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SUMMARY

The effect of a finite trailing-edge thickness on the pressure
drag of rectangular and delta wings with truncated diamond-shaped air-
foil sections with a given thickness ratio is studied for supersonic
Mach numbers, linearized theory being used to evaluate the surface
pressures. In order to facilitate comparison with wings having sharp
trailing edges, the position of maximum thickness and base height are
determined for least pressure drag as functions of a base-pressure
pardmeter, Comparison is then made between the drag of these wings and
similar wings with a sharp trailing edge for various aspect ratios and
thickness ratios as a function of stream Mach number. The calculations
of the drag characteristics for these wings show that significant drag
reductions are possible under some conditions at high supersonic speeds.
These drag reductions are relatively independent of aspect ratio for
the rectangular wings but depend considerably on aspect ratio for the
delta wings; the smaller aspect ratios show the larger drag reductions.
Calculations of the spanwise distribution of drag are included to com-
pare further the effect of a base on the drag for different aspect
ratios. g

INTRODUCTION

A great deal of attention has been focused on the problem of deter-
mining supersonic profiles of minimum pressure drag. In reference 1,
for example, profiles of minimum drag are determined by linearized theory
for several auxiliery conditions, and in reference 2 an analysis is made
for two structural conditions by using a nonlinear pressure relation.

An interesting feature of these and similer investigations is that for
certain conditions the profiles of minimum pressure drag have blunt
trailing edges. The use of a finite tralling-edge thickness results in
a reduction in the pressure drag of the forward surfaces of the airfoil
(that is, the surface excluding the base) since the average absolute
value of the slope of the airfoil surface is diminished. At high super-
sonic speeds, the reduction in pressure drag of the airfoil surface may
exceed the additional base drag incurred for some conditions.
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Consequently, an airfoil with a finite trailing-edge thickness may have
less drag than a wing with a sharp trailing edge which satisfies the
same structural conditions. )

References 1 and 2 are concerned only with the effects of a finite
trailing-edge thickness on two-dimensional sirfoils. Of more practical
interest is the effect of a base on wings of finite aspect ratio, par-
ticularly low-aspect-ratio wings, since it sppears that these wings will
be used at high supersonic flight speeds. An investigation of the drag
of delta and rectangular wings is made in the present paper by using
linearized theory to evaluate the surface pressures in order to deter-
mine the effect of a finite trailing-edge thickness on the drag of
supersonic wings. In order to simplify the analysis, a truncated
diamond-shaped airfoil - the shape for minimum drag for a given thick-
ness ratio for two-dimensional airfoils - 1s considered. The location
of maximum thickness and the trailing-edge thickness are determined for
least drag in order to reduce the number of parameters involved and to
indicate the drag reductions possible. These optimum wings, however,
are not wings of minimum drag since the wing plan form and the form of
the profile are specified and only its parameters are determined to give
minimum drag. The drag coefficients for these wings are compared with
" those for similar wings with a sharp trailing edge for several aspect
ratios and thickness ratios for the Mach number range from 2 to 8.

SYMBOLS

c chord

Cp root chord

t . thickness ratio

b wing span

h ratio of base height to chord or ratio of base area to
wing ares

B=1

t

1-r position of maximum thickness, measured from leading edge,
fraction of chord

A sweep angle of leading edge

A wing slope in stream direction
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A slope of front surface in plane y = Constant

Ao slope of rear surface in plane y = Constant

M stream Mach number

1) Mach angle, sin~1 %

B=\IM -1

. 3 '
B pA

U stream velocity

W vertical disturbance velocity component

g disturbance velocity potential

z:z’z Cartesian coordinateé

S wing area ’

S base area

A aspect ratio

P pressure coefficient

Py’ base pressure coefficient at any spenwise station

By average base pressure coefficient

Pv vacuum pressure coefficient

- E%Q base-pressure parameter

CD wing pressure-drag coefficient

55 pressure-drag coefficient of a wing with a sharp trailing

edge
c

section pressure-drag coefficient
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EE section pressure-drag coefficient of a wing with a sharp
trailing edge '

