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SUMMARY 

Bending-moment distributions were measured on a model helicopter 
rotor blade under hovering and simulated forward-flight conditions. 
The hinged-blade configuration was tested up to an advance ratio ~ 

of 0.50 , whereas the fixed-at-root configuration was investigated up to 
and including ~ = 0 . 90 . 

Curves of maximum-bending -moment distribution are pr esented for all 
test conditions . Harmonic bending moments have b een found as a result 
of a harmonic analysis of the data for ~ = 0 .22 and ~ = 0.47 . Theo 
retical calculations have been carried out at advance ratios of 0 . 22 
and 0 . 47 for the hinged- and fixed -at -root conditions, respectively, 
and comparisons are made between experimental and theoretical results. 
Agreement between the results is reasonable in view of the assumptions 
made in the theor y and the experimental errors involved . 

Resonance studies have been made on three sets of blades of differ 
ent stiffnesses for the purpose of comparing the experimentally deter
mined resonance peaks with those indicated by theory. 

Aerodynamic -loading expressions are developed for the fixed- at -root 
blade which include the effect of elastic flapping . Thes e results are 
used in the Goodyear method which is modified for the fixed-at -root 
condition. 

INTRODUCTION 

The purpose of the present progr am, which was conducted at M.l.T. 
under the sponsor ship and with the financial ass i stance of the National 
Advisory Committee fo r Aeronaut ic s, was to investigate the possibility 
of measuring bending moments on a small-scale wind-tunnel model at advance 
ratios up to ~ = 1. 0 . 
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Pres ent theory permits the calculation of blade bending-moment 
distribut ions which are correct only to the degr ee of validity of the 
aerodynami c loading applied to the blade. At the present stage of 
development of rotor aerodynamic theory no method exists for the evalu
ation of the induced flow through the rotor in forward flight, and it 
is therefore necessary t o approximate the aerodynamic loading. Conse
quently, the bending moment takes on a distribution and maximum value 
which is known to be in error. A reliable method of measuring bending
moment distributions on a rotor blade by means of wind-tunnel tests with 
small-scale models offers a pos s ibility of checking present theory, 
determining the extent of the errors involved, and establishing the 
importance of higher harmonic bending moments not readily susceptible 
to theoretical analysis. 

Since one of the important limi tations on more general helicopter 
utility is the relatively low maximum speed attainable with flexible 
flapping blades, it may be desirable to extend the helicopter speed 
range possible by using rigid nonflapping blades. This immediately 
imposes a structural problem since the alternating stresses are expected 
to be high. This program has therefore also included tests beyond the 
present -day normal operating r ange f or the purpose of contributing some 
information toward the evaluation of these stresses. 
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component at blade element of r esultant velocit y perpendicu
lar to blade - span axis and to axis of no feathering, feet 
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component at blade element of resultant velOCity perpendicu
lar both to blade - span axis and UT, feet per second 

induced inflow velocity at r otor , feet per second 
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true airspeed of helicopter along flight path, feet per 
I 

second 

rotor angle of attack, positive when shaft axis is pointing 
rearward 

blade flapping angle at particular azimuth position 

blade-section pitch angle 

tip-section ratio (v c~~' ~) 
mass density of air, slugs per cubic foot 

aerodynamic loading, pounds per foot 

3 

blade azimuth angle measured from downwind position in direc
tion of rotation 

innow ratio (v sin n~ - v) 

rotor angular velocity, radians per second 

DESCRIPTION OF APPARATUS 

The model rotor under test in this program consisted of a three
blade system 5 feet in diameter. The blades had the NACA 0015 profile, 
a rectangular plan form with no twist, and a chord of 3 inches. The 

rotor hub had horizontal hinges located at a radius of It inches to 

permit flapping motion and lag hinges with damping located at a radius 

of 2~ inches. Each blade had a 3/8-inch screw at its root coincident 

with the quarter-chord line which fitted into a tapped split sleeve 
with clamping screws on the hub which enabled the blade to be set and 
held at any desired pitch. 

The blade construction consisted of an aluminum tubular spar 
enclosed in a balsa profile as shown in figure 1. These pictures show 
the stages of assembly and the resulting aerodynamically clean surface 
of the instrumented blade. A 3/4-inch-diameter aluminum tube (1/32-in·. 
wall thickness) was rolled down into one having an oval cross section 



4 NACA TN 2626 

measuring 0 . 30 by 1.00 inch . A r oot fitting was then inserted and 
riveted in one end and 10 pairs of str ain gages were attached to the 
tube at radial stations shown in figur e 2 . Two balsa sheets were routed 
out so that one -half of the spar would fit into each piece. The three 
parts were then glued and clamped together and the profile was cut by a 
special tool placed in a jointer. After sanding to the proper shape, 
the blade was balanced about the quar ter chord by inserting small lead 
weights in the leading edge . The two dummy blades were constructed in 
the same manner but did not have strain gages attached to the spar. 
The resulting blades had a bending stiffness of 16,000 pound-inches 2 . 

The slip-ring and brush assembly consisted of a total of seven 
rings and three sets of brushes. Six rings were made of coin silver, 
whereas the seventh consisted of Bakelite equipped with contacts for 
the purpose of indicating azimuth position. The silver graphite brushes 
were mounted in Bakelite holders and brush pres sure was supplied by a 
coil spring fitted into a brass cap which screwed into the brush holder. 

In order to measure the bending moment at different stations suc
cessively without stopping the rotor between readings, a solenoid stepping 
switch was provided which made it possible to insert any desired pair 
of strain gages into the bridge . The axially symmetric switch was 
mounted coaxially with the center of rotation and the two leads from 
the solenoid were attached to two of the six silver rings. 

It was found that, in order to minimize the effects of slip-ring 
and brush resistance variations, it was necessary to mount all four 
arms of the resistance bridge on the rotor. Two dummy strain gages were 
therefore mounted on small metallic blocks which in turn were mounted 
on rubber pads and placed close to the center of rotation. It should 
be noted that a pair of strain gages forming two arms of a Wheatstone 
bridge are mounted at each station so as to cancel out centrifugal 
strains and to measure pure bending . 

A Hathaway type MRC - 12 strain- gage control unit was used for the 
purpose of amplifying the b r idge unbalance . This unit is a compact, 
portable six- channel amplifier and power su~ply . The unit contains a 
2000 - cycle - carrier oscillator element which supplies voltage to the 
bridge circuit. Its amplifier dr ives a Consoli dated os c illograph galva 
nometer type 7- 112 having a sensitivity of 30 i nches pe r milliampere 
from the voltage output of a strain- gage bridge. 

Since there were 10 strain -gage stations on the blade and only 
6 channels for amplification, it was necessary t o have t wo s tations 
alternately on one channel . A channe l - se lector contr ol box was made 
wi th a stepping switch identical to the one on the r otor and synchronized 
with it s o as to inser t the gages into the proper channels . It s hould 
be noted that only one galvanometer was us ed since four s lip r ings 
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allow only one strain-gage bridge to be energized at any instant. The 
switch in the channel-selector control box also connected the galva
nometer to the proper amplifier output channel. 

Two rotor mounts were provided for the hovering and tunnel tests. 

5 

The conical hovering mount is shown in figure 3 where the rotor disk 
was approximately 10 feet above the floor. The drive motor was mounted 
with its shaft in a vertical position inside the cone and the rotor was 
connected to the motor by means of two universal couplings and a short 
shaft. Figures 4 and 5 show the streamline mount for the 5- by 7~-t'oot 

wind-tunnel tests. Here the motor was slung underneath the mount and 
a comparatively long shaft was provided with a universal joint at each 
end. The mount could be tilted in the fore-and-aft direction to obtain 
the desired inclination of the shaft axis. 

PROCEDURE 

The sensitivity of the entire strain-gage and recording system was 
obtained by a calibration of the galvanometer deflection against known 
bending moments which were applied to the instrumented blade. The 
flapping hinge was locked so that the blade was horizontal and known 
forces were applied at the tip of the blade. The sensitivity of each 
station was thereby obtained in terms of bending moment per inch of 
galvanometer deflection. The radial load was not simulated in general 
during calibration since centrifugal loads theoretically cancel at each 
station when the top and bottom strain gages occupy adjacent arms of a 
-bridge. A check was made by putting a typical test blade in tension on 
a test rig with the result that there was not a complete cancellation 
of stresses probably because of small eccentricities. In any event if 
there were a possibility that the centrifugal loads would not cancel 
exactly, the effect would be taken into account in the zero reading 
recorded at each test rotational speed. 

