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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2781 

THE EFFECTS ON DYNAMIC LATERAL STABILITY AND CONTROL 

OF LARGE ARTIFICIAL VARIATIONS IN THE 

ROTARY STABILITY DERIVATIVES 

By Robert 0. Schade and. James L. Hassell, Jr. 

SUMMARY 

An investigation has been conducted in the Langley free-flight 
tunnel to determine the effects of large artificial variations of 
several rotary lateral-stability derivatives on the dynamic lateral 
stability and control characteristics of a )-i-5o sweptback-wing airplane 
model. The derivatives investigated were the damping-in-yaw deriva-
tive C	 (the yawingmoment due to yawing), the dampiñg-in-rdll 

derivative C 2	 (the rolling moment due torolling), and the two cross 
p 

derivatives C2	 (the rolling moment due to yawing) and C 	 (the 

yawing moment due to rolling). Flight tests of a free-flying model 
were made in which the derivatives were varied.over a wide range by 
means of an artificial-stabilization device incorporating a rroscope 
sensitive to rolling or yawing velocity. Calculations of the period 
and damping of the . lateral motions and of the response to roll and yaw. 
disturbances were made for correlation with the experimental results. 
In order to simplify the analysis, most. of the calculations were based 
on the assumption of idealized artificial-stabilization systems, but a 
few check calculations were made in which the small constant time lag 
of the stabilization device used in the tests was taken into account. 
Extensive calculations were not made by this method, however, because 
of the extremely laborious process involved and because a systematic 
determination of the effect of time lag on stability throughout the 
variation of the four derivatives was considered beyond the scope of 
the present investigation. . 	 . . 

The calculated results were in qualitative agreement with the 
experimental results in predicting the general trends in flight charac-
teristics produced by large changes in the stability derivatives, but 
in some cases the theory with the assumption of zero lag was not in good 
quantitative agreement with the experimental results. In these cases



2	 NACA TN 2781 

the check calculations with time lag taken into account indicated that 
the discrepancies could be attributed to the effect of the small con-
stant time lag in the stabilization device used. The results showed 
that the only derivative which provided a large increase in damping of 
the lateral oscillation without adversely affecting other flight charac-
teristics was Cnr• (Because of the limitations imposed by the relatively 

small size of the test section of the Langley free-flight tunnel, how-
ever, the flight characteristics of the model were not appreciably 
influenced by the stiffness in turning maneuvers that has been found 
objectionable in some airplanes equipped with yaw dampers.) Increasing 
C 1 to moderately large negative values produced substantial increases 

p 
in the damping of the lateral oscillation but-caused an objectionable 
stiffness in roll. Further negative increases in C 1 did not cause 

p 
additional increases in damping of the lateral oscillation and made the 
stiffness in roll more objectionable. Increases in C2	 or C	 'in 

the positive direction produced an increase in damping of the lateral 
oscillation but caused an undesirable spiral tendency. 

INTRODUCTION 

Many present-day high-speed airplanes have exhibited unsatisfactory 
damping of the lateral oscillation, partly because of the configurations 
required for high-speed flight and partly because of the more severe 
operating conditibns encountered (high altitude and high wing loading). 
Since in many cases satisfactory oscillatory stability cannot be obtained 
by making reasonable geometric changes to the airplane, much interest 
has been shown in the use of artificial-stabilization devices as a 
means of obtaining satisfactory damping of the lateral oscillation. 

Yaw dampers have been installed in some airplanes in an effort to 
improve the lateral oscillatory stability. This artificial-stabilization 
device provides rudder deflection in response to a signal from a rro-
scope sensitive to yawing velocity so that the yawing moment of the 
rudder tends to damp the lateral motion of the airplane. In an idealized 
system such a device produces the damping-in-yaw derivative C 	 (the 

yawing mometitdue to yawing). Similar devices can be considered, in an 
idealized case, to vary the damping-in-roll derivative Cj.' (the rolling 

moment due to rolling) and the two cross d.erivativeB C	 (the yawing 

moment due to rolling) and C 2	 (the rolling moment due to yawing).
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In a practical case, of course, the actual characteristics of the 
artificial-stabilization device should be taken into account rather 
than considering that the device produces a simple change in one of 
these derivatives. References 1 and 2 present some results of theoret-
ical investigations of large derivative variations as produced by 
idealized artificial-stabilization systems and references 3 and 4-pre-
sent methods for taking into account the effect of constant time lag 
in the stabilization systems. 

Varying .the value of either of the damping derivatives C 

and C 1 changes the total damping of the airplane. Varying the value 

of either of the cross derivatives Cp and C 1 primarily causes a 

redistribution of the natural damping of the system for cases in which 
the airplane has low values of the product of inertia. For high values 
of the product of inertia, variations in C 	 or Clr can cause 

sizable changes in the total damping of the airplane. 

In order to study the relative effects of large independent vari-
ations of these four rotary stability derivatives on the dynamic 
stability and control characteristics of airplanes, an investigation 
has been carried out in the Langley free-flight tunnel on a free-flying 
dynamic airplane model equipped with an artificial-stabilization device 
incorporating a rate-sensitive gyroscope. This investigation is a part 
of a general research program to determine the effects of several of 
the lateral-stability derivatives, both independently and in combination, 
on dyn.mic lateral stability and control. 

Force tests were made to determine all the lateral-stability 
derivatives of the model in the basic condition for use in making cal-
culations and establishing flight-test conditions. Calculations were 
made to determine the period and damping of the lateral motions and the 
lateral response to rolling and yawing disturbances for correlation 
with flight-test results. In order to simplify the analysis, most of 
the calculations were based on the assumption of idealized artificial-
stabilization systems although the stabilization device used in the 
tests did have a small constant time lag. Additional calculations 
including the effect of constant time lag were made for some Conditions 
in which the idealized theory was not in good quantitative agreement 
with the experimental results. All tests and calculations were made at 
a lift coefficient of 1.0. 

Although the results do not apply directly to airplanes or flight 
conditions other than those in'estigated, the trends of the results 
presented are believed to give a qualitative indication of the general 
effects of large independent variations of the four stability derivatives 
under consideration.
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SYMBOLS AND COEFFICIENTS 

All force and moment measurements were obtained w.ith respect to 
the stability axes. A sketch showing the axes and the positive directions 
of the forces, moments, and angles is given in figure 1. 	 .	 .' - 

CL	 lift coefficient, Llft/qS 

C	 yawing-moment coefficient, Yawing moment/qsb 

C 1	 rolling-moment coefficient, Rolling momen-t/qsb 

lateral-force coefficient, Lateral.- force/qS . 	 . . 

L	 rolling moment, about . X-axis	 . . 

N	 .	 yawing moment, about Z-axis 	 - 

ltvil fcr. lb 

q dynamic pressure, 	 . pV, lb/sq ft	 .	 . 

S	 . wing area,	 sq ft	 .	 - 

1 .	 distance from airplane center of gxavity to verticl-
tail center of pressure, 	 t	 -. 

b wing span, ft	 .	 ., . 
t	 . time,	 sec	 .-.	 --	 .	 .	 .	 - 

y .	 sidewThe displacement from center line oftestèection,Tft. 

p	 . .	 mass density of air, slugs/cu ft 	 .	 .	 - 

V airspeed,	 ft/sec	 .	 .	 .	 .	 . 

angle- of sideslip, radians except where otherwise noted 

'V angle of yaw, deg	 .	 - 

0 angle	 of bank,	 deg-	 .	 -	 ..	 .	 .	 .	 - 

a	 - angle of attack, deg	 . .	 . 

