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ON A MODEL HELICOPTER ROTOR BIADE
AND A COMPARISON WITH THEORY

By John R. Meyer, Jr.
SUMMARY

Bending-moment distributions were measured on a model helicopter
rotor blade under hovering and simulated forward-flight conditions.
The hinged-blade configuration was tested up to an advance ratio p
of 0.50, whereas the fixed-at-root configuration was investigated up to
gnd neluding s ui= 0.90.

Curves of maximum-bending-moment distribution are presented for all
test conditions. Harmonic bending moments have been found as a result
of a harmonic analysis of the data for up = 0.22 and p = 0.47. Theo-
retical calculations have been carried out at advance ratios of 0.22
and 0.47 for the hinged- and fixed-at-root conditions, respectively,
and comparisons are made between experimental and theoretical results.
Agreement between the results is reasonable in view of the assumptions
made in the theory and the experimental errors involved.

Resonance studies have been made on three sets of blades of differ-
ent stiffnesses for the purpose of comparing the experimentally deter-
mined resonance peaks with those indicated by theory.

Aerodynamic-loading expressions are developed for the fixed-at-root
blade which include the effect of elastic flapping. These results are
used in the Goodyear method which is modified for the fixed-at-root
condition.

INTRODUCTION

The purpose of the present program, which was conducted at M.I.T.
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics, was to investigate the possibility
of measuring bending moments on a small-scale wind-tunnel model at advance

ratios ap Lol = 1.0
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Present theory permits the calculation of blade bending-moment
distributions which are correct only to the degree of validity of the
aerodynamic loading applied to the blade. At the present stage of
development of rotor aerodynamic theory no method exists for the evalu-
ation of the induced flow through the rotor in forward flight, and it
is therefore necessary to approximate the aerodynamic loading. Conse-
quently, the bending moment takes on a distribution and maximum value
which is known to be in error. A reliable method of measuring bending-
moment distributions on a rotor blade by means of wind-tunnel tests with
small-scale models offers a possibility of checking present theory,
determining the extent of the errors involved, and establishing the
importance of higher harmonic bending moments not readily susceptible
to theoretical analysis.

Since one of the important limitations on more general helicopter
utility is the relatively low maximum speed attainable with flexible
flapping blades, it may be desirable to extend the helicopter speed
range possible by using rigid nonflapping blades. This immediately
imposes a structural problem since the alternating stresses are expected
to be high. This program has therefore also included tests beyond the
present-day normal operating range for the purpose of contributing some
information toward the evaluation of these stresses.

SYMBOILS
a slope of 1iftt curwve
c blade-section chord, feet
L rotor 1ift, pounds
m mass of blade per foot of radius, slugs per foot
it radial distance to blade element, feet
R blade radius, feet
Unp component at blade element of resultant velocity perpendicu-

lar to blade-span axis and to axis of no feathering, feet
per second

Up component at blade element of resultant velocity perpendicu-
lar both to blade-span axis and Up, feet per second

v induced inflow velocity at rotor, feet per second




NACA TN 2626 3

v true airspeed of helicopter along flight path, feet per
second

a rotor angle of attack, positive when shaft axis is pointing
rearward

B blade flapping angle at particular azimuth position

6 blade-section pitch angle

i tip-section ratio <2-2%%4;>

o) mass density of air, slugs per cubic foot

{5 aerodynamic loading, pounds per foot

s blade azimuth angle measured from downwind position in direc-
tion of rotation

) inflow ratio (LSim o - ¥

QR
Q rotor angular velocity, radians per second

DESCRIPTION OF APPARATUS

The model rotor under test in this program consisted of a three-
blade system 5 feet in diameter. The blades had the NACA 0015 profile,
a rectangular plan form with no twist, and a chord of 3 inches. The

rotor hub had horizontal hinges located at a radius of 1% inches to

permit flapping motion and lag hinges with damping located at a radius

of ol inches. Each blade had a 3/8-inch screw at its root coincident

8
with the quarter-chord line which fitted into a tapped split sleeve
with clamping screws on the hub which enabled the blade to be set and
held at any desired pitch.

The blade construction consisted of an aluminum tubular spar
enclosed in a balsa profile as shown in figure 1. These pictures show
the stages of assembly and the resulting aerodynamically clean surface
of the instrumented blade. A 3/h-inch—diameter aluminum tube (l/32-in.
wall thickness) was rolled down into one having an oval cross section
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measuring 0.30 by 1.00 inch. A root fitting was then inserted and
riveted in one end and 10 pairs of strain gages were attached to the
tube at radial stations shown in figure 2. Two balsa sheets were routed
out so that one-half of the spar would fit into each piece. The three
parts were then glued and clamped together and the profile was cut by a
special tool placed in a jointer. After sanding to the proper shape,
the blade was balanced about the quarter chord by inserting small lead
weights in the leading edge. The two dummy blades were constructed in -
the same manner but did not have strain gages attached to the spar.

The resulting blades had a bending stiffness of 16,000 pound- inches®

The slip-ring and brush assembly consisted of a total of seven
rings and three sets of brushes. Six rings were made of coin silver,
whereas the seventh consisted of Bakelite equipped with contacts for
the purpose of indicating azimuth position. The silver graphite brushes
were mounted in Bakelite holders and brush pressure was supplied by a
coil spring fitted into a brass cap which screwed into the brush holder.

In order to measure the bending moment at different stations suc-
cessively without stopping the rotor between readings, a solenoid stepping
switch was provided which made it possible to insert any desired pair
of strain gages into the bridge. The axially symmetric switch was
mounted coaxially with the center of rotation and the two leads from
the solenoid were attached to two of the six silver rings.

It was found that, in order to minimize the effects of slip-ring
and brush resistance variations, it was necessary to mount all four
arms of the resistance bridge on the rotor. Two dummy strain gages were
therefore mounted on small metallic blocks which in turn were mounted
on rubber pads and placed close to the center of rotation. It should
be noted that a pair of strain gages forming two arms of a Wheatstone
bridge are mounted at each station so as to cancel out centrifugal
strains and to measure pure bending.

A Hathaway type MRC-12 strain-gage control unit was used for the
purpose of amplifying the bridge unbalance. This unit is a compact,
portable six-channel amplifier and power sunply. The unit contains a
2000-cycle-carrier oscillator element which supplies voltage to the
bridge circuit. Its amplifier drives a Consolidated oscillograph galva-
nometer type 7-112 having a sensitivity of 30 inches per mllllampere
from the voltage output of a strain-gage bridge.

Since there were 10 strain-gage stations on the blade and only
6 channels for amplification, it was necessary to have two stations
alternately on one channel. A channel-selector control box was made
with a stepping switch identical to the one on the rotor and synchronized
with it so as to insert the gages into the proper channels. It should
be noted that only one galvanometer was used since four slip rings
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allow only one strain-gage bridge to be energized at any instant. The
switch in the channel-selector control box also connected the galva-
nometer to the proper amplifier output channel.

Two rotor mounts were provided for the hovering and tunnel tests.
The conical hovering mount is shown in figure 3 where the rotor disk
was approximately 10 feet above the floor. The drive motor was mounted
with its shaft in a vertical position inside the cone and the rotor was
connected to the motor by means of two universal couplings and a short

shaft. Figures 4 and 5 show the streamline mount for the 5- by ?%-foot

wind-tunnel tests. Here the motor was slung underneath the mount and

a comparatively long shaft was provided with a universal joint at each
end. The mount could be tilted in the fore-and-aft direction to obtain
the desired inclination of the shaft axis.

PROCEDURE

The sensitivity of the entire strain-gage and recording system was
obtained by a calibration of the galvanometer deflection against known
bending moments which were applied to the instrumented blade. The
flapping hinge was locked so that the blade was horizontal and known
forces were applied at the tip of the blade. The sensitivity of each
station was thereby obtained in terms of bending moment per inch of
galvanometer deflection. The radial load was not simulated in general
during calibration since centrifugal loads theoretically cancel at each
station when the top and bottom strain gages occupy adjacent arms of a
bridge. A check was made by putting a typical test blade in tension on
a test rig with the result that there was not a complete cancellation
of stresses probably because of small eccentricities. In any event if
there were a possibility that the centrifugal loads would not cancel
exactly, the effect would be taken into account in the zero reading
recorded at each test rotational speed.

The general procedure for obtaining bending-moment data was to set

the blades at zero pitch and balance out 5 of the 10 stations successively.