Subscripts:

1 wing of least drag

0.5 wing with maximum thickness location at midchord

ANALYSIS

b

The pressure drag of a wing is the drag due to the normal forces
acting over its surfaces. The pressure drag of a wing with a finite
trailing-edge thickness consists of a base drag and a pressure drag of
the wing surface excluding the base. For supersonic flow, these two
contributions to the pressure drag may be conslidered independently since
disturbances from the trailing edge are not propagated upstream except
to a small extent in the boundary layer. The normal pressures over the
wing surface (excluding the base or trailing-edge surface) are deter-
mined meinly by the flow field outside the boundary layer where the
effects of viscosity are negligible, whereas the base pressures are
relsted directly to the viscous wake. In genergl, the base pressures
are determined from experiment, whereas the surface pressures may be
determined from inviscid-flow theory.

The surface pressures due to a thickness distribution may be calcu-
lated by linearized theory by using the concept of source distributions.
Puckett (ref. 3) has shown that for a thin symmetric wing in a super-
sonic flow the required source strength at any point on the wing is pro-
portional to the vertical component of the disturbance velocity (slope
of the wing in the stream direction) at that point. Thus the determi-
nation of the disturbance velocity components, and consequently, the
pressure, requires only an integration of the sources over the forward
Mach cone.

The drag of a delta wing with a double-wedge airfoil section was
calculated in reference 3. The drag of a delta wing with a truncated
diamond-shaped airfoil section may be calculated by slightly modifying
the equations of reference 3. Since the calculation of the drag of e
rectangular wing is the same in principle as that of the delta wing,
many of the details of the analysis are omitted. These may be found in
reference 3 and elsewhere.

Rectangular wing.- For supersonic flow, the base drag may be con-
sidered separately from the remainder of the pressure drag. Hence, the
pressure-drag coefficient Cp of a thin symmetric wing whose airfoil
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sections are all similar can be written as

_2 _;f :
CD_Sfods L/ Py oas
Sp

S

vhere P is the surface pressure coefficient,. P,' 1s the base pressure
coefficient at any spanwise station, A 1is the wing slope in the stream
direction, S 1s the wing area, S, 1is the base area, and ds 1is an

element of area. If the average spanwise value of the base pressure
coefficient is denoted by Py, the wing pressure drag-may be written as

f PA d8 = Pph (1)
S

1
b= J; Pp' d(b—l/r'z")

and the quantity h 1is the ratio of the base height to the chord, or,
since all the airfoll sections for the wing are similar, it is the ratio
of bhase area to wing area., The pressure drag of the wing surface
excluding the base 18 considered in several parts for convenience.

wlro

CD=

where

g
|

The supersonic flow field past a rectangular wing is two-dimensional
except in the region bounded by the wing tip and the tip Mach cone:
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The surface pressure coefficient for the two-dimensional part of the
flow field (region I, composed of the subregions Il and Ip of the

sketch) is

where B = VM2 -1 and M is the stream Mach number. The drag coef-
ficient of this two-dimensional-flow region then is

L f >
CDI—-B—S' SIXdS

and for a double-wedge airfoil section with a finite trailing-edge
thickness

_g® l—r) 1, 2 -1
CDI——-B—'(]. —1‘)(1 - BA + 8 I'(l —T

where 1 - r is the location of maximum thickness measured from the
leading edge and A 1s the aspect ratio.