The general ' procedure for obtaining bending-moment data was to set 
the blades at zero pitch and balance out 5 of the 10 stations successively. 
The rotor was then brought up to a desired speed and the galvanometer 
reading for each of the five stations was recorded. The same procedure 
was carried out for the remaining five stations. The pitch setting 
was then changed to that desired for the test and the procedure described 
above was repeated. In the tunnel tests, the zero pitch-setting readings 
were taken with the tunnel off so that only the effects of centrifugal 
force and blade weight were taken into account. The bending moment 
was then a measure of the distance from the line of the record established 
at e = 00 and the trace at another pitch setting multiplied by the 
proper sensitivity factor. 
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With regard to blade twist due to the inclination of the blade 
principal axis of inertia to the plane of rotation, the effect was found 
to be small so no correction to eO was made. This was concluded from 
the knowledge of the blade torsional stiffness and a calculation of the 
torsional moments acting- on the blade at operating rotor speeds . 

DISCUSSION 

Instrumentation 

Since the hinged rotor blade described was expected to be subjected 
to a maximum bending moment of the order of only 10 inch-pounds, it was 
necessary to use a rather sensitive system in this investigation. A 
direct recording galvanometer (Consolidated type 7-112) in conjunction 
with an amplifier was found satisfactory and resulted in an over-all 
system sensitivity of approximately 10 inch-pounds per inch (ratio of 
bending moment applied to blade over oscillograph screen deflection). 
This figure varied slightly with the station and channel. Under these 
conditions the slip-ring and brush disturbances were at first intolerable 
but eventually were reduced,to a negligible level by insuring against 
dirt on the rings, providing a good running fit between brush and bushing, 
and eliminating any movement between the spring and cap in the brush 
holder by soldering the spring in the cap. When the fixed-at-root condi
tion was tested, a system sensitivity of approximately 40 inch-pounds 
per inch was used, since the moments were larger, with the result that 
the slip-ring hash was at an even lower level. 

A number of blades of different stiffnesses were tested in the 
hovering condition with strain gages at only one station inboard. A 
blade having a bending stiffness of 3000 pound-inches 2 was available 
whose construction consisted of an aluminum spar (1/8 by 3/4 in.) inserted 
in the leading edge of an NACA 0012 balsa profile. It was found that 
this blade underwent appreciable strain during rotational tests but very 
small bending moments resulted because of the low stiffness. The errors 
in the bending- moment measurements resulting from this condition were 
as much as 25 percent. Consequently, a blade having a stiffness of 
60,000 pound-inches 2 was made in a manner similar to the final test 
blade described in the section "Description of Apparatus" using a steel 
tubular spar in an NACA 0015 profile with a pair of strain gages located 
at r/R = 0.40. The result was a blade with larger bending moments 
under operating conditions but smaller strains which were difficult to 
record with any degree of accuracy. From these considerations a blade 
having a stiffness of 20,000 pound- inches2 was decided upon and an 
aluminum-spar blade was constructed with a pair of strain gages located 
at r/R = 0.35. The actual stiffness on the resulting blade was 
16,000 pound-inches 2 and it was found to be satisfactory in the hovering 
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tests since the degree of accuracy with which bendi ng moments could b e 
measured was within 10 percent. The final set of three blades was then 
made with this stiffnes s as dis cussed in the section "Description of 
Apparatus." Compared with the Sikorsky R-6 full-scale rotor blade which 
has a stiffness of 3.24 x 106 pound-inches2 at the 50-percent-spar station, 
the model blade used in these tests is 94 times stiffer based on the 
results of the development in appendix A. 

Test Results 

Hovering condition. - Typical hovering test results are shown in 
figures 6(a) and 6(b) for the hinged- and fixed-at - root conditions, 
respectively. Theoretical calculations have been carried out and the 
results are superimposed on the experimental result s for the ease of 
comparison. A number of aerodynamic loadings were put into the Goodyear 
method (reference 1) for calculating steady-state bending-moment dis
tributions of hinged rotor blades. Figure 6(a) shows the experimental 
curve and the theoretical distr ibutions for uniform inflow with no tip 
loss, uniform inflow with 3-perc ent tip loss, and inflow variation with 
no tip loss. The effect of including a 3-percent tip l oss lowers the 
curve in general compared with the no - tip - loss curve and produces a region 
of negative bending moment in the neighborhood of t he tip. Although no 
negative bending moments were obtained near the tip , t he pos sibility of 
a bending-moment reversal occurr ing farther outboard than the last strain
gage station is allowed f or a s shown i n figure 6(a). The i nflow varia
tion (no tip loss included ) was calculated accordi ng t o Knight (refer
ence 2) and the modified aerodynamic loadi ng was used in t he bendi ng
moment calculation . The r esul t ing distri bution conforms quit e c l osely 
to that of the experimental result i n the region of the outboard 50 per
cent of the blade but fails to agree with the maximum moment indicat ed 
by the tests . 

Figure 6( b ) shows a comparison of theoretical and experi mental rotor
b lade bending-moment distributions for t he hovering, f ixed-at -root condi
tion . The theoretical calculations were made in accordance with the 
modi fi ed Goodyear method developed in appendix E of this report. The 
aer odynamic loadings used in this method were the same as for the case 
of the hi nged b lade. It can be s een from figure 6( b) that there is 
little differ ence between the results when using a tip loss of 3 percent 
and an i nflow variation. The experimental distribution is shown to be 
i n good agreement with the theoretical calculations. 

I n the above cal culations for the aerodynamic loading a two
dimensional l ift-curve slope of 6. 0 per radian was assumed for the hinged
and f i xed-at-root conditions. 
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Simulated forward flight.- The wind-tunnel tests for the hinged
at-root condition were run at a constant rotor speed, pitch setting, 
and shaft inclination. The tunnel speed was varied to obtain advance 
ratios of 0.10, 0.22, 0.30, 0.40, and 0.50. It was found that a ~ 
of 0.50 was the maximum that could be safely obtained because of an 
excessive amount of flapping and vibration. Figures 7(a) to 7(e) are 
traces from the oscillograph records. The different scales on the 
ordinates of these tracings are due to the different sensitivities of 
the amplifier channels and bridges. For a given station the bending
moment trace varied within 10 percent from one cycle to the next for the 
hinged-at-root condition. An average cycle was therefore chosen for 
presentation in these plots. The pronounced fifth-harmonic bending 
moment is present because of resonance with first-mode blade bending 
and contributed a large amount to the total bending moment. Stations 1 
to 3 are not shown since the signals were small compared to the hash 
level. 

Figure 8 shows the family of maximum-bending-moment curves and the 
test conditions under which the data were obtained. These bending moments 
occurred at an azimuth angle of approximately 235 0 for all the advance 
ratios tested. The bending moments decreased in going from a ~ of 0 .10 
to ~ = 0.30 because of the rather fictitious conditions which were 
set up in the tunnel since the effect of a variation in ~ alone (by 
changing tunnel speed and keeping rotational speed constant) on bending 
moment was desired. The bending-moment traces show a decrease in the 
steady-state (mean) value as ~ is increased at a constant ~,e, and 
rotor speed indicating a decrease in lift. However, as ~ is increased 
above 0.30, the first- and fifth-harmonic contributions have become 
larger and account for the increases in the magnitudes of the maximum
bending -moment distribution. 

Th~ bending moment at a station on the blade may be expressed as 
a Fourier series: 

M3a cos 3~ + M3b sin 3w + 

The coefficients of this harmonic series have been determined by a 
graphical method presented in appendix B. The results of a harmonic 
analysis for ~ = 0.22 are presented in figure 9. It can be seen here 
how large the fifth -harmonic sine coefficient is when compared with the 
other components. The second, third, and fourth harmonics were negligible 
and the fifth-harmonic cosine component is not shown since it was also 
small. It should be mentioned that more points do not appear on the 
plots in the vicinity of the tip since the moments are small here and a 
harmonic analysis is difficult and probably inaccurate under these 
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circumstances. It i s felt t hat the points which determine the critical 
portion of the curve are pres ented . 