The rotor was then brought up to a desired speed and the galvenometer
reading for each of the five stations was recorded. The same procedure
was carried out for the remaining five stations. The pitch setting

was then changed to that desired for the test and the procedure described
above was repeated. In the tunnel tests, the zero pitch-setting readings
were taken with the tunnel off so that only the effects of centrifugal
force and blade weight were taken into account. The bending moment

was then a measure of the distance from the line of the record established
at 6 = 0° and the trace at another pitch setting multiplied by the
proper sensitivity factor.
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With regard to blade twist due to the inclination of the blade
principal axis of inertia to the plane of rotation, the effect was found
to be small so no correction to 8o was made. This was concluded from
the knowledge of the blade torsional stiffness and a calculation of the
torsional moments acting on the blade at operating rotor speeds.

DISCUSSION

Instrumentation

Since the hinged rotor blade described was expected to be subjected
to a maximum bending moment of the order of only 10 inch-pounds, it was
necessary to use a rather sensitive system in this investigation. A
direct recording galvanometer (Consolidated type T7-112) in conjunction
with an amplifier was found satisfactory and resulted in an over-all
system sensitivity of approximately 10 inch-pounds per inch (ratio of
bending moment applied to blade over oscillograph screen deflection).
This figure varied slightly with the station and channel. Under these
conditions the slip-ring and brush disturbances were at first intolerable
but eventually were reduced,to a negligible level by insuring against
dirt on the rings, providing a good running fit between brush and bushing,
and eliminating any movement between the spring and cap in the brush
holder by soldering the spring in the cap. When the fixed-at-root condi-
tion was tested, a system sensitivity of approximately 40 inch-pounds
per inch was used, since the moments were larger, with the result that
the slip-ring hash was at an even lower level.

A number of blades of different stiffnesses were tested in the
hovering condition with strain gages at only one station inboard. A
blade having a bending stiffness of 3000 pound-inches2 was available
whose construction consisted of an aluminum spar (1/8 by 3/4 in.) inserted
in the leading edge of an NACA 0012 balsa profile. It was found that
this blade underwent appreciable strain during rotational tests but very
small bending moments resulted because of the low stiffness. The errors
in the bending-moment measurements resulting from this condition were
as much as 25 percent. Consequently, a blade having a stiffness of
60,000 pound-inches2 was made in a manner similar to the final test
blade described in the section "Description of Apparatus" using a steel
tubular spar in an NACA 0015 profile with a pair of strain gages located
at r/R = 0.40. The result was a blade with larger bending moments
under operating conditions but smaller strains which were difficult to
record with any degree of accuracy. From these considerations a blade
having a stiffness of 20,000 pound-inches2 was decided upon and an
aluminum-spar blade was constructed with a pair of strain gages located
at r/R = 0.35. The actual stiffness on the resulting blade was
16,000 pound-inches? and it was found to be satisfactory in the hovering
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tests since the degree of accuracy with which bending moments could be
measured was within 10 percent. The final set of three blades was then
made with this stiffness as discussed in the section "Description of
Apparatus." Compared with the Sikorsky R-6 .full-scale rotor blade which
has a stiffness of [3.24 X lO6 pound-inches2 at the 50-percent-spar station,
the model blade used in these tests is 94 times stiffer based on the
results of the development in appendix A.

Test Results

Hovering condition.- Typical hovering test results are shown in
figures 6(a) and 6(b) for the hinged- and fixed-at-root conditions,
respectively. Theoretical calculations have been carried out and the
results are superimposed on the experimental results for the ease of
comparison. A number of aerodynamic loadings were put into the Goodyear
method (reference 1) for calculating steady-state bending-moment dis-
tributions of hinged rotor blades. Figure 6(a) shows the experimental
curve and the theoretical distributions for uniform inflow with no vl o)
loss, uniform inflow with 3-percent tip loss, and inflow variation with
no tip loss. The effect of including a 3-percent tip loss lowers the
curve in general compared with the no-tip-loss curve and produces a region
of negative bending moment in the neighborhood of the tip. Although no
negative bending moments were obtained near the tip, the possibility of
a bending-moment reversal occurring farther outboard than the last strain-
gage station is allowed for as shown in figure 6(a). The inflow varia-
tion (no tip loss included) was calculated according to Knight (refer-
ence 2) and the modified aerodynamic loading was used in the bending-
moment calculation. The resulting distribution conforms quite closely
to that of the experimental result in the region of the outboard 50 per-

cent of the blade but fails to agree with the maximum moment indicated
by the tests.

Figure 6(b) shows a comparison of theoretical and experimental rotor-
blade bending-moment distributions for the hovering, fixed-at-root condi-
tion. The theoretical calculations were made in accordance with the
modified Goodyear method developed in appendix E of this report. The
aérodynamic loadings used in this method were the same as for the case
of the hinged blade. It can be seen from figure 6(b) that there is
little difference between the results when using a tip loss of 3 percent
and an inflow variation. The experimental distribution is shown to be
in good agreement with the theoretical calculations.

In the above calculations for the aerodynamic loading a two-
dimensional lift-curve slope of 6.0 per radian was assumed for the hinged-
and fixed-at-root conditions.
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Simulated forward flight.- The wind-tunnel tests for the hinged-
at-root condition were run at a constant rotor speed, pitch setting,
and shaft inclination. The tunnel speed was varied to obtain advance
Lo EROMIOIROR22 SO, 30 O.ho, and 0.50. It was found that a
of 0.50 was the maximum that could be safely obtained because of an
excessive amount of flapping and vibration. Figures T(a) to T(e) are
traces from the oscillograph records. The different scales on the
ordinates of these tracings are due to the different sensitivities of
the amplifier channels and bridges. For a given station the bending-
moment trace varied within 10 percent from one cycle to the next for the
hinged-at-root condition. An average cycle was therefore chosen for
presentation in these plots. The pronounced fifth-harmonic bending
moment is present because of resonance with first-mode blade bending
and contributed a large amount to the total bending moment. Stations 1
to 3 are not shown since the signals were small compared to the hash
dievieils;

Figure 8 shows the family of maximum-bending-moment curves and the
test conditions under which the data were obtained. These bending moments
occurred at an azimuth angle of approximately 235° for all the advance
ratios tested. The bending moments decreased in going from a p of 0.10
to p = 0.30 because of the rather fictitious conditions which were
set up in the tunnel since the effect of a variation in p alone (by
changing tunnel speed and keeping rotational speed constant) on bending
moment was desired. The bending-moment traces show a decrease in the
steady-state (mean) value as u 1is increased at a constant a«, 6, and
rotor speed indicating a decrease in 1ift. However, as p 1is increased
above 0.30, the first- and fifth-harmonic contributions have become
larger and account for the increases in the magnitudes of the maximum-
bending-moment distribution.

The bending moment at a station on the blade may be expressed as
a Fourier series:

M =M + Mgcos¥ + Mp sin ¥ + M,y cos 2V + My sin 2V +

Mg coa-30 + My 810 3+ « .

The coefficients of this harmonic series have been determined by a
graphical method presented in appendix B. The results of a harmonic
analysis for u = 0.22 are presented in figure 9. It can be seen here
how large the fifth-harmonic sine coefficient is when compared with the
other components. The second, third, and fourth harmonics were negligible
and the fifth-harmonic cosine component is not shown since it was also
small. It should be mentioned that more points do not appear on the

plots in the vicinity of the tip since the moments are small here and a
harmonic analysis is difficult and probably inaccurate under these
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circumstances. It is felt that the points which determine the.critical
portion of the curve are presented.

It was desirable to obtain some theoretical check on the data
discussed above. Therefore calculations were carried out using the
Goodyear tabular-dynamic method (reference 1) to find the first-harmonic
sine component of the bending-moment distribution. The steady-state
component was also computed from this reference. Another method for
calculating harmonic bending moments was investigated since it was con-
sidered a relatively new approach to the problem which offered possible
advantages over other methods. The De Guillenchmidt method (reference 3)
is discussed in appendix C and calculation tables with an example are
presented. The results of the above computations are presented in
figures 10 and 11 where a comparison between the two theoretical approaches
and the experimental results can be made. It should be emphasized that

the same aerodynamic loadings were used in the Goodyear and De Guillenchmidt

methods so that any differences in the results are due to the methods
alone. In obtaining these aerodynamic loadings, no tip loss, constant
induced flow, and a 1lift slope of 6.0 were assumed. The magnitudes of
the corresponding bending-moment distributions are in reasonable agree-
ment. However, the shapes of the theoretical and experimental curves
are different probably because of the aerodynamic loading which was
assumed for the calculations. There is good -agreement between theory
and experiment in regard to the azimuth position at which the maximum
bending moment occurs as noted in figure 10. It may be seen from this
figure that the magnitude of the experimental curve is larger than the
theoretical result. The factor contributing to the discrepancy here is
the fifth harmonic present in the experimental result but lacking in the
theoretical result since no fifth-harmonic loadings were put into the
calculations and therefore a fifth-harmonic bending moment could not
possibly result. In general, comparison between theory and experiment
indicates that present methods of computing blade bending moments are
not satisfactory probably because of the inability of theory to provide
the aerodynamic loading to make it possible to calculate the bending-
moment distribution which actually exists on a given blade under operating
conditions.