8. control deflection, deg
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total aileron defleätion, deg 

vertical-tail deflection, deg 	 - 

relative density factor, m/pSb, slugs/ft3 

in	 mass of airplane, slugs 

angle of attack of principal longitudinal axis of 
airp1an, deg 

frequency,. radians/sec 

natural frequency of model, radians/sec 

Aileron deflection 
ba/P	 amplitude ratio, Rolling velocity deg/radian/sec 

7	 inclination of flight path to horizontal axis, positive 
in a climb, deg 

moment of inertia about principal longitudinal axis, 
slug-ft2 

moment of inertia about principal normal axis, slug-ft2 

kx	 radius of rration in roll about principal longitudinal 0	 axis, ft 

kz	 radius of rration in yaw about principal vertical 
0	 axis, ft 

Kx	 nondimensional radius of gyration in roll about longi-

k 2	 2 

tudinal stability axis,	 cos + () sin2 

Kz	 nondimensional radius of gyration in yaw about vertical 

2-stability axis, 
\J-_2) 

cos i +
	

sin2i
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K nondimensional product-of-inertia parameter, 
XZ '	 2 

I(kz 	 (kx\ 

-	 ---)	
Sin TI COS Ti 

iv wing incidence, deg 

pb/2V rolling-angular-velocity factor, radians 

rb/2V yawing-angular-velocity factor, radians 

p rolling angular velocity, radians/sec 

r yawing angular velocity, radians/sec 

.CY S 

-

C n13
i3

- 
C, 

15j3 y3 

1p pb 
2V

S 

S 

CYp. pb 
2V 

C p pb 
2V

S	

S 

C

2V - 

C
r

°2V
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?ic 
(C 1 )	 = 

.a	 a 

' C '	 -_--_ 
I' 
nt - 

Cl
C 

C
nc 

P

rolling-moment coefficient due to deflection of both 
ailerons 

yawing-moment coefficient due to rudder deflection 

period of oscillation, sec

7 

T1/2 

A, B

1 
A

time for amplitude of lateral oscillation or aperiodic 
mode of motion to decrease to one-half amplitude, sec 

coefficients of first two terms of lateral-stability 
quartic equation (see ref. I) 

2Kx2Kz2cy +	 + Kz2C z -	 - KXZC Z r - XZ1p 

Kx2Kz2 - 1xz2 

APPARATUS

Tunnel and Model 

The flight-test part of the investigation was carried out in the 
Langley free-flight tunnel which is equipped for testing free-flying 
dynamic models. A complete description of the tunnel and its operation 
is given in reference 5. The static longitudinal and lateral stability 
characteristics were determined in the Langley stability tunnel and, the 
aileron- and rudder-effectiveness tests were made in the Langley free-
f light tunnel. The dynamic lateral-stability derivatives were determined 
in the Langley stability tunnel by the yawing- and rolling-flow techniques 
described in references 6 and7.	 -
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A three-view drawing of the model used in the investigation is 
presented in figure 2 and a photoaph of the model is presented as 
figure 3. The dimensional and mass characteristics of the model are 
presented in table I. A wing having 1i5° sweepback of the leading edge, 

a taper ratio of 0.5, and an aspect ratio of 3.00 was incorporated in 
the designbecause this plan form was typical of a number of proposed 
fighter airplanes. The center of gravity of the model was located at 

23 . 3 percent of the mean aerodynamic chord for all tests. The model 
was equipped with oversize (half-span, 30_percent-chord) ailerons and 
an all-movable vertical tail in order to obtain the high rolling and 
yawing moments required for large variations of the rotary derivatives. 
The ailerons were also used for manual control but the all-movable tail 
had a flap-type rudder for manual control. Conventional horizontal 
stabilizing surfaces were employed. A boom-type metalfuselage was used 
in order to simplify the construction of the model. 

For manual control the rudder and ailerons were electrically inter-
connected to move together in order to eliminate the aâverse yawing 
moment of the ailerons. Aileronand rudder deflections of ±210 and ±111-0, 

respectively, were used for all flight conditions except for the highest 
value of C 1 . - In this condition the aileron deflection was ±29° and 

p-- 
the rudder deflection was ±19°. 

The manually controlled rudder was operated by a flicker-type (full 
on or full off) electrical actuator. Although all other servoactuators 
were of the proportional pneumatic type, essentially flicker-type control 
was obtained with them because control was applied by abrupt movements 
of the control sticks and because very high gearing was used between 
the stick and control surface. 

In order to have the model represent an airplsne that had poor 
oscillatory stability and hence require an artificial-stabilization 
device, the wing incidence was adjusted so that the basic model had a 
neutrally stable lateral oscillation at the test lift coefficient of 1.0. 
This neutrally stable oscillation was obtained by increasing the wing 
incidence to 10 0 so that the principal axes of inertia became more 
closely alined with the wind axes. (See ref. 8.) 

Artificial-Stabilization Device 

The artificial-stabilization device used in this investigation 
consisted of a rate rro and a servoactuator. The rate gyro was mounted 
on a quadrant so that it could be alined with either the roll or yaw 
stability axis; therefore it would be sensitive only to a rolling or a 
yawing-velocity as desired. The servoactuator operated both the ailerons 
and the all-movable tail to produce the derivatives C 2 or C 2 . In 

p	 r
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order to produce pure rolling moments . without adverse raw, the all-
movable tail had to be deflected simultaneously with the ailerons. For 
the two yawing-moment derivatives C	 and Cnr the servoactuator 

operated only the all-movable tail. No accompanying aileron deflection 
was required since at the flight-test lift coefficient of 1.0 the tail 
produced no rolling moment. 

Deflection of the all-movable vertical tail to produce the rolling-
and yawing-moment derivatives also produced changes in the lateral-force 
derivatives Cy	 (the lateral force due to rolling) and cy 	 (the 

p	 r 
lateral force due to yawing). In the calculations, however, these 
changes in Cy and CY were neglected because preliminary calculations 

indicated that even the largest changes in these derivatives did not 
appreciably affect the calculated results. 

The value of a derivative was artificially increased or decreased 
by varying the gyro rotor speed or the control linkage to produce more 
or less control deflection for a given rolling or yawing velocity. The 
sign ofa derivative was changed by rotating the gyro 180° about the 
rotor axis to give opposite response for a given velocity. 

A schematic drawing of the control system used for the C1 
p 

derivative is shown in figure ii-. Both ailerons were used for control 
but for clarity in the drawing only one aileron is shown. This drawing 
shows the artificial-stabilization device, the manual servoactuator, 
and the control linkage. This linkage allowed both the artificial-
stabilization device and manual actuator to operate the same aileron 
surfaces. The tubes shown in figure supply air to the gyro rotor to 
produce a given rotor speed and to the servoactuators to provide the 
force required to move the control surfaces. Air is also supplied to 
the gyro pick-off valve which varies the signal pressure to the servo-
actuator. 

In order to explain the operation of the artificial-stabilization 
device, the, assumptions are made that the device is set up to produce 
negative C 1 and that the model . has received a rolling disturbance 

causing the model to roll to the right. The operation then is as follows: 
In response to the rolling velocity the rate-gyro rotor produces a 
torque about the precessional axis of the gyro and the resulting 
rotation about this axis causes the pick-off valve to move. The movement 
of the valve varies the signal pressure t .o the servoactuator which deflects 
the control surfaces. This control deflection produces a rolling moment 
which tends to prevent the model from rolling to the right.

/
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An example oh' the results obtained from the calibration of the 
artificial-stabilization device is shown in figure 5. The' results 
presented, which . are for one value of the derivative C 1 , show the 

p 
variation of the amplitude ratio and the phase angle with frequency. 
These results indicate that the amplitude ratio did not vary appreciably 
throughout the frequency range, but the variation of phase angle with 
frequency was such that the system had an essentially constant time lag 
of about 0.05 second. 

DETERMINATION OF BASIC STABILITY ABD COWPROL

PARAMETERS OF THE MODEL 

The stability, derivatives of the model in the basic condition for 
a, lift coefficient of 1.0 were determined from force tests made at a 
dynamic pressure of 25 pounds per square foot, which corresponds to a 
test Reynolds number of approximately l,2'5,OOO based on the mean aero-
dynamic chord of 1.38 feet. The results of these tests are given in 
table II.	

0 

Aileron and rudder effectiveness at a lift coefficient of 1.0 was 
determined from force tests made at a dynamic pressure of 3.0 pounds 
per square foot which corresponds to a test Reynolds number of approxi-
mately 350,000 based on the mean aerodynamic chord of 1.38 feet. , The 
results of these tests showed that for' the range of deflections used 
in the flight tests the variation of control moment with control 
deflectIon was linear. The ailerons produced a value of (Cj) 	 of 

0.0018 per degree and the all-movable tail prod.uced'a value of (C), 

of 0.0018 per degree. These data were used in determining the values 
of the stability derivatives simulated by the artificial-stabilization 
device.