It was desirable to obta in some theoret ical check on the data 
discussed above. Ther efore calculations were carried out using the 
Goodyear tabular-dynamic method (reference 1) to find the first-harmonic 
sine component of the bending-moment distr ibution. The steady-state 
component was also computed from this reference. Another method for 
calculating harmonic bending moments was investigated since it was con
sidered a relatively new approa ch to the problem which offered possible 
advantages over other methods. The De Guillenchmidt method (reference 3) 
is discussed in appendix C and calculation tables with an example are 
pTesented. The results of the above computations are presented in 
figures 10 and 11 where a comparison between the two theoretical approaches 
and the experimental results can be made. It should be emphasized that 
the same aerodynamic loadings were used in the Goodyear and De Guillenchmidt 
methods so that any differences in the results are due to the methods 
alone. In obtaining these aerodynamic loadings, no tip loss, constant 
induced flow, and a lift slope of 6.0 were assumed. The magnitudes of 
the corresponding bending-moment distributions are in reasonable agree
ment . However, the shapes of the theoretical and experimental curves 
are different probably because of the aerodynamic loading which was 
assumed for the calculations. There is good ·agreement between theory 
and experiment in regard to the azimuth position at which the maximum 
bending moment occurs as noted in figure 10. It may be seen from this 
figure that the magnitude of the experimental curve is larger than the 
theoretical result. The factor contributing to the discrepancy here is 
the fifth harmonic present in the experimental result but lacking in the 
theoretical result since no fifth-harmonic loadings were put into the 
calculations and therefore a fifth-harmonic bending moment could not 
possibly result. In general, comparison between theory and experiment 
indicates that present methods of computing blade bending moments are 
not satisfactory probably because of the inability of theory to provide 
the aerodynamic loading to make it possible to calculate the bending-
moment distribution which actua lly exists on a given blade under operating 
conditions. 

It was also planned to carry out the wind-tunnel tests for the fixed
at-root condition at a constant rot or speed, pitch setting, and shaft
axis inclination, but as high advance ratios were approached it was 
found necessary t o decrease t he rot or spe ed to 500 rpm in order to 
insure against over loadi ng the b l ade . Data wer e therefore obtained at 
advance ratios of 0 . 80 and 0 .90 at a l ower rot or speed than the lower 
values of ~,but, in spi te of these precauti ons, on attempting t o 
obtain ~ = 1.0 the inst rument ed blade failed in fat igue and proce eded 
down the diffuser section of t he t unnel. The alumi num-spar fHi l ure 
occurred just outboard of a stee l i nsert at the root of the b lade. 
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Figures 12(a) to 12(f) are the bending-moment traces from the 
oscillograph records for the fixed-at-root condition from ~ = 0.15 
to ~ = 0.90. The scale of the vertical axis (bending moment) varies 
from one station to another again because of the difference in the sensi
tivities of the amplifier channels. The cycles presented in these fig
ures are considered typical of those occurring over the short time inter
val during which records were made. It should be noted that the cycles 
for a given condition repeated with negligible difference for the fixed
at-root condition. Data for stations near the tip are not shown since 
the oscillograph records showed mere ripples, indicating very small 
bending moments. At advance ratios of 0.80 and 0.90 the signal from 
station 10 was not available since the strain gage at this station failed. 

Plots from the oscillograph records are given in figure 13 which 
shows the variation of bending moment at station 9 with azimuth position 
for the values of advance ratios tested. It may be noted that the 
azimuth position at which the maximum moment occurs changes as ~ 

increases. The drop in bending moment from ~ = 0.60 to ~ = 0.80 is 
in agreement with the decrease in rotor speed and hence aerodynamic loading. 
However, at ~ = 0.90 with the lower rotor speed, the maximum bending 
moment exceeds that at ~ = 0.60 because of the increase in tunnel 
speed which resulted in an increase in aerodynamic loading. It is sus
pected that the maximum bending moment on the blade at failure was in 
the neighborhood of 200 inch-pounds which corresponds to a tensile 
stress of 20,000 pounds per square inch. 

The oscillograph records for all the runs were analyzed for the 
purpose of obtaining the maximum spanwise bending-moment distributions 
and the azimuth positions at which they occurred. The results of this 
analysis are shown in figure 14 where the maximum spanwise bending-moment 
distributions for various ~ conditions are given. Implicitly, these 
curves show the change in spanwise moment distribution for corresponding 
changes in tunnel or simulated forward-flight velocity for the fixed-at
root rotor configuration up to a ~ of 0.60. The curves have been 
extrapolated to the center of rotation since no strain gages were located 
on the hub. The curve for ~ = 0.80 is below that for ~ = 0.60 
because of the particular combinations of tunnel and rotor speeds used 
to obtain these advance ratios. 

A harmonic analysis was carried out on the bending-moment traces 
for the ~ = 0.47 condition and the results are shown in figure 15. 
It is of interest to note that the first - harmonic components are of the 
same order of magnitude but of opposite sign and. that there is a large 
contribution from the second-harmonic cosine component. The higher 
harmonics were found to be negligible . 

In or der to check the experimental results against theory for the 
fixed -at - root condition, it was fir st neces sary to derive some convenient 
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expressions for the aerodynamic loadings under these conditions. This 
development is given in appendix D and considers only first-harmonic 
effects. The Goodyear method (reference 1) has been modified in 
appendix E for the purpose of calculating steady-state and first-ha~onic 
bending-moment distributions for the fixed-at-root blade. Also included 
in appendix E is a method of iteration which is used to cope with the 
problem of coupling between the aerodynamic-loading components. 

A comparison of the theoretical and experimental harmonic-bending
moment distributions for the fixed-at-root condition at ~ = 0.47 is 
presented in figure 16. There are a number of factors here which lead 
to the discrepancy between theory and experiment, namely the assumed 
constant induced velOcity, the neglect of the reversed-flow region, and 
a probably high two-dimensional lift-curve slope (a = 6.0). In addition, 
no wind-tunnel wall corrections were applied s ince there are no reliable 
methods available by which such corrections can be estimated, particularly 
as they may affect harmonic bending moments. A comparison between 
maximum bending moments as discussed for the hinged-at-root case was 
not made since the second- harmonic cosine component of bending moment, 
which apparently plays a large part in determining the total bending 
moment on the fixed-at-root rotor blade, could not be readily calculated 
with the present development. 

Resonance Studies 

The problem of rotor-blade flapping vibration in the hovering 
condition was met with early in the investigation and an attempt was 
made to understand the problem and alleviate this condition. Rotor 
balance and shaft alinement were improved with the result that blade 
vibration was reduced only a small amount. It was noted that the 
vibration was a function of pitch setting, the effect being rather small 
at zero pitch . This indicated the source of trouble to be of an aerodynamic 
nature and further investigation showed that the Vibratory frequency 
(cycles per revolution) of the rotor blade varied with rotational speed. 
A resonance condition was suspected. 

A theoretical survey of blades having three different stiffnesses 
was made by carrying out a calculation of their natural bending frequencies 
as a function of rotational speed by the method of reference 4. The 
results of this calculation for the hinged- and fixed-at-root conditions 
are shown in figures 17(a) and 17(b), respectively, for blades having 
stiffnesses of 3000, 16 ,000, and 60,000 pound - inches2 . The intersections 
of these· curves and the straight "per rev" lines are resonance conditions. 

The resonance problem was further investigated to obtain a better 
understandi ng of the phenomenon. Tests were run on three sets of blades 
having s tiffnesses of 3000, 16,000 and 60,000 pound-inches2 in the 
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hovering condition. Oscillograph r ecords, taken at small increment s 
in r otational speed, gave the strain-gage response to blade vibration 
at pitch settings of 00 and 120 . These r ecords were analyzed to obtain 
the steady-state or mean bending moment and the vibratory or resonance 
bending moment at a given rotor speed. Figure 18 gives two sample oscil
lograph records showing the resonance phenomenon and the above terms 
defined . It should be noted that the vibratory motion of the blade was 
not of constant magnitude but consisted of an irregular increase and 
decrease of the double amplitude at- a constant rotor speed. In each 
case the maximum double amplitude has been considered and plots of the 
ratio of the maximum double amplituqe of resonance bending moment to 
steady-state bending moment against rotational speed for different blades 
are shown in figure 19 for the hinged- at - root condition and figure 20 
for the fixed-at-root condition (~ = 00). Superimposed on each plot 
is the appropriate natural-frequency spectrum for convenience in com
paring theory and experiment. Each peak of the resonance curve i s 
labeled with the cycles per revolution obtained as a result of the oscil
lograph record analysis. This quantity refers not only to the peak but 
also to the ne ighborhood of the peak. For example figure 19(b ) indicates 
an experimentally determined peak resonance condition of 6 cycles per 
revolution at 580 rpm, of 5 cycles per revolution at 735 rpm, of 4 cycles 
per r evolution at 1000 rpm, and of 3 cycles per revolution at 1350 rpm. 
The intersections of the "per rev" lines and the theoretically determined 
first-natural-bending-frequency curve occur at rotational speeds very 
close t o the above except in the case of the resonance condition of 
3 cycles per revolution. This agreement carries through for the hinged
at-root-condition tests (fig. 19). 

The calculations of the first natural bending frequencies for the 
fixed - at-root Totor-blade condition were based on a blade length of 
2 feet instead of 2.5 feet since the root fitting had a stiffness of 
approximately 600,000 pound- inches 2 and the actual blade root was 
l ocated at a radius of 6 inches. The agreement between theory and 
experiment is good for the low-stiffness blade but becomes worse as 
blade stiffness is increased. This root condition introduced contri
butions to the effective stiffness of the rotor system from the r oot 
fitting and flexibility of supporting structure which were not considered 
in the theory. It seems r easonable to assume that these effects would 
be of greater importance as blade stiffness is increased and this appears 
to be borne out by experimental results presented in figures 20( b ) 
and 20( c). 