It was also planned to carry out the wind-tunnel tests for the fixed-
at-root condition at a constant rotor speed, pitch setting, and shaft-
axis inclination, but as high advance ratios were approached it was
found necessary to decrease the rotor speed to 500 rpm in order to
insure against overloading the blade. Data were therefore obtained at
advance ratios of 0.80 and 0.90 at a lower rotor speed than the lower
values of p, but, in spite of these precautions, on attempting to
obtain p = 1.0 the instrumented blade failed in fatigue and proceeded
down the diffuser section of the tunnel. The aluminum-spar failure
occurred just outboard of a steel insert at the root of the blade.
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Figures 12(a) to 12(f) are the bending-moment traces from the
oscillograph records for the fixed-at-root condition from up = 0.15
to p = 0.90. The scale of the vertical axis (bending moment) varies
from one station to another again because of the difference in the sensi-
tivities of the amplifier channels. The cycles presented in these fig-
ures are considered typical of those occurring over the short time inter-
val during which records were made. It should be noted that the cycles
for a given condition repeated with negligible difference for the fixed-
at-root condition. Data for stations near the tip are not shown since
the oscillograph records showed mere ripples, indicating very small
bending moments. At advance ratios of 0.80 and 0.90 the signal from
station 10 was not available since the strain gage at this station failed.

Plots from the oscillograph records are given in figure 13 which
shows the variation of bending moment at station 9 with azimuth position
for the values of advance ratios tested. It may be noted that the
azimuth position at which the maximum moment occurs changes as @
{incresses. The drop in bending moment from p = 0.60 to p = 0.80 is

in agreement with the decrease in rotor speed and hence aerodynamic loading.

However, at up = 0.90 with the lower rotor speed, the maximum bending
moment exceeds that at p = 0.60 because of the increase in tunnel
speed which resulted in an increase in serodynamic loading. It is sus-
pected that the maximum bending moment on the blade at failure was in
the neighborhood of 200 inch-pounds which corresponds to a tensile
stress of 20,000 pounds per square inch. :

The oscillograph records for all the runs were analyzed for the
purpose of obtaining the maximum spanwise bending-moment distributions
and the azimuth positions at which they occurred. The results of this
analysis are shown in figure 14 where the maximum spanwise bending-moment
- distributions for various p conditions are given. Implicitly, these
curves show the change in spanwise moment distribution for corresponding
changes in tunnel or simulated forward-flight velocity for the fixed-at-
root rotor configuration up to a p of 0.60. The curves have been
extrapolated to the center of rotation since no strain gages were located
on the hub. The curve for p = 0.80 1is below that for u = 0.60
because of the particular combinations of tunnel and rotor speeds used
to obtain these advance ratios.

A harmonic analysis was carried out on the bending-moment traces
for the u = 0.47 condition and the results are shown in figure 15.
It is of interest to note that the first-harmonic components are of the
same order of magnitude but of opposite sign and that there is a large
contribution from the second-harmonic cosine component. The higher
harmonics were found to be negligible.

In order to check the experimental results against theory for the
fixed-at-root condition, it was first necessary to derive some convenient
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expressions for the aerodynamic loadings under these conditions. This
development is given in appendix D and considers only first-harmonic
effects. The Goodyear method (reference 1) has been modified in
appendix E for the purpose of calculating steady-state and first-harmonic
bending-moment distributions for the fixed-at-root blade. Also included
in appendix E is 'a method of iteration which is used to cope with the
problem of coupling between the aerodynamic-loading components.

A comparison of the theoretical and experimental harmonic-bending-
moment distributions for the fixed-at-root condition at p = 0.47 is
presented in figure 16. There are a number of factors here which lead
to the discrepancy between theory and experiment, namely the assumed
constant induced velocity, the neglect of the reversed-flow region, and
a probably high two-dimensional 1ift-curve slope (a = 6.0). In addition,
no wind-tunnel wall corrections were applied since there are no reliable
methods available by which such corrections can be estimated, particularly
as they may affect harmonic bending moments. A comparison between
maximum bending moments as discussed for the hinged-at-root case was
not made since the second-harmonic cosine component of bending moment,
which apparently plays a large part in determining the total bending
moment on the fixed-at-root rotor blade, could not be readily calculated
with the present development.

Resonance Studies

The problem of rotor-blade flapping vibration in the hovering
condition was met with early in the investigation and an attempt was
made to understand the problem and alleviate this condition. Rotor
balance and shaft alinement were improved with the result that blade
vibration was reduced only a small amount. It was noted that the
vibration was a function of pitch setting, the effect being rather small

at’ zero pitch. This indicated the source of trouble to be of an aerodynamic

nature and further investigation showed that the vibratory frequency
(cycles per revolution) of the rotor blade varied with rotational speed.
A resonance condition was suspected.

A theoretical survey of blades having three different stiffnesses
was made by carrying out a calculation of their natural bending frequencies
as a function of rotational speed by the method of reference 4. The
results of this calculation for the hinged- and fixed-at-root conditions
are shown in figures 17(a) and 17(b), respectively, for blades having
stiffnesses of 3000, 16,000, and 60,000 pound-inches®. The intersections
of these curves and the straight "per rev" lines are resonance conditions.

The resonance problem was further investigated to obtain a better
understanding of the phenomenon. Tests were run on three sets of blades
having stiffnesses of 3000, 16,000 and 60,000 pound-inches2 in the
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hovering condition. Oscillograph records, taken at small increments

in rotational speed, gave the strain-gage response to blade vibration

at pitch settings of 0° and 12°. These records were analyzed to obtain
the steady-state or mean bending moment and the vibratory or resonance
bending moment at a given rotor speed. Figure 18 gives two sample oscil-
lograph records showing the resonance phenomenon and the above terms
defined. It should be noted that the vibratory motion of the blade was
not of constant magnitude but consisted of an irregular increase and
decrease of the double amplitude at a constant rotor speed. In each
case the maximum double amplitude has been considered and plots of the
ratio of the maximum double amplitude of resonance bending moment to
steady-state bending moment against rotational speed for different blades
are shown in figure 19 for the hinged-at-root condition and figure 20
for the fixed-at-root condition (B = 0°). Superimposed on each plot

is the appropriate natural-frequency spectrum for convenience in com-
paring theory and experiment. Each peak of the resonance curve is
labeled with the cycles per revolution obtained as a result of the oscil-
lograph record analysis. This quantity refers not only to the peak but
also to the neighborhood of the peak. For example figure 19(b) indicates
an experimentally determined peak resonance condition of 6 cycles per
revolution at 580 rpm, of 5 cycles per revolution at 735 rpm, of 4 cycles
per revolution at 1000 rpm, and of 3 cycles per revolution at 1350 rpm.
The intersections of the "per rev" lines and the theoretically determined
first-natural-bending-frequency curve occur at rotational speeds very
close to the above except in the case of the resonance condition of

3 cycles per revolution. This agreement carries through for the hinged-
at-root-condition tests (fig. 19).

The calculations of the first natural bending frequencies for the
fixed-at-root rotor-blade condition were based on a blade length of
2 feet instead of 2.5 feet since the root fitting had a stiffness of
approximately 600,000 pound-inches2 and the actual blade root was
located at a radius of 6 inches. The agreement between theory and
experiment is good for the low-stiffness blade but becomes worse as
blade stiffness is increased. This root condition introduced contri-
butions to the effective stiffness of the rotor system from the root
fitting and flexibility of supporting structure which were not considered
in the theory. It seems reasonable to assume that these effects would
be of greater importance as blade stiffness is increased and this appears
to be borne out by experimental results presented in figures 20(Db)
and 20(c).