FLIGHT TESTS

Test Procedure and Ratings of Flight Characteristics 

The various flight charaéteristics rated in the free'-flight--tunnel 
tests were the damping of the lateral osci-llation,' apparent spiral 
stability, apparent damping in roll, maneuverability, controllability, 
and general flight behavior. The ratings are listed and defined in
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table II. These ratings merely indicate the relative effect of changes 
in the various derivatives on the flight characteristics and should not 
be considered as absolute ratings that can be used to relate these 
results with results for other models or full-scale airplanes. Motion-
picture records were also obtained to supplement the flight ratings. 
One of the main uses of these records was to provide time histories for 
measuring quantitative values of damping. 

Control-fixed oscillations were initiated by rocking the model in 
roll approximately in phase, with the natural frequency of the oscillation. 
This procedure is different from thenormal full-scale flight-testing 
procedure in which the airplane is released from a sideslipped attitude 
or disturbed by an abrupt rudder deflection. Because of the limited 
size of the test section in the free-flight tunnel, the model usually 
struck the tunnel wall after a sideslip disturbance before enough cycles 
of an oscillation could be obtained for determining the damping. 

Apparent spiral stability is a measure of the ability of the model 
to fly, controls fixed, without an aperiodic divergence into the tunnel 
wall. One indication of spiral instability in the flight tests was the 
necessity for almost continuous corrective control to prevent an 
aperiodic divergence into the tunnel wall. Apparent damping in roll 
is the measure of the stiffness in roll of the model in response to 
aileron control. 

In this investigation maneuverability is considered a measure of 
the ability to maneuver the model with aileron control easily and 
quickly. Controllability is a measure of the ease with which the model 
can be kept flying satisfactorily in a wings-level attitude. 

The general flight behavior is an indication of the over-all flight 
characteristics as affected by all the various stability and control 
characteristics. A proper balance of oscillatory and aperiodic stability, 
controllability, and maneuverability is necessary to give satisfactory 
flying characteristics. The general-flight-behavior ratings are there-
fore considered the best basis for judging the relative merit of the 
various flight-test conditions. 

Ranges of Variables 

All flight tests were made at a lift coefficient of 1.0 and a wing 
loading of 3.85 pounds per square foot which corresponds to a value for 
the relative density parameter 1-'b of 12.58 at sea level. The ranges
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of values of the four artificially varied derivatives for which flight 
tests were made are given in the following table:	 .	 . - 

Derivative
Value for model 	 . 

'.	 .	 ..	 .	 . in basic condition
Range tested. 

C -021 -72tol8 

C 1	 . -.32' -7.3 to	 .1 

•C lr .l -2.9 tO 3.1 ,

- . 07. . -.7. to.	 .9

Thevalues of. the derivatives for the modélin thebasic condition 
were determined from force tests to an accuracy of two decimal places. 
For the artificial variation of the derivatives, however, the values 
could be determined to an accuracy of only. one decimal place. 

CALCULATIONS 

Most of the calculations were'made,:time lag being neglected,'by the 
method of reference 1 to determine the effects of large variations of 
the four derivatives on period and damping for the flight-t'es.t.conditions 
listéd in table II. The mass and aerodynamic parameters used in the 
calculations are also listed in table II. 

FOr certain conditions in which the experimental and calculated. 
results were not . in good quantitative agreement, additional calculations 
were made in which the effect Of time lag in the artificial-stabilization 
device was considered. These calculations were made for a constant time 
lag of 0.05 second by the method of reference 3. Extensive calculations. 
were not made by this method, however, because of the extremely laborious 
process involved andbecause a systematic determination of the effect of 
time lag on stability throughout the variation of the four derivatives 
was considered beyond the scope of the present investigation. 

The damping of both the oscillatory and aperiddic motions is . 
expressed in terms of the damping factor 1/T 112 ,' the reciprocal of the 

time to damp to one-half amplitude. Positive values of this damping 
factor indicate stability and negative values indicate instability (or 
time to double amplitude). Calculations of motions were also made by 
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the method of reference 9 on a Reeves Electronic Analog Computer for 
some representative flight-test conditions (table II) to determine the 
response to a rolling- or a yawing-moment disturbance of 0.01. In these 
motion calculations the disturbance was applied in one direction for 
approximately one-half the calculated period of the oscillation and 
then applied in the opposite direction for an equal length of time. 

RESULTS AND DISCUSSION 

Presentation .of Results 

The experimental results are presented primarily inthé form of 
ratings for the dynamic stability, control, and general flight behavior 
based on the pilot's comments, and. in some cases, these ratings are 
supplemented by time, histories of the motions of the model taken from 
motio n-picture records. 

The experimental and calculated results are presented in 
figures 6 to 17. The flight ratings are presented in table II and 
examples of time histories showing the changes in the flight character-
istics of the model throughout the variation of each derivative are 
presented in figures 6, 9, 12, and 15. 

The calculated dynamic lateral stability characteristics of the 
model for the range of each derivative covered i .n the investigation 
are presented in figures 7, 10, 13, and 16 in the form of period and 
damping of the lateral oscillation and damping of the aperiodic or 
nonoscillatory modes of motion. Experimental values of period and 
damping of the short-period lateral oscillation determined from the 
flight-test records are also shown in these figures for comparison 
with the theoretical results. The damping of both the oscillatory 
motion and the aperiodic motion is expressed in terms of the damping 
factor l/T112. 

The calculated response of the model to rolling and yawing 
disturbances for various values of each derivative is presented in 
figures 8, 11, lIi, and 17. The primary reason for making these cal-
culations was to obtain a theoretical indication of the effect of 
changes in the various derivatives on, the initial response and resulting 
motions for use in explaining .the flight-test results. 

The effects on dynamic stability, control, and general flight 
behavior of artificially varying the derivatives are discussed inde-
pendently for each derivative. Results are presented for a wide range 
of values (both positive and negative) for each derivative; however,
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since damping of the lateral oscillation is the primary function of any 
artificial-stabilization system, only variations of the derivatives in 
the direction which produces improvement in oscillatory stability are 
discussed in detail. 

The experimental results, based on flight ratings for osciIlatoy 
stability and general flight behavior, are summarized in figure 18. In 
this summary a comparison is made of the improvements in oscillatory 
stability and of theaccompanying changes in general flight behavior 
obtained by varying the different derivatives. 

The effects of each derivative on the total damping of the system 
are presented in figure 19. These results are presented in order to 
provide a better understanding of the effects of the different derivatives 
on oscillatory stability and general flight behavior. 

A comparison of the calculated effects of the four derivatives is 
shown in figure 20 in order to show the relative effectiveness of'èach 
derivative in providing satisfactory oscillatory stability. For this 
comparison the period and damping factor have been scaled up so that 
the results can also be compred directly with the Air Force and Navy 
damping requirements (ref S. 10 and 11). In scaling up these values the 

model was assumed to be a -sca1e model of an airplane; therefore, the 

period of the model was multiplied by 3 and the damping factor was 
divided by 3.

Effect of Yawing MoUient Due to Yawing C 

As C	 was increased in the negative direction, the damping of 

the lateral oscillation increased up to an optimum value .and then 
decreased while the apparent spiral stability continued to improve. In. 
this range the lateral control was good, and. no apparent loss of 
maneuverability occurred with increasing C . The best general flight 

behavior was obtained with a value of Cn slightly greater than that 
r 

which produced the greatest damping of the oscillation. A detailed 
discussion of the changes in dynamic stability, control, and general 
flight behavior is given in the following sections. 

Dynamic stability. - In the basic condition ( Cnr = _0.21) the model 

had neutral oscillatory stability. The flight records of figure 6 
indicate that modeate increases in the value of Cnr in th negative
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direction caused a marked improvement in damping of the short-period 
lateral oscillation. Further negative increases in the value of C 

caused a reduction in d.amping of the oscillation; in fact, oscillatory 
instability was obtained with a value of C 	 of -7.2. It appeared 

to the pilot that the best damping of the oscillation was obtained with 
values of C	 between -1 and -3. 

When C	 was varied in the positive direction from the basic 

condition, the lateral oscillation became unstable. This instability 
increased until, at a value of 	 of 1.8, the model became so unstable 

that sustained flight was impossible. Neither the period nor the time 
for the oscillation to double amplitude could be estimated from the 
flight-test results in this range of Cflr because the model could 

be allowed to fly uncontrolled for more than a second or two atla time. 