A point of interest to be noted from figures 17 to 20 is the vari
ation of the ratio of resonance bending moment to steady-state bending 
moment with b lade stiffness. For the hinged- at -root condition, the blades 
having stiffnesses of 3000 , 16 ,000 , and 60 , 000 pound-inches 2 indicate 
maximum resonance-peak ratios of 1.0, 0 . 38, and 0 .60 , respectively. 
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Also for the same blades fixed at the root, the maximum resonance -peak 
ratios are 0 .37, 0 .20, and 0.47, respectively. In each condition note 
that the blade of relative medium stiffness experiences the lowest 
resonance l evel . It appears f rom this brief study that there is an 
optimum stiffness which will minimize blade resonance; however, i t is 
felt that a general statement of this nature cannot be made at this time 
without a more thorough investigation of the resonance phenomenon in 
helicopter rotor blades. 

CONCLUSIONS 

Bending-moment distributions were measured on a model r otor blade 
under hovering and simulated forNard-flight conditions in both the 
hinged- and fixed-at-root configurations and a comparison was made with 
theoretical calculations. It ,.as found that: 

1. For tne hovering, hinged-at-root condition, the best agreement 
between theoretical and experimental bending-moment distributions was 
obtained when the inflow ratio variation according to NACA TN 626 was 
considered. No measurable amount of negative bending moment at the tip 
was found which indicates less tip loss than is usually assumed. 

2. In the hovering, fixed- at-root condition, the experimental benaing
moment distribution fell within the region determined by theoretical 
calculations obtained as a result of inserting different types of aero
dynamic loading into the bending-moment calculat ions. 

3. The fifth-harmonic bending moment due to resonance in the forward
flight, hinged-at-root condition i s relatively large and accounted for 
much of the discrepancy between the theoretical and experimental total 
maximum bending moments. An appreciable difference between the general 
shape of the distributions predicted by theory and measured experimentally 
exists and i s probably due to the distribution of aerodynamic loading 
assumed in the currently available theory. 

4. In the case of the fixed- at-root, forward - flight condition, it 
was found that the second-harmoni c bending moment was the largest com
ponent contributing to the total moment. The agreement between theory 
and experiment in r egard to t he s teady- st ate and f irst-harmonic bending 
moments for an advance r atio of 0.47 was reasonab l e i n view of experi 
mental errors and the as sumptions made i n t he t heory. 

5. A brief study of r otor-blade resonanc e phenomenon was made i n 
the hovering condit ion. Good agreement between t heory ·and exper i ment Was 
obtained for the hinged-at-root condition s i nce i t was found that t he 
experimental r esonance peaks occurred at rotational speeds very clos e 
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to those where the natural-bending-frequency curves crossed the lines 
of cycles per revolution. Agreement in the case of the fixed-at-root 
condition was reasonable in view of the contributions to effective 
stiffness of the rotor system from the supporting Btructure. 

6. Information regarding the actual aerodynamic loading or induced 
flow and blade resonance phenomenon is needed if the results of bending
moment calculations are to represent the actual situation existing on a 
rotor blade under operating conditions. 

Massachusetts Institute of Technology 
Cambridge, Mass., April 3, 1951 
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APPENDIX A 

BASIS FOR COMPARISON OF STIFFNESSES OF VARIOUS ROTOR BLADES 

Consider a blade under the loading W 
the tip of a cantilever beam is: 

f(r). The deflection 0 at 

where R is the blade radius. Now 

r 
Let x = R so r xR and dr = R dx. Then 

Now m' is mass per unit length and m' ~ L2 where L is the 
dimension of length. Also c and R have dimensions of length L. 
So 

From the deflection expression there is obtained: 

Equating the expressions for o/R of the model and the full-scale 
blade, there is obtained: 

(nR)F 2~ 4 

(EI)F 
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where the subscripts M and F denote model and full scale, 
respectively. Hence, 

Comparing the R-6 blade and the model blade under test there is 
obtained: 

0.1315 

From reference 1 , 

(EI)F 
6 2 3.24 x 10 Ib-in. 

at x 0.50; hence, 

() 4 6 6 8 -4 2 EI M = 3.2 x 10 X 0.17 X 2 .9 X 10 = 170 Ib-in. 

This result means that a model of the R-6 rotor blade having a diameter 
of 5 feet and rotating at 800 rpm should have a stiffness EI of 170 pound-

inches2 . The EI of the model blade investigated in this report was 

16,000 pound- inches2 and is therefore 94 times as stiff as a model of 
the R- 6 when rotating at the above rotational speed. 
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APPENDIX B 

GRAPHICAL METHOD FOR HARMONIC ANALYSIS 

OF A PERIODIC FUNCTION 

Method.- Let the curve such as the one shown in the accompanying 
figure be represented by the following series: 

y = bO + a l sin x + b l cos x + a2 sin 2x + b2 cos 2x + . . • + 

au sin nx + bn cos nx + . . • 

012 

The curve is divided into 12 equal parts such that the distance 
between ordinates h is ~/6, and the same ordinates are used in 
finding all harmonics. 

In order to find the first-harmonic coefficients al 

following construction is made: Starting from a point 0, 

17 

laid out in the appropriate direction on the horizontal; Yl is added 

to ~ YO at an angle of 300 to the horizontal; Y2 is added at an 

angle of 600
; and so forth. Note that when the ordinate is negative, 

it must be laid off in the opposite direction as shown in the figure 
on the following page. 
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Yl J 
0

1
-- ---- Nl 

2 Yo 

The coefficients al and b l are found from the relations : 

To find the coefficients of the se cond harmonic a similar construc
tion is made, but the ordinates are laid out at intervals of 600 instead 
of 30° . The expressions for a2 and b2 are: 
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In general, the nth harmonic may be found by construction where the 
ordinates of the curve are laid out at intervals of n(2~/M) where M 
is the number of parts into which the period of the curve is divided . 
The expressions for the coefficients are: 

Proof of above construction.- The trapezoidal rule states that the 
total area under a curve is: 

A = h~O + Yl + Y2 + •.. + :n) 
where h is the distance between ordinates, or h = 2rr/M. 

Now the Fourier series coefficients can be written : 

For the integral substitute the expression for the area given above: 

or 

"1 = ~(~ YO sin 0° + Y1 sin 30° + Y2 sin 60° + ..• + ~ Y12 sin 360°) 
Also 

112~ b l = - Y cos x dx 
rr 0 
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So 

2(1 0 0 6 0 1 6 0) b1 = M 2 Yo cos 0 + Yl cos 30 + Y2 cos 0 +. . . + 2 Y12 cos 3 0 

Now the graphical process described above is that indicated in the 
parentheses , thus: 

Also 

1 12rr 
1 2rr [1 1 ) 

b O = 2rr 0 Y dx = 2rr x M \2 Yo + Y1 + Y2 + . . • 2 Y12 

Hence 

1 (1 1 \ b o = M 2 Yo + Y1 + Y2 + .•• + '2 Yl2} 
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APPENDIX C 

DISCUSSION OF DE GUILLENCHMIDT METHOD FOR CALCUlATION 

OF BENDING STRESSES IN HELICOPTER ROTOR BLADES 

The development of this method for calculating bending stresses in 
rotor blades is given in reference 3. The procedure for the general 
method~ the method as applied to the model rotor tested in this investi_ 
gation~ and sample calculations are discussed in this appendix. 

Procedure for Calculation of Elastic Bending Moment 

The procedure for calculating the elastic bending moment is as 
follows: 

1. Calculate the natural frequencies and. corresponding mode shapes 
of the nonrotating blade. Reference 3 states that the rotational and 
nonrotational natural modes are the same within a few percent. A cal
culation has been carried out on the R-6 rotor blade and. the results are 
presented in figure 21 where it can be seen that the first natural mode 
does not vary greatly with rotational speed. The frequencies and mode 
for the model rotor blade were obtained QY the use of the Myklestad. 
method (reference 5, pp. 184-203). The rotating natural bending fre
quencies were calculated from the results of reference 4. 

2. Calculate the aerodynamic loading (reference l)~ the centrifugal 
loading, and the total external loading on the rigid blade at different 
azimuth positions. For the example illustrated here, eight positions 
spaced 450 apart were used as shown in tables I, II, and III. Curves of 
total external loading Fd' are shown in figure 22. No tip loss was 
included in the aerodynamic loading. 