A point of interest to be noted from figures 17 to 20 is the vari-
ation of the ratio of resonance bending moment to steady-state bending
moment with blade stiffness. For the hinged-at-root condition, the blades
having stiffnesses of 3000, 16,000, and 60,000 pound-inches? indicate
maximum resonance-peak ratios of 1.0, 0.38, and 0.60, respectively.
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Also for the same blades fixed at the root, the maximum resonance-peak
ratios are 0.37, 0.20, and 0.47, respectively. In each condition note
that the blade of relative medium stiffness experiences the lowest
resonance level. It appears from this brief study that there is an
optimum stiffness which will minimize blade resonance; however, it is
felt that a general statement of this nature cannot be made at this time
without a more thorough investigation of the resonance phenomenon in
helicopter rotor blades.

CONCLUSIONS .

Bending-moment distributions were measured on a model rotor blade
under hovering and simulated forward-flight conditions in both the
hinged- and fixed-at-root configurations and a comparison was made with
theoretical calculations. It was found that:

1. For the hovering, hinged-at-root condition, the best agreement
between theoretical and experimental bending-moment distributions was
obtained when the inflow ratio variation according to NACA TN 626 was
considered. No measurable amount of negative bending moment at the tip
was found which indicates less tip loss than is usually assumed.

2. In the hovering, fixed-at-root condition, the experimental bending-
moment distribution fell within the region determined by theoretical
calculations obtained as a result of inserting different types of aero-
dynamic loading into the bending-moment calculationms.

3. The fifth-harmonic bending moment due to resonance in the forward-
flight, hinged-at-root condition is relatively large and accounted for
much of the discrepancy between the theoretical and experimental total
maximum bending moments. An appreciable difference between the general
shape of the distributions predicted by theory and measured experimentally
exists and is probably due to the distribution of aerodynamic loading
assumed in the currently available theory.

4. In the case of the fixed-at-root, forward-flight condition, it
was found that the second-harmonic bending moment was the largest com-
ponent contributing to the total moment. The agreement between theory
and experiment in regard to the steady-state and first-harmonic bending
moments for an advance ratio of 0.47 was reasonable in view of experi-
mental errors and the assumptions made in the theory.

5. A brief study of rotor-blade resonance phenomenon was made in
the hovering condition. Good agreement between theory -and experiment was
obtained for the hinged-at-root condition since it was found that the
experimental resonance peasks occurred at rotational speeds very close
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to those where the natural-bending-frequency curves crossed the lines
of cycles per revolution. Agreement in the case of the fixed-at-root
condition was reasonable in view of the contributions to effective
stiffness of the rotor system from the supporting structure.

6. Information regarding the actual aerodynamic loading or induced
flow and blade resonance phenomenon is needed if the results of bending-
moment calculations are to represent the actual situation existing on a
rotor blade under operating conditions.

|
Massachusetts Institute of Technology
Cambridge, Mass., April 3, 1951 |
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APPENDIX A
BASIS FOR COMPARISON OF STIFFNESSES OF VARIOUS ROTOR BLADES

Consider a blade under the loading W = f(r). The deflection % at
the tip of a cantilever beam is:

w

o

3EI

where R 1is the blade radius. Now

W(r) = :—elpaey.ourcﬂzr2 dr - m' dr Qerg—:

Eet tix = goue e =R dand.  dr = R dx o Then

el ]

dz

W = g aach2R3x2 dx - m'0°R%x dx =

Now m' 4is mass per unit length and m' « L2 where L 1is the
dimension of length. Also c and R have dimensions of length L.
So

¥ (FRELQ

From the deflection expression there is obtained:

i WS & (QR)ELM
EI EI

g
R

Equating the expressions for S/R of the model and the full-scale
blade, there is obtained:

(amyPry  (am)p g
Gy, e
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where the subscripts M and F denote model and full scale,
respectively. Hence,

(QR)FELFu

Comparing the R-6 blade and the model blade under test there is
obtained:

(ED)y, = (EX)g

Ly 2.5
i; =455 " 0.1315
N
EM— = 2.98 x 1o'u
Ly
2
(QR) 27,
Mg = (210)2 = 0.176
(R) (500)
F
From reference 1,
(ET)p = 3.2 % 10° 1b-1n.2
gibw =10 B0 hence),
(EI)M = 3.24 x 106 ¥ @176 %.2.98/ % 10'LL = 170 lb—in.2

This result means that a model of the R-6 rotor blade having a diameter

of 5 feet and rotating at 800 rpm should have a stiffness EI of 170 pound-

inchese. The EI of the model blade investigated in this report was

16,000 pound—inches2 and is therefore 94 times as stiff as a model of
the R-6 when rotating at the above rotational speed.
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APPENDIX B

GRAPHICAL METHOD FOR HARMONIC ANALYSIS

OF A PERIODIC FUNCTION

Method.- Let the curve such as the one shown in the accompanying
figure be represented by the following series:

¥y =bgy + 8y sin x + by cos X + ap sin 8% + Do cOs Bxigl dian ok

an sin nx =5 bn COSy XIS,

R P

The curve is divided into 12 equal parts such that the distance
between ordinates h 1is n/6, and the same ordinates are used in
finding all harmonics.

In order to find the first-harmonic coefficients a; and b, the

following construction is made: Starting from a point O, > y0 is
laid out in the appropriate direction on the horizontal; Yy, is added
to % Yo at an angle of 30o to the horizontal; Yo is added at an
angle of 600; and so forth. Note that when the ordinate is negative,
it must be laid off in the opposite direction as shown in the figure
on the following page.
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Gk

P
2%

The coefficients a) and bl are found from the relations:

1

al = g PlNl
1

To find the coefficients of the second harmonic a similar construc-
tion is made, but the ordinates are laid out at intervals of 60° instead
of 300. The expressions for an and b2 are:

8o

b2=
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In general, the nth harmonic may be found by construction where the
ordinates of the curve are laid out at intervals of n(2n/M) where M
is the number of parts into which the period of the curve is divided.
The expressions for the coefficients are:

PNy

=l

%n

b

2
n =3 9%y

Proof of above construction.- The trapezoidal rule states that the
total area under a curve is:

0
=R —— + e R <
iy h<y2 I il 2>
where h 1is the distance between ordinates, or h = 2n/M.

Now the Fourier series coefficients can be written:

: 21
il :

8, = —k/h ¥ sin X idx
"Jo

For the integral substitute the expression for the area given above:

i il o} : o] s o] i : o]
By S héé Yo £in 0" +y, sin 30" + Y, sin 60" + . + + 35 ¥y, sin 360)
or

2 o] o] (o] 1L : o}
a; = ﬁ<§ Yo SHiA FOT -+ Yy S nNSOES Yo EIn 60 o i e 5 Yo sin '360 )
Also
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So

=

bl=

= ¥ cos 0° + y; cos 30° + y, cos 60° + . . . + 2 Y15 cos 360°
D 40 i 2 PrEomce

Now the graphical process described above is that indicated in the
parentheses, thus:

&l=—PlNl
by == ONj
Also
21
1 1 2n(l
bo‘ﬁfo ydx‘ﬁxﬁ'(éyo‘“yl*ye* 2y12)
Hence
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APPENDIX C

DISCUSSION OF DE GUILLENCHMIDT METHOD FOR CALCULATION

OF BENDING STRESSES IN HELICOPTER ROTOR BLADES

The development of this method for calculating bending stresses in
rotor blades is given in reference 3. The procedure for the general
method, the method as applied to the model rotor tested in this investi-
gation, and sample calculations are discussed in this appendix.

Procedure for Calculation of Elastic Bending Moment

The procedure for calculating the elastic bending moment is as
follows:

1. Calculate the natural frequencies and corresponding mode shapes
of the nonrotating blade. Reference 3 states that the rotational and
nonrotational natural modes are the same within a few percent. A cal-
culation has been carried out on the R-6 rotor blade and the results are
presented in figure 21 where it can be seen that the first natural mode
does not vary greatly with rotational speed. The frequencies and mode
for the model rotor blade were obtained by the use of the Myklestad
method (reference 5, pp. 184-203). The rotating natural bending fre-
quencies were calculated from the results of reference 4.