The comparison of the calculated and experimental values of period 
and damping of the lateral oscillation shown in figure 7 indicates good 
agreement for the various values of Cflr covered in the tests. These 

results indicate that maximum damping of the oscillation, was obtained 
with a value of Cnr . of about -2.0. For this value of Cnr the lateral 

oscillation damped to one-half amplitude in about 0.9 second. These 
results also show that the period of the oscillation increased from 
about l..# seconds to about 2.2 seconds as Cflr was varied from 

-0.21 to -7.2. 

For the higher negative values of Cnr (-3 .2 to -7.2)., the flight 

tests indicated that the latéräl motion of the model progressively 
changed from the normal Dutch roll oscillation to a pndulum type of 
oscillation that consisted mainly of roll and sidewise displacement. 
The time histories of figure 6 show that at a value of .Cnr of -7.2 

the ratio of yaw to roll is approximately one-half the value obtained in 
the basic condition. This decrease in the ratio of yaw to roll is 
attributed to the fact that increasing the damping in yaw causes partial 
restraint of the yawing motions. This change in the nature of the 
lateral oscillation is' also shown in the calculated motions in figure 8. 

During the flight tests a change was also'noted in the nonoscillatory 
dynamic lateral stability of the model as Cflr was varied. Althbugh 

the damping of the aperiodic modes of motion cbuld not be theasiired from 
the flight-test records, the pilot was aware of increasingly better 
apparent spiral stability as	 was increased negatively since the 

r
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model-would fly for long periods of time with controls fixed-despite 
the natural gustiness of.the air flow. This increase in apparent spiial 
stability is shown by the time histories (fig. 6) which indicate that 
it was possible to obtain longer uncontrolled flight records as 

was increased negatively despite the lightly damped or unstable oscil-
lations at the higher negative values of Cflr• Since the pilot consid-

ered this flight characteristic desirable, the best spiral-stability 
ratings were obtained with- the higher negative values of C r 

The calcu1ated stability in the negative Cnr range (fig. 7) 

indicates that the aperiodic modes merge to form a second oscillation 
for values, of C	 between -2.0 and -5.2. This oscillation was so 

heavily damped that it was never observed in the model flights. The 
constantly increasing apparent spiral stability observed in the flight 
tests as Cnr was varied in the negative direction appears to correspond 

to the increasing stability of first the spiral mode and then the long-
period. oscillation. 

Control. - The lateral control characteristics are presented in 
table 11-in the form of ratings based on the :pilot's OplfllOfl of:the 
controllability and maneuverability of the model for various values of 
C	

r 

It niay be seen from this table that as C	 was varied in the

negative direction the controllability improved. In the basic condition 
(case 7),despite the undamped oscillation, the model could be flown 
with only occasional corrective control deflections to keep the model 
in the center of the test section. As C	 was increased in the negative 

r 
direction, the mbdel required progressively less control and with the 
higher values of C	 would fly uncontrolled for relatively long periods 

of time. (See fig. 6.) The best lateral control of the model was 
obtained with a value of Cnr of -3.2, when the lateral motion of the 

model following a disturbance would completely die out before any 
corrective control was required. When C	 was varied in the positive 

direction, the lateral control characteristics became worse. The model 
was barely cbntrollable with the most positive value of C 	 tested 

(case 9) since the unstable oscillatory motion and the unstable spiral 
mode necessitated constant corrective control deflections to prevent the 
model from crashing.
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In the opinion of the pilot the model had adequate maneuverability 
throughout the range of C 	 tested in that the model could be 

maneuvered to any desired position in the tunnel quickly and easily. 
In fact, had the model riot been easily maneuverable, flight with positive 
values of Cfl might have been impossible because of both oscillatory 

and spiral instability. In the negative range of Cnr it was not possi-

ble to note the decreased maneuverability or increased stiffness in 
making turns which has been experienced with some airplanes equipped 
with yaw dampers (ref. 12) since steady turning maneuvers cannot be 
made in the Langley free-flight tunnel because of restrictions imposed 
by the size of the test section. 

General flight behavior.- The general flight behavior of the model 
in the basic condition (case 7) was not satisfactory because of the 
undamped lateral oscillation. As	 was increased negatively, the 

general flight behavior of the model improved as a result of both the 
increased damping of the oscillation and the improved spiral stability. 
The best general flight behavior was obtained with a value of C. 

of -3 .2 (case 3). Although this value of	 produced less damping

of the oscillation than the maximumobtained with Cn equal to -2.2, 
the pilot felt that the over-all flight characteristics obtained were a 
little better because of the better spiral stability and because the 
model appeared to be somewhat easier to contrOl. As C 	 was further 

increased negatively, the progressive decrease in oscillatory stability 
and the appearance of the objectionable pendulum type of oscillation 
resulted in poorer general flight behavior. With values of C 	 greater 

than -5 .2 (cases 1 and 2), the over-all flight characteristics of the 
model were unsatisfactory because of the lightly damped or unstable 
oscillation. 

When C	 was increased in the positive direction from the basic 

condition (cases 8 and 9), the general flight behavior became very poor 
because of both the oscillatory and spiral instability. 

Effect of Rolling Moment Due to Rolling C1 

Small negative increases in the value of C 1 . caused the damping 

of the lateral oscillation to improve rapidly, but further negative 
increases in C 1 resulted in no further improvement in the oscillatory 

p	 -	 - 
stability. Most of the damping added to the system by these further
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increases in C 1 was absorbed by the aperiodic rolling mode so that 
p 

the model appeared to be very stiff in roll. Although this flight 
characteristic caused the model to have very poor maneuverability in 
•roll, the model was very easy to control in a wings-level attitude. 
The general flight behavior was considered satisfactory only for small 
negative values of C1 

p 

D'namic stability. - The results for the damping of the lateral 
oscillation indicate that as C 2 was increased in the negative direction 

p 
from the basic value of -0.32 the damping rapidly improved for values 
of C 2	 up to about -0.6 (case 13, table II). As C 2 was further. 

' p	 V	 p 

increased, the oscillation could not be initiated because the rolling 
mode •was so heavily damped that the model was essentially restrained 
from rolling (cases 10 and 11). The time histories in figure 9 show 

V 

this change in the nature of the motion. In the high negative range 
of C 2	 (-1.0 to -7.0), some flights were made in which the initiation 

p 
of oscillations by rudder deflection was attempted, but these attempts 
to obtain oscillations were not successful because the model sideslipped 
into the tunnel wall before enough cycles of' the oscillation were 
obtained to permit measurement of the damping. With a alue of C1 

of -0.8, the oscillation damped to one-half amplitude in about 1.1$ seconds. 

The flight records show that increasing C 2 in the positive 

direction caused the lateral oscillation of the model to become unstable. 
This instability increased very rapidly and, with a rather small positive 
value 'of C 2	 (0.1), sustained flight was impossible. 	

V 

A comparison of the experimental and calculated values of period 
and damping of the model is presented in figure 10. These results show 
that the experimental values of period and damping are in fairly good 
agreement with the calculated'va1ues for the limited range of negative 
C 1 where the period and damping could be measured. The calculations 

p 
show that for negative values of VC p greater than -0.9 damping of the 

oscillation did. not increase further. Although the calculations 
correctly predicted the existence of an unstable oscillation in the 

/ 1 
positive Cj region, the oscillatory instability 'T

	
= -0. 50 deter-

V	

P	 V	 \l/2	
) 

mined from the flight-test results for ' Cz= 0.10 was not so severe
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as that predicted by the calculations in which time lag was assumed to 

be negligible 1	 = _l . 70 \ . Additional calculations showed that for 

I 
this samevalue of C 2 a value of l/T112 of zero (neutral stability.) 

would be obtained with a time lag of about 0.10 second. By interpolation 
the calculated results can be assumed to indicate that the actual time 
lag of 0.05 second known to exist in the stabilization device would 
result in a value of l/T1/2 of about -0.85, which is in betteragree-

ment with the experimentally determined value of -0.50. The discrepancy 
between the measured and calculated values of damping shown in figure 10 
may therefore be attributed, at least partly to the effect of time lag in 
the stabilization system. 