3· Then evaluate the integral l F d' Til dx at the corresponding 

azimuth positions as illustrated in table IV. The mode functions Til 
and 1')2 for this example are shown in figure 23. 

4. The integral l m'~12 dx is then evaluated as shown in table V. 
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5. Thus it is possible to calculate gl (table VI) for the eight 

azimuth positions. The plots of gl and g2 are shown in figure 24 . 

A harmonic analysis is performed on the g function using the graphical 
method described in appendix B of this report. This determines the 
values gi fa . 

"nl? 

6. The calculation of J JR m'Tll d.x d~ is one of the byproducts 
x 

of the Myklestad computation since this integral is the ratio of the 
rigid-blade bending moment to the aquare of the natural frequency. This 
distribution and the elastic-blade bending-moment distribution broken 
down into harmonics are shown in table VII . 

7. The elastic bending moment obtained from a consideration of the 
second natural mode of the blade is shown in table VIII. The bending 
moment resulting from both modes is shown in table IX. It was found 
that the maximum moment occurred at an azimuth position of approximately 
2250

• 

Comments on De Guillenchmidt Method 

The De Guillenchmidt method is particularly useful for the invest i 
gation of the effect of a series of loading conditions on a given blade. 
This is true because, once the natural frequencies and modes are deter
mined, relatively little calculation is necessary to obtain both the 
harmonic- and total-bending-moment distributions for a given loading 
condition. 

For the blade tested in this investigation, the calculations showed 
that the effect of including the second natural mode was negligible in 
the case of the steady-state component, ~hereas the effect on the sine 
and cosine components was appreciable. However, for full scale the 
contribution of the various modes to the bending moment must be investi
gated for each blade design. 
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APPENDIX D 

CALCULATION OF EXPRESSIONS FOR AERODYNAMIC LOADING 

ON A FIXED-AT-ROOT ROTOR BLADE 

The rotor blade discussed in this appendix is one which is fixed 
at the root but is allowed to bend under applied loads because of its 
elastic properties. 

where 

and 

The lift on a blade element i8: 

n(r + ~R sin nt) 

Up = A.nR - z - ~nR dz cos nt 
dr 

(Dl) 

(D2) 

(D3) 

where z is the deflection of a blade element from the plane perpendicular 
to the axis of rotation and passing through the blade root. Now z can 
be written as: 

z rl3 + YI + Yn sin nt + YIn cos nt + •.. 

Only the first harmonic will be considered in this development; 
therefore: 

. 
z = YIIn cos nt - YIIIn sin nt 

and 

dz dYI dyII dyIII 
dr = 13 + - - + - - sin Qt + co 8 Qt dr dr dr 

(D4) 

(D5) 

(n6) 
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Hence 

Up AnR - YrrD cos nt + yrrrn sin nt -

( 
dyr dyrr dyrrr 

~nR cos nt 13 + dr + ~ sin nt + dr cos nt) (D7) 

Substituting these quantities into the lift expression, equation (Dl) 

6L 
T =-

6r 

~[2R cos nt 13 + _r + -..!! sin nt ~ 
dy dy 

dr dr 
+ dy;;I COB o~J (Or + _ Bin Ot)} 

Upon expanding and factoring out n2 there is obtained: 

2 
A.~R sin Qt - yrrr cos Qt - Yrr~R sin Qt cos Qt + 

dyr 2 2 dYr dYrr 
~rR dr cos nt - ~ R dr sin nt cos nt - ~rR dr sin nt cos nt -

2 2 dYrr 2 dYrrr 
~ R --a:r- cos nt sin nt - ~rR dr cos2nt-

(DB) 
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This can be written as follows: 

ArR + AiJ.R 2 sin nt - YIlr cos nt - Y~I I-1R sin 2nt + Ylnr sin nt + 

Yrrr ,,-0 _ Yrrr , ,0 "'- A 1 2 2 2 ~\ 2 ~\ cos 2" 0 - l-1~rR cos nt - 2 ~ I3R sin 2nt -

dy nt _ 1-12 R2 dyI dyII 
I-1rR -.l cos sin 2nt - ~ rR sin 2nt -

dr 2 dr 2 dr 

1-12 R2 dyIl . 2 2 dYIl 1-1 dYIIl 
cos nt + T R dr cos 3nt - - rR ""4 ""d"T 2 dr 

dYIlI 1-12 2 dyIlI 2 dyrIl 
sin 3nt) t:. rR cos 2S2t - sin .at - 1-1 R2 (D9) 

2 dr TR dr T dr 

Comparing equation (D9) with: 

T TI + TIl sin S2t + Tllr cos nt + ... (DIO) 

the following expressions are obtained: 

The steady-state loading: 

T1 = ~scn2~r2 + ~ "%2 + }.rR + ":(YU1 - r dY.;r1~ (Dll) 

The first-harmonic sine component: 

(D12) 
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The first-harmoni c cosine component: 

(D13) 

The above expressions are used in the application of the method of 
calculating rigid-blade bending moments developed in appendix E. 
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APPENDIX E 

MODIFICATION OF GOODYEAR METHOD FOR CALCULATING 

FIXED .... AT-Roar RCJrOR-BLADE BENDING MOMENTS 

Discussion of Modification 

In this appendix the Goodyear method (reference l) for calculating 
hinged-rotor-blade bending moments will be modified so that rigid-blade 
moments may be determined. 

First consider the steady-state analysis for a rigid blade (i.e., 
fixed at root but allowed to bend). The total shear at any point on the 
blade is: 

where 

s 

F 

M 

z 

Now 

dM 
+ S = dr 

aerodynamic shear at a given point 

centrifUgal shear at same point 

bending moment at given point 

deflection from plane perpendicular to axis of rotation and 
passing through blade root 

z=rl3+y 

z 

y 

ri3 

r 

z = ri3 + Yr + Yrr sin nt + YIII cos nt + • • . 

(El) 
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So 

dz 
dr 

dyr dYrI dYrrr 
13 + dr + ~ sin nt + dr cos nt + . . . 

where Y is the deflection measured from the undeflected position. 

The steady-state component of dZ/dr is 

tlon (El) becomes: 

-=F 13+ - +S dM ( d
Y1) 

dr dr 

13 + dyr. 
dr 

Hence equa-

(E2) 

This equation can be approximated by dividing the blade into an 
integral number of parts each of length X. Then dM/dr at the midpoint 
of an interval is: 

Hence the above equation becomes: 

~ dYI~ Mi + 1 = Mi + F l 13 + dr 1 + XS 1 
i+- i+- i+-222 

(E3) 

Let 

(E4) 

where Z = MO = Bending moment at blade root. 

At the blade tip: 

or 

z (E5) 
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Hence the bending moment at the root will be known once the 
values an and bn are determined. To find the expressions for 

the a's and b's proceed as follows: 

At the blade root: 

and 

Me = Z 

Comparing these two equations there is obtained: 

) 
Now 

Then equation (E3) can be written: 

Also equation (E4) can be written: 

Equating coefficients of equations (E9) and (E10): 

~ i X2) 
ai+l = ai + XS. 1 + F 1 i3X + L ;i. 

1+- i+- j=O J 
2 2 

+ XS 1 
i+-

2 

29 

(E6) 

(E8) 

(E9) 

(E10) 

(Ell) 
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Now consider the first-harmonic bending-moment analysis. The shear 
equation now reads: 

(E13) 

where J O is the inertia shear at the root and the quantity 

2 rr 
J O + .It Jo my dr is the inertia shear at r. The subscripts denoting 

the harmonic have been dropped since the solution takes the same form for 
the sine as for the cosine com~onent. 

and 

So 

. Let 

Now 02 ~r my dr can be written as : 

i I. mjY j .lt
2

X 

j=l 

Mi + F. lX (*) + XS 1 + XJ 0 
1+- Hl i+-

2 2"2 

(E14) 

(E15) 

i 

+[ (E16) 
j=l 

(E17) 
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and 

where ¢ = XJO' Now 

So 

and equation (ElS) gives: 

By comparison 

VI 

WI 

X2 
= EI b O 

X2 
= EI Co 

i -I X2M 

+ . . . + ~ EI j 

j=l j 

Proceeding further, equation (E19) gives: 

or 

31 

(ElS) 

(E19) 
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Now 

By comparison 

• It can be concluded that in general: 

(E20) 

Expressions for the als, bls, and CIS are found in the following 
manner: 

Consider the bending moment at the blade root: 

Equation (E17) becomes 
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So by comparison 

a.o = 0 

Now consider equation (E16) with i = 0: 

Since 

then 

Comparing this equation with 

there is obtained: 
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Repeating this process for i = 1: 

or 

Since 

then 

(E21) 
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It is known that 

as defined earlier where n is the tip station. Substituting equa
tion (El8) for Yi in the above: 

¢ (E22) 

The summations are determined from the calculation. Let them be: 

(E23) 

Then equation (E22 ) becomes: 

or 

(E24) 

Also, at the tip, 

Hence 

(E25) 

Substituting this expression for ¢ into equation (E24): 

• I , 
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Therefore 

Knowing Mo, ¢ may be obtained and hence Mi from the expression 

Mi = ai + biMo + ci¢' 

Discussion of Sample Calculations 

(E26) 

Steady- state component.- Table X, which shows the calculation for 
this condition, is very similar to that given in reference 1. Column (5) 
is calculated in the same manner as in reference 1. The equation for 
finding the aerodynamic loading for the rigid blade is given in appendix D 
of this report. Likewise, column (7) is computed as in reference 1. 