The wing plan forms and airfoil sections for both the rectangular
and delta wings are shown in figure 1. From this figure the slopes of
the forward and rear surfaces are found as

% t
= —— =_—(1—B)

. 2(1 - r) 2 er

where t 1is the thickness ratio and 3B = %. The drag coefficient for
the two-~dimensional region then becomes
t2 J1 -BL -1)(2-B) 1 (1 - B)2(2 - 1)
CDy = == _ - =1+ (2)
I B r(l - 1) pA T

for PBA > 2. The condition BA > 2 requires that the tip Mach cones do
not intersect on the wing surface.
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The pressure coefficient at a point (x,y) in the tip region (com-
posed of the subregions IIj, IIp, and II3 of the sketch), which is
bounded by the wing tip and the tip Mach cone, is found from the poten-
tial of the source distribution in the forward Mach cone. In refer-
ence 3 the required source strength at any point is shown to equal the
vertical component of velocity w at that point. The velocity poten-
tial ¢ at (x,y,0) in the tip Mach cone for a constant source strength
is

y x-B(y-n) at '
Bx,3,0) =% fo an fo I
\/(x - 8 - 8%y - )
w‘jpfﬁgz . Jpx+B(y—n) at
T 1 — -
"y ° Vix - 8)2 - g2y - n)2

and integrating with respect to & gives

x+8y

B(x,¥,0) ="Ef B cosn™ — % dn
"o Bly - n]

The component of the disturbance velocity in the x-direction is found
after some reduction as ' ‘

. 1
By (x,,0) =-Blﬂ-<1r - cos _XX>

and from the linearized form of the Bernoulli equation the pressure
coefficient is .

Y -1 By
‘-P—i-—U————B;éT—COS Y (3)

where U 1s the stream velocity and the airfoil slope is '%.

The pressure coefficient for two-dimensional flow and the pressure
coefficient given by equation (3) can be used to calculate the drag of
the tip regions. The tip drag is determined by considering sources of
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strength MU distributed over the whole tip area and sources of
strength (Ao - A1)U distributed over the regions IIo and I13. For
the sources of strength MU the pressure coefficient is given by
equation (3) and the contribution to the drag for both wing tips is

82 2 Biho . :
CD = ——;L-d[‘ (ﬁ - cos'l Ez-)ds + ;-2321 (ﬁ - co:a'1 %¥>ds
1 pxS SII]_ x prs SIIQ"'SII3
=t2n-1_t2(l-B)[1-(l-r)2]rr-l ' (1)
g« B2A r(1 - r) x

For sources of strength (XQ - A1)U, the pressure coefficient is the
two-dimensional value in the region IIp (since this region is outside
the Mach cone emanating from ‘the maximum-thickness line) and the pressure
coefficient is given by equation (3), with x replaced by x - c(l - r),
for the region II3. This contribution to the drag of both tips is

8ix(rpy = M) Bp(rp - 21) - By
CD2 = 8S JF ds + s - JQII3 x - cos™Ll T (Lo r)%)ds

SII2

=2t2(1-B)E.-B(l-r):| +1-,2(1-13)[:1-13(1-1-)] % -1 (5)

B2Ar B2A(L - 1) i
The total pressure drag of the rectangular wing then is
CD = CDI + CDi + CD2 - th
or, with h = Bt,
2
—  £2|B(B - 2) B BPp
Ch=Cp+ = - - B >2 6
p = Cp + E2 = % (A >2)  (6)
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where

£2 1

C = —_—
D~ B (1 - T)

x

is the drag of a rectangular wing with a sharp trailing edge. It is of
interest to note that the drag of a rectangular wing with a finite

trailing-edge thickness depends upon the aspect ratio; whereas the drag
of a wing with a sharp trailing edge is independent of the aspect ratio.

Delta wing.- The pressure drag of a delta wing with a double-wedge
airfoil section has been calculated in reference 3. The drag of a sim-
ilar wing with a finite trailing-edge thickness can be found from the
same relations provided the expression for the airfoil slope on the rear
surface is suitably modified and the base drag is added. Since the
effect of & finite trailing-edge thickness on the drag reduction is
significant only at relatively high supersonic Mach numbers, only the
condition of supersonic leading edges 1s presented. This corresponds
to case 1 of reference 3.