2. Calculate the aerodynamic loading (reference 1), the centrifugal
loading, and the total external loading on the rigid blade at different
azimuth positions. For the example illustrated here, eight positions
spaced 45° apart were used as shown in tables I, II, and . ELT. " (Curves o
total external loading Fg' are shown in figure 22. No tip loss was

included in the aerodynamic loading.

rR
3, Then evaluate the integral ‘/ Fd'ql dx at the corresponding
0]

azimuth positions as illustrated in table IV. The mode functions 13

and 7o for this example are shown in figure 23.

L. The integral JfR m'n 2 dx is then evaluated as shown in table V.
0
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5. Thus it is possible to calculate g; (table VI) for the eight
azimuth positions. The plots of g1 and g, are shown in figure 2k,

A harmonic analysis is performed on the g function using the graphical

method described in appendix B of this report. This determines the

values g4 njé.
>

b

R
6. The calculation of b/l/ﬁ m'ny dx d¢ 1is one of the byproducts
X

of the Myklestad computation since this integral is the ratio of the
rigid-blade bending moment to the square of the natural frequency. This
distribution and the elastic-blade bending-moment distribution broken
down into harmonics are shown in table VII.

T. The elastic bending moment obtained from a consideration of the
second natural mode of the blade is shown in table VIII. The bending
moment resulting from both modes is shown in table IX. It was found

thag the maximum moment occurred at an azimuth position of approximately
229

Comments on De Guillenchmidt Method

The De Guillenchmidt method is particularly useful for the investi-
gation of the effect of a series of loading conditions on a given blade.
This is true because, once the natural frequencies and modes are deter-
mined, relatively little calculation is necessary to obtain both the
harmonic- and total-bending-moment distributions for a given loading
condition.

For the blade tested in this investigation, the calculations showed
that the effect of including the second natural mode was negligible in
the case of the steady-state component, whereas the effect on the sine
and cosine components was appreciable. However, for full scale the
contribution of the various modes to the bending moment must be investi-
gated for each blade design.
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APPENDIX D

CAICULATION OF EXPRESSIONS FOR AERODYNAMIC LOADING
ON A FIXED-AT-ROOT ROTOR BLADE
The rotor blade discussed in this appendix is one which is fixed
at the root but is allowed to bend under applied loads because of its

elastic properties.

The 1ift on a blade element is:

1k
AL = Zpac (pup2 + Uplip) Ar (D1)
where
Up = o(r + 1R sin Qt) (D2)
and
Up = MR - z - uR 32 coe at (D3)
ar

where 2z 1s the deflection of a blade element from the plane perpendicular
to the axis of rotation and passing through the blade root. Now 2z can
be written as:

z=1p +yp+ Y11 sin Qt + Yrrp €08 9 et MDY (D4)

Only the first harmonic will be considered in this development;
therefore:

é = yIIQ cos Ot - yIIIQ sin Qt (D5)
and
dy dy dy
dz; . T B Ll AEIEIR
o B + =k = gin Ot + 55— Cos Qt (D6)
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Hence

Up = MR - yIIQ cos Ot + yr110 sin 0t -

dy dy dy
UOR cos Qt(B + 1 3 11 gin; Oty + III

dr dr dr s Qt) (D7)

Substituting these quantities into the 1ift expression, equation (Dp1)

)=

1 2 2 '
Spac 160 (r + pR s8in Qt)° + {}QR - y118 cos @t + yrr7@ sin ot -

]

111
dr

o A
R cothB+—+Fsith+

= cos Qt)jl (Qr + HOR sin Qt)

Upon expanding and factoring out 92 there is obtained:

T = lpac92<er2 + 26urR sin Ot + 6u2R%sin2gt + ArR +

2

xLszsin at r cos it - yIIuR sin Ot cos Ot +

P B

Yr11° sin gt + yIIIuR sinQt - urRB cos Ot - uQRQB cos Qt sin Qt -

urRi(—Y—I—coth-ueRz-(-ilI—sithcosgt—eryIIsithc ot -
ar ar Ll o8

dy dy
w282 — cos gt sin®at - urR —= cos?at -

dy
! u2R2 _dlrg sin Ot c052m> (D8)
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This can be written as follows:
T = %pacﬂe <9r2 + 26urR sin Qt + g—uERg - % uR2 cos 20t %

AR + MLRE sin Qt - yqqr cos Qt - -}%—; KR sin 20t + yp1{T gine Qb+

i N/
2111 MR - JIIT UR cos 20t - UBrR cos Qt - %MQBRgsin 20t -

2 2
urR-d—b—rlcos at —EReiﬁsinEQt -EnggsinEQt -
dr 2 dr 2 dr
“2 B dﬁiI cos Ot +'§ R dydIrI cos 30t - % rR dydliI &,
L o) dydIrI cos 20t - t‘f— R2 dydIrH sin Ot - E[? R2 dydIlfI sin 3Qt> (D9)

Comparing equation (D9) with:

T=TI+TIIsith+TIIIcoth+.

the following expressions are obtained:

The steady-state loading:

T iR

The first-harmonic sine component:

ueg2 dy III)

-1 2 2 4
TII = @oacﬂ (29ruR + MRS + b e s

St TR e BR 4 ke
—-épacQ or +2uR +XrR+2yIII e

(D10)

I> (D11)

(p12)
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The first-harmonic cosine component:

dy 23205
g 2 i RERS SYTT
i Eynr 2 “rR<B 3 dr> g dr:| (D13)

The above expressions are used in the application of the method of
calculating rigid-blade bending moments developed in appendix E.
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APPENDIX E

MODIFICATION OF GOODYEAR METHOD FOR CAICULATING
FIXED-AT-ROOT ROTOR-BLADE BENDING MOMENTS

Discussion of Modification

In this appendix the Goodyear method (reference 1) for calculating
hinged-rotor-blade bending moments will be modified so that rigid-blade
moments may be determined.

First consider the steady-state analysis for a rigid blade (i.e.,
fixed at root but allowed to bend). The total shear at any point on the
blade is:

(o _ aM
Sy = F(dr) o iy (E1)

where
5 aerodynsmic shear at a given point
F centrifugal shear at same point
M bending moment at given point
z deflection from plane perpendicular to axis of rotation and

passing through blade root

Z

Now
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So

dz dyp dy1r 111
o + w3 - FE sin Qt + e

cos Ot + .

where y 1is the deflection measured from the undeflected position.

The steady-state component of dz/dr s a %%%. Hence equa-
tion (El) becomes:

dy
oM b ¢
= F<B + dr) + 8 (E2)

This equation can be approximated by dividing the blade into an

integral number of parts each of length X. Then dM/dr at the midpoint
of an interval is:

(@) My - My
ar L X

2

Hence the above equation becomes:

M M B % —-—dyI> XS (E3)
~ - + +
i+l i s drfic il ool
2 2
Let
My = aj + byZ (EL)

where Z = MO = Bending moment at blade root.

At the blade tip:

or

it 2o 20 (E5)
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Hence the bending moment at the root will be known once the

values a and bn

1

are determined.

the a's and b's proceed as follows:

At the blade root:

and
Mo

Comparing these two equations there

80

29
To find the expressions for
MO = B bOZ
=1l (E6)
is obtained:
=0
(ET)
=1

Now

_J_
Lo

oy
e
1]
[v”H

.
1l
O

Then equation (E3) can be written:

i <a < bjz)-%- (E8)

at 1t
a X2 b x%7
Mjy1 =a, +b,Z2+F ;(BX + E—%——+§ e e g0 e
i+5 == J=0 J i+3
Also equation (E4) can be written:
My = 84 + By g% (E10)
Equating coefficients of equations (E9) and (E10):
X2
ag4l =8y + X8 ,+F olex + it (E11)

0
i+§

i+— EIJ
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s J
o gk s PRl R (E12)

Now consider the first-harmonic bending-moment analysis. The shear
equation now reads:

T
M _ p(dz 2
= F(dr> +8 + Jp +Q JC my dr (E13)

where JO is the inertia shear at the root and the quantity

iy
JO - 92 Jf my dr 1is the inertia shear at r. The subscripts denoting
0

the harmonic have been dropped since the solution takes the same form for
the sine as for the cosine component.

r
Now Q2 U/n my dr can be written as:
0

i
2
zg: msy 0°X (E1k)
J=1
and
dz> dy (
e = E15
<dr rn .o 4 )
So
= 2.2
7, X
My =M + F;+1X<dr e xsi+;.+ XJy + X0 myy 5 (E16)
et

My = ay + bjMy + cyff (E1T)
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and