Notice that YIII must be neglected in the calculation of TI 

since YIII is not known at this stage of the computation. It was 

f ound that after completing a cycle (i.e" sine and cosine components), 
the effect of YIII on TI was small. Therefore the result obtained 

from table X was taken as the steady-state bending-moment distribution. 

The computation check (table XI) for this calculation is identical 
to that given in reference 1, and is the same for the first-harmonic 
components. 

First-harmonic components.- Table XII shows the calculation of a, 
b, and c. It should be noted that only a changes with the aero
dynamic shear, band c remaining the same for given blade constants 
and rotational speed. 

The first-harmonic sine component was first calculated by using the 
expression for TIl given in appendix D neglecting YIII since it was 

not known at this stage of the calculation. The computation check 
yields in addition the deflection YII' 

Having YI it is then possible to calculate 

the corresponding aerodynamic shear. A calculation of the a's 
to table XII(a) permits the computation of the cosine component 
moment and consequently YIII in the computation check. 

and 

according 
of bending 
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The sine component of the aer odynamic loading TIll is then 
recalculated using YIII just obtained . For this example it was found 
that YIII had a considerable effect upon TIl and consequently on the 

bending moment. The iteration process is continued to find a new YII: 
To decrease the number of cycles in the i t eration process the mean value 
of YII resulting from the first and second cycles is found. This 

value of YII is then used in the second- cycle calculation of TIll
The resulting cosine bending moment and consequently the distribution of 
YIII are then found_ This makes it possible to recalculate the sine 
component and find YII which is compared with the mean value assumed 

above. In this example the two values of YII were within 10 percent 
so that iteration was not continued. 

A plot of the bending-moment distributions during the above process 
for the blade under test is shown in figure 25. It should be stressed 
that only the a's need be recalculated in carrying out the iteration 
since band c do not change with aerodynamic loading. 

It has recently come to the attention of the author that the Cornell 
Aeronautical Laboratory has extended the Goodyear tabular-dynamic method 
to take into account the additional aerodynamic loading introduced by the 
elastic deformation of a hinged rotor blade. This additional effect is 
considered immediately in the moment equation and the sine and cosine 
components are carried along simultaneously so that no iteration is 
necessary. The application of this . method, with the appropriate modifica
tions, to the fixed · at-root blade has not been studied in detail, but it 
appears that such an application is possible. For the present case, 
where no possibility of resonance with the assumed loadings existed, the 
iteration process appears to be a reasonably rapid and accurate method of 
estimating the bending- moment distribution on a semirigid nonflapping 
blade. 
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TABLE I 

VALUES OF AERODYNAMIC LOADING FA' (LB/FT) 

AT EIGHT AZIMUTH POSITIONS 

@a1cu1ation of FA ' may be set up the same way as that given in reference 1J 

Station 'II = 0° \jr = 45° 'II = 90° \jr = 135° 'II = 180° 'II = 225° \jr = 270° f = 315° 

0 
0.098 -0.n6 0 .182 -0.014 0.270 0 .504 0·550 0 .382 

1 
.138 ·313 .496 . 581 .516 . 341 .160 .073 

2 
.850 1.27 1.57 1.58 1.29 .870 .571 .560 

3 
2.25 2.66 2 .93 2.91 2.61 2.20 1.93 1.95 

4 
4. 34 4.52 4.63 4.60 4.46 4.28 4.17 4.20 

5 
7.11 6.85 6.66 6.66 6.85 7.11 7.29 7.30 

6 

~ 

~ 
~ 

~ 
I\) 
0\ 
I\) 
0\ 

LA) 

\0 



Fe 1\r = 0° 
Station 

(lb/ft) f3 = 0.0007 

0 
8.87 -0 .0062 

1 
26.6 -. 0186 

2 
44.2 - .0309 

3 
62 .0 -.0434 

4 
79.7 - .0558 

5 
97.5 -.0683 

6 
- - -----

TABLE II 

CALCULATION OF CENTRIFUGAL LOADING Fe' (LB/FT) 

AT EIGHT AZ IMUTH POSITIONS 

[Fe' = Fe~ 

V = 45° 1\r = 90° 1\r = 135° V = 180° 1\r = 225° 

f3 = 0.0056 f3 = 0.0444 f3 = 0.0930 f3 = 0 .123 f3 = 0.117 

0.0497 0.394 0.825 1.09 1.03 

.149 1.18 2. 47 3·27 3.10 

.248 1.96 4.11 5. 43 5.15 

. 347 2.75 5. 77 7.62 7.23 

.446 3.54 7.41 9.80 9.29 

. 546 4. 33 9.07 11.9 11.4 

V = 270° 

f3 = 0.0778 

0.690 

2.07 

3. 44 

4.82 

6.20 

7.59 

1\r = 315° : 

f3 = 0.0293 I 

I 

I 

0.259 

.777 
I 
I 
I 

1.29 I 

1.81 

I 

2.33 I 

2.85 

~ 

-F"" o 

~ 
(") 

!J> 

f-3 
2: 
f\) 
0'1 
f\) 
0'1 
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TABLE III 

CALCULATION OF TOTAL EXTERNAL LOADING Fd ' (LB/FT) AT 

EIGHT AZIMUTH POSITIONS 

[Fd' = FA' - Fe) 

Station V- 00 1f = 45 0 1f = 900 1f = 1350 V = 1800 1f = 2250 1f = 2700 V = 3150 

0 
0.104 -0.186 -0.212 -0.811 -0.820 -0.530 -0.140 0.123 

1 
.157 .163 -.685 -1.89 -2.75 -2.76 -1.91 -.704 

2 
.881 1.02 -.392 -2·53 -4.14 -4.28 -2.87 -.731 

3 
2.29 2·31 .177 -2.86 -5.01 -5·03 -2.89 .14D 

4 
4.40 4.07 1.09 -2.81 -5.35 -5.01 -2.03 1.87 

5 
7.18 6.30 2.33 -2.41 -5.13 -4.26 -.296 4.45 

6 
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TABLE IV 

R 
CALCULATION OF 10 Fd'TJ1 ax AT EIGHT AZIMUTH POSITIONS 

t = 00 
" = 45

0 
'f = 900 

Station TJ1 
Fd'TJ1 Fd'TJ1 x 5" Fd'TJ1 Fd'TJ1 x 5" Fd'TJ1 Fd'TJ1 x 5" 

0 
-0 . 210 -0 .022 -0 . 110 0.0391 0 .196 0 .0445 0 . 223 

1 

-. 560 -. 088 -.440 -. 0913 -. 457 .384 1.920 
2 

- . 680 -·599 -2 -99 -.694 -3. 47 .266 1. 33 
3 

-. 462 -1.058 -5· 29 -1.067 -5 . 34 -. 082 -. 41 
4 

.010 .044 .220 .041 .205 .011 . 055 
5 

.610 4. 379 21.91 3.84 19·20 1.42 7 .10 
6 

R 10 Fd"l T = L = 13 · 3' E = 10 .35 E = 10 .24 

I I 
1\' = 1800 1\' = 2250 1\' = 2700 

Station TJ1 
Fd'TJ1 Fd'TJ1 x 5" Fd'Tj1 Fd'TJ1 x 5" Fd'TJ1 Fd'TJ1 x 5" 

0 
-0 .210 0.172 0 .860 0 .111 0 · 555 0.029 0 .145 

1 
-. 560 1.54 7 .70 1.55 7.75 1.07 5. 35 

2 
-. 680 2 .82 14.10 2 · 91 14.55 1.95 9· 75 

3 
- .462 2.32 11 . 60 2.32 11.60 1.33 6. 65 

4 
.010 - .054 -. 270 -. 051 -. 255 -. 020 -. 100 

5 
.610 - 3.13 -15.65 -2 · 59 -12 .95 -. 181 - ·905 

6 

E = 18. 26 E ( 21.25 E ,20 . 93 
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t = 1350 

Fd'TJ1 Fd'TJ1 x 5" 