The most significant change in the dynamic stability of the model 
as C2 was varied in the negative direction was the very rapid increase 

in stability of the rolling mode. In the flight tests this increase in 
rolling stability was evidenced by an increase in the stiffness in roll 
as C1 was increased negatively. With very large negative values of 

C 2 the model was essentially restrained from rolling. When C 2 was 

increased in the positive direction from' the basic condition, the model 
became overly sensitive to aileron control; this sensitivity indicates 
that the stability of the rolling mode decreased. No noticeable change 
in damping of the spiral mode of motion occurred throughout the C2 
range coveired in the tests. 	 P 

•The tendency toward restraint in roll experienced in the flight 
tests is indicated in the calculated results (fig. 10) which show that 
one of the aperiodic modes (the rolling mode) became increasingly stable 
as C 1 was increased negatively. The calculated response for various 

p 
values of C 2 presented in figure 11 shows the reduction; in amplitude 

p 
of the rolling motion as C 2 was increased negatively from the basic 

condition.	
p 

The. flight records (fig. 9) . show that the negative damping in roll 
(ositive C i )'caused the model to have an unstable oscillation rather 

than an aperiodic divergence or roll-off. Apparently the reason for this 
result is the fact that the rolling mode was still stable for the highest 
positive value of C 2	 covered in the tests. (See fig. 10.) 

p
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Control.- The lateral-control ratings presented in table II indicate 
that increasing C1 in the negative direction caused the model to have 

good controllability but poor maneuverability (cases 10 to i1i ). The 
tendency toward restraint in roll imposed by high negative values of 
C 1 , although undesirable for maneuverability, caused the model to be 

p 
very steady and torequire very little corrective control when flown in-
a steady wings-level attitude. The best lateral control characteristics 
were obtainedwith a value of C 1 of about -0.6, where.the oscillation 

p 
required little-control and the stiffness in'roll was not exces1ve. 
The over-all lateral control characteristics of the model with iery 
large negative values of C 1 were considered unsatisfactory because 

p 
of the reduced maneuverability. 

The adverse effect of high negative values of C 1 on mañeuyer-
p 

ability might be eliminated without sacrificing-the desirable steadiness 
in wings-level flight by utilizing a control-system similar to that 
suggested inreference 12. for an airplane equipped with a yaw damper. 
In performing maneuvers with an airplane equipped with one form of such 
a control system, deflection of the control stick would not directly 
deflect the ailerons but would modify the signal from the rate-sensing 
device to the. servoactuator such that the aileron would be deflected in 
the manner required to perform the- desired maneuver. The stiffness In 
roll apparent to the pilot could thereby be greatly reduced. In some 
preliminary tests with another model, results with this type of control 
system have been very satisfactory. 

-When- C1 waè varied in- the positive direction from the basic 

condition (from case 7 to case 15), constant corrective control was 
required because of theunstable oscillation, but the model was highly 
maneuverable in roll. This increase in maneuverability was attributed 
to the reduced damping of the rolling mode. (See fig. 10.) 

General flight behavior.- The two important factors affecting the 
over-all flight characteristics of the model when C 1 was varIed were 

the dathpi-ngof the oscillation and the overdaniping of--the rolling mode. 
The best general-flight behavior was obtained with a-value of C 1 :- - 

of -0 8 (case 12) For this condition, the oscillation damped to one-
half amplitude In about 1.11. seconds ndthetendency towardrestraint 
in roll was not considered too objectionable, although the model did-
have less rolling maneuverability than is normally desired. Steady 
wings-level flights with this value of C 1 were very smooth and the 

p 
model required very little corrective- control.
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For values of C 1	 between -0.5 and 0.1 (cases l4, 7, and 15), the

general flight behavior was poorbecause of unsatisfactory damping of 
the lateral oscillation. With values of C 1 between -0.8 and -7.3 

p 
(cases 10 to 12), the general flight behavior was considered unsatisfactory 
because the rolling mode was so heavily damped that the rolling maneuver-
ability of the model was impaired. 

Effect of Rolling Moment Due to Yawing C1 
r 

Increasing Clr in the positive direction improved the damping 

of the lateral oscillation but caused the model to become very spirally 
unstable. No flight condition in which C 2 was varied was considered 

r 
appreciably better than the basic flight condition. 

Dynamic stability.- The flight'tests show that the damping of the 
lateral oscillation improved very slightly when C 1 was increased 

from the basic value of 0.13 toa value of 0.3 (fig. 12 and table II), 
but the model became more difficult, to fly despite this increase in 
damping. With values of C 1 greater than 0.3, attempts to measure the 

damping. of the oscillation were not successful because almost càntinuous 
corrective control was required to keep the model from diverging into 
the tunnel walls. In this range of C1, however, it was apparent to 
the pilot that the damping of the oscillation was increasing with 
increasing Clr	 (See cases 19 and 20, table II.) 

When Clr was varied in the negative direction from the basic 

condition, Oscillatory instability was obtained, but even with the 
highest negative value of C 1	 covered in the tests (-2.9),, this insta-

bility was not great enough to make the model unflyable. For this value 
of C 2 , the oscillation doubled amplitude in about 3.0 seconds. 

r 

A comparison of the calculated and experimental values of period 
and damping as affected by changes in C 2 is presented in figure 13. 

In the positive C 2 range above 0 .3, no quantitative data on the r 
damping of the oscillation could be obtained, as previously mentioned. 
The data of figure 13 show that, for all values of C 2 except those 

close to the basic value of 0.13, the calculated damping of the oscil-
lation is in rather poor agreement with the experimental results. In
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the negative C 1 range the instability of the oscillation was not 

nearly as severe as that predicted. by thecalculations in which time lag 
was neglected. For the value of Clr• of -2.9, the measured value of 

l/T112 was about -0.35, whereas that calculated with the assumption of 

zero time lag was approximately - 2. 50. In an,effort to explaiñthis 
large difference between the experimental and calculated results, 
additional calculations were made in which the constant time lag of 
0.05 second was taken into account. The result of these calculatiors 

___ = -l.32' was in'closer agreement with the ecperimental value of 

I .	 .	 .	 ....	 . 
l/T1/2 . The discrepancy between the measured and calculated values of 

damping shown in figure 13 may therefore be attributed at least partly 
to the effect of time lag in the stabilization device. The calculated 
period, which was relatively unaffected by time lag, is in fairly good 
agreement with the period determined from flight records for all values 
of C 1 where oscillations could 15e obtained. These results . indicate 

r	 '.. 
that almost no variation in period occurred throughout the range of C 

The cal'culted ' response of the model for a alue of Ct ' of 3.13 
(fr1) 

illustrates the aperiodic divergence which made it impossible to obtain 
a quantitative measurement of damping in the flight tests for large 
positive válües of C 1 .	 .	 . 

r 

The most noticeable change in stability observed in the flight 
tests was the severe spiral divergence encountered with high . positive 
values of C 1 . Spiral instability occurred with a value of Cir 

about 0.3 and became more severe as Clr was increased. With a value 

of Clr of 3 1 (case 20), this spiral instability was so great that moat 

of the flights ended in crashes. This increase in spiral instability 
ob'served inthé flight tests is predicted by the damping 'calculations 
of figure 13 and is illustrated by the caicülatedresjonse to-rolling 
and yawing disturbances in figure l4-. 

In the flight tests the spiral stability appeared to be irnroved 
as C 1 was increased in the negative direction since the model wbuld 

r	 . ' 
fly for long periods of time with controls fixed. This increase in 
spiral stability was also predicted by'the calculations. (See fig. l3.) 
The long-period' heavily damped oscillation,, which the calculations show 
is formed' from the merger of the spiral and rolling modes in the negative 
C 1 range,was not apparent in the flight tests. 	 .	 - 

	

r ..	 '	 -	 '	 .'
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From these results the variation of the derivative C 1 appears 

to offer very little hope for improving the over-all lateral stability 
characteristics of an airplane. This derivative, however, may in some 
cases be used to redistribute the damping between the oscillatory and 
aperiodic modes if surplus damping of the aperiodic modes is initially 
present. Preliminary calculations have indicated that the damping of 
the oscillation obtained with Cnr alone could be improved appreciably 

by utilizing C 1 to redistribute part of the excess damping of the 

spiral mode to the oscillatory mode. 

