim School of Aeronauticsj
College of Engineering, New York University, under the sponsorship and
with the financial assistance of the
Aeronautics. The author is indebted
his discussion of the problem and to
assistance.
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flexural rigidi~ of plates and shells

effective transverse normal strain for
shells

Young’s modulus of elasticity

modulus of rigidi~ in shear

(Eh3/12(1 - V2))

sandwich plates and

thickneas
of core

potential.

of homogeneous plates and shells; also thickness
layer in the case of sandwich-tie construction

energy

complementary enerw

resultant bending and twisting moments in plates and shells;
unit in moment per unit length .

x- and y-components bf the resultant moment on boundary

stress resultant in middle plane of plate or in middle smface
of shell; unit in force per unit length

external lateral pressure

difference in p acting on upper face and lower face of

6)
sand~chplates ~nds~~s -(PU -PI)

shearing stress resultant in plate or shell.,normal to middle
surface, unit in force per unit length

resultant Q on boundary

radius of curvature at any point in shell

thickness of face layer of sandwich shell

work done by stress resultants due to large deflection

strain energy

virtual work done by external forces and moments

coordinates; y is curvilinear coordinate in direction of
circumference in the case of a shell

.
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subscripts

c

d

f

-1

s

o

u

m

x- and y-components of stress resultant acting
on boundary

displacements in x-, y-, and z-directions,
respectively

components of change of shape of normsl to middle
surface of plate or shell

shear strain

first variation

strain in x- and y-directions, respectively

Poisson’s ratio

Lagrangian multipliers

component of transverse normal stress in core
layer

transverse shearing stress in core layer

arbitrary parameters

change of curvature at any point in shell

core layer of sandwich plate or shell

portion of boundary over which displacements sre
prescribed

face layer of sandwich plate or shell

lower face of sandwich plate or shell.

portion of boundary over which stresses are
prescribed

given values on boundary

upper face of sandtich plate or shell

vslues of stiess components at middle surface
z = o

*
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EXPRESSION OF COMPLEMENTARY ENERGY FOR

THIN HOMOGENEOUS PLUCES WITH LARGE DEFLECTIONS

The principle of complementary energy can be derived from the
principle of potential energ by means of a Legendre type of transfor-
mation. Since the principle of potential energy is slso valid for
nonlinesr strain-displacementrelationships, the potential energy

I= v-11

is stationary or 51 = O when I is vsried with respect to the
displacement components u, v, and w. In the above expression V
is the strain energy and W is the virtual work. In the case of a
thin elastic plate with lsrge deflection the strain ener~ consists of
two parts, one due to the stretching of the plate and the other due to
bending.

I=

~Consequently, the potential

1 lr[mA I?X2+ ITY2- 2vN#?y +

energy msy be written as follows

12(1 +V)NW2 dxay+

1 JT[MX2+MY2 -
1

2vM.& + 2(1 +V)MW2 dx dy -
2(1 - V2)D A

J
pwaxdy-

1[ ( )
Xnu+ynv+ xn~+yn~+Qn~+

A Cs

(1)

where A is the area of the plate and Cs is that portion of the

boundary where the surface forces are prescribed; I has a stationary
value when it is varied with respect to u, v, and w, subject to the
following stress-displacementrelations:

.. . . . —. . ..— -. .——
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Nx =
[ ()Eh &+law2

U]

+v&+vawa—— ——

1 .Vaax uh ~ 2&

[ -()Eh >+1&r2 (7]au+v 2
NY . -v% 2G

——
1 ‘Vax 2ax

m

( )

&+au+aw&
‘~ ’2(l+v)ax ay axay

a%Mw = D(l - V)—
axh

(2)

Expressions (2) sre the usual stress-displacementrelations when the
deflection of the plate is large compared with its thickness but is
still small enough to allow the use of simplified formulas for curvature.
The boundsry conditions are: On that portion of the surface where the
surface forces are not prescribed, boundary displacements u, v, and
w sre equsl to the given values ~, PO, and Woo

The principle of complementary energy msybe obtained directlyby
applying a Legendre @_pe.transformation to the principle of potential
ener~. This procedure is known as “Friedrich’sMethod” (reference 6)
in the cslculus of variation. Let xl, ~, A3, A4, ~) and %

be the Lagrangian multipliers and Vl, ~, LL3, V4, and ~ be s~

—
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parameters. Then the variation problem, egyation (l), is equivalent
to varying the integral H with respect to Nx, Ny, %y, Mx) %
u, v, and w independently,where.