The pressure drag of the delta wing CDl’ excluding the base drag,
is, from equations (41), (42), and (43) of reference 3,

812 8rrafy Bio(r - M) o
CDl = - r) + > 2 - Gl(n,ri] + on r3 (7)
where -
G, (n,r) = 1-7 cos™n + —-+ sin~Tnr
l+r Vl Vl - 022 \2

and n 1is the ratio of the tangent of the leading edge sweep angle A

to the cotangent of the Mach angle, that 18, n = 2228 _ 4 The pres-

B BA
sure drag may be expressed as the sum of the drag contribution from
equation (7) and the base drag. Hence

CD = CDl - Pph
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where the average spanwise value of the base pressure coefficient Py
for the delta wing is

_ 1 1 C J
e e

vhere c¢ 1s the local chord and c,. 1is the root chord. By substi-
tuting from equation (7) the drag coefficient becomes

. ] £2{B(1 - B) PPy,
Cp = CD[l - B(1 - ;')] oy - + B " (8)
Wwhere
-— 2 2 cos‘ln 1 (x -1
CD = TT + = + gin nr)
(1 - re) Vl “n2 pf - 2r2\2

is the drag of a delta wing with a sharp trailing edge and n < 1.

Least-drag wings.- The equations for the drag of both the rectan-
gular and delta wings each contain four parameters: r, B, -EEE,
and PA (or n). The effect of a finite trailing~edge thickness on the
drag can be more clearly demonstrated by reducing the number of param-
eters., If the position of maximum thickness and the base height are
determined to give the least drag for a given thickness ratio, then the
i)
t

quantities r and B may be expressed in terms of the parameters -

and PA (or n). The wings so determined, however, are not wings of
minimum drag for a given thickness ratio in an exact sense since the
wing plan form and the form of the profile are specified and only its
parameters are determined to give minimum drag. The wings so determined
are herein denoted as least-drag wings.

The values of r and B required to minimize the drag are found
from the simultaneous solution of the equations

' d d
°p °D_ o (9)

—= =0

or . 3B




NACA TN 2828 11

BP :
in terms of the quantities -——E and PBA (or n). These values may

then be substituted into equation (6) or (8) to yield the least drag
coefficient for the particular wing plan form as a function of -Egh

and BA (or n).
DISCUSSION

The wing profile geometry which minimizes the drag of a given wing
plan form with plane surfaces is found as the simultaneous solution of
equations (9). It is significant that the least-drag conditions for the
rectangular wing are similar to those for a two-dimensional airfoil.

The two-dimensional minimum-drag airfoil for a given thickness ratio,
as determined by linearized theory, satisfies the condition Ay = -Ap;

further, the position of maximum thickness and the trailing-edge thick-

ness depend only on the base-pressure parameter -Egh (see ref. 2, for

example). TFor the rectangular wing the condition A1 = -An still holds
for the least-drag condition (see appendix) however, the position of
maximum thickness and the trailing-edge thickness depend both upon the
base-pressure parameter and the aspect-ratio parameter BA. For the
delta wing the two slopes are not equal and the geometric parameters

P.
for least drag are functions of ‘EED and n.

The results of the solution of equations (9) are presented in
figures 2(a) and 2(b) for the rectangular wing and the delta wing with
supersonic leading edges. In these figures the position of maximum
thickness 1 - r and the ratio of trailing-edge thickness_to wing

thickness B are given as functions of the parameters - and BA

(or n). These values may be substituted into equations (6) and (8) to
determine the least drag coefficients. In figures 3(a) and 3(b) the _
ratio of the least drag coefficients CDZ to the drag coefficient C

Do.
(where CD 0.5 is the drag coefficient of a similar wing with a double-

wedge airfoil section and maximum-thickness location at midchord) is pre—
Pb

sented as8 a function of -——= for the rectangular and delta wings,

respectively. Figures 2(a) and 3(a) show that for the rectangular wing

both the geometric parameters and the drag coefficients differ but little -

(for moderate values of PBA) from the values for the two-dimensional
flow. Further, large pressure-drag reductions appear possible with the
use of a finite trailing-edge thickness. Whether these large drag reduc-
tions can actually be realized, however, depends upon the base pressures
experienced.