Yg = Uy + VyMy + wi¢ (E18)

where @ = XJ,. Now

XM XM X2M1 1-1 x2y
Vi = == 2y g + + o) (E19)
e d SETTS EI EI Pt EI
0 0 1 e

So

no

o ;
My x
y1 = g1 = £5(80 * boMo *+ <o)
and equation (E18) gives:

Y1 = Uy + VMg + W8

By comparison

2
4
Uy =ET 20
)
X
Ll =it
2
4
Wl=ﬁco

Proceeding further, equation (E19) gives:

X2M_ X2M_  X°M

V2 5 THE o e EI

or

no

-

: g
Y2 = g¥ (%0 * oMo + cof) + ﬁEio +ay + (b + by My + (cq + °1)QE]
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Now

By comparison

Vo =Vq +§x§-(bo +bl)

.
| Wy =Wy + %T(CO & c1)

It can be concluded that in general:
3K
X8
Uy =05 % —
J=1

b
Vi =Vy o+ ) =4 3 (E20)

W =W, +
i+l 3k EI
g=Le i J

Expressions for the a's, b's, and c's are found in the following
manner:

Consider the bending moment at the blade root:

Mo = Mg

Equation (E17) becomes

| MO = 85 + bOMO + co¢
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So by comparison

Since

then

33

89 = 0
bo = i
c0 =0

s o F1/2x<%rz>l/2 * X8y, + P
2
X(%})l/z B X_E_I—

M1=M0+Fl/2 ED;O*XSl/2+¢

Comparing this equation with

there is obtained:

Mp =a; + biMy + cl¢

XS

1/2

X2

Cr =T



3k

Repeating this process for 1 = 1:

2
M2=M1+F1§T(MO+M1) + XS +¢+X2§22m<U +V
1= 11

2 &

or

2

X
M, = a; + blMO ik cl¢ gk ?15 ET(MO +a, + blMO + cl¢) 4

2
2.2
X“qmy (U1 + VM + wl¢>
Since

My = a, + b My + c2¢

then

a2=‘>‘1+X31+F1 +X2ﬂ2m1U1
27
5 ¥ 2,2
2
2

1 XE&
ai+l = B.i ar F1+— ;; E—]Sll + X.S l + X Qz i
bi+l = i -——-J- o X i mJVJ

ci+l = Ci +F

NACA TN 2626

Mo+ wgﬁ

XS , + 0 +
11

2

(E21)
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It is known that

J=n

2

J=1

as defined earlier where n 1is the tip station. Substituting equa-
tion (E18) for y; in the above:

ias

e SN N M, i X20%m. vV, + ¢ i X20%m W . (E22)
=1 Jid =1 J J = JdJ

The summations are determined from the calculation. ILet them be:

-~

— vv202
N, = IX<Q ijJ
= £X20%m ¢
N, = ZX“Q ng (E23)
} D
Ny = ZX Qem‘].w‘j

Then equation (E22) becomes:
¢=—N1—N2MO—N3¢
or
(1 + Ny) + Ny = Ny (E2k)

Also, at the tip,

Hence
gie it E ol (E25)

Substituting this expression for @ into equation (E2k4):

(1+N3)<'?—n"EQMo> + NoMy = -y

AR
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Therefore

olm
BB

il 4
MO ; ( + N3> Nl (E26)

5 Ei(l + N3)

=
o

Knowing MO, ¢ may be obtained and hence Mi from the expression
My = a3 + byMy + cyf.

Discussion of Sample Calculations

Steady-state component.- Table X, which shows the calculation for
this condition, is very similar to that given in reference 1. Column (5)
is calculated in the same manner as in reference 1. The equation for
finding the aerodynamic loading for the rigid blade is given in appendix D
of this report. Likewise, column (7) is computed as in reference 1.

Notice that y1yy must be neglected in the calculation of i
since Y11 is not known at this stage of the computation. It was

found that after completing a cycle (i.e., sine and cosine components)

J
the effect of Yiyy on- Ty Vvas small. Therefore the result obtained

from table X was taken as the steady-state bending-moment distribution.

The computation check (table XI) for this calculation is identical
to that given in reference 1, and is the same for the first-harmonic
components.

First-harmonic components.- Table XII shows the calculation of a,
b, and c. It should be noted that only a changes with the aero-

dynamic shear, b and c remaining the same for given blade constants
and rotational speed.

The first-harmonic sine component was first calculated by using the
expression for TaT given in appendix D neglecting Y111 gince it was

not known at this stage of the calculation. The computation check
yields in addition the deflection YT+

Having yr and ygpp, 1t is then possible to calculate Tryr 8nd

the corresponding aerodynamic shear. A calculation of the a's according
to table XII(a) permits the computation of the cosine component of bending
moment and consequently FrrT in the computation check.
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The sine component of the aerodynamic loading TIrE is then

recalculated using Yrrr Just obtained. For this example it was found
that Y11y bhad a considerable effect upon T and consequently on the

bending moment. The iteration process is continued to find a new i1t

To decrease the number of cycles in the iteration process the mean value
of Yyrr Tresulting from the first and second cycles is found. This

value of yyy 1s then used in the second-cycle calculation of TIIT*
The resulting cosine bending moment and consequently the distribution of
Yrrr @are then found. This makes it possible to recalculate the sine

component and find I1T which 1s compared with the mean value assumed

above. In this example the two values of Y1y Vere within 10 percent
so that iteration was not continued.

A plot of the bending-moment distributions during the above process
for the blade under test is shown in figure 25. It should be stressed
that only the a's need be recalculated in carrying out the iteration
since b and c¢ do not change with aerodynamic loading.

It has recently come to the attention of the author that the Cornell
Aeronautical Laboratory has extended the Goodyear tabular-dynamic method
to take into account the additional aerodynamic loading introduced by the
elastic deformation of a hinged rotor blade. This additional effect is
considered immediately in the moment equation and the sine and cosine
components are carried along simultaneously so that no iteration is
necessary. The application of this method, with the appropriate modifica-
tions, to the fixed-at-root blade has not been studied in detail, but it
appears that such an application is possible. For the present case,
where no possibility of resonance with the assumed loadings existed, the
iteration process appears to be a reasonably rapid and accurate method of
estimating the bending-moment distribution on a semirigid nonflapping
blade.
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TABIE I

VALUES OF AERODYNAMIC LOADING Fp'

AT EIGHT AZIMUTH POSITIONS

(LB/FT)

‘Ealculation of Fp' may be set up the same way as that givén in reference l]

Station |y = 0° fv = 45°| ¢ = 90° |y = 135° |y = 180° | ¥ = 225°| ¢ = 270° | ¥ = 315°
0
0.098 | -0.136 | 0.182 | -0.01k 0.270 0.504 0.550 0.382
s .138 .313 .Lo6 .581 .516 3l .160 .073
. .850 L, 27 157 1.58 1.29 .870 S .560
3 225 2.66 2.93 291 2.61 2.20 1.93 1,95
: 4.3k k.52 4.63 L.60 L. 46 4.28 b.17 4. 20
Z .43 6.85 6.66 6.66 6.85 Fala 7.29 7430
SNACA

9292 NI VOVN

6€



TABLE II
CALCULATION OF CENTRIFUGAL LOADING F.' (LB/FT)
AT EIGHT AZIMUTH POSITIONS
[Fe' - vef]
Fe ¥=0° | y=14° | y=90° | y=135° |y =180° |y =225° | ¥=270° | ¥=315°
Station
(1b/ft) = 0.0007 | B = 0.0056 | B = 0.0Lkk | B = 0.0930|Bp = 0.123 |B = 0.117 | B = 0.0778 | B = 0.0293
- 8.87 -0.0062 0.0497 0.394 0.825 1.09 1.03 0.690 0.259
: 26.6 -.0186 .1k49 LS 2.47 geeT 3.10 2.07 o
: Lh.2 -.0309 .248 1.96 L.11 543 515 3. bk .00
: 62.0 -.0k34 347 2475 S TT 7.62 7223 4.82 1.81
i 197 -.0558 RIS 3.54 T4l 9.80 9.29 6.20 2,33
4 97.5 -.0683 .546 4.33 9.07 g G s 7.59 2.85
6