1 JT[%2 + MY2 -
1

2_+2(l+v)M# tidy+
2(1 - V2)D A

.

‘{xl ITx- Eh

p ()

+lawp

()]}

+Vav+vawp ~w+.—
-v2&

——
A 1 2 ax ay 2ay

1{[k2~- ~ av+l&72+v&+va&
-()-VQY ah -()]}ax 2ax

dxdy+
4 1

~[

X#?w- m
( )]

av &+awaw——
A 2(1+ V) X+* axay ‘m+

IIJv - ()awawo+vo)+113(w -we) +114-- —
aY ax

(3)

—-—. .. . . . .__. —_——_ _.— _ —. ——— —.—
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The condition 5E = O leads ta:

5H=0

&

. .

t“

\
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.

where

a2 a2
v=~+G

In carrying out the above calculation, integration by parts has
been used, an example of which is

w=

tidy+

(4)

(5)

.—. —— —
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According to the well-known rules
Euler equations of the mriationsl

Nx -Vlty+

Eh

~-mx+

Eh

2(1 + V)Nxy

NACA TN 2620

of the calculus of variations, w’

problem are

Xl=o

A2=0

-+)Q=O
d

Eh

Mx-vMy +Xk=o

(1 - #)D

~-*+%=o

(1 - &)D

m=
+A6=o .

(1 - v)D

EhA3
a“ m (hl+vA2) +$2(1 Vl=o

X1-V2

.

(6)

(7)

(8)

(9) ‘ ‘

(lo)

(U)
-,

(12) .
.

(13)

[

ha EIQ3

1
a Eh(Al + @

—— (14)
aYax2(l +@+& l-#’

-p=o

.—
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With the Lagrangian multipliers Xl, . . . X6 determinedly equations (6)

to (n), equations (E!) to (14) become identicsl with the e&xKlilmium
equations;

.

In writing
included.

Next,

namely

h2w
m?w+Nx —

a%
+2Nw — +NYN.P=CI

,ax2 axay #

(ma)

(13a)

(lA-a)

down eqyation (lka) the relations (12a) and (13a) have been

substitute the relations (6) to (n) into the second group of
surface integsls in equation (4). By
integrals may be transfomned into line

-1[a— --=-+ +v~)ti.1
A&l-~2

Gauss’ theorem these surface
integrals as follows:

-1-

L

.. ——. —— —-- ——. —— ————— ..——. . . .
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-1

Combining these integrsls with the line
the condition that the line integrals vanish

inte~als in equation (4), ..

requires that

(15)

on Cd.
.,

.. ——— — . — —
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substituting relations (6) to
integration by parts, and applying

13

(15) into e~tion (3), carrying out
Gauss’ theora to transform surface

integrsls into line integsls whereva possible, one obtdns finally

H=-~
n

NX2 + NY2 - 12vI?xIIy + 2(1 + m+ ax dy -
2Eh

1 nMX2 +%2 - 12.@l~ + 2(1 + V)MW2 dx dy -
2(1 -V2)D

![ (XnU + YnV + Xn ~ -1-Yn
)

%bw.+
Cd ti

(16)

The ccm.rplementsryenergy J is defined as negative H or

J=-H =V -1-u-w (17)

where V is the strain energy, U represents the work done by the
forces in the middle plane of the plate due to large deflection, and W
is the work done by the surface stresses over that portion of the
boundary Cd where the displacements are prescribed.

.