[V ——
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In order to assess the value of wings with a finite trailing-edge
thickness, the elimination of the base pressure as a parameter is neces-
sary. For this purpose, the base pressure coefficients presented in
reference 2 have been utilized and are presented in figure 4 as a func-
tion of Mach number. Vacuum pressure coefficients are also presented
for comparison. These values of the base pressure are representative
for turbulent boundary layers.

The ratio of the drag coefficients EEPZ for the base pressures

Do,
of figure U4 are presented in figures 5(a) andié(b) for the rectangular
and delta wings, respectively, as a function of the stream Mach number.
As in the case of the two-dimensional airfoil, the percentage drag reduc-
tion possible with the use of a finite trailing-edge thickness is depend-
ent to a large extent on the wing thickness ratio; the thicker wings show
a substantially larger drag reduction at a given stream Mach number.
For example, the drag ratios for the rectangular wing at a Mach number
of 6 -are approximately 0.76 and 0.98 for thickness ratios of 0.10
and 0.06, respectively. For the rectangular wing, the effect of aspect
ratio on the drag reduction is small compared with the effect of thick-
ness ratio; for a given Mach number and thickness ratio the difference

Cp

1
- CDp.5

cent. In contrast, the effect of changes in thickness ratio and aspect
ratio are of the same order of magnitude for the delta wing and the

in for aspect ratios of 1 and « 1is generally less than 3 per-

difference between for aspect ratios of 1 and 4 may be more
D
0.5 ‘

than 10 percent. The ratio — L. decreases with decreasing aspect

0.
ratio for both the rectangular ang delta wings.

A clearer understanding of the effect of aspect ratio on the drag
of the rectangular and delta wings is obtained by considering the span-
wise distribution of section drag. The spanwise distribution of the
quantity ccg, where ¢ 1is the section chord and cgq 1s the section
drag coefficient, for these wings is presented in figure 6 for a stream
Mach number of 5 and a thickness ratio of 0.10. For simplicity, the
base pressure coefficient is taken as constant over the span.

LThe drag coefficient of the two-dimensional airfoil of minimum
drag cg ; is a linear function of +, whereas the drag coefficient of

c
the airfoil of fixed geometry ¢T3 increases as t2 and the ratio —SE}Q
decreases with increasing values of the thickness ratio. ca
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The pressures both inside and outside the Mach cone are unaffected
by a change in aspect ratio for the rectangular wing with a specified
airfoll section. Thus, changing the aspect ratio only changes the pro-
portion of the two-dimensional region to the tip region and the spanwise
distribution of drag changes similarly. Since the airfoil geometry for
least drag depends slightly upon the aspedt ratio, the pressures, and,
consequently, the distribution of drag for the wing of least drag vary
somewhat with aspect ratio. Figure 6 shows that the drag distributions
in the tip regions are similar for different aspect ratios. That is,
the basic distribution of drag within the tip does not change as the
aspect ratio is changed although the proportion of tip area to wing area
changes with a change in aspect ratio. Moreover, in a large part of the
tip region, the difference between an and cy is greater than in

. C
the two~dimensional region. Consequently, the ratio of __DZ decreases

CD )
0.5
with decreasing aspect ratio since the tip region is a larger percentage
of the total wing area for the lower aspect ratios.

A change in aspect ratio for the delta wing necessarily alters the
leading-edge sweep angle, and the pressures both inside and outside the
Mach cone from the apex are changed. As shown in figure 6, a change in
aspect ratio also alters the form of the spanwise distribution of drag
for the airfoll of fixed geometry. For the delta wing of least drag,
however, the distributions for the different aspect ratios tend to be
similar; the section drag approaches a linear variation across the span.