0. 170 0.85 

1.06 5.30 

1.72 8 . 60 

1.32 6 .60 

- .028 -. 140 

-1. 47 -7 . 35 

E/ = 13.87 

'f = 315
0 

Fd'TJ1 Fd'Tj1 x 5" 

-0.026 -0.130 

. 394 1 .970 

. 497 2.49 

-. 065 - .325 

.018 .090 

2 ·72 13 . 60 

l: ( 17 . 68 

i -
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station 'l1 

0 
-0.210 

1 
-.560 

2 
-.680 

3 
-.462 

4 
.010 

5 
.610 

6 

TABLE V 

CALCULATION OF ~ R m'~12 dx 
o 

2 m' 
'l1 ( s1ugs/ft) 

0.0441 0.00602 

.3136 .00602 

.4624 .00602 

.2134 .00602 

.0001 .00602 

·3721 .00602 

m''ll 
2 

X 5/12 

0.111 X 10-3 

.787 

1.16 

.536 

.00025 

.934 
--

~R m''l12 dx = 3.528 X 10-3 
o I 

_ J 
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TABLE VI 

CALCULATIONS OF gl AT EIGHT AZIMUTH POSITIONS 

R 
W f Fd'TJ1 d.x 

fo Fd'TJ1 d.x 

( deg) gl = 
lR 2 o m' TJ 1 d.x 

0 13·30 3769 
45 10.35 2935 
90 10.24 2901 

135 13.87 3932 
180 18.26 511'7 
225 21.25 6024 
270 20.93 5929 
315 17.68 5014 



(1) 

n 

0 
1 
2 
3 

( 1) 

i 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

TABIE VII 

CALCULATION OF gl , n {~ X Ai, n AND Ml 

~1,0 = 55 CPS; Vl,m = 62.5 CpS ; m = 800 rpm; ~ 7029.1(radians!sec) 2] 

(2) ( 3) ( 4) (5) ( 6) ( 7) (8) 

gl ,na gl,nb n~ (V l ,m)2 - (4) 
(vl

1
0) 2 

gl ,na X (6) gl,nb x (6) 
(5) 

4500 - ---- 0 154,056 0. 775 3490 ---- -
-720 -1560 7029.1 147,027 .812 -586.0 -1265 

0 0 --- - -- -- - - -- - - ---- 0 0 
0 0 ------ -- -- - - - ----- 0 0 

( 2) (3) (4) (5) 

ff m' Tll dx d ~ 
Steady state First cosine First sine 

M1,0 = (7)n=0 x (2) M1,a = (7)n=1 X (2) M1,b = (8)n=1 X (2) 

0 0 0 0 
. 6666 x 10-3 2. 33 - . 391 -.843 

1. 27516 4. 45 -. 75 -1. 61 
1. 70116 5.94 - .998 -2.15 
1.89016 6. 60 -1.107 -2. 39 
1.82659 6. 37 -1.07 -2. 31 
1. 53819 5. 37 -.90 -1.94 
1.0946 3.82 - . 64 -1. 38 

. 60099 2.10 -. 35 - . 76 

.1878 . 66 -.11 -. 24 
0 0 0 0 

- --- - -- -- - - ---- -----

~ 

~ 
~ 

~ 
f\) 
0\ 
f\) 
0\ 

& 



( 1) (2) (3 ) 

n g2,na g2,nb 

. 
0 90 ----

1 -947 -747 
2 0 0 
3 0 0 

(1) (2) 

i ff m'''2 <be d~ 

0 0 
1 -. 3818 X 10-3 
2 -. 4832 
3 -.5107 
4 . " ..... -.1957 
5 I . 2166 
6 i .5384 
7 . 6315 
8 .4743 
9 .1878 

10 0 
'--.. -

TABIE VIII 

CALCULATION OF g2 n f ax A2 n AND ~ 
, 1P ' 

~2,O 169 CpS j v2,w = 178 .5 CpSj W = 800 rpmj m2 7029.1J 

( 4) (5) ( 6) ( 7) (8) 

2 (v2,O)2 g2 na x (6) g2 nb X (6) n2m2 (V2,w) - (4) 
(5) 

, , 

0 1,257,396.7 0.8967 80.7 -- ----

7029 .1 1,250,367. 6 .90177 -853.9 -673 . 6 
------ ----------- ----- -- 0 0 
------ ----------- ----'--- 0 0 

(3) ( 4) (5) 

Steady state First cosine First sine 
~,O = (7)n=0 X (2) ~,a = (7)n=1 X (2) ~,b = (8 )n=1 X (2) 

0 0 0 
-.0308 .326 . 257 . -.0389 .413 . 325 
-.0412 .436 . 344 
-.0158 .167 .132 
.0175 -.185 -.146 

. .0435 -.459 -.363 
.0509 -.539 -.425 
.0383 -.405 - .319 
.0152 -.160' -.126 

0 0 0 

~ 

.--...... -.~-, 

+=
CJ\ 

~ 
~ 
8 
~ 

f\) 
CJ\ 
f\) 
CJ\ 
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TABLE IX 

SUMMARY OF BENDING-MOMENT DISTRIBUTIONS 

(INCLUDES FIRST AND SECOND NATURAL MODES) 

140 Ma Mb Mmax 
i (steady ( cosine) ( sine) W = 2250 

state) ( in. -lb) (in.-1b) ( in. -lb) 

0 0 0 0 0 

1 2·30 -.06 -.58 2.75 

2 4.41 -.34 -1.28 5·55 

3 5·90 -.56 -1.81 7.58 

4 6.58 -.94 -2.26 8.84 

5 6.39 -1.26 -2.45 9·01 

6 5.41 -1.36 -2·30 8.00 

7 3.87 -1.18 -1.81 5.98 

8 2.14 -. 76 -1.08 3.44 

9 .68 -.27 -·37 1.13 

10 0 0 0 0 



i 

0 

1 

2 

3 

4 

5 

6 

i 

0 

1 

2 

3 

4 

5 

6 

NACA TN 2626 

TABIE X 

CALCUlATION OF STEADY -STATE COMPONENT OF BENDING MOMENT 

FOR A RCYI'OR BIADE FIXED AT ROCYI' 

~ = 0.47; n = 600 rpm; mi = 0.00602 slug/ft; ~ = 0°; eO = 8°; a = _5°; 
X : 5 in.; EI = 16,000 lb-in. 2; zIII ~erms neglected, t )* indicates 
value from the preceding station (iD 

( 1) (2) (3) ( 4) (5) ( 6) ( 7) 

X2ai 
i X2 i X2a ai E L~ F1+1 F 1~~ XSi + 1 

(1)* + (6) ... + (7)* j=l El j 2 i+ 2 j=l El j 2 Eli EI 

0 1.563 X 10-3 0 0 73.80 0 -15.22 

-15. 22000 1.563 -.0237886 -.0237886 69.67 -1. 65736988 -15.10 

-31.97736 1.563 -.0499806 -.0737692 61.41 -4.53016836 -14. 56 

-51.06753 1.563 -.0798185 -.1535877 49.02 -7. 5288735 -13.00 

-71.59641 1.563 -.1119052 -.2654929 32.50 -8. 628522 -9. 60 

-89.92493 1.563 -.1405526 -.4060456 11.85 -4.81164094 - 3.70 

-98.43657 1.563 --------- --------- ----- ----------- ------

(8) (9) (10) (11) (12) (13) 

X2b. ~x2b F 1. (10) bi __ 1. 

j= irT i+ biZ Mi 
(8)* + (11)* Eli 2 ai + biZ 

1 0.0015630 0.0015630 0.1153494 37.61965 37.61965 

1.1153494 .0017432 .0033062 .2303493 41.95906 26.73906 

1.3456987 .0021033 .0054096 .3322045 50.62472 18.64735 

1. 6779033 .0026225 .0080321 .3937376 63.12214 12.05467 

2.0716409 .0032379 .0112701 .3662801 77.93441 6.33800 

2.4379210 .0038104 .0150806 .1787054 91. 71374 1. 78881 

2.6166264 --------- --------- --------- 98.43657 0 

Z=_a6=_ -98.436573 = 37.619651 
b6 2.616626 
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TABIE XI 

COMPUTATION CHECK FOR STEADY-STATE COMPONENT OF BENDING MOMENT 

FOR A ROTOR BLADE FIXED AT ROOT 

[J = 0.47; n = 600 rpm; mi = 0.00602 slug/ftj 13 = 0°; eO = 8°; 
~ = _5°; X = 5 in. ; EI = 16,000 Ib-in. 2; zIII terms neglecte~ 