— ——.— -
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Al?PIitCATIONOF PRINCIPLE OF CO~
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-GY

Thin Homogeneous Cylindrical Shells

Assume that the complementary ener~ for the circular cylindrical.
shell may be written in the same form as in the case of a flat plate.
With the e@librium equations derived, the stress-displacementrelations
may be obtained from the principle of.complementary energy as follows:

Consider the case where w is lsrge in comparison with u and v.
Retaining the terms consisting of prodUcts of derivatives of w times.
the stress resultants and couples, t~ e~ibri~ eWtio~ for an
element of a cylindrical shell with arbitrary cross section (fig. 1)
can be put in the following form:

+ +

aiy a?v %Y~ % o
—- —— -—=

F ‘& R&x R

-(aax‘x&
s + +

(18)

(19)

-1-%

(20)

(a)

(22)

——
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. .

.

where x is in the direction of the generator and y is in the direction
of the circumf-ence. These equations may be obtained following a
similar derivation as given by Timoshenko (reference 7) with slight
modification. Let Xl, ~, X3, X4, and ~ be LaWan@an multipliers.
Byvsrying the stress resultants and couples independently in the
complementary energy equation subject to the equations of equilibrium,
one finds that the process is equivalent to formulating a variational
integral L and setting its ftist variation equal to zero; namely,

J!i8L=5& X2 + NY2 -
1

2vNxNy+ 2(1 +V)NW2 dxd.y+

A

1 J52(1 - @) A [
I&++ 121@ly +2(1 +v)~2 tidy+

1

J

dxay+

+

5Jl (Xnu + Ynv + Xn g
: )

+Y=—+~w
Cd

where the surface inte~als are to be exbended
surface, px is the angle through which Mm

angle through which Mw turns.

a~w )~xyaw C&+
-—— .—

ax R8x R

1+M~x+ M&y dE=O

(23)

over the entire cylindrical
turns, and ~ is the

— — -. —
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Carrying out the first variation, regroupingthe terms, and
eliminating the variations of derivativesbyintewation by PEU%S, one

.

obtains:
.

J=

(24)

——— —-- ———
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Reducing the second surface integral in equation (24) to a line integral. .
by Gauss’ theorem, the final boundary integral of equation (24) becomes

The first line integral vanishes on the part of the boundary where surface
stresses are prescribed. It therefore has a nonzero value only on that
portion of the boundary Cd where the displacements are prescribed.

Since expression (25) must be zero, one obtains on the boundary

(26) ‘

As equation (24) also holds for a~ part of the cylinder, if the
boundary displacements referring to this part are identified with the
displacement occurring in the actual solution of the problem, it follows
that the Lagrangian multipliers throughout the shell are related to the
generalized displacements in the interior of the boundary. It follows
that equations (26) also hold true now in the interior.

Using equations (26), the Euler equations of bL = O give the
following stress-displacement relations of the cylindrical shells:

-—_—. — ——. . . .



18 NACA TN 2620

r

I?~ u-%au+m#=—.—
Eh ax 2h

Ny-vl?x &
Eh ‘~

2(1 + v)l?~

Eh =

w ()+lawz’ OK-— _—
R Zh ‘iiax

Waw——
‘Rbx

Mx - v% aj3x=—
(1-q2)D ax

My-vM. apy p~aw=—- ——
(1 - V2)D b R ax

adxy apx+a~+~b——
(l-v)D =&_ ax Rbx

.

I (2’7)

By means of Hooke’s Law and the relations between moments and
changes of curvature, eqyations (27) can be reduced to give ‘
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ex= (Nx-V~)/Eh

()au+lbz=—- —
ax 2~

Gy= (Ny -vNx)/Eh

7== [2(1 +v)N~/Eh

)& = -(MX - Vhfy)/(1 - V2)~

a2w=—
a2

.
.

~ = -(MY - VMX)/(l - v2)D

%= -Mw/(l -V)D

(28)

It is interesting to note that the above expressions contain terms
which have not been taken into account previously. Nor is it obvious
from a study of these expressions that these terms are necessarily small
compsred with those retained.

.