CONCLUDING REMARKS

The calculetions of the drag characteristics for rectangular and
delta wings for a given thickness ratio show that significant drag
reductions are possible under certain conditions at high supersonic
speeds with the use of a finite trailing-edge thickness. The Mach num-
ber at which a blunt-trailing-edge wing has less drag than a similar
., wing with a sharp trailing edge is dependent upon the wing plan form,
aspect ratio, and thickness ratio. For a given Mach number and aspect
ratio, the thicker wings show a substantially larger drag reduction
. through the use of a finite trailing-edge thickness. The effect of
aspect ratio on the drag reduction for the rectangular wings is small,
whereas it is of the same order of magnitude as the effect of thickness
for the delta wing. The ratio of the least drag coefficient of a wing
with a blunt base to the drag coefficient of a similar wing with a sharp
trailing edge decreases with decreasing aspect ratio. ©For the rectan-
gular wing the spanwise distributions of drag in the tip region are
similar for all aspect ratios, although the proportion of tip area to
wing area changes with changing aspect ratio. For the delta wing with
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a fixed airfoil section, the form of the spanwise drag distribution

is altered as the aspect ratio is changed, whereas for the least-drag
delta wings the distributions for different aspect ratios tend to be
similar. Although the analysis of this paper is confined to rectangu-
lar and delta wings with a given thickness ratio, the results suggest
that significant drag reductions may be possible by the use of a finite
trailing-edge thickness with other plan forms. It may be expected that,
similar to the result for the two-dimensional airfoil (NACA TN 226L4),
the relative drag reduction possible by the use of a finite trailing-
edge thickness with other structural conditions (given<area, torsional
stiffness, and so forth) is greater than for a given thickness ratio.

Langley Aeronesutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 15, 1952.
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APPENDIX
"LEAST-DRAG CONDITIONS FOR RECTANGULAR WING

The airfoil of minimum drag for a given thickness ratio in a two-
dimensional supersonic flow is a truncated double wedge. Within the
scope of linearized theory, Ay 1is then equal to -Ap; that is, the

slopes over the front and rear surfaces are equal (see ref. 2, for
example). It is interesting to note that this same condition also-
applies to the rectangular wing of least drag with truncated diamond-
shaped airfoil sections.

The drag of a rectangular wing with a truncated diamoﬁd-shaped
airfoil section is (eq. (6)) ’

- P
C = +.13_2.E3(B-2)_32-Bb]3]

=C
where
— 2 1 )
oot
B r(1 - 1)

The values of .r and B required to give least drag are found
from the simultaneous.solution of the equations

oC ocC ‘
=B .9 2.9 . (A1)
or OB
From the first of equatipﬁs (A1)
r \ %, )
B =L (A2)
2




16 ' NACA TN 2828

and from the second of equations (Al)

B=l-2r . (A3)
l-r

After eliminating B from equations (A2) and (A3), r is found as

2 + 2 _(_Eb.)
r o TP t (ak)

The slopes of the front and rear surfaces are Ay = _t and

2(1 - 1)
Ao =...é°r_(1 - B), respectively. Substituting equation (A3) for B in

the equation for A, results in the relation

% 1-2r % _
)‘2?"2?(1" 1-r)=2(l—r)—‘ a

Consequently, the condition fer least drag of the rectangular wing with
a truncated diamond-shaped airfoil section is Ay = -Ao.

From equations (A2) and (Ak4) it is seen that r and B depend on
BP:
both the base pressure parameter -—t;p- and the aspect ratio param-
eter PA. This is in contrast with the two-dimensional case where r

and B depend only on ——Bglzﬂ.
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Figure 6.- Comparison of spanwise distribution of drag for rectangular and
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t = 0.10.
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