_NACA —

ot

9292 NI VOVN
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TABLE III

b1

CALCULATION OF TOTAL EXTERNAL LOADING Fq' (LB/FT) AT

EIGHT AZIMUTH POSITIONS

[Fd' =iy = Fé]
Station[y=0°(V = 4500y =90°ly = 135°[y =180°|y = 225°|y = 270°[¥ = 315°
0
0.104{-0.186 [-0.212{ -0.811 {-0.820 | -0.530 [-0.140 | 0.123
; APTE 363 -.685] ~1.89 }-2.75 -2.76 [-1.91 -. 7Ok
: fenal . oe o) <30p) 5,53 lchilh o ik 08 Sl iaigy <731
? 2.29:12.31 2Tt -2.86 - |=5.01 -5.03. {-2.89 .140
g R OT 1 1209 | 2.8 }<5.35i] =5.01 . §=2.08 1.87
Z .18 1'6.30 233%-1=a. b Fs5.13 -4.26 -.296 L.45
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TABLE IV
R
CALCULATION OF k/ﬁ Fg'ny dx AT EIGHT AZIMUTH POSITIONS
0
§ =00 ¥y = 15° ¥ = 90° ¥ = 135°
Station} 17y
Fa'nqg Eatt s 3 Fg'ny |Fa'ng X 5" Fa'ny [Fa'ng X 5"|Fa'ng |Fa'ny X 5"
0
-0.210 -0.022 -0.110| 0.0391 0.196 |0.0L445| 0.223 0.170 0.85
1 .
=500 -.088 -.4h0| -.0913 =45, .384 1.920 1.06 5.30
2
-.680 -.599 -2.99 | -.694 =8 U .266 1733 1.72 8.60
3
-.462 295058 -5.29 | -1.067 -5.3k -.082 =, 41 1.32 6.60
L
.010 .0Ll «220] 041 .205 .011 .055 -.028 Lol
D
.610 %.379 21501 5l B8 19.20 1.4 700 el S35
¢ g < S | 18 S e
R
f Bgloy dx = = 13,30 %' =10.35 % = 10.24 L = 13.87
° |
~.1802 = 2250 2 2 L1
station| n; % -iae ¥ =25 v =270 ¥ = 315
Fa'ng Fa'ny X 5" | Fa'ny [Fa'ng x 5"|Fa'ng [Fa'ny x 5"|Fa'ny |Fa'ng x 5"
0
-0.210 0172 0.860 0111 0.555 [0.029 0.145 -0.026| -0.130
3}
-.560 1.5k 7.70 1..55 175 ey 5285 . 394 1.970
2
-.680 2.82 14.10 2.91 14.55 1.95 9.75 Lho7 2.49
5,
-.h62 2,30 11.60 2.32 11.60 1.33 6.65 =065 325
i
.010 -.054 —2270 0ol =.255 11 =020 = Sl00 .018 .090
)
.610 =3.13 215165 20459 | 212095 s -.905 2.72 13.60
¢ =oDib)) 8 e iz 00k -2 l0 S
Rr=118326 T = 21.25 Z = 20.93 L = 17.68

R
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TABLE V

43

R
CALCULATION OF J/\ m'n,” dx
0

s 2 1
Station 1 1 (sluzs/ft) mvle X 5/12‘
0
-0.210 | o.okk1 | 0.00602 0.111 x 1073
i
-.560 .3136 .00602 767
2
-.680 L6k .00602 1.16
3
-. 462 L2134 .00602 .536
N
.010 .0001 .00602 .00025
5
.610 $3721 .00602 .93
6 ARE L
R
Jf m'n 2 dx = 3.528 x 1073
il

~ AR



Ly

TABLE VI

NACA TN 2626

CALCULATIONS OF 81 AT EIGHT AZIMUTH POSITIONS

R

¥ u/; Fa'ny dx
g
u/\ m'ny dx
0

0 13.30 3769
45 19:35 2935
90 10.24 2901
135 13.87 3932
180 18.26 BLTT
225 21.25 6024
270 20.93 5929
315 17.68 5014




TABIE VII

CALCULATION OF g; p {

a
b

X As AND Ml

im

EI,O =55 cps; Vi 62.5 cps; @ = 800 rpm; wf = 7029.1(radians/sec)2]

(1) (2) (3) (%) (5) (6) (7 (8)
2
= g g n2aR (v )2 ) M 6 6
1,na 1,nb 1,0 (5) Ene s (6) 81,nb X (6)
0 koo | ----- 0 154,056 0.5 BUIO T et e e B
i) -T720 -1560 7029.1 147,027 812 -586.0 -1265
2 0 O i s s R R L e T [ el 0 0
3 0 OB e e R RO e s S 0 0
(1) (2) (3) (%) (5)
Steady state First cosine First sine
i ﬂmvnl dx dg My o = (T)peo % (2) M) g = (T asg * X2) My p = (8)p=1 x (2)
0 0 0 0 0
1 L6666 x 10-3 233 -.391 -.843
2 1227516 4 45 -. 7 -1.61
B 1.70116 5.9k -.998 -2.15
L 1.89016 6.60 Sl ale) -2.39
5 1.82659 6.37 -1.07 -2.31
6 1.53819 5.37 -.90 -1.94
7 1.0946 3.82 -.64 -1.38
8 .60099 2.10 =25 -.T6
9 .1878 .66 =511 =, 2l
10 0 0 0 0

9292 NI VOVN
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TABLE VIII

CALCULATION OF gp {% XAy n AND M,

[}210 = 169 cps; Vo @ = 178.5 cps; w = 800 rpm; of = 7029.]:}

L) (2) (3) (%) (5) (6) (7) (8)
2 (2,0)% x (6) x (6)

n gg’na ge’nb n2(1)2 (VE,(D) - (L") (5) g2)na g2 nb

0 90 e 0 15257 3967 0.8967 BONTas= Eoriile i S as s s S
1l -9h7 -Th7 7029.1 1,250,367.6 90177 -853.9 -673.6
2 0 O e O | e 0 0
3 0 B NI S s B S e b T T T e 0 0
(1) (2) (3) (%) (&)

! f ; A Steady state First cosine First sine

S f’“ 2 My o = (Tpeo X (2) My o = (Tpey X (2) My p = (8)p1 X (2)
0 0 0 0 0

3 8818 % 10~3 -.0308 .326 o257

2 -.4832 -.0389 .43 .325

3 =.5107 -.0k12 . 436 .34k4

I = 1957 -.0158 SL6T: 82

51 .2166 .0175 =185 -.146

6 .5384 .0k35 -.459 HER63

T .6315 .0509 -.539 g5

8 L4743 .0383 -. k405 -.319

9 .1878 L0152 -.160 —.126
10 0 0 0 0

Pl

92¢9c NI VOVN
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(INCLUDES FIRST AND SECOND NATURAL MODES)

SUMMARY OF BENDING-MOMENT DISTRIBUTIONS

TABLE IX

Mo N, My Mnex
5 (steady (cosine) (sine) ¥ = 225°
state) (in.-1b) (in.-1b) (in.-1b)
0 0 0 0 0
p 2.30 -.06 -.58 875
2 b -.34 -1.28 95
3 5.90 2156 -1.81 7.58
L 6.58 -.94 -2.26 8.8k
5 6.39 -1.26 -2.45 9.01
6 5.41 -1.36 -2.30 8.00
3.87 -1.18 -1.81 5.98
8 2.1k4 -.76 -1.08 3.44
9 .68 -.27 -.37 13
10 0 0 0 0

k7



TABIE X

NACA TN 2626

CALCULATION OF STEADY-STATE COMPONENT OF BENDING MOMENT

FOR A ROTOR BIADE FIXED AT ROOT

[g = 0.47; @ = 600 rpm; my = 0.00602 slug/ft; B = 0°; 6g = 8°; a = -5°;
X =5 in.; EI = 16,000 1b-in.2; zyry terms neglected, ( )* indicates
value from the preceding station (1):]