—.—— .—— .— _ —— ——— —..
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In the above calculation, the expression for
ener~ has been assumed to be of the same form as

NACA TN 2620

the complementary
in the case of a thin

flat plate. This fact will now be verified in the following manner.
The principle of potential energy is known to be applicable in this
case. If incorrect stress-displacementrelations are used the correct “
equilibrium equations will not be obtained by means of the principle of
potential ener~. Suppose the incorrect expression of the complementary
energy was used; the stress-strainrelatio~ obttined ~*~Y wo~d
not be correct. With these incorrect-relations,the first vsriation
of the potential ener~ will not lead to the correct equilibrium equations.
However, in the present case, when equations (28) are used, the first
variation of the potential ener~ leads directly to the equilibrium
equations (18) to (22), thus confirming the fact that the expression of
complementary ener~ used is correct.

Cylindrical Shells and Flat Plates of Sandwich Construction

As in the case of homogeneous thin shells, the stress-displacement
relations for sandwich shells may also be obtained from the principle
of complanentary ener~. A sandwich shell consists of a core layer
surrounded by two face layers. The face lsyers are treated like thin
shells of thickness t having negligible bending stiffness about their
own middle smface. The loads applied to these face shells are of two
kinds: External loads and loads causedby the stresses in the core
layer. The core layer of thickness h is assumed to behave like a
three-dimensional elastic continuum in which those stresses which are
parallel to the faces are negligible compared with the transverse shear
and normal stresses. (See fig. 2.)

Assuming
for the upper

a large deflection, the equilibrium differential equations
face layers can easily be shown to be

al?= ()~+h+t + a% NW hu

()

h+t o—. +Tml+—= (29)
& 2R &+R~ 2R

aN~

()

~+h+t +Wyu Nm &u

()

h+t o—_ —— +Twl+~= (30)
ax m h R&

-.
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,

awu
ryu~=o (31)

Similarly, for the lower face layer, the equilibrium equations are

bNxzl h+t() ()bNyxz+Nyz&r~ ~xzl h+t o
.— — __ -

ax
-— =‘h (32)

2R R ax 2R

< where the subscripts u and Z denote the upper and lower surfaces,
respectively.

.

..—. .- —___ —
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Let
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Under the assumption of negli@ble face-parallel core stresses,
equilibrium equations for the core layer are (reference 5)

a
[ )]—l-; TX =0

az

the values of the three stress components at the middle surface

(35)

(36)

(37)

(z = O) be designated by the subscript- m. Integration of equations (35)
to (37) results in

()1 +X.T= (38)

(39)

(1 - z)a~ = am -

Let C& and C& be the resultant

h+t

Q.=J5xk --—
2

h+t
T

~=~ Ty
h+t_—
2

‘L2+a-:)’j (~) -

transverse shear forces. Then

)
#dz=(h+t)Tm (41)

(h + t)7P
dz=

1
()
h+t2.—
2R

(42)

.

— —-———
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From equations
be obtained:

23

(28), (39), (41), and (42 ) the following relations may

()~+h+t 2R ‘Xu - )h+t-—
2R, TXZ=0

For thin sandwich shells ~ <<1. In

of equatiow (~), (41), and (42) gives

(43)

such cases a combination

In view of the fact that all face-parallel core stresses are
neglected, the face-parallel stress resultants and couples of the
composite shell are due to the stresses in the face layers only and
may be obtained as follows:

(44)

-. .—. — —.—.-. _ .—— . .—
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Define the deformations of the composite shell to be w . (Wu + w~)/2

ande=(wu - wl)/(h + t) where w represents tie effective transverse

‘deflectionof the middle surface and e represents the effective trans-
verse normal strain for the composite shell. From these definitions, Wu

and W2 may be written in terms of w and e as follows:

(h + t)eWu=w+
2

WI =W-(h+t)e
2

(46)

With equations (43), (44),(45),and (46), the following equations
may be obtained by carrying out addition as well as subtraction of
equations (29) and (32) and (30) and (33).

aN~ al?y Nw&+Mx& ~_.—. —— —-— — (48)
ax ‘b ‘ Rhx R&R.”

Ikom equations (31) and (34) the

~J+a
R (.