Control. - As C 1 was varied in the positive direction, the model 
r 

became more maneiiverable but the controllability became worse. The 
increased maneuverability caused the model to be highly responsive to 
the slightest control deflection at the higher values of C 1 so that 

the model became very diffiult to control. Many of the flights with 
a value of C	 of 3.1 ended in crashes because the model was inadvert-

ently overcontrolled; yet, reducing the control deflection did not seem 
advisable because at times large control deflections were ' required to 
recover from the rapid roll-off •into a spiral. (See fig. 12.) In this 
case the model appeared to be highly maneuverable when the pilot rolled 
the model from an initial wings-level flight attitude; however, in the 
attempt to recover from a large angle of bank following such a roll-off, 
application of full opposite control did not produce immediate recovery. 
The maneuverability in this condition was therefore considered not 
entirely satisfactory. Because of the inability to establish a definite 
over-all estimate of the maneuverability with positive values of C1., 

no maneuverability ratings were assigned for these conditions in table II. 

When C 1 was varied inthenegative direction (cases 16. and 17), 

the controllability became worse because corrective control was required 
to prevent the unstable oscillation from building up to large amplitudes. 
Even at the highest negative value of Clr tested, however, the oscil-

latory instability was easily controlled. The maneuverability of the 
model was satisfactory in the negative range of C 2 and was not 

-	 r 
appreciably different from that of the basic condition. 

General flight behavior.- .The only improvement in the general 
flight behavior that resulted from varying C 2 was obtained with a 

very small positive increase (from 0.13 to 0.3), and this improvement 
was very-slight. In this condition (case 18) the slight increase in 
oscillatory stability was considered more important to the general 
flight behavior than the decrease in controllability. With further
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positive'increases in C	 (cases 19 and. 20), the general flight behavior 

became worse despite the increase in oscillatory stability Poor 
controllability and severe spiral instability, which more than offset 
the , increased damping of the lateral oscillation, were the ' causes' of this 
poor. generál,flight behavior. As C 1. wasP increased in the negative 

direction,'the . unstable oscillation'caused the general flight behavior 
of the model to become worse. 

These results indicate that very little improvement in over-all 
flight behavior of an airplane can be obtained. with a change in C1, 

except, perhaps, in the case of an airplane with a substantial amount 
of aperiodic stability in the basic condition'. 	 ' 

' Effect of Yawing Moment Due to Rolling C 

Increasing the value of C 	 in the positive direction caused a 

very rapid improvement in;damping of the lateral oscillation, but this 
improvement in damping was obtained at the expense of the normally well-
damped rolling mode. , The decrease in the stability of the rolling mode', 
caused the controllability and hence the ' general flight behavior of the 
model to become progressively worse. 	 ,	 '	 '	 '	 ' 	 '	 ' 

Dynamic stability. - The results of flight tests indicated that a 
small positive increase in the value of C	 caused a large improvement. 

in damping of the lateral oscillation. The time histoxies of figure 15" 
show that as the value of C 	 was increased from -0.07 (basic condition) 

to 0.3 the neutrally stable oscillation became well-damped. For this, 
value of C	 the oscillation damp.ed to one-half amplitude in about 

0.8 second. With further increases in the value of	 to 0.9, 

quantitative values for damping of the oscillation could..not be measured 
from the flight records because' the poor lateral flight behavior of the 
model re4uired almost constant corrective control. In this range of 

(cases 23 to 25), however, it was apparent to the pilot that the 

damping of the oscillation was increasing with increasing C. (See 

table II.) Sustained flight was impossible with values of'	 greater

than 0.9. 

The results of.flight tests indicated that as 	 was'varied in 

the negative direction from the basic condition the lateral oscillation
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became unstable. Because of this increase in oscillatory instability, 
the negative range of C 1 . that could be experimentally investigated 

was very limited. With negative values of C larger than -0.7, the 

model was unflyable. 

In the comparison of the experimental and calculated oscillatory 
stability of the model for various values of C 	 (fig. 16), the theory

is seen to be in fairly good. agreement with the experimental result8 
for damping of the oscillation. The increase in period for small 
positive values of C	 predicted by the calculations, however, was not 

observed in the flight tests. The calculations iired.ict a continued 
increase in damping of the short-period ' oscillation for positive values 
of C	 larger than the maximum value.tested (0.9) for which flights

could be made. The calculated response of the model (fig. 17) forthe' 
value of C	 of 0..88'shows the' aperiodic divergence which made a' 

quantitative measurement of damping impossible to obtain in.the flight 
tests for this case. In the negative range of C 	 the calculations

verify the highly unstable, oscillation observed in the flight•tests.., 

The improvment in oscillatory stability with positive values of 
C	 was accompanied by a decrease in the stability of the aperiodic 

phases of the motion.' Flight tests were limited in this range by'a type 
of instability which bore a close resemblance to the spiral instability 
observed in, the flight tests with positive C 1 . The model became very 

touc to fly a	 was in'creased p to Od became extremely 

difficult to control for values of C	 greater than 0.1... Because of

this instability sustained flight was impossible for values of C 

greater than 0.9. As the value of C ' was vried through this range flp 

(-0.07 to 0.9), the pilot complained of an increasingly strong tendency, 
of the model to go into a, 'tight turn in response to normal aileron 
control. To the pilot this tendency appeared to be a severe case of. 
spiral instability. The results of calculations, however, show that 
the stability of the spiral mode remained unchanged up to a value of 
C	 of 0.5, whereas the stability of the rolling mode decreased rapidly. 

(See fig. 16.) A decrease in stability of the rolling mode therefore 
might sometimes be mistaken for spiral instability. 

The calculated results in figure 16 show that, although the rolling 
mode remained stable up to the point 'of its merger with the spiral- mode
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at avalueof C	 of about 0.55; t was considerably less damped than 

in any other flight condition experienced in these tests. At the value 
'of	 of 0.55, the two aperiodic modes merged to form a long-period 

oscillation which became unstable at a value of C 	 of about 0.65. 

This oscillation was not observed in the flight tests because of its 
extremely long period of over 4O seconds. Immediately after it became 
unstable, the long-period oscillation broke up to form two new aperiodic 
modes, one of which became increasingly unstable as C 	 was increased 
further.	 S	 p 

The results of these tests and calculations indicate that the 
derivative C	 might possibly be useful for redistributing the natural 

damping of anairplanein cases where the airplane has more than adequate 
damping of the rolling mode. The results of reference 2 indicate that 
the use of C	 in combination with C-, will provide an increase in 

p 
oscillatory stability without a loss in rolling stability since, as 
previously discussed, the use of the derivative C 1 alone causes a 

p 
large increase in the stability of the rolling mode. Use of C 	 alone,	 ' 

however, obviously is limited to values less than those which would 
cause the undesirable aperiodic motions experienced in these tests. 

• Control.- Despite the increased damping of the lateral oscillation 
as Cnp was increased from 0.3 to 0.11. (cases 23 and 211-), the control-

lability of the model became worse as a result of the increase in 
apparent spiral instability. With small positive increases in the 
value of C, the maneuverability of the model improved, and with the 

highest positive value of Cnp covered in the 'tests (0.9, case 25), the 

model appeared to be highly maneuverable when the pilot rolled the model 
from an initial wings-level attitude. As in the case of high positive 
C 1 , in an attempt to-recover from a large angle of bank following such 

a roll-off, application of full opposite control did not produce 
inimediate recovery. The maneuverability in this case was therefore 
considered not entirely satisfactory. Because of the inability to 
establish an over-all estimate of the maneuverability with positive 
values of Cn , no maneuverability ratings were made for these c.onditions 

p	 -	 .	 - 
in table II. • 	 S S	 - 	 - 

• When C	 was varied in the negative direction the controllability 
p	 -	 - 

became poor because constant corrective control was required to.prevent
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the unstable oscillation from building up to a large amplitude. The 
model was uncontrollable with values of C	 more negative than -0.7. 

There was no appreciable change in the maneuverability of the model 
with negative increases in Cn.. 