(1) (2) (3) (k) (5) (6) (1)
: 21 X2 X°ay ix—gﬂ Rial e 1Zi¥-23‘1 B4l
SRR AR BT, FT $1EL 158 T vy 2
0 0 1563 x410=3 110 0 32808 &0 -15.22
1 -15.22000 1.563 -.0237886 | -.0237886 | 69.67 | -1.65736988 -15.10
2 -31.97736 1.563 -.0499806 | -.0737692 | 61.41 | -L4.53016836 -1k.56
3 -51.06753 1.563 -.0798185 | -.1535877 | 49.02 | -7.5288735 -13.00
" -71.59641 1.563 -.1119052 | -.2654929 | 32.50 | -8.628522 -9.60
5 -89.92493 1.563 -.1405526 | -. 4060456 | 11.85 | -4.8116409k <3.70
6 -98.43657 L TR T A SR B s e SR BT e S e S
(8) (9) (10) (11) (12) (13)
. 2 2
(8)* 21(11)* ;1:1 gi;~§f§1 Fi+'%(10) o ay Tibiz
0 i 0.0015630 0.0015630 0.115349k 37.61965 37.61965
1 1.1153494 .0017432 .0033062 .2303493 41.95906 26.73906
2 1.3456987 .0021033 .0054096 .3322045 50. 62472 18.64735
3 1.6779033 .0026225 .0080321 .3937376 63.12214 12.05467
b 2.0716409 .0032379 .0112701 . 3662801 T7.93441 6.33800
5 2.4379210 .003810k4 .0150806 .1787054 91.7137h 1.78881
6 2.6166264 | cmmmmeeee | e | e 98. 43657 0
a -90,
Z-- .. %8311*22—223 - 37.619651




NACA TN 2626

TABIE XI

k9

COMPUTATION CHECK FOR STEADY-STATE COMPONENT OF BENDING MOMENT

[k - 0

AU

FOR A ROTOR BLADE FIXED AT ROOT

600 rpm; m; = 0.00602 slug/ft; B = 0°; 6p = 8°;

= a5 X = 50, ; BT = 16,000 lb—in,g; zryy ‘terms neglected]
(13) (14) (15) (16) (17)
i Lt ﬁ ﬁ_ M, X(EX) = 16
aj + byZ A EI; EI; - ar/y+ 1 EZ:( )
0 | 37.61965 1,563 x 10~-3 | 0.0587995 0.0587995
-10.88059
1 | 26.73906 15563 .ok17932 .1005927
=8, 09171
2 | 18.64735 1.563 .0291458 .129739
-6.59275
3 | 12.05467 1,563 .0188413 .148580
5. 71667
4 | 6.33800 1.563 .0099063 .158486
-4,54919
51 1.78881 ’ 1.563 .0027959 .161282
-1.78881
6| O 1.563 O T p s v e e e R
(18) (19) (20) (21) (22)
i P S| mol
F F g fsai XS, = it
i+4 i+1 Qh'i+% i+3 (29) +(20) iy j:O( "3
o| T73.80 4,339991 «15,22 -10.88097 0
1| 69.67 7.008293 <1510 -8.09171 .0587995
2L Gl T7.967272 SLUN56 -6.59273 .1593922
3| 49.02 7.283391 213,00 =5 71661 .2891312
I RS 510 5.150795 -9.60 -4, ko2 JA3TL2
5| 11.85 1.911192 £3: 70 -1,78881 .59619 (2
T e .T574792




TABIE XIT
GOODYEAR METHOD (MODIFIED) FOR CALCULATING FIRST-HARMONIC SINE COMPONENT
OF BENDING MOMENT FOR A ROTOR BLADE FIXED AT ROOT

[u = 0.47; Q = 600 rpm; mj = 0,00602 slug/ft; B = 09 g = 8% .= -59; X =5 in.;
EI = 16,000 1b-in.2; ( )* indicates value from preceding station (i)

(a) Calculation of a.

(1) (2) (3) (%) (5) (6) (7) (8) (9) (10) (11)
84 X2 ¥2agiet 51 o *’ay F F XS o x202n; | x202m3U £20) 5
(1)% + (6)% + ()% + (11)* o e 0T & E Tl | Tiel B [ Faal | x s (e)x ! R
(10) + (11)*
0 0 1.563 x 1073 |0 0 73.80 0 -25.01 | 0 4,13 0 0
1 -25.01 1.563 -.0390906 -.0390906 69.67 | -2.7234421| -25.00 | O 4,13 0 0
2 -52.7334421 1.563 -.0824224 -.1215129 61.41 | -7.4621115] -22.97 | -.0390906 4,13 -. 1614442 -.1614442
3 -83.3269978 1.563 -.1302401 -.2517530 49,02 |-12.34%09355| -18.85 | -.1606036 4,13 -.6632929 - .82lr37a:
N -115. 3426704 1.563 -.1802806 -.4320336 32.50 {-14.04109%40| -12.75 | -.k123567 has 127030332/ 4 -2, 527 03
5 -1k4k. 6615347 1.563 -.2261060 -.6581396 11.85 | -7.7989542| -4.55 |'-.8L44350k4 4,13 | -3.4873324 | -6.0151027
6 -163.0255917 1.563 -.2548090 -.9129486 0 G -1.502530 | 4,13 | -6.2054L489 |[-12.2205516
(b) Calculation of D.
(12) (13) (14) (15) (16) (17) (18)
* * 20T APy B in Vi 2o (17
(12)(;8(i5) O Ty = 14150 bl e X20Pm, V3 s
) (17) + (18)*
0 0 0.001563 0.001563 0.1153494 0 0 0
1 1.115349k4 .001743 .003306 .2303499 .001563 ,0064552 .0064552
2 1.3521545 .002113 .005419 . 3328250 . 004869 ,0201102 . 0265654
3 1.7115449 .002675 .008094 . 3968100 .010289 .0k24937 .0690591
" 2.1774%1%0 .003403 .011498 .3736902 .018383 .0759254 . 1449845
5 2.6960887 .004213 .015712 . 1861889 .029882 .1234128 .2683973
6 3.1506750 .00kg2k .020636 0 045594 .1883040 4567013

9292 NI VOVN




TABIE XII - Concluded

(¢) Calculation of

C.

GOODYEAR METHOD (MODIFIED) FOR CALCULATING FIRST-HARMONIC SINE COMPONENT

. OF BENDING MOMENT FOR A ROTOR BLADE FIXED AT ROOT

(19) (20) (21) (22) (23) (2k) (25)
i e3 chi i X2C. Ws i
z 5 B oA i D B 24
1.0 + (19)% + (22)% + (25)% B e T 21 E 1225 | (e e (ep)x | FORM ; o
(24) + (25)%
0 0 0 0 0 0 0
ik 1.0 .001563 .001563 .10889421 0 0 0
2 2.10889421 .003296 .004859 . 29840347 .001563 .0064552 .0064552
3 3.41375288 .005335 .010194 . 49975380 . 006422 .0265236 .0329738
L 4, 9Lel8557 .007731 .017926 .58260313 .016617 .0686286 .1016075
5 6.63069620 .010363 .028290 . 33523686 .034543 .142664%0 L2hk2715
6 8.21020460 .012832 .ok1122 .062833 .2595018 .5037734
(d) calculation of M.
(26) (27) (28)
i M-
b (oF i
= i# (1) + (26) + (27)
0 14705 0 147.5
L 164,514 -36.8 102, 704
2 199. 443 -T77.6072 69.102
3 252,453 -125,6261 43,499
N 321.168 -1%5.0306 23.794
) 397.672 -2k, 0096 9.001
6 L6l 725 -302.1355 0

929 NI VOVN
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rop

STAGE

SURFACI

1

NACA TN 2626

- ROLLED ALUMINUM TUBE AND ROOT INSERT FITTING

STAGE 2 - STRAIN GAGES ATTACHED TO SPAR AND WIRED

STAGE 3 - BALSA HALVES CUT TO RECEIVE SPAR

STAGE 4 - COMPLETED BLADE TUNACA

Figure 1l.- Blade construction details.




STAT\ON |0 TATION § STATI|ON 2 STATION |
| \ i SR
l v l < - 0 7 . e :

LAG HINGE
FLAPPING HINGE LINE
CENTER OF ROTATION HALF SCALE
n n n i
STAT\ON (IN.) R~ STATION (IN.) R

| 28% | 0345 6 5% | 0529

2 2s5h | .eed 7 3% | 445

3 o e 8 ok | 363

4 20% 695 9 8% | 2%

5 8% b i3 o 6% |-z

Figure 2.- Strain-gage locations on rotor blade.
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Figure 3.- Hovering test installation.

NACA TN 2626




|
|
NACA TN 2626

Figure 4.- Wind-tunnel mount. View shows drive-system detalls.

55



| Figure 5.- Wind-tunnel installation, looking downstream.
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Figure 6.- Concluded.
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Figure .- Bending-moment traces from oscillograph records. Hinged-at-
root condition; 6y = 8°; a = -5°; rotor speed, 800 rpm.
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Figure 25.- Plot showing convergence of modified Goodyear method for
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