(13) ( 14) (15 ) (16) ( 17) 

i Mi X2 X2 X~dY). = L(16) tJv1. - - M· 
ai + biZ Eli EI. l drl+.l l 2 

0 37.61965 1.563 X 10-3 0. 0587995 0.0587995 
-10.88059 

1 26.73906 1.563 .0417932 .1005927 
-8.09171 

2 18.64735 1.563 .0291458 .129739 
-6.59275 

3 12.05467 1.563 .0188413 .148580 
-5.71667 

4 6.33800 1.563 .0099063 .158486 
-4.54919 

5 1. 78881 1.563 .0027959 .161282 
-1. 78881 

6 0 1.563 0 ---------

(18) ( 19) (20 ) ( 21) (22) 

i 
F X(dY) YI = L (17 )j F. + 1 xs. + 1 &1 

l - i+ 1. dr 1 +1- l "2 (19) + (20) 2 2 2 j=O 

0 73.80 4.339991 -15. 22 -10.88097 0 

1 69.67 7.008293 -15.10 -8.09171 .0587995 

2 61.41 7.967272 -14.56 -6.59273 .1593922 

3 49.02 7.283391 -13.00 -5.71661 . 2891312 

4 32.50 5.150795 -9.60 -4.4492 .4377112 

5 11.85 1.911192 -3. 70 -1. 78881 .59619 (2 

6 ----- ------ .7574792 



i 

0 
1 
2 
3 
4 
5 
6 

(1) 

ai 

TABlE XII 

GOODYEAR METHOD (MODIFIED) FOR CALCULATING FIRST-HARMONIC SINE COMPONENT 

OF BENDING MOMENT FOR A RarOR BIAlE FIXED AT Roar 

~ = 0. 47; n = 600 rpm; mi = 0.00602 slug/ft; ~ = 0°; 80 = 8°; a = -50 ; X = 5 in . ; 
EI = 16, 000 Ib-in . 2; ( )* indicates value f r om preceding station (iD 

(a ) Calculation of a . 

(2) (3) (4) (5) (6) (7) (8) 

X2 Ui t X
2
a 

(1)* + (6) * + (7)* + (11)* 
X2ai La = EI

j 
Fi+ 1 F . 1 La XS i+ l. (4)* + (8)* EI EI j=l 2 1+ 2 2 

0 1. 563 X 10-3 0 0 73 .80 0 - 25 . 01 0 
- 25 .01 1.563 -.0390906 - . 0390906 69 . 67 -2.7234421 - 25 . 00 0 
-52. 7334421 1.563 -.0824224 -.1215129 61.41 -7 . 4621115 - 22 .97 -.0390906 
-83. 3269978 1. 563 -.1302401 -. 2517530 49 .02 -12. 3409355 -18.85 - .1606036 

-115. 3426704 1.563 -.1802806 - .4320336 32 .50 -14. 0410940 -12. 75 -.4123567 
-144. 6615347 1. 563 -. 2261060 -. 6581396 11.85 -7. 7989542 -4, 55 . -. 8443904 
-163 . 0255917 1. 563 -. 2548090 - .9129486 0 0 ------ -1. 502530 

----------- --

(b) Calculation of b. 

I 
(12) (13) (14) (15) (16) (17) 

i 
bi 

X~i X~ Vi (12) * + (15) * + Lb =L-
j F. 1 Lb X2n2miVi 

(18)* EI EI 1 +- (14) + (16) 2 

0 1.0 0.001563 0. 001563 0.1153494 0 0 
1 1.1153494 .001743 . 003306 . 2303499 . 001563 . 0064552 
2 1. 3521545 .002113 .005419 . 3328250 .004869 .0201102 
3 1. 7115449 .002675 .008094 . 3968100 .010289 .0424937 
It 2.1774140 .003403 . 011498 . 3736902 . 018383 . 0759254 
5 2. 6960887 .004213 .015712 .. 1861889 . 029882 .1234128 
6 3. 1506750 .004924 .020636 0 .045594 .1883040 

--~~ 

(9) (10) (11) 

X2n~i x2n~iUi ~ (10)j 

(10) + (11)* 

4.13 0 0 
4.13 0 0 
4.13 -.1614442 - .1614442 
4. 13 -. 6632929 -. 8247371 
4.13 -1. 7030332 -2.5277703 
4.13 -3.4873324 -6. 0151027 

I 4.13 -6. 2054489 -12. 2205516 
--~~ . 

(18) 

t (17)j 
j=l 

(17) + (18)* 

0 
.0064552 
. 0265654 
.0690591 
.1449845 
. 2683973 
.4567013 ~ 

-

\..,1 
o 

~ 
~ 

~ 
8 
~ 

I\) 
0\ 
I\) 
0\ 



i 

0 
1 
2 
3 
4 
5 
6 

(19) 

TABIE XII - Concluded 

GOODYEAR METHOD (MODIFIED) FOR CALCULATING FIRST-HARMONI C SINE COMPONENT 

OF BENDING MOMENT FOR A RarOR BIADE FIXED AT ROOT 

(c) Calculation of c . 

(20 ) (21) (22) (23) 

c · 
1. 0 + (19) * + t 22)* + (25 )* 

X2Ci 

EI 
LC t~ 

j=l EI 
F 1 LC 

i+2" 
Wi 

(21)* + (23)* 

0 
1. 0 
2.10889421 
3. 41375288 
4. 94648557 
6. 63069620 
8.21020460 

o 
. 001563 
. 003296 
. 005335 
.007731 
.010363 
.012832 

(26) 

i 
biMo 

0 147.5 
· 1 164.514 
2 199.443 
3 252 .453 
4 321.168 
5 397 . 672 
6 464.725 

o 
.001563 
.004859 
.010194 
.017926 
. 028290 
. 041122 

o 
.10889421 
. 29840347 
. 49975380 
.58260313 
. 33,,·23686 

o 

o 
o 

.001563 

.006422 

.016617 

.034543 

.062833 

(d) Calculation of M. 

(27) (28) 

ci¢ ~ 
(1) + (26) + (27) 

0 147.5 
-36.8 102.704 
-77. 6072 69 .102 I 

-125 . 6261 43.499 i 
-182.0306 23.794 

I 
-244.0096 9.001 
-302.1355 0 

( 24) 

x2nSni wi 

o 
o 

.0064552 

.0265236 

.0686286 

.1426640 

.2595018 

(25) 

t (24)j 
i=l 

(24) + (25)* 

o 
o 

.0064552 

.0329788 

.1016075 

. 2442715 

. 5037734 

~ 

~ 
~ 
f-3 
2'! 

f\) 
C\ 
f\) 
'2\ 

\Jl 
f-' 
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.-- . . 

1A L 1 - HOLLED \L III ('\ Tl BE \ [) [:ooT r ',EHT FITI I ( 

!"OP Tl F Ct. 

S1A E 3 - B,\LSA IL,\LVE' Cl r TO Rf'CEIVE ;:-'PAIl 

SIAU·; 1- - C ilPIYI ED BI.ADE NACA 

Figure 1 .- Blade construction deta i ls . 
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Figure 3.- Hovering test installation. 

--- - -- ---------
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Figure 4.- Wind- tunnel mount. View shows drive- system details. 

~ 



Figure 5.- Wind- tunnel installation, looking downstream. ~ 
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(a) Hovering, hinged-at-root condition; rotor speed, 1400 rpm. 

Figure 6.- Comparison of theoretical and experimental bending-moment 

distributions. e = 80
; A = -0.054; EI = 16,000 pound-inches 2 . 
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(b) Hovering, fixed-at-root condition; ~O = 00 ; rotor speed, 800 rpm. 

Figure 6.- Concluded. 
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Figure 7.- Bending-moment traces from oscillograph records. Hinged-at
root conditionj eO = 8°; a = _5°; rotor speed, 800 rpm. 
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Figure 8.- Maximum-bending-moment distribution. Hinged-at-root 
condition; e = 80; a = _50; ~ = 2350; rotor speed, 800 rpm; 
EI = 16,000 pound-inches2 . 
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Figure 13.- Sample traces from oscillograph records. Fixed-at-root 
condition; e = 8°; a = _5°; station 9, r/R = 0.296. 
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Fi gure 18.- Sample osci l lograph records showi ng resonance phenomenon. 

e = 120 ; EI = 16, 000 pound- inches 2 . 
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Figure 19.- Rotor-blade resonance study. Hovering, hinged-at-root 
conditionj e = 12°. 
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Figure 20.- Rotor-blade resonance study. Hovering, fixed-at-root 
condition; e = 12°. 
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Figure 21.- Comparison between rotating and nonrotating natural bending 
modes of the full-scale R-6 rotor blade. 
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Figure 22.- Plot of total external loading on rotor blade at eight 
azimuth positions for the De Guillenchmidt method. 
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Figure 25.- Plot showing convergence of modified Goodyear method for 
calculating bending moment on a rigid rotor blade.· 
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