General flight behavior. - The increased damping of the oscillation 
obtained with the small positive values of Cnp provided an improvement 

in the general flight behavior despite the decrease in apparent spiral 
stability. The pilot felt that, with the small positive values of 

the slight tendency toward spiral instbility (which, in reality, was 
decreased damping of the rolling mode) was not highly objectionable 
because only small amounts of corrective control were required. With 
further positive increases in the value of C, however, the unstable 

aperiodic tendency became so severe that the general flight behavior was 
unsatisfactory even though the oscillatory stability continued to improve. 
When Cn was varied in the negative direction from the basic condition, 

the general flight behavior became worse because of the unstable 
oscillation.

Comparison of Effects of the Rotary Derivatives 

Dynamic stability and general flight behavior. - The summary of 
results presented in figure 18 provides an indication of the relative 
merit of changes in the various derivatives. This summary, which is 
based on the flight ratings for oscillatory stability and general flight 
behavior (table II), compares the improvement in oscillatory stability 
and the accompanying changes in general flight behavior obtained by 
varying the different derivatives. 

Use of C	 appears to produce the most satisfactory results since 
nr 

it provided the greatest amount of damping of the oscillation before 
introducing adverse flight characteristics. Although the results of 
figure 18 show that C 1 produced approximately the same maximum 

damping of the oscillation as Cn, the poor maneuverability caused by 

the stiffness in roll which resulted from negative increases in C1
p 

prevented good flight behavior from being obtained. In fact, for values 
of the derivatives of about -2 or -3 where the damping was essentially 
the same for the two derivatives, the flight behavior for C 1 was 

p 
considered poor whereas that for Cflr was good.
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Although- the two cross derivatives C 1 . and C	 actually.. n 

produced a greater improvement in the damping of the oscIllation than 
the two damping derivatives C 	 and .C 1 ,'-they.provided.less improve-

ment in general flight behavior. In fact, because of the severe apparent 
spiral instability produced by increases in these derivatives, satis-
factory general flight behavior could not be Obtained for any. condition 
in which C 1 was varied, and only barely satisfactory general flight 

behavior could be obtained with C . 	 . 
p .	 .	 -•	 :	 . 

Amount and distribution of the damping of the system.- For a better 
understandthg of the effects of the derivatives On the osbillatory 
stability and general flight behavior, both the changes in total damping 
of the system anft the redistribution of this damping between the various 
lateral modes must be considered. The results presented in figure 19 
show the way each derivative affects the total damping of the system. 
In this comparison the damping is expressed in terms of the ratio B/A 
where A and B are coefficients of the first two terms of the lateral-
stability quartic equation. This ratio isproportional to the total 
damping. (See refs. 1 and 2.) 

These results show that changes in any of the four derivatives can 
cause increases in the total damping. The greatest increase in damping 
per . unit change in a derivative was obtained with negative increases in 
the value of C 1 . Increasing the value of n negatively was about 

one-seventh as effective as increasing C 1 , and increasing .. C 1	 or Cn

in the positive direction was about one-fourteenth aseffective as 
increasing C1. Examination of the coefficient B of the quartic 

equation indicates that the differences in. the effects of the derivatives 
on the total damping are directly related to the differences in the 

inertia parameters Kz2 , Kx.2, and K. Because of this .relationship 

the ratio, of the .changes of total damping is. merely; a. reflection of the. 

ratio of the inertia parameters, that is, 	 is approximately 7 times

K2 and 11. times 

Although changes in the values of the cross derivatives. did affect 
the total damping.of the system, these changes primarily caused a 
redistribution of the damping between the variOus lateral ujodes. These' 
effects are important when possible combinations of' derivatives arë 
being considered for improving the damping of the lateral oscillation 
without adversely affecting the stability of the aperiodic modes. Such 
a balance of stability may be accomplished by artificially increasing 
one of the damping derivatives and then varying the proper cross



NACA TN 2781	 29 

derivative to provide the desired distribution of the damping between 
the various lateral modes. 

Comparison with Air Force and Navy damping requirements.- In order 
to evaluate the effectiveness of the individual rotary derivatives in 
improving the damping of the oscillation for a full-scale airplane, the 
calculated damping has been compared with the Air Force and Navy damping 
requirements. (See refs. 10 and 11 ..) In this comparison (presented in 
fig. 20) the period and the damping factor have been scaled up so that 
the results can be compared directly with the damping requirements. In 

scaling up these values .the model was assumed to be a .-sca1e model of 

an airplane; therefore, the period of the model was multiplied by 3 and 
the damping factor was divided by 3. 

These results' indicate that, in order to satisfy the requirements, 
Cnr would have to be changed from -0.21 to -0.66, Ci from -0.32 

to -0.53, CZr from 0.13 to 0.78, or Cnp from -0.07 to 0.07.. A brief 

analysis has indicated that (if lag and nonlinearities are neglected) 
any of these changes can be obtained with an artificial-stabilization 
system utilizing conventional-size control surfaces. It should be 
emphasized, however, that no general conclusions should be drawn from 
these results since they are for one airplane and one flight condition. 

A comparison of figures 18 and 20 indicates that increasing any of 
the derivatives except Cir increased the damping enough to meet the 

Air Force and Navy requirements before the general flight behavior 
became unsatisfactory for some other reason. Another important point 
that can be seen in the comparison of figures 18 and 20 is that the 
apparent superiority of the derivative C 	 in providing damping of 

the lateral oscillation was not realized because of the severe apparent 
spiral instability that resulted with large positive values of this 
derivative.

SUGGESTIONS FOR FUTURE RESEARCH 

The present paper covers a part of an investigation to determine 
the best means for improving the dynamic lateral stability of airplanes 
by means of artificial-stabilization systems. This phase was concerned 
primarily with the independent variation ofthe four rotary stability 
derivatives. Another phase of the investigation should be concerned with 
the use of combinations of these derivatives because it appears possible 
to increase the total damping of the system with one of the damping
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derivatives and then to redistribute this damping to the various lateral 
modes by means of a cross derivative in order to obtain good oscillatory 
stability without impairing the other flight charact.eristics. 

The present investigation was concerned with pure changes in the 
four rotary derivatives. Since practical artificial-stabiliiation 
systems will have a certain amount of lag and ,nonlinearities, they . cannot 
produce pure changes in the derivatives. Preliminary calculations 
indicated that appreciable changes in stability may be caused by time 
lag in the artificial-stabilization system. A study should therefore 
be undertaken to determine the ways in which the results of the present 
investigation would be altered by the introdüctibn of these additional 
factors.	 .	 - 

The results presented in the present paper are for only one 
particular configuration and for one flight, condition. Similar results 
for this and other configurations for a-wide rangeof flight conditions 
should be obtained since the effects of artificial stabilization may 
vary widely with changes in the basic conditions. 

CONCLUSIONS 

The results of the investigation to determine the effects on dynamic 
lateral stability and control of large artificial variations in the. 
rotary stability derivatives may be summarized as follows. Although 
these results do not apply directly to airplanes or flight conditions 
other than those investigated, the trends of the results presented are 
believed to provide a qualitative IndicaiioiT of the general : effects of 
large variations of the stability derivatives. - 

.1,... The calculated results were,in qualitative, agreement with the 
experimental results in predicting the general trends in flight charac-
teristics produced by large changes in the stability derivatives, but 
In some cases the calculations in which time lag was neglected were not 
in good quantitative agreement with the experimental results. In these 
cases, check 'calculations made by -taking into account time lag indicated 
that these discrepancies could be attributed to the effect of the small 
constant time lag in the stabilization device used. 

2. The only derivative which provided a ' large increase in damping 
of the lateral oscillation without adversely affecting other flight 
characteristics was the yawing moment due to yawing Cnr Because of 

the limitations imposed by the relatively small size of the test section' 
of the Langley free-flight tunnel, however, the flight characteristics
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of the model were not appreciably influenced by the stiffness in turning 
maneuvers which has been found objectionable in some airplanes equipped 
with yaw dampers. Oscillatory instability was produced by extreme 
increases in CnT in the normally stabilizing direction (negative 

direction). 

3. Increasing the rolling moment due to rolling C 2 to moderately 

large negative values produced substantial increases in the damping of 
the lateral oscillation but caused an objectionable stiffness in roll. 
Further negative increases in C 2 did not cause additional increases 

p 
in the damping of the lateral oscillation and made the stiffness in roll 
more objectionable. 

ii-. Increasing the rolling moment due to yawing C2 	 in the positive 
r 

direction prbduced an increase in the damping of the lateral oscillation 
but caused an undesirable spiral tendency. 