~Nx~ + I?~

following two relations may be derived:

)( )

*+&N aw “aw
~ ~xy&+ N:&-. -

.— _-—
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(~+AM aw
R ax )(x~+%y$ +

)
&’%Yg+MY$ -

(52)

When the radius of curvature R becomes infinite, equations (47)
to (52) reduce to the ssme equations obtained by Reissner (references8
and 9). When the effective transverse normal strain e for the composite
shell is neglected, equations (47) to (51) reduce to thecusual equations
of force and moment equilibrium. Equation (52) has no counterpart in
the theory of homogeneous shells, in the se~e that the corresponding
equation for the homogeneous shell contains information that is not of
practical interest and is therefore never formulated. This equation
gives the local change of thickness of the shell caused directlyby the
external loads by way of the nonlinesr terms having stress resultants
and couples

Denote
f and c,
core may be

Vf =

Vc =

as factors.

the properties of face layers and the core by the subscripts
respectively. The strain energy of the face layers and the
written as (reference 5)

J[11
?2 Hf

NX2 + NY2 - 12V@xNy+2(1+vf)Nm2X
2

[MX2t(h + t)%f
+%2- 12V@#y + 2(1 + vf)MW2 dx W

~J{ –&+~(~+$?j’2]}mii2+Qy2+h+t
2 (h + t)Gc Ec

The work done by the stress resultants due to large deflection is

N.

—
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With the aid of equations (45) and (46), U becomes

27

The work done by the surface forces over that portion of the surface
where the displacements are prescribed is

w= J’[ ( )]&Tu+y aw.
‘nu% + ‘nuvu + ‘nu —

cd ax nu~wu ‘s+

J[ (
awl

)]
awl

XnZUZ + YnZVZ + XnZ ~ + YnZ —
Cd tiwz+

where the last two integrals me the work done by the shear stress
resultant in the core. The first one of these two is the work done
due to the displacement of the middle surface and the second, due to
compression of the core.

Define the displacement of the middle surface and the resultant
load on the boundary of the composite shell to be as follows:

u = :(UU + Uz)

Bx = A(-W + Uz)
h+t

Xn = Xnu + XnZ

M - %( -Xnu + Xnz)~–

l(VU+Vz~.—
2

)

~= -J-( -vu +

“ Yn = Ynu + Ynl

MW = +( -ynu

Vz)

+ Ynz)

— —.—...
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The work W becomes

w=
J[

(

x~u+Y~v+ xn*+Yn*
ax )

+~w+
Cd &

.

)( aw%xBx-nYeY-(%x&+%Y&- MRX=+MW )$’+

Introducing the Lagrangian multipliers Al to A6 and carrying

out the first variation with respect to Nx, ~, N=, Mx, MY, M=,

% Qy, and am independently, the relation

(“$%

[
aM*

h4 —
ax

% aw——
R&

—__——
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leads to the cond.iti.OnS Xl = Uj IQ=v, h3=w, W=$xj ~=Py)
.“

and 2.6 = -e and the Yellowing Euler equations

.

n

Nx - Vfly [) ()]bU+l h2+(h+t)2ae2
2tEr ‘~ ;= kax

NY - ‘fNx [).& w+~> L)]2+(h+t)2&2 U~+(h~t)2~ae
2tEf ay-i 2ay 4 R ax

2(1 + vf)N~ .*+~+&&+(h+t)23eae+ VaW-(h+t)2%ae—— ——
2tEf %~ax~b

——
axay ;% 4 R ax

Mx - v~y .&-&ae
t(h + t)2Ef/2 & & &

tis_, ..m/Ec
4R

.–. —-— — —--
_— -.—— .. .—— — —--— ——’
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In the case of a flat sandwich plate (R~w) the stress-strain
relations (53) reduce to exactly those obtained by Reissner (reference 8). ‘
In the case of homogeneous shells (Gc = Ecjrn, e+ O) equations (53)
then reduce to the stress-strainrelations (27) for homogeneous shells. ,

CONCLUDING REMARKS

In this report the principle of complementary energy is derived
for thin plates and shells with lsrge deflections. The plates and shells
may be either homogeneous or of sandwich-type construction. The
application of the principle to the derivation of the stress-displacement
relations for homogeneous and sandwich shells as well as sandwich plates
is given.

Daniel Guggenheim School of Aeronautics
College of Engineering

New York University
New York, N. Y., August 15, 1949

.
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