5. Increasing the yawing moment due to rolling	 in the positive 

direction produced a greater increase in the damping of the lateral 
oscillation than that produced by any other derivative but it caused an 
undesirable spiral tendency before adding a substantial amount of damping. 

Some preliminary calculations have indicated that the use of corn-
binations of derivatives such as Cn and C 2	 or C	 and C2 p	 p	 r	 r 

should be more satisfactory than the use of single derivatiies for 
increasing the damping of the lateral oscillation without impairing 
other flight characteristics. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., June 20, 1952
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TABLE I. 

DIMENSIONAL AND MASS ChARACTERISTICS OF TIlE MODEL 

Weight, lb ......................... 20.5
 Wing loading, lb/sq ft ................... 3.85
 Relative density factor, xn/pSb ..............12.58

 Moments of inertia: 
1x0' slug-ft2	 ...................... 0.220 

1z0' slug-ft2 ....................... 1.473 

Wing: 
Airfoil section .................Rhode St Genese 35 
Area, sq ft	 ....................... 5•33 
Span, ft ......................... 4.00

 Sweepback, leading edge, deg ...............45
 Incidence,deg .......................10 

Dihedral,deg	 ...................... 0 
Taper ratio	 .......................	 o. 
Aspect ratio ...................... 3.00

 Mean aerodynamic chord, ft .................1.38
 Location of leading edge of mean aerodynamic 

chord behind leading edge of root chord, ft ...... . 0.99 
Root chord, ft ....................... i.8

 Tip chord, ft	 ........................ 0.89 

Aileron: 
Area (total), percent wing area ............. 12.5

 Span (total), percent wing span .............50
 Chord, percent wing chord ..................30 

Vertical tail: 
Area: 
Square feet- ....................... 0.53 
Percentwingarea ....................10 

Span,ft .........................0.90 
Aspect ratio ........................ 1.50

 Sweepback, 50 percent chord, d.eg ............. 0 
Root chord, ft ........................ 0.75

 Tip chord, ft ......................0.44
 Tail length (from 0.23 mean aerodynamic chord of 

	

wing to 0.25 mean aerodynamic chord of tail), i/b . . 	 0.514
Airfoilsection .....................NACA0009

34
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TABLE I - Concluded. 

DIMENSIONAL ABD MASS CH&RACTERISTICS OF TEE MODEL 

Horizontal tail: 
Area: 

Square feet (including area through fuselage) ......1.19 
Percentwing area ....................22.3 

Span, ft	 .........................1.96 
Aspect ratio	 .......................3.23
Sweepback, 50 percent chord, deg .............. 0 
Rootchord	 ........................ 0.75 
Tip chord 
Tail length (from 0.23 mean aerodynamic chord of 

wing to 0.25 mean aerodynamic chord of tail), i/b . . . . 	 0.5114.
Airfoil section ...................... NACA 0009 

Fuselage: 
Length, ft	 ........................ 5.67 
Crosssection, in..................... 2 by 3
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TABLE II

FLIGHT RATINGS AND CALCULATED PERIOD AND TIER TO DAMP TO ONE-HALF AMPLITUIE FOR FLIGHT-TEST CONDITIONS 

Calculated values for - Flight ratings for - 

Oscillatory Aperiodic of 
Derivative Value of

mode mode the nonoscillatorl' 
varied derivative Damping of motion General 

Case varied lateral Maneuver. Control- flight 
Period, 11/2, Spiral Rolling Apparent Apparent oscillation ability lability behavior 

sec Sec Ti/2, 11/2, spiral damping 
sec sec tendency in roll 

-1 -7.2 2.25 -8.68 0.05 0.12 E+ A^ B A- 5^ C. 
2 -5.2 2.22 8:18 .09 .10 C A+ B A- A- B-

12.09 1.511. 3 -3.2
13.15 .14 B A^ B A- A+ A 

4 -2.2 11.84 .881 5^ A B A- A A-15.72' .l9 
5 -1.2 1.50 1.18 .57 .15 B B^ B A- A- B 
6 -.7 1.52 2.33 1.15 .14 C B H A B+ B-

a_21 1.37 -24.80 5.02 .14 D C B A B C 
8 .0 1.40 -4.76 44.20 .14 0- Di- B A s- c 
9 1.8 1.43 -.51 -.48 .13 E- E- B A+ C- D 

10 -7.3 1.63 1.56 5.09 .01 B C A+ Di- A+ C-
11 -1.3 1.64 1.52 5.44 .04 B C A+ C A-i- C 
12 -.8 -1.54 1.69 5.31 .07 B C A B A B -Cl

p 13 -.6 1.46 2.35 5.20 .09 B C A- B^ A B-
14 -.5 1.42 3.47 5.14 .11 B- C B+ A- A- B-

7 a.32 1.37 -24.80 5.02 .14 D C B A B C 
15 .1 1.38 -.59 4.21 .33 H C- C A+ C- C-

16

--

-2.9 t-i.so .25J E A+ B A+ Ci- C-
17 -.9 1.38 -1.16 .65 .16 E+ Hi- B A+ B- C 

C1 7 a13 1.37 -25.80 5.02 .14 D C B A B C r
18 .3 1.37 13.28 35.40 .14 Di- D B (b) B Ci-
19 1.1 1.36 6.63 -12.31 .13 C E B (b) C C 
20 3.1 1.31 .57 - .49 .10 Hi- E- B (b) Di- 0+ 

21 -.7 1.10 -.73 5.41 .11 E- C B A+ C 
7 .Q-f 1.37 -24.80 5.02 .14 D C B A B C 

22 .0 1.41 7.05 4.97 .16 C C- B A B-i- C+ 
23 .3 1.81 .70 4.17 .21 B+ D B- (b) A- B-
24 .4 2.00 .44 3.52 .32 A E Ci- (b) •B Ci-
25 .9 1.56 .19 -.43 8.36 Ai- H- C (b) C- Di-

aGoi condition. 
bNo definite estimate of maneuverability could be made; see "Reaults and Discussion" section. 

Constant Aerodynamic and Mass Terms Used in Calculating 	
Explanation of Flight Ratings 

the Damping and Period of the Model - 

lLb	 ........ 12.58 CL	 ....... 1.0 
0.0216 . 0.78 

(i 0/b)2 .	 .	 .	 .	 0.1443 Cy ...... 0.31' 

'1	 ........ 5.68 C1	 ...... 0.43 
0.0225 

K12
-

tan 7	 ..... -0.2126 
....... 0.1539 C,,	 ...... 0.2064 

Kxz	 ....... 0.0100 -0.2180 

V, 'ft/nec .	 .	 .	 .	 56.3

Rating

Damping of 
oscillatory and 
nonoscillatory 

motions

Lateral control General 
flight 
behavior 

________ 
Maneuver- 
ability

_______ 
Control- 
lability 

A Stable; heavily 
damped Good _______ Good Good 

-	 Satisfactory Stable; 
B moderately Fair Fair Fair, 

damped - ____________

Stable; lightly 
damped

_______ 

Poor _______

_______ 

Poor Poor 

Neutrally 
stable

Very 
poor

_______ 
lincontrol- 

lable
Unfly-
able 

D Unsatisfactory 
-
E Unstable
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Figure 1.- The stability system of axes. Arrows indicate positive direc-
tions of moments, forces, and angles. This system of axes is defined. 
as an orthogonal system having the origin at the center of gravity and 
in which the Z-axis is in the plane of symmetry and perpendicular to 
the relative wind, the X-axis is in the plane of symmetry and perpendi-
cular to the Z-axis, and the Y-axis is perpendicular to the plane of 
symmetry. At a constant angle of attack, these axes are fixed in the 
airplane.
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Figure 2.- Three-view drawing of test model. All dimensions in inches.
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Figure 3.- Mo1e1 used. in free-flight tunnel tests.
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Frequency, w, radians/sec 

Figure 5.- Example of frequency-response data for artificial-stabilization 
device. (Case shown is for 	 = -1.0.)
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Primary causes of poor general flight behavior 

	

at large values of -	 - C, C/r 
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Figure 18.- Effect of variation in rotary deriv-atives on general flight
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